CINXE.COM
Ben-Xun Su - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Ben-Xun Su - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="2vPPXtojXwnhivLk1oYE0KZxYFmqtVqxDunoMhkAShq+3EOqmH0YWamGbhI9zLlK5SMLO3XM/XRcCUNkvLUUmg==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="ben-xun su" /> <meta name="description" content="Ben-Xun Su: 109 Followers, 10 Following, 166 Research papers. Research interests: High Pressure, Authorship Attribution, and Chemical Composition." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'c1c3e6d072b3f834c83f13fceed913db41a413f2'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15265,"monthly_visitors":"113 million","monthly_visitor_count":113657801,"monthly_visitor_count_in_millions":113,"user_count":277978699,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1733270487000); window.Aedu.timeDifference = new Date().getTime() - 1733270487000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-bdb9e8c097f01e611f2fc5e2f1a9dc599beede975e2ae5629983543a1726e947.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-bad3fa1257b860f4633ff1db966aa3ae7dfe1980708675f3e2488742c1a0d941.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-1c1498a5b24f10d2247f356d96ae785336598a8a91e69dfad306a1225e0ddaa3.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://independent.academia.edu/BenXunSu" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-e1c0cb4adda89a897c3e74e5153ef991d13c986f50ebd248bf2f81c2f521d21a.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu","photo":"/images/s65_no_pic.png","has_photo":false,"is_analytics_public":false,"interests":[{"id":4107,"name":"High Pressure","url":"https://www.academia.edu/Documents/in/High_Pressure"},{"id":5599,"name":"Authorship Attribution","url":"https://www.academia.edu/Documents/in/Authorship_Attribution"},{"id":772972,"name":"Chemical Composition","url":"https://www.academia.edu/Documents/in/Chemical_Composition"},{"id":8491,"name":"Roland Barthes","url":"https://www.academia.edu/Documents/in/Roland_Barthes"},{"id":20719,"name":"Interpretation","url":"https://www.academia.edu/Documents/in/Interpretation"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/BenXunSu","location":"/BenXunSu","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/BenXunSu","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-bfcde995-0f89-45a3-a4e2-705d375c9031"></div> <div id="ProfileCheckPaperUpdate-react-component-bfcde995-0f89-45a3-a4e2-705d375c9031"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Ben-Xun Su</h1><div class="affiliations-container fake-truncate js-profile-affiliations"></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Ben-Xun" data-follow-user-id="52838898" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="52838898"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">109</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">10</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">5</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="52838898" href="https://www.academia.edu/Documents/in/High_Pressure"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://independent.academia.edu/BenXunSu","location":"/BenXunSu","scheme":"https","host":"independent.academia.edu","port":null,"pathname":"/BenXunSu","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["High Pressure"]}" data-trace="false" data-dom-id="Pill-react-component-a07788b9-8af7-4f96-94a3-999c6d275fd1"></div> <div id="Pill-react-component-a07788b9-8af7-4f96-94a3-999c6d275fd1"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="52838898" href="https://www.academia.edu/Documents/in/Authorship_Attribution"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Authorship Attribution"]}" data-trace="false" data-dom-id="Pill-react-component-b80c45a2-6c26-4be7-966b-be1c3b6d9103"></div> <div id="Pill-react-component-b80c45a2-6c26-4be7-966b-be1c3b6d9103"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="52838898" href="https://www.academia.edu/Documents/in/Chemical_Composition"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Chemical Composition"]}" data-trace="false" data-dom-id="Pill-react-component-fa0a2c83-e4af-4269-91be-b81d6475860d"></div> <div id="Pill-react-component-fa0a2c83-e4af-4269-91be-b81d6475860d"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="52838898" href="https://www.academia.edu/Documents/in/Roland_Barthes"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Roland Barthes"]}" data-trace="false" data-dom-id="Pill-react-component-3c55abb1-1703-4998-84fd-aca0682b5e92"></div> <div id="Pill-react-component-3c55abb1-1703-4998-84fd-aca0682b5e92"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="52838898" href="https://www.academia.edu/Documents/in/Interpretation"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Interpretation"]}" data-trace="false" data-dom-id="Pill-react-component-ecbe3cdb-639a-4e1a-adba-c3b4057184a0"></div> <div id="Pill-react-component-ecbe3cdb-639a-4e1a-adba-c3b4057184a0"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Ben-Xun Su</h3></div><div class="js-work-strip profile--work_container" data-work-id="117167434"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167434/Magnesium_Isotopic_Evidence_for_Ancient_Subducted_Oceanic_Crust_in_Lomu_Like_Potassium_Rich_Volcanic_Rocks"><img alt="Research paper thumbnail of Magnesium Isotopic Evidence for Ancient Subducted Oceanic Crust in Lomu-Like Potassium-Rich Volcanic Rocks" class="work-thumbnail" src="https://attachments.academia-assets.com/113096438/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167434/Magnesium_Isotopic_Evidence_for_Ancient_Subducted_Oceanic_Crust_in_Lomu_Like_Potassium_Rich_Volcanic_Rocks">Magnesium Isotopic Evidence for Ancient Subducted Oceanic Crust in Lomu-Like Potassium-Rich Volcanic Rocks</a></div><div class="wp-workCard_item"><span>GSA Annual Meeting in Seattle, Washington, USA - 2017</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="972421c8f4b22c1814f4510a615e3070" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096438,"asset_id":117167434,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096438/download_file?st=MTczMzI3MDQ4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167434"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167434"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167434; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167434]").text(description); $(".js-view-count[data-work-id=117167434]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167434; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167434']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167434, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "972421c8f4b22c1814f4510a615e3070" } } $('.js-work-strip[data-work-id=117167434]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167434,"title":"Magnesium Isotopic Evidence for Ancient Subducted Oceanic Crust in Lomu-Like Potassium-Rich Volcanic Rocks","translated_title":"","metadata":{"grobid_abstract":" The low δ 26 Mg feature of the LOMU-like potassium-rich lavas was induced by the incorporation of recycled oceanic crust in the source region. The correlations between δ 26 Mg, (Gd/Yb) N , Sr and Pb isotopes indicate a multistage preconditioning of the mantle source. Magnesium isotopes can be used as a tracer of recycled oceanic crust in the source region of mantle-derived magmas.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"GSA Annual Meeting in Seattle, Washington, USA - 2017","grobid_abstract_attachment_id":113096438},"translated_abstract":null,"internal_url":"https://www.academia.edu/117167434/Magnesium_Isotopic_Evidence_for_Ancient_Subducted_Oceanic_Crust_in_Lomu_Like_Potassium_Rich_Volcanic_Rocks","translated_internal_url":"","created_at":"2024-04-06T23:01:20.329-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096438,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096438/thumbnails/1.jpg","file_name":"2017JB01456020240407-1-li4lz4.pdf","download_url":"https://www.academia.edu/attachments/113096438/download_file?st=MTczMzI3MDQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Magnesium_Isotopic_Evidence_for_Ancient.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096438/2017JB01456020240407-1-li4lz4-libre.pdf?1712471240=\u0026response-content-disposition=attachment%3B+filename%3DMagnesium_Isotopic_Evidence_for_Ancient.pdf\u0026Expires=1733274086\u0026Signature=W8me9KgncOtFdWX6N6ph1Y0bVrVZneYPlL3XgJa0jXpODsd2T341~eyDILNMe8Hdx-3GbFHokfpEev5NmermoOUhV-QtLJbkUxPxxlpw7E-Vmz1AC4rtLjR6kanMfhv5qsF5mEA0UmH1cp~lZEyDZcY7aCXELUG00hVteS44trQLNLaMZ4PLoUUzp030WllLpmE~W0jZ7QuTjLH580pmipDVEuuP4gYc~cD5Z2HwwQyU~pT~BGwgwxnpq2nl~3tsPVBD~WkfvPuqwZqcj7FrUCDi0WlTVwPFT3V~6U4MX4m3TyGdkTjJinVYauqzuLsbOmM72c4k7IOXomX0GQCuwg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Magnesium_Isotopic_Evidence_for_Ancient_Subducted_Oceanic_Crust_in_Lomu_Like_Potassium_Rich_Volcanic_Rocks","translated_slug":"","page_count":24,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096438,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096438/thumbnails/1.jpg","file_name":"2017JB01456020240407-1-li4lz4.pdf","download_url":"https://www.academia.edu/attachments/113096438/download_file?st=MTczMzI3MDQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Magnesium_Isotopic_Evidence_for_Ancient.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096438/2017JB01456020240407-1-li4lz4-libre.pdf?1712471240=\u0026response-content-disposition=attachment%3B+filename%3DMagnesium_Isotopic_Evidence_for_Ancient.pdf\u0026Expires=1733274086\u0026Signature=W8me9KgncOtFdWX6N6ph1Y0bVrVZneYPlL3XgJa0jXpODsd2T341~eyDILNMe8Hdx-3GbFHokfpEev5NmermoOUhV-QtLJbkUxPxxlpw7E-Vmz1AC4rtLjR6kanMfhv5qsF5mEA0UmH1cp~lZEyDZcY7aCXELUG00hVteS44trQLNLaMZ4PLoUUzp030WllLpmE~W0jZ7QuTjLH580pmipDVEuuP4gYc~cD5Z2HwwQyU~pT~BGwgwxnpq2nl~3tsPVBD~WkfvPuqwZqcj7FrUCDi0WlTVwPFT3V~6U4MX4m3TyGdkTjJinVYauqzuLsbOmM72c4k7IOXomX0GQCuwg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":108863,"name":"Volcano","url":"https://www.academia.edu/Documents/in/Volcano"},{"id":122773,"name":"Subduction","url":"https://www.academia.edu/Documents/in/Subduction"},{"id":418452,"name":"Crust","url":"https://www.academia.edu/Documents/in/Crust"},{"id":642278,"name":"Adakite","url":"https://www.academia.edu/Documents/in/Adakite"},{"id":688910,"name":"Volcanic Rock","url":"https://www.academia.edu/Documents/in/Volcanic_Rock"},{"id":3085104,"name":"Oceanic crust","url":"https://www.academia.edu/Documents/in/Oceanic_crust"}],"urls":[{"id":40901801,"url":"https://doi.org/10.1130/abs/2017am-304699"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167432"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167432/High_precision_lithium_isotopic_analysis_using_the_Nu_Sapphire_MC_ICP_MS"><img alt="Research paper thumbnail of High-precision lithium isotopic analysis using the Nu Sapphire MC-ICP-MS" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167432/High_precision_lithium_isotopic_analysis_using_the_Nu_Sapphire_MC_ICP_MS">High-precision lithium isotopic analysis using the Nu Sapphire MC-ICP-MS</a></div><div class="wp-workCard_item"><span>Journal of Analytical Atomic Spectrometry</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">With single-column chemical purification, highly accurate δ7Li values for eight international ref...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">With single-column chemical purification, highly accurate δ7Li values for eight international reference materials are presented together with seventeen Chinese geological reference materials from NRCG using the Nu Sapphire.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167432"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167432"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167432; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167432]").text(description); $(".js-view-count[data-work-id=117167432]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167432; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167432']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167432, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117167432]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167432,"title":"High-precision lithium isotopic analysis using the Nu Sapphire MC-ICP-MS","translated_title":"","metadata":{"abstract":"With single-column chemical purification, highly accurate δ7Li values for eight international reference materials are presented together with seventeen Chinese geological reference materials from NRCG using the Nu Sapphire.","publisher":"Royal Society of Chemistry (RSC)","publication_name":"Journal of Analytical Atomic Spectrometry"},"translated_abstract":"With single-column chemical purification, highly accurate δ7Li values for eight international reference materials are presented together with seventeen Chinese geological reference materials from NRCG using the Nu Sapphire.","internal_url":"https://www.academia.edu/117167432/High_precision_lithium_isotopic_analysis_using_the_Nu_Sapphire_MC_ICP_MS","translated_internal_url":"","created_at":"2024-04-06T23:01:20.126-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"High_precision_lithium_isotopic_analysis_using_the_Nu_Sapphire_MC_ICP_MS","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[],"research_interests":[{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry"},{"id":222413,"name":"Inductively Coupled Plasma Mass Spectrometry","url":"https://www.academia.edu/Documents/in/Inductively_Coupled_Plasma_Mass_Spectrometry"}],"urls":[{"id":40901799,"url":"http://pubs.rsc.org/en/content/articlepdf/2023/JA/D2JA00371F"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167431"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167431/Syn_Mineralization_Hydrous_Fluid_Activity_in_Giant_Jinchuan_Magmatic_Ni_Cu_Sulfide_Deposit_in_North_China_Craton"><img alt="Research paper thumbnail of Syn-Mineralization Hydrous Fluid Activity in Giant Jinchuan Magmatic Ni-Cu Sulfide Deposit in North China Craton" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167431/Syn_Mineralization_Hydrous_Fluid_Activity_in_Giant_Jinchuan_Magmatic_Ni_Cu_Sulfide_Deposit_in_North_China_Craton">Syn-Mineralization Hydrous Fluid Activity in Giant Jinchuan Magmatic Ni-Cu Sulfide Deposit in North China Craton</a></div><div class="wp-workCard_item"><span>SSRN Electronic Journal</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167431"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167431"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167431; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167431]").text(description); $(".js-view-count[data-work-id=117167431]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167431; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167431']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167431, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117167431]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167431,"title":"Syn-Mineralization Hydrous Fluid Activity in Giant Jinchuan Magmatic Ni-Cu Sulfide Deposit in North China Craton","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"SSRN Electronic Journal"},"translated_abstract":null,"internal_url":"https://www.academia.edu/117167431/Syn_Mineralization_Hydrous_Fluid_Activity_in_Giant_Jinchuan_Magmatic_Ni_Cu_Sulfide_Deposit_in_North_China_Craton","translated_internal_url":"","created_at":"2024-04-06T23:01:19.987-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Syn_Mineralization_Hydrous_Fluid_Activity_in_Giant_Jinchuan_Magmatic_Ni_Cu_Sulfide_Deposit_in_North_China_Craton","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":69856,"name":"Social Science Research Network","url":"https://www.academia.edu/Documents/in/Social_Science_Research_Network"},{"id":469741,"name":"Craton","url":"https://www.academia.edu/Documents/in/Craton"},{"id":1235582,"name":"Sulfide","url":"https://www.academia.edu/Documents/in/Sulfide"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167429"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167429/Fluid_Induced_Inhomogeneous_Cr_spinel_in_Dunite_and_Wehrlite_from_the_Duke_Island_Complex_Southeastern_Alaska"><img alt="Research paper thumbnail of Fluid-Induced Inhomogeneous Cr-spinel in Dunite and Wehrlite from the Duke Island Complex, Southeastern Alaska" class="work-thumbnail" src="https://attachments.academia-assets.com/113096396/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167429/Fluid_Induced_Inhomogeneous_Cr_spinel_in_Dunite_and_Wehrlite_from_the_Duke_Island_Complex_Southeastern_Alaska">Fluid-Induced Inhomogeneous Cr-spinel in Dunite and Wehrlite from the Duke Island Complex, Southeastern Alaska</a></div><div class="wp-workCard_item"><span>Minerals</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Cr-spinel [(Mg, Fe2+)(Cr, Al, Fe3+)2O4)] is a common mineral in the ultramafic core of the Duke I...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Cr-spinel [(Mg, Fe2+)(Cr, Al, Fe3+)2O4)] is a common mineral in the ultramafic core of the Duke Island complex in southeastern Alaska, US. Cr-spinel grains with an unmixed texture have been observed in dunite and wehrlite of the complex. Inhomogeneous Cr-spinel with a ratio of Cr/(Al + Cr + Fe3+) &lt;0.37 is prominent in dunite. The inhomogeneous Cr-spinel consists of two completely different compositions: Al-rich Cr-spinel, and Fe3+-rich Cr-spinel with a wide range of Cr content (from 11.8 wt.% to 28.6 wt.% Cr2O3). The unmixed texture is complex, and three subtypes of inhomogeneous Cr-spinel are recognized: Type B1 Cr-spinel showing complete separation, crystallographically oriented type B2 Cr-spinel, and irregular Al-rich Cr-spinel rimmed type B3 Cr-spinel. The unmixed texture was achieved by an unmixing process at around 600 °C due to the miscibility gap of spinel between Al-rich and Fe3+-rich phases. The unmixed patterns of inhomogeneous Cr-spinel are controlled by the initial c...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3e491f982e8a49bed691676caadf86ef" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096396,"asset_id":117167429,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096396/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167429"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167429"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167429; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167429]").text(description); $(".js-view-count[data-work-id=117167429]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167429; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167429']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167429, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3e491f982e8a49bed691676caadf86ef" } } $('.js-work-strip[data-work-id=117167429]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167429,"title":"Fluid-Induced Inhomogeneous Cr-spinel in Dunite and Wehrlite from the Duke Island Complex, Southeastern Alaska","translated_title":"","metadata":{"abstract":"Cr-spinel [(Mg, Fe2+)(Cr, Al, Fe3+)2O4)] is a common mineral in the ultramafic core of the Duke Island complex in southeastern Alaska, US. Cr-spinel grains with an unmixed texture have been observed in dunite and wehrlite of the complex. Inhomogeneous Cr-spinel with a ratio of Cr/(Al + Cr + Fe3+) \u0026lt;0.37 is prominent in dunite. The inhomogeneous Cr-spinel consists of two completely different compositions: Al-rich Cr-spinel, and Fe3+-rich Cr-spinel with a wide range of Cr content (from 11.8 wt.% to 28.6 wt.% Cr2O3). The unmixed texture is complex, and three subtypes of inhomogeneous Cr-spinel are recognized: Type B1 Cr-spinel showing complete separation, crystallographically oriented type B2 Cr-spinel, and irregular Al-rich Cr-spinel rimmed type B3 Cr-spinel. The unmixed texture was achieved by an unmixing process at around 600 °C due to the miscibility gap of spinel between Al-rich and Fe3+-rich phases. The unmixed patterns of inhomogeneous Cr-spinel are controlled by the initial c...","publisher":"MDPI AG","publication_name":"Minerals"},"translated_abstract":"Cr-spinel [(Mg, Fe2+)(Cr, Al, Fe3+)2O4)] is a common mineral in the ultramafic core of the Duke Island complex in southeastern Alaska, US. Cr-spinel grains with an unmixed texture have been observed in dunite and wehrlite of the complex. Inhomogeneous Cr-spinel with a ratio of Cr/(Al + Cr + Fe3+) \u0026lt;0.37 is prominent in dunite. The inhomogeneous Cr-spinel consists of two completely different compositions: Al-rich Cr-spinel, and Fe3+-rich Cr-spinel with a wide range of Cr content (from 11.8 wt.% to 28.6 wt.% Cr2O3). The unmixed texture is complex, and three subtypes of inhomogeneous Cr-spinel are recognized: Type B1 Cr-spinel showing complete separation, crystallographically oriented type B2 Cr-spinel, and irregular Al-rich Cr-spinel rimmed type B3 Cr-spinel. The unmixed texture was achieved by an unmixing process at around 600 °C due to the miscibility gap of spinel between Al-rich and Fe3+-rich phases. The unmixed patterns of inhomogeneous Cr-spinel are controlled by the initial c...","internal_url":"https://www.academia.edu/117167429/Fluid_Induced_Inhomogeneous_Cr_spinel_in_Dunite_and_Wehrlite_from_the_Duke_Island_Complex_Southeastern_Alaska","translated_internal_url":"","created_at":"2024-04-06T23:01:19.631-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096396,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096396/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113096396/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fluid_Induced_Inhomogeneous_Cr_spinel_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096396/pdf-libre.pdf?1712471248=\u0026response-content-disposition=attachment%3B+filename%3DFluid_Induced_Inhomogeneous_Cr_spinel_in.pdf\u0026Expires=1733274086\u0026Signature=Qb4fwHfEsVpuUD6AbTtwmg91dOuvLu90wb10haBjXgrfdQchR5jNXM6lESHbZcGv3Tl5se~SabrCTFHy59xIejMffzxTEiyEBm97tZ3Aq1w0nWWCkuFJDaGDWooRK8JunhItmH9I7MySIEz--SmiIG3KsaR~l7C~5yH8yjyY-pN6mYmSkpWMRZT~xLCXHMbAxQ5DOy4RK70D2snxEzzMQ4t2hQ4ZEUofMYl8aBF-Zptyu2SNTPMvOWNgt2Rlp~nbxyZZGu5mzCOOggXMlEbJCN1IIbh4y5CseZaeHM9q5kLpWZrB~eryKYXaCckwO-GguGVePPTbAMuZS8HR2SjH3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fluid_Induced_Inhomogeneous_Cr_spinel_in_Dunite_and_Wehrlite_from_the_Duke_Island_Complex_Southeastern_Alaska","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096396,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096396/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113096396/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fluid_Induced_Inhomogeneous_Cr_spinel_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096396/pdf-libre.pdf?1712471248=\u0026response-content-disposition=attachment%3B+filename%3DFluid_Induced_Inhomogeneous_Cr_spinel_in.pdf\u0026Expires=1733274087\u0026Signature=Pe69sXHyV-ZUoKAl3rVjHbvnQ5AyjmpAhcFcL3gXdgXqr4X-uFIPsNemlOxSGtcHWi3CxttkVtBn81Buh5Mpfns4oHGf4mi5FYUjR7qwj2O~j5jbw8KN6qQZpGmsa3cGZprIrnosjxCW4x2qwyy6Rg4yWma90SF8xLj4mEXLmGu4HKgfJZTEeiNImfKt7~npBu3YeLL-Xgmwo3DIXFdycS-dW8Rgpj4nFVRNTgCh6x~f94eAC3A5hyEND2pdG-mTaODpAFu8w4AzPjUwZfBDmho6zQVnaNnJCvkruIdDJeQlbF7egGeuwoiGL99z7NvE8AT9RJCIOwQ4D7hj95ivcQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113096397,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096397/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113096397/download_file","bulk_download_file_name":"Fluid_Induced_Inhomogeneous_Cr_spinel_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096397/pdf-libre.pdf?1712471248=\u0026response-content-disposition=attachment%3B+filename%3DFluid_Induced_Inhomogeneous_Cr_spinel_in.pdf\u0026Expires=1733274087\u0026Signature=bfSDZrjeVu5UYb0YTu91crBjTGGpcmfAeIZeroqlybiuqotSoSe1p16i4VeWkRwDE6aAVaqzo4yFjR9uQm8XTbR4iBEkRgr-jlQFJVwgMLMIi1HDoT5sOjvpgmAWI4DvImd8AFQj8PssXLAU5riDUA6KT3M9WvppjVf75~e3u0lwsijsqh342WXRyGGKHEcaWnxa8Cfy-7knyR4gjpqqZhwTQXroSPvC8MxwlAhI~2H7kqh4dHntBevQME1Ti~Gtjc5e2FrGlnMybPpwGkTM9B6exQyaF5TlWvDixbZkeyZKREL~mI9HvLCCpgdDmhVxCpBmhJ9PdOfvGuwWqriP5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":9533,"name":"Minerals","url":"https://www.academia.edu/Documents/in/Minerals"},{"id":281808,"name":"Olivine","url":"https://www.academia.edu/Documents/in/Olivine"},{"id":403641,"name":"Spinel","url":"https://www.academia.edu/Documents/in/Spinel"}],"urls":[{"id":40901797,"url":"https://www.mdpi.com/2075-163X/12/6/717/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167428"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167428/Amphibole_as_a_witness_of_chromitite_formation_and_fluid_metasomatism_in_ophiolites"><img alt="Research paper thumbnail of Amphibole as a witness of chromitite formation and fluid metasomatism in ophiolites" class="work-thumbnail" src="https://attachments.academia-assets.com/113096433/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167428/Amphibole_as_a_witness_of_chromitite_formation_and_fluid_metasomatism_in_ophiolites">Amphibole as a witness of chromitite formation and fluid metasomatism in ophiolites</a></div><div class="wp-workCard_item"><span>American Mineralogist</span><span>, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Here we present new occurrences of amphibole in a suite of chromitites, dunites, and harzburgites...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Here we present new occurrences of amphibole in a suite of chromitites, dunites, and harzburgites from the mantle sequence of the Lycian ophiolite in the Tauride Belt, southwest Turkey. The amphibole occurs both as interstitial grains among the major constituent minerals and as inclusions in chromite grains. The interstitial amphibole shows generally decreasing trends in Na2O and Al2O3 contents from the chromitites (0.14–1.54 wt% and 0.04–6.67 wt%, respectively) and the dunites (0.09–2.37 wt%; 0.12–11.9 wt%) to the host harzburgites (&lt;0.61 wt%; 0.02–5.41 wt%). Amphibole inclusions in chromite of the amphibole-bearing harzburgites are poorer in Al2O3 (1.12–8.86 wt%), CaO (8.47–13.2 wt%), and Na2O (b.d.l.–1.38 wt%) than their counterparts in the amphibole-bearing chromitites (Al2O3 = 6.13–10.0 wt%; CaO = 12.1–12.9 wt%; Na2O = 1.11–1.91 wt%). Estimated crystallization temperatures for the interstitial amphibole grains and amphibole inclusions range from 706 to 974 °C, with the highe...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c53e33a9591aa8250ec8822aa7dd477a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096433,"asset_id":117167428,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096433/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167428"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167428"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167428; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167428]").text(description); $(".js-view-count[data-work-id=117167428]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167428; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167428']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167428, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c53e33a9591aa8250ec8822aa7dd477a" } } $('.js-work-strip[data-work-id=117167428]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167428,"title":"Amphibole as a witness of chromitite formation and fluid metasomatism in ophiolites","translated_title":"","metadata":{"abstract":"Here we present new occurrences of amphibole in a suite of chromitites, dunites, and harzburgites from the mantle sequence of the Lycian ophiolite in the Tauride Belt, southwest Turkey. The amphibole occurs both as interstitial grains among the major constituent minerals and as inclusions in chromite grains. The interstitial amphibole shows generally decreasing trends in Na2O and Al2O3 contents from the chromitites (0.14–1.54 wt% and 0.04–6.67 wt%, respectively) and the dunites (0.09–2.37 wt%; 0.12–11.9 wt%) to the host harzburgites (\u0026lt;0.61 wt%; 0.02–5.41 wt%). Amphibole inclusions in chromite of the amphibole-bearing harzburgites are poorer in Al2O3 (1.12–8.86 wt%), CaO (8.47–13.2 wt%), and Na2O (b.d.l.–1.38 wt%) than their counterparts in the amphibole-bearing chromitites (Al2O3 = 6.13–10.0 wt%; CaO = 12.1–12.9 wt%; Na2O = 1.11–1.91 wt%). Estimated crystallization temperatures for the interstitial amphibole grains and amphibole inclusions range from 706 to 974 °C, with the highe...","publisher":"Mineralogical Society of America","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"American Mineralogist"},"translated_abstract":"Here we present new occurrences of amphibole in a suite of chromitites, dunites, and harzburgites from the mantle sequence of the Lycian ophiolite in the Tauride Belt, southwest Turkey. The amphibole occurs both as interstitial grains among the major constituent minerals and as inclusions in chromite grains. The interstitial amphibole shows generally decreasing trends in Na2O and Al2O3 contents from the chromitites (0.14–1.54 wt% and 0.04–6.67 wt%, respectively) and the dunites (0.09–2.37 wt%; 0.12–11.9 wt%) to the host harzburgites (\u0026lt;0.61 wt%; 0.02–5.41 wt%). Amphibole inclusions in chromite of the amphibole-bearing harzburgites are poorer in Al2O3 (1.12–8.86 wt%), CaO (8.47–13.2 wt%), and Na2O (b.d.l.–1.38 wt%) than their counterparts in the amphibole-bearing chromitites (Al2O3 = 6.13–10.0 wt%; CaO = 12.1–12.9 wt%; Na2O = 1.11–1.91 wt%). Estimated crystallization temperatures for the interstitial amphibole grains and amphibole inclusions range from 706 to 974 °C, with the highe...","internal_url":"https://www.academia.edu/117167428/Amphibole_as_a_witness_of_chromitite_formation_and_fluid_metasomatism_in_ophiolites","translated_internal_url":"","created_at":"2024-04-06T23:01:19.407-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096433,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096433/thumbnails/1.jpg","file_name":"7593XiaoPreprint.pdf","download_url":"https://www.academia.edu/attachments/113096433/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Amphibole_as_a_witness_of_chromitite_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096433/7593XiaoPreprint-libre.pdf?1712471554=\u0026response-content-disposition=attachment%3B+filename%3DAmphibole_as_a_witness_of_chromitite_for.pdf\u0026Expires=1733274087\u0026Signature=cJeBTJvzAqlIpVfpq4fjm3xvmaV69iP0bz60pUP2LeT565H0pktZU9aqIJKyqn-TKs3P170TV20VcwPUKVp-KocNNLfSHXmpwOH1THCStppdz9tZg-JCqpINOJ9yYxQmJBVOeur~ZFpddnZvagw5k9QshhDJSJ1xXtBpLanThEzrvSAXwpillvkXARK6R1FXc9c0wywjap-pqNgbpJH6IaUis~X3y8fK-XlZQrLDP7k47-YDj9qwdKgE5eAiGF3hIputH3utpse3gNtzfgRg6P8CzSgiIDvpGHBmlSyJpA9j1H1-UKikRrjrh~FPyZFu6T3qhJwNosnjukp~SAslyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Amphibole_as_a_witness_of_chromitite_formation_and_fluid_metasomatism_in_ophiolites","translated_slug":"","page_count":58,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096433,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096433/thumbnails/1.jpg","file_name":"7593XiaoPreprint.pdf","download_url":"https://www.academia.edu/attachments/113096433/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Amphibole_as_a_witness_of_chromitite_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096433/7593XiaoPreprint-libre.pdf?1712471554=\u0026response-content-disposition=attachment%3B+filename%3DAmphibole_as_a_witness_of_chromitite_for.pdf\u0026Expires=1733274087\u0026Signature=cJeBTJvzAqlIpVfpq4fjm3xvmaV69iP0bz60pUP2LeT565H0pktZU9aqIJKyqn-TKs3P170TV20VcwPUKVp-KocNNLfSHXmpwOH1THCStppdz9tZg-JCqpINOJ9yYxQmJBVOeur~ZFpddnZvagw5k9QshhDJSJ1xXtBpLanThEzrvSAXwpillvkXARK6R1FXc9c0wywjap-pqNgbpJH6IaUis~X3y8fK-XlZQrLDP7k47-YDj9qwdKgE5eAiGF3hIputH3utpse3gNtzfgRg6P8CzSgiIDvpGHBmlSyJpA9j1H1-UKikRrjrh~FPyZFu6T3qhJwNosnjukp~SAslyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":54669,"name":"Metasomatism","url":"https://www.academia.edu/Documents/in/Metasomatism"},{"id":157242,"name":"chromitite and PGE","url":"https://www.academia.edu/Documents/in/chromitite_and_PGE"},{"id":330036,"name":"Ophiolite","url":"https://www.academia.edu/Documents/in/Ophiolite"},{"id":895633,"name":"Chromite","url":"https://www.academia.edu/Documents/in/Chromite"},{"id":1278741,"name":"Amphibole","url":"https://www.academia.edu/Documents/in/Amphibole"}],"urls":[{"id":40901796,"url":"https://pubs.geoscienceworld.org/msa/ammin/article-pdf/107/2/294/5515374/am-2021-7593.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167427"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167427/Addition_of_H2O_at_the_Baishiquan_and_Tianyu_magmatic_Ni_Cu_sulfide_deposits_southern_Central_Asian_Orogenic_Belt_China_evidence_from_isotopic_geochemistry_of_olivine_and_zircon"><img alt="Research paper thumbnail of Addition of H2O at the Baishiquan and Tianyu magmatic Ni-Cu sulfide deposits, southern Central Asian Orogenic Belt, China: evidence from isotopic geochemistry of olivine and zircon" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167427/Addition_of_H2O_at_the_Baishiquan_and_Tianyu_magmatic_Ni_Cu_sulfide_deposits_southern_Central_Asian_Orogenic_Belt_China_evidence_from_isotopic_geochemistry_of_olivine_and_zircon">Addition of H2O at the Baishiquan and Tianyu magmatic Ni-Cu sulfide deposits, southern Central Asian Orogenic Belt, China: evidence from isotopic geochemistry of olivine and zircon</a></div><div class="wp-workCard_item"><span>Mineralium Deposita</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Magmatic Ni-Cu sulfide deposits in orogenic belts have distinct petrological and geochemical feat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Magmatic Ni-Cu sulfide deposits in orogenic belts have distinct petrological and geochemical features compared with world-class intraplate magmatic deposits. One such feature is the presence of abundant primary hydrous minerals such as phlogopite and amphibole, indicating a H 2 O-rich parental magma. However, the origin and nature of the fluids have not been established. In the southern Central Asian Orogenic Belt, the Permian Baishiquan and Tianyu mafic–ultramafic intrusions host magmatic Ni-Cu sulfide deposits. Both intrusions are composed of lherzolite, olivine websterite, gabbronorite, gabbro, and diorite. The main ore-host rocks are lherzolite and websterite, with disseminated, net-textured, and massive ores comprising the dominant primary ore types. Low zircon ε Hf (− 6.9 to 7.9 ‰) and varying δ 18 O values (5.2 to 6.6 ‰), as well as both arc-type and MOR-type zircon Nb/Yb (0.0013–0.011) and U/Yb (0.33–10.22), identify an altered lower oceanic crust component in the mantle source. A combination of altered lower oceanic crust and upper crust can account for the zircon Hf–O isotopic characteristics. A mixing model further reveals that the Baishiquan and Tianyu magmatic sulfide deposits originated from a depleted mantle source that experienced two stages of subduction metasomatism with a 30% addition of altered oceanic crust in the first stage and 20% in the second. In the second stage, &gt; 10% oceanic sediment with high δ 18 O must also have been added to result in olivine δ 18 O values higher than those in mantle. This staged evolution is reflected in both the olivine and zircon signatures with olivine from disseminated and net-textured ores at the Tianyu deposit having high δ 18 O (4.6 to 6.3 ‰) with a similar range to zircon and high δ 7 Li isotopic compositions (12.03 to 19.46 ‰). Contamination in the source by oceanic sediment with high δ 18 O values can account for the olivine δ 18 O values (4.8 to 5.7 ‰ at Baishiquan) being higher than those in the mantle, while the addition of brine (5% at the Baishiquan deposit) can explain the olivine δ 7 Li values (20.96 to 31.01 ‰). The results suggest that H 2 O content, Li content, and δ 7 Li and δ 18 O isotopic signatures in olivine and zircon are good indicators of mantle metasomatism and olivine fluid processes in magmatic Ni-Cu sulfide deposits.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167427"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167427"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167427; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167427]").text(description); $(".js-view-count[data-work-id=117167427]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167427; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167427']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167427, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117167427]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167427,"title":"Addition of H2O at the Baishiquan and Tianyu magmatic Ni-Cu sulfide deposits, southern Central Asian Orogenic Belt, China: evidence from isotopic geochemistry of olivine and zircon","translated_title":"","metadata":{"abstract":"Magmatic Ni-Cu sulfide deposits in orogenic belts have distinct petrological and geochemical features compared with world-class intraplate magmatic deposits. One such feature is the presence of abundant primary hydrous minerals such as phlogopite and amphibole, indicating a H 2 O-rich parental magma. However, the origin and nature of the fluids have not been established. In the southern Central Asian Orogenic Belt, the Permian Baishiquan and Tianyu mafic–ultramafic intrusions host magmatic Ni-Cu sulfide deposits. Both intrusions are composed of lherzolite, olivine websterite, gabbronorite, gabbro, and diorite. The main ore-host rocks are lherzolite and websterite, with disseminated, net-textured, and massive ores comprising the dominant primary ore types. Low zircon ε Hf (− 6.9 to 7.9 ‰) and varying δ 18 O values (5.2 to 6.6 ‰), as well as both arc-type and MOR-type zircon Nb/Yb (0.0013–0.011) and U/Yb (0.33–10.22), identify an altered lower oceanic crust component in the mantle source. A combination of altered lower oceanic crust and upper crust can account for the zircon Hf–O isotopic characteristics. A mixing model further reveals that the Baishiquan and Tianyu magmatic sulfide deposits originated from a depleted mantle source that experienced two stages of subduction metasomatism with a 30% addition of altered oceanic crust in the first stage and 20% in the second. In the second stage, \u0026gt; 10% oceanic sediment with high δ 18 O must also have been added to result in olivine δ 18 O values higher than those in mantle. This staged evolution is reflected in both the olivine and zircon signatures with olivine from disseminated and net-textured ores at the Tianyu deposit having high δ 18 O (4.6 to 6.3 ‰) with a similar range to zircon and high δ 7 Li isotopic compositions (12.03 to 19.46 ‰). Contamination in the source by oceanic sediment with high δ 18 O values can account for the olivine δ 18 O values (4.8 to 5.7 ‰ at Baishiquan) being higher than those in the mantle, while the addition of brine (5% at the Baishiquan deposit) can explain the olivine δ 7 Li values (20.96 to 31.01 ‰). The results suggest that H 2 O content, Li content, and δ 7 Li and δ 18 O isotopic signatures in olivine and zircon are good indicators of mantle metasomatism and olivine fluid processes in magmatic Ni-Cu sulfide deposits.","publisher":"Springer Science and Business Media LLC","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Mineralium Deposita"},"translated_abstract":"Magmatic Ni-Cu sulfide deposits in orogenic belts have distinct petrological and geochemical features compared with world-class intraplate magmatic deposits. One such feature is the presence of abundant primary hydrous minerals such as phlogopite and amphibole, indicating a H 2 O-rich parental magma. However, the origin and nature of the fluids have not been established. In the southern Central Asian Orogenic Belt, the Permian Baishiquan and Tianyu mafic–ultramafic intrusions host magmatic Ni-Cu sulfide deposits. Both intrusions are composed of lherzolite, olivine websterite, gabbronorite, gabbro, and diorite. The main ore-host rocks are lherzolite and websterite, with disseminated, net-textured, and massive ores comprising the dominant primary ore types. Low zircon ε Hf (− 6.9 to 7.9 ‰) and varying δ 18 O values (5.2 to 6.6 ‰), as well as both arc-type and MOR-type zircon Nb/Yb (0.0013–0.011) and U/Yb (0.33–10.22), identify an altered lower oceanic crust component in the mantle source. A combination of altered lower oceanic crust and upper crust can account for the zircon Hf–O isotopic characteristics. A mixing model further reveals that the Baishiquan and Tianyu magmatic sulfide deposits originated from a depleted mantle source that experienced two stages of subduction metasomatism with a 30% addition of altered oceanic crust in the first stage and 20% in the second. In the second stage, \u0026gt; 10% oceanic sediment with high δ 18 O must also have been added to result in olivine δ 18 O values higher than those in mantle. This staged evolution is reflected in both the olivine and zircon signatures with olivine from disseminated and net-textured ores at the Tianyu deposit having high δ 18 O (4.6 to 6.3 ‰) with a similar range to zircon and high δ 7 Li isotopic compositions (12.03 to 19.46 ‰). Contamination in the source by oceanic sediment with high δ 18 O values can account for the olivine δ 18 O values (4.8 to 5.7 ‰ at Baishiquan) being higher than those in the mantle, while the addition of brine (5% at the Baishiquan deposit) can explain the olivine δ 7 Li values (20.96 to 31.01 ‰). The results suggest that H 2 O content, Li content, and δ 7 Li and δ 18 O isotopic signatures in olivine and zircon are good indicators of mantle metasomatism and olivine fluid processes in magmatic Ni-Cu sulfide deposits.","internal_url":"https://www.academia.edu/117167427/Addition_of_H2O_at_the_Baishiquan_and_Tianyu_magmatic_Ni_Cu_sulfide_deposits_southern_Central_Asian_Orogenic_Belt_China_evidence_from_isotopic_geochemistry_of_olivine_and_zircon","translated_internal_url":"","created_at":"2024-04-06T23:01:19.205-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Addition_of_H2O_at_the_Baishiquan_and_Tianyu_magmatic_Ni_Cu_sulfide_deposits_southern_Central_Asian_Orogenic_Belt_China_evidence_from_isotopic_geochemistry_of_olivine_and_zircon","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":206457,"name":"Zircon","url":"https://www.academia.edu/Documents/in/Zircon"},{"id":281808,"name":"Olivine","url":"https://www.academia.edu/Documents/in/Olivine"},{"id":3085104,"name":"Oceanic crust","url":"https://www.academia.edu/Documents/in/Oceanic_crust"}],"urls":[{"id":40901795,"url":"https://link.springer.com/content/pdf/10.1007/s00126-021-01063-2.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167426"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167426/Trace_elements_in_olivine_Proxies_for_petrogenesis_mineralization_and_discrimination_of_mafic_ultramafic_rocks"><img alt="Research paper thumbnail of Trace elements in olivine: Proxies for petrogenesis, mineralization and discrimination of mafic-ultramafic rocks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167426/Trace_elements_in_olivine_Proxies_for_petrogenesis_mineralization_and_discrimination_of_mafic_ultramafic_rocks">Trace elements in olivine: Proxies for petrogenesis, mineralization and discrimination of mafic-ultramafic rocks</a></div><div class="wp-workCard_item"><span>Lithos</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract Olivine is a ubiquitous mineral in mafic-ultramafic rocks and has been widely used as a ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract Olivine is a ubiquitous mineral in mafic-ultramafic rocks and has been widely used as a mineral marker in various geological processes. However, its development of trace elements is limited. Here we present newly-obtained trace element data 7Li, 27Al, 29Si, 31P, 43Ca, 45Sc, 49Ti, 51V, 53Cr, 55Mn, 59Co, 60Ni, and 66Zn of olivine in typical mantle xenoliths, mantle peridotites in ophiolites, and plutonic rocks from layered and Alaskan-type intrusions to develop trace element proxies for the petrogenesis, mineralization and discrimination of various mafic-ultramafic rocks. Residual olivine grains in mantle xenoliths and ophiolitic peridotites, which represent residues of mantle melting, have higher Ni/Co (&gt;20) and Ni/Mn (&gt;2) ratios than magmatic olivine (Ni/Co 2 ppm, V/Sc &gt; 0.5) from ophiolitic peridotites (V</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167426"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167426"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167426; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167426]").text(description); $(".js-view-count[data-work-id=117167426]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167426; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167426']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167426, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117167426]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167426,"title":"Trace elements in olivine: Proxies for petrogenesis, mineralization and discrimination of mafic-ultramafic rocks","translated_title":"","metadata":{"abstract":"Abstract Olivine is a ubiquitous mineral in mafic-ultramafic rocks and has been widely used as a mineral marker in various geological processes. However, its development of trace elements is limited. Here we present newly-obtained trace element data 7Li, 27Al, 29Si, 31P, 43Ca, 45Sc, 49Ti, 51V, 53Cr, 55Mn, 59Co, 60Ni, and 66Zn of olivine in typical mantle xenoliths, mantle peridotites in ophiolites, and plutonic rocks from layered and Alaskan-type intrusions to develop trace element proxies for the petrogenesis, mineralization and discrimination of various mafic-ultramafic rocks. Residual olivine grains in mantle xenoliths and ophiolitic peridotites, which represent residues of mantle melting, have higher Ni/Co (\u0026gt;20) and Ni/Mn (\u0026gt;2) ratios than magmatic olivine (Ni/Co 2 ppm, V/Sc \u0026gt; 0.5) from ophiolitic peridotites (V","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Lithos"},"translated_abstract":"Abstract Olivine is a ubiquitous mineral in mafic-ultramafic rocks and has been widely used as a mineral marker in various geological processes. However, its development of trace elements is limited. Here we present newly-obtained trace element data 7Li, 27Al, 29Si, 31P, 43Ca, 45Sc, 49Ti, 51V, 53Cr, 55Mn, 59Co, 60Ni, and 66Zn of olivine in typical mantle xenoliths, mantle peridotites in ophiolites, and plutonic rocks from layered and Alaskan-type intrusions to develop trace element proxies for the petrogenesis, mineralization and discrimination of various mafic-ultramafic rocks. Residual olivine grains in mantle xenoliths and ophiolitic peridotites, which represent residues of mantle melting, have higher Ni/Co (\u0026gt;20) and Ni/Mn (\u0026gt;2) ratios than magmatic olivine (Ni/Co 2 ppm, V/Sc \u0026gt; 0.5) from ophiolitic peridotites (V","internal_url":"https://www.academia.edu/117167426/Trace_elements_in_olivine_Proxies_for_petrogenesis_mineralization_and_discrimination_of_mafic_ultramafic_rocks","translated_internal_url":"","created_at":"2024-04-06T23:01:19.013-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Trace_elements_in_olivine_Proxies_for_petrogenesis_mineralization_and_discrimination_of_mafic_ultramafic_rocks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":16937,"name":"Petrology and Geochemistry","url":"https://www.academia.edu/Documents/in/Petrology_and_Geochemistry"},{"id":205582,"name":"Xenolith","url":"https://www.academia.edu/Documents/in/Xenolith"},{"id":224577,"name":"Trace Elements","url":"https://www.academia.edu/Documents/in/Trace_Elements"},{"id":281808,"name":"Olivine","url":"https://www.academia.edu/Documents/in/Olivine"},{"id":281810,"name":"Mantle xenolith","url":"https://www.academia.edu/Documents/in/Mantle_xenolith"},{"id":319882,"name":"Petrogenesis","url":"https://www.academia.edu/Documents/in/Petrogenesis"},{"id":330036,"name":"Ophiolite","url":"https://www.academia.edu/Documents/in/Ophiolite"},{"id":974134,"name":"Layered Intrusion","url":"https://www.academia.edu/Documents/in/Layered_Intrusion"}],"urls":[{"id":40901794,"url":"https://api.elsevier.com/content/article/PII:S0024493721001213?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167425"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167425/Crustal_Derivation_of_theca_475_Ma_Eppawala_Carbonatites_in_Sri_Lanka"><img alt="Research paper thumbnail of Crustal Derivation of theca. 475 Ma Eppawala Carbonatites in Sri Lanka" class="work-thumbnail" src="https://attachments.academia-assets.com/113096430/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167425/Crustal_Derivation_of_theca_475_Ma_Eppawala_Carbonatites_in_Sri_Lanka">Crustal Derivation of theca. 475 Ma Eppawala Carbonatites in Sri Lanka</a></div><div class="wp-workCard_item"><span>Journal of Petrology</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Although a mantle origin of carbonatites has long been advocated, a few carbonatite bodies with c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Although a mantle origin of carbonatites has long been advocated, a few carbonatite bodies with crustal fingerprints have been identified. The Eppawala carbonatites in Sri Lanka are more similar to orogenic carbonatites than those formed in stable cratons and within plate rifts. They occur within the Pan-African orogenic belt and have a formation age of ca. 475 Ma newly obtained in this study with no contemporary mantle-related magmatism. These carbonatites have higher (87Sr/86Sr)i ratios (0·70479–0·70524) and more enriched Nd and Hf isotopic compositions than carbonatites reported in other parts of the world. Model ages (1·3–2·0 Ga) of both Nd and Hf isotopes [apatite ɛNd(t) = −9·2 to −4·7; rutile εHf(t) = −22·0 to −8·02] are in the age range of metamorphic basement in Sri Lanka, and the carbon and oxygen isotopic compositions (δ13CPDB = −2·36 to −1·71; δ18OSMOW = 13·91–15·13) lie between those of mantle-derived carbonatites and marble. These crustal signatures are compatible with ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="29d776598ea9abd58eac4497998df1df" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096430,"asset_id":117167425,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096430/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167425"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167425"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167425; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167425]").text(description); $(".js-view-count[data-work-id=117167425]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167425; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167425']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167425, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "29d776598ea9abd58eac4497998df1df" } } $('.js-work-strip[data-work-id=117167425]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167425,"title":"Crustal Derivation of theca. 475 Ma Eppawala Carbonatites in Sri Lanka","translated_title":"","metadata":{"abstract":"Although a mantle origin of carbonatites has long been advocated, a few carbonatite bodies with crustal fingerprints have been identified. The Eppawala carbonatites in Sri Lanka are more similar to orogenic carbonatites than those formed in stable cratons and within plate rifts. They occur within the Pan-African orogenic belt and have a formation age of ca. 475 Ma newly obtained in this study with no contemporary mantle-related magmatism. These carbonatites have higher (87Sr/86Sr)i ratios (0·70479–0·70524) and more enriched Nd and Hf isotopic compositions than carbonatites reported in other parts of the world. Model ages (1·3–2·0 Ga) of both Nd and Hf isotopes [apatite ɛNd(t) = −9·2 to −4·7; rutile εHf(t) = −22·0 to −8·02] are in the age range of metamorphic basement in Sri Lanka, and the carbon and oxygen isotopic compositions (δ13CPDB = −2·36 to −1·71; δ18OSMOW = 13·91–15·13) lie between those of mantle-derived carbonatites and marble. These crustal signatures are compatible with ...","publisher":"Oxford University Press (OUP)","ai_title_tag":"Crustal Signatures of 475 Ma Eppawala Carbonatites, Sri Lanka","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Journal of Petrology"},"translated_abstract":"Although a mantle origin of carbonatites has long been advocated, a few carbonatite bodies with crustal fingerprints have been identified. The Eppawala carbonatites in Sri Lanka are more similar to orogenic carbonatites than those formed in stable cratons and within plate rifts. They occur within the Pan-African orogenic belt and have a formation age of ca. 475 Ma newly obtained in this study with no contemporary mantle-related magmatism. These carbonatites have higher (87Sr/86Sr)i ratios (0·70479–0·70524) and more enriched Nd and Hf isotopic compositions than carbonatites reported in other parts of the world. Model ages (1·3–2·0 Ga) of both Nd and Hf isotopes [apatite ɛNd(t) = −9·2 to −4·7; rutile εHf(t) = −22·0 to −8·02] are in the age range of metamorphic basement in Sri Lanka, and the carbon and oxygen isotopic compositions (δ13CPDB = −2·36 to −1·71; δ18OSMOW = 13·91–15·13) lie between those of mantle-derived carbonatites and marble. These crustal signatures are compatible with ...","internal_url":"https://www.academia.edu/117167425/Crustal_Derivation_of_theca_475_Ma_Eppawala_Carbonatites_in_Sri_Lanka","translated_internal_url":"","created_at":"2024-04-06T23:01:18.809-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096430,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096430/thumbnails/1.jpg","file_name":"egab075.pdf","download_url":"https://www.academia.edu/attachments/113096430/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Crustal_Derivation_of_theca_475_Ma_Eppaw.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096430/egab075-libre.pdf?1712471270=\u0026response-content-disposition=attachment%3B+filename%3DCrustal_Derivation_of_theca_475_Ma_Eppaw.pdf\u0026Expires=1733274087\u0026Signature=RMPGT1-scmAE3adY1SD9BobP6yTm33viiBwYBuA9aWNRSmXyW0LGI2Xd0sm9wvIg2bev1PRnryXXMdL7yNUz859qInSfIbs94s0IxazZbKrkwEhjdhrTIoFs1Wpi04UX1VMxURbKQX4KTX05aKrarHCqKSx5DnZXZnAl89~6ptXe5XYSDiAP1rGVDwRVuAOB9CdjUtTnqinY9dWBOQSHrKCKZn83RsfB6g63QkDz-Ot05iuThzaMjo08tuFV~~jisoKA83L1niMo8GUK4bBZkWj6oVCTwDRLYkySeYjgcn1DmjrqFKyDh67SR~IMywzgpzpRk7S1I2nX3IobHAVenw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Crustal_Derivation_of_theca_475_Ma_Eppawala_Carbonatites_in_Sri_Lanka","translated_slug":"","page_count":58,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096430,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096430/thumbnails/1.jpg","file_name":"egab075.pdf","download_url":"https://www.academia.edu/attachments/113096430/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Crustal_Derivation_of_theca_475_Ma_Eppaw.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096430/egab075-libre.pdf?1712471270=\u0026response-content-disposition=attachment%3B+filename%3DCrustal_Derivation_of_theca_475_Ma_Eppaw.pdf\u0026Expires=1733274087\u0026Signature=RMPGT1-scmAE3adY1SD9BobP6yTm33viiBwYBuA9aWNRSmXyW0LGI2Xd0sm9wvIg2bev1PRnryXXMdL7yNUz859qInSfIbs94s0IxazZbKrkwEhjdhrTIoFs1Wpi04UX1VMxURbKQX4KTX05aKrarHCqKSx5DnZXZnAl89~6ptXe5XYSDiAP1rGVDwRVuAOB9CdjUtTnqinY9dWBOQSHrKCKZn83RsfB6g63QkDz-Ot05iuThzaMjo08tuFV~~jisoKA83L1niMo8GUK4bBZkWj6oVCTwDRLYkySeYjgcn1DmjrqFKyDh67SR~IMywzgpzpRk7S1I2nX3IobHAVenw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":2404,"name":"Petrology","url":"https://www.academia.edu/Documents/in/Petrology"},{"id":166969,"name":"Gneiss","url":"https://www.academia.edu/Documents/in/Gneiss"},{"id":172299,"name":"Metamorphism","url":"https://www.academia.edu/Documents/in/Metamorphism"},{"id":191873,"name":"Magmatism","url":"https://www.academia.edu/Documents/in/Magmatism"},{"id":1464622,"name":"Carbonatite","url":"https://www.academia.edu/Documents/in/Carbonatite"}],"urls":[{"id":40901793,"url":"http://academic.oup.com/petrology/advance-article-pdf/doi/10.1093/petrology/egab075/40393429/egab075.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167423"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167423/High_Mg_Olivine_Clinopyroxene_and_Orthopyroxene_Reference_Materials_for_In_Situ_Oxygen_Isotope_Determination"><img alt="Research paper thumbnail of High‐Mg# Olivine, Clinopyroxene and Orthopyroxene Reference Materials for In Situ Oxygen Isotope Determination" class="work-thumbnail" src="https://attachments.academia-assets.com/113096432/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167423/High_Mg_Olivine_Clinopyroxene_and_Orthopyroxene_Reference_Materials_for_In_Situ_Oxygen_Isotope_Determination">High‐Mg# Olivine, Clinopyroxene and Orthopyroxene Reference Materials for In Situ Oxygen Isotope Determination</a></div><div class="wp-workCard_item"><span>Geostandards and Geoanalytical Research</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Secondary ion mass spectrometry (SIMS) requires matrix‐matched reference materials to calibrate m...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Secondary ion mass spectrometry (SIMS) requires matrix‐matched reference materials to calibrate mass fractionation during oxygen isotope measurement. Over one thousand SIMS oxygen isotope measurements were conducted on eleven natural mineral samples (five olivines, three clinopyroxenes and three orthopyroxenes) in nineteen sessions using CAMECA IMS 1280 SIMS instruments to evaluate their potential as SIMS reference materials. The obtained results reveal oxygen isotope homogeneity of these samples. No matrix effect was measured for the same variety of mineral samples with limited Mg‐number variations (89.6–94.2, 90–91.9 and 90.1–92.1 for olivine, clinopyroxene and orthopyroxene, respectively). The recommended oxygen isotope compositions of these samples were determined using laser fluorination. These samples are therefore suitable to be used as reference materials for in situ oxygen isotope microanalysis.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9cbc0daf461333feb31d62e15c943439" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096432,"asset_id":117167423,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096432/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167423"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167423"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167423; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167423]").text(description); $(".js-view-count[data-work-id=117167423]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167423; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167423']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167423, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9cbc0daf461333feb31d62e15c943439" } } $('.js-work-strip[data-work-id=117167423]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167423,"title":"High‐Mg# Olivine, Clinopyroxene and Orthopyroxene Reference Materials for In Situ Oxygen Isotope Determination","translated_title":"","metadata":{"abstract":"Secondary ion mass spectrometry (SIMS) requires matrix‐matched reference materials to calibrate mass fractionation during oxygen isotope measurement. Over one thousand SIMS oxygen isotope measurements were conducted on eleven natural mineral samples (five olivines, three clinopyroxenes and three orthopyroxenes) in nineteen sessions using CAMECA IMS 1280 SIMS instruments to evaluate their potential as SIMS reference materials. The obtained results reveal oxygen isotope homogeneity of these samples. No matrix effect was measured for the same variety of mineral samples with limited Mg‐number variations (89.6–94.2, 90–91.9 and 90.1–92.1 for olivine, clinopyroxene and orthopyroxene, respectively). The recommended oxygen isotope compositions of these samples were determined using laser fluorination. These samples are therefore suitable to be used as reference materials for in situ oxygen isotope microanalysis.","publisher":"Wiley","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Geostandards and Geoanalytical Research"},"translated_abstract":"Secondary ion mass spectrometry (SIMS) requires matrix‐matched reference materials to calibrate mass fractionation during oxygen isotope measurement. Over one thousand SIMS oxygen isotope measurements were conducted on eleven natural mineral samples (five olivines, three clinopyroxenes and three orthopyroxenes) in nineteen sessions using CAMECA IMS 1280 SIMS instruments to evaluate their potential as SIMS reference materials. The obtained results reveal oxygen isotope homogeneity of these samples. No matrix effect was measured for the same variety of mineral samples with limited Mg‐number variations (89.6–94.2, 90–91.9 and 90.1–92.1 for olivine, clinopyroxene and orthopyroxene, respectively). The recommended oxygen isotope compositions of these samples were determined using laser fluorination. These samples are therefore suitable to be used as reference materials for in situ oxygen isotope microanalysis.","internal_url":"https://www.academia.edu/117167423/High_Mg_Olivine_Clinopyroxene_and_Orthopyroxene_Reference_Materials_for_In_Situ_Oxygen_Isotope_Determination","translated_internal_url":"","created_at":"2024-04-06T23:01:18.621-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096432,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096432/thumbnails/1.jpg","file_name":"ggr.1228820240407-1-xks09w.pdf","download_url":"https://www.academia.edu/attachments/113096432/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"High_Mg_Olivine_Clinopyroxene_and_Orthop.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096432/ggr.1228820240407-1-xks09w-libre.pdf?1712471238=\u0026response-content-disposition=attachment%3B+filename%3DHigh_Mg_Olivine_Clinopyroxene_and_Orthop.pdf\u0026Expires=1733274087\u0026Signature=aDo~FzeBRHA9514f0IUmgbJIWsfskpiuKP0z7CqrOupQsCgWhmEL7DxB7qTORILI-L1FfMxCKrlvcQNg63-FH7YoISO3TwGqJKAqSgL8H39EbV7ZuYmLBcBIT7tfCAXjz8SWgiYd5HICJbcYp4-w6PcPuPdvdjzO~61sxyHey-tD9q92yzfBy9hW2n~FPTHpCGLBNCioU5YUpAtyLIE8JmzpCxQntnitj3b9JyZTk1qvabkmJZ7cPB6RDp1RyWxrFtCHsIaCoAR7XGW59rsFQ~4jMAkoA6x416v14AsHBmYGL8TJFjcmPv4dhbuwQXX3UvkB9FCx3kZ3-oYuaOUthQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"High_Mg_Olivine_Clinopyroxene_and_Orthopyroxene_Reference_Materials_for_In_Situ_Oxygen_Isotope_Determination","translated_slug":"","page_count":21,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096432,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096432/thumbnails/1.jpg","file_name":"ggr.1228820240407-1-xks09w.pdf","download_url":"https://www.academia.edu/attachments/113096432/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"High_Mg_Olivine_Clinopyroxene_and_Orthop.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096432/ggr.1228820240407-1-xks09w-libre.pdf?1712471238=\u0026response-content-disposition=attachment%3B+filename%3DHigh_Mg_Olivine_Clinopyroxene_and_Orthop.pdf\u0026Expires=1733274087\u0026Signature=aDo~FzeBRHA9514f0IUmgbJIWsfskpiuKP0z7CqrOupQsCgWhmEL7DxB7qTORILI-L1FfMxCKrlvcQNg63-FH7YoISO3TwGqJKAqSgL8H39EbV7ZuYmLBcBIT7tfCAXjz8SWgiYd5HICJbcYp4-w6PcPuPdvdjzO~61sxyHey-tD9q92yzfBy9hW2n~FPTHpCGLBNCioU5YUpAtyLIE8JmzpCxQntnitj3b9JyZTk1qvabkmJZ7cPB6RDp1RyWxrFtCHsIaCoAR7XGW59rsFQ~4jMAkoA6x416v14AsHBmYGL8TJFjcmPv4dhbuwQXX3UvkB9FCx3kZ3-oYuaOUthQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":139599,"name":"Microanalysis","url":"https://www.academia.edu/Documents/in/Microanalysis"},{"id":281808,"name":"Olivine","url":"https://www.academia.edu/Documents/in/Olivine"},{"id":361750,"name":"Isotope","url":"https://www.academia.edu/Documents/in/Isotope"},{"id":526952,"name":"Fractionation","url":"https://www.academia.edu/Documents/in/Fractionation"}],"urls":[{"id":40901791,"url":"https://onlinelibrary.wiley.com/doi/pdf/10.1111/ggr.12288"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167422"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167422/Light_Mg_isotopes_in_mantle_derived_lavas_caused_by_chromite_crystallization_instead_of_carbonatite_metasomatism"><img alt="Research paper thumbnail of Light Mg isotopes in mantle-derived lavas caused by chromite crystallization, instead of carbonatite metasomatism" class="work-thumbnail" src="https://attachments.academia-assets.com/113096431/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167422/Light_Mg_isotopes_in_mantle_derived_lavas_caused_by_chromite_crystallization_instead_of_carbonatite_metasomatism">Light Mg isotopes in mantle-derived lavas caused by chromite crystallization, instead of carbonatite metasomatism</a></div><div class="wp-workCard_item"><span>Earth and Planetary Science Letters</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5a22fc1f202dbc01f788f882990ff0fc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096431,"asset_id":117167422,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096431/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167422"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167422"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167422; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167422]").text(description); $(".js-view-count[data-work-id=117167422]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167422; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167422']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167422, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5a22fc1f202dbc01f788f882990ff0fc" } } $('.js-work-strip[data-work-id=117167422]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167422,"title":"Light Mg isotopes in mantle-derived lavas caused by chromite crystallization, instead of carbonatite metasomatism","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Carbonatite metasomatism plays an important role in modifying the composition of Earth's mantle, however, its effect on mantle Mg isotopic composition is poorly constrained. Here, we report highprecision mineral Mg isotope data for three suites of mantle peridotite xenoliths that experienced variable degrees of carbonatite metasomatism. The δ 26 Mg values of minerals in these xenoliths are variable and range from −0.32 to −0.11h in olivine, from −0.28 to −0.09h in orthopyroxene, from −0.27 to −0.05h in clinopyroxene, from 0.06 to 0.44h in spinel and from −0.61 to −0.37h in garnet. Calculated bulk-rock δ 26 Mg values of the peridotites vary from −0.27 to −0.10h, falling within and slightly higher than the normal mantle range (−0.25 ± 0.07h). The coexisting minerals are in isotopic equilibrium, with clinopyroxene δ 26 Mg values correlated with the carbonatite metasomatic indices such as MgO and Na 2 O in orthopyroxene. These results suggest that carbonatite metasomatism does not produce light Mg isotopic signature in mantle peridotites as previously suggested, instead it might slightly elevate their δ 26 Mg values. Therefore, carbonatite-metasomatized peridotites in the mantle cannot be the primary source rocks of low-δ 26 Mg mantle-derived magmas. Instead, fractional crystallization and accumulation of chromite during ascent of the basaltic magmas may explain the isotopically light basalts, as supported by the covariations of δ 26 Mg with chemical indices of chromite crystallization (e.g., Cr, V, Fe and Ti). Consequently, chromite crystallization may significantly influence the physiochemical processes on the genesis of basalts, which would require comprehensive evaluation in future studies.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Earth and Planetary Science Letters","grobid_abstract_attachment_id":113096431},"translated_abstract":null,"internal_url":"https://www.academia.edu/117167422/Light_Mg_isotopes_in_mantle_derived_lavas_caused_by_chromite_crystallization_instead_of_carbonatite_metasomatism","translated_internal_url":"","created_at":"2024-04-06T23:01:18.426-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096431,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096431/thumbnails/1.jpg","file_name":"j.epsl.2019.06.01620240407-1-iqkh0l.pdf","download_url":"https://www.academia.edu/attachments/113096431/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Light_Mg_isotopes_in_mantle_derived_lava.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096431/j.epsl.2019.06.01620240407-1-iqkh0l-libre.pdf?1712471241=\u0026response-content-disposition=attachment%3B+filename%3DLight_Mg_isotopes_in_mantle_derived_lava.pdf\u0026Expires=1733274087\u0026Signature=gFMrvJRm47zjVjA~TTLUrrPOMAcbUQi3pSkK5ZsjPElF65h1ZsOZkjxqO54EcUVW0d0RPCZU2wkV3xb6dWli9YY0BLg9AxCN2EYgzwnmj7esgzzl0cocpwpClGXncyWoipR6gfSTNjJQpCE~Tnxo0F077X8U7I1kKts6Swe2pqn72VzuxRXLam63JsN7LWRj-CH13rSsr58igFfvp~a7s9tLR2qDX7WK8-RcroW9xWQpEcqP-MXpy6hfixW1s6j40D-jBRyx4XMpbVgyam2jYzKj~RLce6YKuBGZlV1naCKE2qrhxjcu5a1FoIMFvaGUbOSVqmeqTDan5HMf~wVZ~A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Light_Mg_isotopes_in_mantle_derived_lavas_caused_by_chromite_crystallization_instead_of_carbonatite_metasomatism","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096431,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096431/thumbnails/1.jpg","file_name":"j.epsl.2019.06.01620240407-1-iqkh0l.pdf","download_url":"https://www.academia.edu/attachments/113096431/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Light_Mg_isotopes_in_mantle_derived_lava.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096431/j.epsl.2019.06.01620240407-1-iqkh0l-libre.pdf?1712471241=\u0026response-content-disposition=attachment%3B+filename%3DLight_Mg_isotopes_in_mantle_derived_lava.pdf\u0026Expires=1733274087\u0026Signature=gFMrvJRm47zjVjA~TTLUrrPOMAcbUQi3pSkK5ZsjPElF65h1ZsOZkjxqO54EcUVW0d0RPCZU2wkV3xb6dWli9YY0BLg9AxCN2EYgzwnmj7esgzzl0cocpwpClGXncyWoipR6gfSTNjJQpCE~Tnxo0F077X8U7I1kKts6Swe2pqn72VzuxRXLam63JsN7LWRj-CH13rSsr58igFfvp~a7s9tLR2qDX7WK8-RcroW9xWQpEcqP-MXpy6hfixW1s6j40D-jBRyx4XMpbVgyam2jYzKj~RLce6YKuBGZlV1naCKE2qrhxjcu5a1FoIMFvaGUbOSVqmeqTDan5HMf~wVZ~A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":54668,"name":"Peridotite","url":"https://www.academia.edu/Documents/in/Peridotite"},{"id":54669,"name":"Metasomatism","url":"https://www.academia.edu/Documents/in/Metasomatism"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":205576,"name":"Basalt","url":"https://www.academia.edu/Documents/in/Basalt"},{"id":205582,"name":"Xenolith","url":"https://www.academia.edu/Documents/in/Xenolith"},{"id":281808,"name":"Olivine","url":"https://www.academia.edu/Documents/in/Olivine"},{"id":895633,"name":"Chromite","url":"https://www.academia.edu/Documents/in/Chromite"},{"id":1464622,"name":"Carbonatite","url":"https://www.academia.edu/Documents/in/Carbonatite"}],"urls":[{"id":40901790,"url":"https://api.elsevier.com/content/article/PII:S0012821X19303498?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167421"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167421/Chromite_induced_magnesium_isotope_fractionation_during_mafic_magma_differentiation"><img alt="Research paper thumbnail of Chromite-induced magnesium isotope fractionation during mafic magma differentiation" class="work-thumbnail" src="https://attachments.academia-assets.com/113096427/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167421/Chromite_induced_magnesium_isotope_fractionation_during_mafic_magma_differentiation">Chromite-induced magnesium isotope fractionation during mafic magma differentiation</a></div><div class="wp-workCard_item"><span>Science Bulletin</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3c7d48dddb79228a6380cb9bc1e15a3a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096427,"asset_id":117167421,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096427/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167421"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167421"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167421; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167421]").text(description); $(".js-view-count[data-work-id=117167421]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167421; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167421']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167421, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3c7d48dddb79228a6380cb9bc1e15a3a" } } $('.js-work-strip[data-work-id=117167421]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167421,"title":"Chromite-induced magnesium isotope fractionation during mafic magma differentiation","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"To better understand the mechanism of Mg isotopic variation in magma systems, here we report high precision Mg isotopic data of 17 bulk rock samples including dunite, clinopyroxenite, hornblendite and gabbro and 10 pairs of dunite-hosted olivine and chromite separates from the well-characterized Alaskan-type Xiadong intrusion in NW China, which formed by continuous and high degree of lithological differentiation from mafic magmas. Chromite separates have highly variable d 26 Mg values from À0.10‰ to 0.40‰, and are consistently heavier than coexisting olivine separates (À0.39‰ to À0.15‰). Both mineral d 26 Mg values and the degrees of inter-mineral fractionation are well correlated with geochemical indicators of magma differentiation, indicating that these inter-sample and inter-mineral Mg isotope fractionations are caused by magma evolution. The d 26 Mg values range from À0.20‰ to À0.02‰ in the dunite, À0.43‰ in the clinopyroxenite, À0.43‰ to À0.28‰ in the hornblendite, 0.18‰ in the chromite-bearing hornblendite, and À0.56‰ to À0.16‰ in the gabbro. The Mg isotopic variations in different types of rocks are closely related to fractional crystallization and accumulation of different proportions of oxides vs. silicates. Chromite crystallization and accumulation is the most important factor in controlling Mg isotope fractionation during the formation of the Xiadong intrusion. Compared to basaltic and granitic magmas, differentiation of the Alaskan-type intrusions occurs at a relatively high oxygen fugacity, which favors chromite crystallization and consequently significant Mg isotope fractionations at both mineral and whole-rock scales. Therefore, Mg isotope systematics can be used to trace the degree of magma differentiation and related-mineralization.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Science Bulletin","grobid_abstract_attachment_id":113096427},"translated_abstract":null,"internal_url":"https://www.academia.edu/117167421/Chromite_induced_magnesium_isotope_fractionation_during_mafic_magma_differentiation","translated_internal_url":"","created_at":"2024-04-06T23:01:18.223-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096427,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096427/thumbnails/1.jpg","file_name":"4e0056368f494558a6d3eb89e5b625ad.pdf","download_url":"https://www.academia.edu/attachments/113096427/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Chromite_induced_magnesium_isotope_fract.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096427/4e0056368f494558a6d3eb89e5b625ad-libre.pdf?1712471228=\u0026response-content-disposition=attachment%3B+filename%3DChromite_induced_magnesium_isotope_fract.pdf\u0026Expires=1733274087\u0026Signature=W0ggoSjtVUgPC8-4G3dlg-46~MzhgbLCZTA0jPNyFJfx0Z5XNL1E8UamtqlPhOwu4kJIEzYhzDqtx-McWVJ3nASFEwQHPAZaZKNzb1~mtpHaIkF7Yqdoo-RQ8bNgT~jzmqdSjDQamClxSwDpLKndthFx9JKI8WhQIbFo1lJnAbex3S2e6yvSfofM2zXec7f5YIHGahzY6BoP43hbHsEoLXxqSPXYzSkgc-6AcAtsRf-KsRIO-N5V1hKOePWvSbvnHMT-azj3LmGPEGfF32EreUgEFGDYYp-GM0U1gx32oiYHTetnAbZnJL0UZCFHl1ZbmIQA3LPVEqgJxk0H3hzpow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Chromite_induced_magnesium_isotope_fractionation_during_mafic_magma_differentiation","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096427,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096427/thumbnails/1.jpg","file_name":"4e0056368f494558a6d3eb89e5b625ad.pdf","download_url":"https://www.academia.edu/attachments/113096427/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Chromite_induced_magnesium_isotope_fract.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096427/4e0056368f494558a6d3eb89e5b625ad-libre.pdf?1712471228=\u0026response-content-disposition=attachment%3B+filename%3DChromite_induced_magnesium_isotope_fract.pdf\u0026Expires=1733274087\u0026Signature=W0ggoSjtVUgPC8-4G3dlg-46~MzhgbLCZTA0jPNyFJfx0Z5XNL1E8UamtqlPhOwu4kJIEzYhzDqtx-McWVJ3nASFEwQHPAZaZKNzb1~mtpHaIkF7Yqdoo-RQ8bNgT~jzmqdSjDQamClxSwDpLKndthFx9JKI8WhQIbFo1lJnAbex3S2e6yvSfofM2zXec7f5YIHGahzY6BoP43hbHsEoLXxqSPXYzSkgc-6AcAtsRf-KsRIO-N5V1hKOePWvSbvnHMT-azj3LmGPEGfF32EreUgEFGDYYp-GM0U1gx32oiYHTetnAbZnJL0UZCFHl1ZbmIQA3LPVEqgJxk0H3hzpow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":281808,"name":"Olivine","url":"https://www.academia.edu/Documents/in/Olivine"},{"id":521382,"name":"Gabbro","url":"https://www.academia.edu/Documents/in/Gabbro"},{"id":895633,"name":"Chromite","url":"https://www.academia.edu/Documents/in/Chromite"},{"id":974134,"name":"Layered Intrusion","url":"https://www.academia.edu/Documents/in/Layered_Intrusion"}],"urls":[{"id":40901788,"url":"https://api.elsevier.com/content/article/PII:S2095927317305558?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167419"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167419/Sequential_Recovery_of_Heavy_and_Noble_Metals_by_Mussel_Inspired_Polydopamine_Polyethyleneimine_Conjugated_Polyurethane_Composite_Bearing_Dithiocarbamate_Moieties"><img alt="Research paper thumbnail of Sequential Recovery of Heavy and Noble Metals by Mussel-Inspired Polydopamine-Polyethyleneimine Conjugated Polyurethane Composite Bearing Dithiocarbamate Moieties" class="work-thumbnail" src="https://attachments.academia-assets.com/113096395/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167419/Sequential_Recovery_of_Heavy_and_Noble_Metals_by_Mussel_Inspired_Polydopamine_Polyethyleneimine_Conjugated_Polyurethane_Composite_Bearing_Dithiocarbamate_Moieties">Sequential Recovery of Heavy and Noble Metals by Mussel-Inspired Polydopamine-Polyethyleneimine Conjugated Polyurethane Composite Bearing Dithiocarbamate Moieties</a></div><div class="wp-workCard_item"><span>Polymers</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Dithiocarbamate-grafted polyurethane (PU) composites were synthesized by anchoring dithiocarbamat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Dithiocarbamate-grafted polyurethane (PU) composites were synthesized by anchoring dithiocarbamate (DTC) as a chelating agent to the polyethyleneimine-polydopamine (PE-DA)-functionalized graphene-based PU matrix (PE-DA@GB@PU), as a new adsorbent material for the recovery of Cu2+, Pb2+, and Cd2+ from industrial effluents. After leaching with acidic media to recover Cu2+, Pb2+, and Cd2+, dithiocarbamate-grafted PE-DA@GB@PU (DTC-g-PE-DA@GB@PU) was decomposed and PE-DA@GP was regenerated. The latter was used to recover Pd2+, Pt4+, and Au3+ from the copper leaching residue and anode slime. The present DTC-g-PE-DA@GB@PU and PE-DA@GB@PU composites show high adsorption performance, effective separation, and quick adsorption of the target ions. The morphologies of the composites were studied by scanning electron microscopy and their structures were investigated by Fourier transform infrared (FT-IR) spectroscopy and Raman spectroscopy. The effects of pH values, contact time, and initial metal...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3a4333905f4506d13a9fd14b3b430382" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096395,"asset_id":117167419,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096395/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167419"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167419"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167419; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167419]").text(description); $(".js-view-count[data-work-id=117167419]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167419; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167419']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167419, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3a4333905f4506d13a9fd14b3b430382" } } $('.js-work-strip[data-work-id=117167419]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167419,"title":"Sequential Recovery of Heavy and Noble Metals by Mussel-Inspired Polydopamine-Polyethyleneimine Conjugated Polyurethane Composite Bearing Dithiocarbamate Moieties","translated_title":"","metadata":{"abstract":"Dithiocarbamate-grafted polyurethane (PU) composites were synthesized by anchoring dithiocarbamate (DTC) as a chelating agent to the polyethyleneimine-polydopamine (PE-DA)-functionalized graphene-based PU matrix (PE-DA@GB@PU), as a new adsorbent material for the recovery of Cu2+, Pb2+, and Cd2+ from industrial effluents. After leaching with acidic media to recover Cu2+, Pb2+, and Cd2+, dithiocarbamate-grafted PE-DA@GB@PU (DTC-g-PE-DA@GB@PU) was decomposed and PE-DA@GP was regenerated. The latter was used to recover Pd2+, Pt4+, and Au3+ from the copper leaching residue and anode slime. The present DTC-g-PE-DA@GB@PU and PE-DA@GB@PU composites show high adsorption performance, effective separation, and quick adsorption of the target ions. The morphologies of the composites were studied by scanning electron microscopy and their structures were investigated by Fourier transform infrared (FT-IR) spectroscopy and Raman spectroscopy. The effects of pH values, contact time, and initial metal...","publisher":"MDPI AG","ai_title_tag":"Recovery of Heavy and Noble Metals using DTC-grafted PU Composites","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Polymers"},"translated_abstract":"Dithiocarbamate-grafted polyurethane (PU) composites were synthesized by anchoring dithiocarbamate (DTC) as a chelating agent to the polyethyleneimine-polydopamine (PE-DA)-functionalized graphene-based PU matrix (PE-DA@GB@PU), as a new adsorbent material for the recovery of Cu2+, Pb2+, and Cd2+ from industrial effluents. After leaching with acidic media to recover Cu2+, Pb2+, and Cd2+, dithiocarbamate-grafted PE-DA@GB@PU (DTC-g-PE-DA@GB@PU) was decomposed and PE-DA@GP was regenerated. The latter was used to recover Pd2+, Pt4+, and Au3+ from the copper leaching residue and anode slime. The present DTC-g-PE-DA@GB@PU and PE-DA@GB@PU composites show high adsorption performance, effective separation, and quick adsorption of the target ions. The morphologies of the composites were studied by scanning electron microscopy and their structures were investigated by Fourier transform infrared (FT-IR) spectroscopy and Raman spectroscopy. The effects of pH values, contact time, and initial metal...","internal_url":"https://www.academia.edu/117167419/Sequential_Recovery_of_Heavy_and_Noble_Metals_by_Mussel_Inspired_Polydopamine_Polyethyleneimine_Conjugated_Polyurethane_Composite_Bearing_Dithiocarbamate_Moieties","translated_internal_url":"","created_at":"2024-04-06T23:01:17.882-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096395,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096395/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113096395/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sequential_Recovery_of_Heavy_and_Noble_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096395/pdf-libre.pdf?1712471256=\u0026response-content-disposition=attachment%3B+filename%3DSequential_Recovery_of_Heavy_and_Noble_M.pdf\u0026Expires=1733274087\u0026Signature=FIH9~iKQYn4ayMBjgE9x-RY4gFKsadsqiwKEus5WdJTZ5ZeDlJUk7MasdC0RkNqvAvvadSMX5y8vRm~bSB6VUEva8k6JE1oHJDGKCKA-1cDhZLMl7mytQz8hCTGwaQoSPlHhJxs1qNJ11W3jCJUPlWI~WphHQTG7bnRkWnNmUcu4D3oKMoi4hzJI76SRZw5uIriZESid~mRZbIp5640cU9jsHIFaXaQdHfwSCbwwOgONAw3~awY8udCKN3wzyI-Fm87eLvMTRH7Z-K30rLZ6tPdTpZCbwBS9Ll~zoZAFhAgV9vdCDNngXQYUvV5Ez-rMjXv76wfZXung4c5tOBjKPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Sequential_Recovery_of_Heavy_and_Noble_Metals_by_Mussel_Inspired_Polydopamine_Polyethyleneimine_Conjugated_Polyurethane_Composite_Bearing_Dithiocarbamate_Moieties","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096395,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096395/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113096395/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sequential_Recovery_of_Heavy_and_Noble_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096395/pdf-libre.pdf?1712471256=\u0026response-content-disposition=attachment%3B+filename%3DSequential_Recovery_of_Heavy_and_Noble_M.pdf\u0026Expires=1733274087\u0026Signature=FIH9~iKQYn4ayMBjgE9x-RY4gFKsadsqiwKEus5WdJTZ5ZeDlJUk7MasdC0RkNqvAvvadSMX5y8vRm~bSB6VUEva8k6JE1oHJDGKCKA-1cDhZLMl7mytQz8hCTGwaQoSPlHhJxs1qNJ11W3jCJUPlWI~WphHQTG7bnRkWnNmUcu4D3oKMoi4hzJI76SRZw5uIriZESid~mRZbIp5640cU9jsHIFaXaQdHfwSCbwwOgONAw3~awY8udCKN3wzyI-Fm87eLvMTRH7Z-K30rLZ6tPdTpZCbwBS9Ll~zoZAFhAgV9vdCDNngXQYUvV5Ez-rMjXv76wfZXung4c5tOBjKPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113096394,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096394/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113096394/download_file","bulk_download_file_name":"Sequential_Recovery_of_Heavy_and_Noble_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096394/pdf-libre.pdf?1712471257=\u0026response-content-disposition=attachment%3B+filename%3DSequential_Recovery_of_Heavy_and_Noble_M.pdf\u0026Expires=1733274087\u0026Signature=SuZaoJUkLxDiyxNcMKZFJCGY2bXj2fvqmMw5Q-uc5ASfFSsiQ~qnKLRZNr-DEsjp6Kik0VCNZ49weaAPDoHxClOpibx0NH~SpJSNHPMzk7Cq46lDG6u1QmT12ZU5rcgJagBR8ndb2RKiYE2CXVzuJD99dat7Imhbt1I2Ba7r6Nm3Lph8s9HL6NwN~qWFcFNNvVg8YQTQ-8dyPPoY5Yhuha0z-n25kEtGEd1KAaOozOV6oBf0LgQYpLA66O8vmuLEzyO5It1Yeh5XOTAnOojGX0kTYwWNRr9ez-iI~RK8BJ1u9KtAFG10gICFUtZ7znrQ~RNSQ6Kf9SvIGYoXDIBFxw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":21466,"name":"Polymers","url":"https://www.academia.edu/Documents/in/Polymers"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":26931,"name":"Nuclear Chemistry","url":"https://www.academia.edu/Documents/in/Nuclear_Chemistry"},{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":94868,"name":"Dithiocarbamate","url":"https://www.academia.edu/Documents/in/Dithiocarbamate"},{"id":387424,"name":"Polyurethane","url":"https://www.academia.edu/Documents/in/Polyurethane"},{"id":398650,"name":"Fourier transform infrared spectroscopy","url":"https://www.academia.edu/Documents/in/Fourier_transform_infrared_spectroscopy"}],"urls":[{"id":40901787,"url":"https://www.mdpi.com/2073-4360/11/7/1125/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167418"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167418/Redox_state_of_the_Baogutu_reduced_porphyry_Cu_deposit_in_the_Central_Asian_Orogenic_belt"><img alt="Research paper thumbnail of Redox state of the Baogutu reduced porphyry Cu deposit in the Central Asian Orogenic belt" class="work-thumbnail" src="https://attachments.academia-assets.com/113096426/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167418/Redox_state_of_the_Baogutu_reduced_porphyry_Cu_deposit_in_the_Central_Asian_Orogenic_belt">Redox state of the Baogutu reduced porphyry Cu deposit in the Central Asian Orogenic belt</a></div><div class="wp-workCard_item"><span>Ore Geology Reviews</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f6e82ad920afe3c1ad64c0e24acc123c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096426,"asset_id":117167418,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096426/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167418"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167418"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167418; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167418]").text(description); $(".js-view-count[data-work-id=117167418]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167418; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167418']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167418, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f6e82ad920afe3c1ad64c0e24acc123c" } } $('.js-work-strip[data-work-id=117167418]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167418,"title":"Redox state of the Baogutu reduced porphyry Cu deposit in the Central Asian Orogenic belt","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Reduced porphyry Cu deposits are scarce and their origins remain enigmatic. The Late Carboniferous Baogutu reduced porphyry Cu deposit in the western Junggar Terrane, NW China, provides an opportunity to address this issue. In this study, we conducted systematic analyses in terms of petrography, mineral chemistry, major elements, trace elements and Fe isotopes to investigate the redox state of its primary magma and further constrain the origin of Baogutu copper deposit. Based on the petrological observation and mineral chemistry, two magmatic stages have been recognized during the formation of ore-forming diorite. The early stage is characterized by the crystallization of magnetite and high Mg # [Mg/(Mg + Fe 2+)] hornblende under oxidized condition (ΔNNO \u003e 2.36, calculated by the equation given by Scaillet and Evans, 1999). The late stage is characterized by the crystallization of ilmenite and low Mg # biotite under reduced condition (ΔNNO \u003c-0.6). The large *","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Ore Geology Reviews","grobid_abstract_attachment_id":113096426},"translated_abstract":null,"internal_url":"https://www.academia.edu/117167418/Redox_state_of_the_Baogutu_reduced_porphyry_Cu_deposit_in_the_Central_Asian_Orogenic_belt","translated_internal_url":"","created_at":"2024-04-06T23:01:17.518-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096426,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096426/thumbnails/1.jpg","file_name":"j.oregeorev.2018.08.02420240407-1-1r1fmu.pdf","download_url":"https://www.academia.edu/attachments/113096426/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Redox_state_of_the_Baogutu_reduced_porph.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096426/j.oregeorev.2018.08.02420240407-1-1r1fmu-libre.pdf?1712471252=\u0026response-content-disposition=attachment%3B+filename%3DRedox_state_of_the_Baogutu_reduced_porph.pdf\u0026Expires=1733274087\u0026Signature=SosDjgCzHrFJ8OudngcHrQySErOMFPEsbzVBxMOe4EmRlp5stYGZr7-D7MzSmJKVE8lc1gLosGhUlh6Cm7OGUrfA7FUKJtdBDjrZhsH-HwS1XCLB1iu3lSWASVTAWaWq6NexijTCbUulnMHwvfYENfjaQs2EIDQQVjdl8DB5EGtcY195a2dRH7jc3wly8T1bHVoQAa2RZ3~40laW52rWpdXDxgYHlMK0PBnfRUsVuSRx53bgmWPjgCjuJPSn7xO8MQ-5zEBMZAB~~TlPKmWOLRDNvVJsBLZFdM65Z3N2C2QI3vUAVfEyjesOc4FpDLMFo6OUWllDbcn~nJZZM2bGsQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Redox_state_of_the_Baogutu_reduced_porphyry_Cu_deposit_in_the_Central_Asian_Orogenic_belt","translated_slug":"","page_count":47,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096426,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096426/thumbnails/1.jpg","file_name":"j.oregeorev.2018.08.02420240407-1-1r1fmu.pdf","download_url":"https://www.academia.edu/attachments/113096426/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Redox_state_of_the_Baogutu_reduced_porph.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096426/j.oregeorev.2018.08.02420240407-1-1r1fmu-libre.pdf?1712471252=\u0026response-content-disposition=attachment%3B+filename%3DRedox_state_of_the_Baogutu_reduced_porph.pdf\u0026Expires=1733274087\u0026Signature=SosDjgCzHrFJ8OudngcHrQySErOMFPEsbzVBxMOe4EmRlp5stYGZr7-D7MzSmJKVE8lc1gLosGhUlh6Cm7OGUrfA7FUKJtdBDjrZhsH-HwS1XCLB1iu3lSWASVTAWaWq6NexijTCbUulnMHwvfYENfjaQs2EIDQQVjdl8DB5EGtcY195a2dRH7jc3wly8T1bHVoQAa2RZ3~40laW52rWpdXDxgYHlMK0PBnfRUsVuSRx53bgmWPjgCjuJPSn7xO8MQ-5zEBMZAB~~TlPKmWOLRDNvVJsBLZFdM65Z3N2C2QI3vUAVfEyjesOc4FpDLMFo6OUWllDbcn~nJZZM2bGsQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":103767,"name":"Petrography","url":"https://www.academia.edu/Documents/in/Petrography"},{"id":197592,"name":"Magma","url":"https://www.academia.edu/Documents/in/Magma"},{"id":456199,"name":"Biotite","url":"https://www.academia.edu/Documents/in/Biotite"},{"id":1146625,"name":"Porphyry Copper Deposit","url":"https://www.academia.edu/Documents/in/Porphyry_Copper_Deposit"}],"urls":[{"id":40901786,"url":"https://api.elsevier.com/content/article/PII:S0169136817301543?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167416"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167416/Lithium_isotopic_composition_of_Alaskan_type_intrusion_and_its_implication"><img alt="Research paper thumbnail of Lithium isotopic composition of Alaskan-type intrusion and its implication" class="work-thumbnail" src="https://attachments.academia-assets.com/113096425/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167416/Lithium_isotopic_composition_of_Alaskan_type_intrusion_and_its_implication">Lithium isotopic composition of Alaskan-type intrusion and its implication</a></div><div class="wp-workCard_item"><span>Lithos</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5f7579105ff1db27e963c5440b2d1c75" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096425,"asset_id":117167416,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096425/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167416"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167416"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167416; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167416]").text(description); $(".js-view-count[data-work-id=117167416]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167416; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167416']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167416, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5f7579105ff1db27e963c5440b2d1c75" } } $('.js-work-strip[data-work-id=117167416]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167416,"title":"Lithium isotopic composition of Alaskan-type intrusion and its implication","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"To determine whether fractionation of Li isotopes could occur at high temperatures, we examined major element and Li isotopic compositions of olivine from the Xiadong intrusion, an Alaskan-type complex in the Central Asian Orogenic Belt. Olivine in thirteen dunites, displaying characteristic cumulus textures, yielded large variations in Li concentration (0.10 to 11.18 ppm) and isotopic composition (δ 7 Li =-7.18 to +34.41‰). These variations are too large to be attributed entirely to diffusive processes. The correlations between Li elemental or isotopic composition and differentiation indices such as Fo and MnO contents of olivine, and NiO content of chromite, suggest probable Li isotope fractionation during early stage of differentiation. We speculate that while Li behaves mildly incompatible during differentiation, 7 Li is preferentially","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Lithos","grobid_abstract_attachment_id":113096425},"translated_abstract":null,"internal_url":"https://www.academia.edu/117167416/Lithium_isotopic_composition_of_Alaskan_type_intrusion_and_its_implication","translated_internal_url":"","created_at":"2024-04-06T23:01:17.314-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096425,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096425/thumbnails/1.jpg","file_name":"j.lithos.2017.06.02420240407-1-68am59.pdf","download_url":"https://www.academia.edu/attachments/113096425/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lithium_isotopic_composition_of_Alaskan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096425/j.lithos.2017.06.02420240407-1-68am59-libre.pdf?1712471239=\u0026response-content-disposition=attachment%3B+filename%3DLithium_isotopic_composition_of_Alaskan.pdf\u0026Expires=1733274087\u0026Signature=e0qBHGCOSUA3klbdM6QiHx0tIJw~fNVziRe3JzU8GNT5HATcya-ClWDk21uuOU-j78SHlbuh7RbKnuQ-lXGfE5h5VgQJrRVKX71pTlAstu6jRUNt6nMWYT0CVJ5hkR65AO32-6irdxZFQdX-jmx~7k7cJuUojW4w-eRd95DWfG0CkD9HjE-qmhJuB~AwWW~8POIecaGUJAxv3Ys7~dJX86mD2YcIjkZ1-QQRzLiHZAxTn2ZIdd6sn8B-PIiMjyRKCJxIXdAjmLtrFvwZwHEyI5S5-1b5C8bJI6VE6oISi~7KF6i4Ht0mGa01cOCuUUYuvjiWMNJIvlR49cbKliU8DQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Lithium_isotopic_composition_of_Alaskan_type_intrusion_and_its_implication","translated_slug":"","page_count":26,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096425,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096425/thumbnails/1.jpg","file_name":"j.lithos.2017.06.02420240407-1-68am59.pdf","download_url":"https://www.academia.edu/attachments/113096425/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lithium_isotopic_composition_of_Alaskan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096425/j.lithos.2017.06.02420240407-1-68am59-libre.pdf?1712471239=\u0026response-content-disposition=attachment%3B+filename%3DLithium_isotopic_composition_of_Alaskan.pdf\u0026Expires=1733274087\u0026Signature=e0qBHGCOSUA3klbdM6QiHx0tIJw~fNVziRe3JzU8GNT5HATcya-ClWDk21uuOU-j78SHlbuh7RbKnuQ-lXGfE5h5VgQJrRVKX71pTlAstu6jRUNt6nMWYT0CVJ5hkR65AO32-6irdxZFQdX-jmx~7k7cJuUojW4w-eRd95DWfG0CkD9HjE-qmhJuB~AwWW~8POIecaGUJAxv3Ys7~dJX86mD2YcIjkZ1-QQRzLiHZAxTn2ZIdd6sn8B-PIiMjyRKCJxIXdAjmLtrFvwZwHEyI5S5-1b5C8bJI6VE6oISi~7KF6i4Ht0mGa01cOCuUUYuvjiWMNJIvlR49cbKliU8DQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"}],"urls":[{"id":40901784,"url":"https://api.elsevier.com/content/article/PII:S0024493717302359?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167415"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167415/Geochemical_and_zircon_U_Pb_and_Lu_Hf_isotopic_constraints_on_the_origin_of_supracrustal_rocks_from_the_mid_Qilian_terrane_A_comparison_between_supracrustal_rocks_on_the_two_sides_of_the_eastern_segment_of_the_Altyn_Tagh_Fault"><img alt="Research paper thumbnail of Geochemical and zircon U-Pb and Lu-Hf isotopic constraints on the origin of supracrustal rocks from the mid-Qilian terrane: A comparison between supracrustal rocks on the two sides of the eastern segment of the Altyn Tagh Fault" class="work-thumbnail" src="https://attachments.academia-assets.com/113096422/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167415/Geochemical_and_zircon_U_Pb_and_Lu_Hf_isotopic_constraints_on_the_origin_of_supracrustal_rocks_from_the_mid_Qilian_terrane_A_comparison_between_supracrustal_rocks_on_the_two_sides_of_the_eastern_segment_of_the_Altyn_Tagh_Fault">Geochemical and zircon U-Pb and Lu-Hf isotopic constraints on the origin of supracrustal rocks from the mid-Qilian terrane: A comparison between supracrustal rocks on the two sides of the eastern segment of the Altyn Tagh Fault</a></div><div class="wp-workCard_item"><span>Precambrian Research</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3a8fed6966105bb4c440a269415be525" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096422,"asset_id":117167415,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096422/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167415"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167415"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167415; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167415]").text(description); $(".js-view-count[data-work-id=117167415]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167415; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167415']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167415, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3a8fed6966105bb4c440a269415be525" } } $('.js-work-strip[data-work-id=117167415]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167415,"title":"Geochemical and zircon U-Pb and Lu-Hf isotopic constraints on the origin of supracrustal rocks from the mid-Qilian terrane: A comparison between supracrustal rocks on the two sides of the eastern segment of the Altyn Tagh Fault","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Precambrian Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/117167415/Geochemical_and_zircon_U_Pb_and_Lu_Hf_isotopic_constraints_on_the_origin_of_supracrustal_rocks_from_the_mid_Qilian_terrane_A_comparison_between_supracrustal_rocks_on_the_two_sides_of_the_eastern_segment_of_the_Altyn_Tagh_Fault","translated_internal_url":"","created_at":"2024-04-06T23:01:17.121-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096422,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096422/thumbnails/1.jpg","file_name":"EGU2017-5856.pdf","download_url":"https://www.academia.edu/attachments/113096422/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Geochemical_and_zircon_U_Pb_and_Lu_Hf_is.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096422/EGU2017-5856-libre.pdf?1712471230=\u0026response-content-disposition=attachment%3B+filename%3DGeochemical_and_zircon_U_Pb_and_Lu_Hf_is.pdf\u0026Expires=1733274087\u0026Signature=QFWNVRs~PvpI6giejbcFoZ-MQiOYAIhSYgdc5OePQ6KcJaA1cnHGy2ES6~yu-xIloRsamkhxIu1GML4o2SyG-NXG3E0qP6ABSE2bS64BQ8siQxrgYdzQlI8Tnj0Wm80-ahDsGnukntKPvudnxixpS0fQ1F~RnHn5ny3g95hc7RuQqUjKKQJ8H0WSm1~ouHZY28MwUPpy6NujPvdZRkiS~gB77TuthyTnP7z1hXGGgkzE4Q5NdkMZ9Kpp3emu6DRJRdjagIbSlVjtgdswTAotIQIx8~IrYogDhNh5geWsxtHEGJ0cwK8MHrZtpFiM2LLWnpTNij~dpcoWSrj0A~8zLg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Geochemical_and_zircon_U_Pb_and_Lu_Hf_isotopic_constraints_on_the_origin_of_supracrustal_rocks_from_the_mid_Qilian_terrane_A_comparison_between_supracrustal_rocks_on_the_two_sides_of_the_eastern_segment_of_the_Altyn_Tagh_Fault","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096422,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096422/thumbnails/1.jpg","file_name":"EGU2017-5856.pdf","download_url":"https://www.academia.edu/attachments/113096422/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Geochemical_and_zircon_U_Pb_and_Lu_Hf_is.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096422/EGU2017-5856-libre.pdf?1712471230=\u0026response-content-disposition=attachment%3B+filename%3DGeochemical_and_zircon_U_Pb_and_Lu_Hf_is.pdf\u0026Expires=1733274087\u0026Signature=QFWNVRs~PvpI6giejbcFoZ-MQiOYAIhSYgdc5OePQ6KcJaA1cnHGy2ES6~yu-xIloRsamkhxIu1GML4o2SyG-NXG3E0qP6ABSE2bS64BQ8siQxrgYdzQlI8Tnj0Wm80-ahDsGnukntKPvudnxixpS0fQ1F~RnHn5ny3g95hc7RuQqUjKKQJ8H0WSm1~ouHZY28MwUPpy6NujPvdZRkiS~gB77TuthyTnP7z1hXGGgkzE4Q5NdkMZ9Kpp3emu6DRJRdjagIbSlVjtgdswTAotIQIx8~IrYogDhNh5geWsxtHEGJ0cwK8MHrZtpFiM2LLWnpTNij~dpcoWSrj0A~8zLg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":10477,"name":"Provenance","url":"https://www.academia.edu/Documents/in/Provenance"},{"id":78114,"name":"Precambrian","url":"https://www.academia.edu/Documents/in/Precambrian"},{"id":206457,"name":"Zircon","url":"https://www.academia.edu/Documents/in/Zircon"},{"id":469741,"name":"Craton","url":"https://www.academia.edu/Documents/in/Craton"}],"urls":[{"id":40901782,"url":"https://api.elsevier.com/content/article/PII:S0301926817300244?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167413"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167413/Cenozoic_basalts_in_SE_China_Chalcophile_element_geochemistry_sulfide_saturation_history_and_source_heterogeneity"><img alt="Research paper thumbnail of Cenozoic basalts in SE China: Chalcophile element geochemistry, sulfide saturation history, and source heterogeneity" class="work-thumbnail" src="https://attachments.academia-assets.com/113096424/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167413/Cenozoic_basalts_in_SE_China_Chalcophile_element_geochemistry_sulfide_saturation_history_and_source_heterogeneity">Cenozoic basalts in SE China: Chalcophile element geochemistry, sulfide saturation history, and source heterogeneity</a></div><div class="wp-workCard_item"><span>Lithos</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dce1a86f55c310ee3dea8928061fe6ce" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096424,"asset_id":117167413,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096424/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167413"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167413"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167413; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167413]").text(description); $(".js-view-count[data-work-id=117167413]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167413; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167413']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167413, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dce1a86f55c310ee3dea8928061fe6ce" } } $('.js-work-strip[data-work-id=117167413]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167413,"title":"Cenozoic basalts in SE China: Chalcophile element geochemistry, sulfide saturation history, and source heterogeneity","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Cenozoic basalts in SE China may be derived from a mixture of depleted MORB mantle (DMM) and enriched mantle 2 (EM2) sources, but whether these basalts share a common mantle source or magmatic history remains unknown. To investigate these unresolved issues, this study sampled basalts from Niutoushan and Mingxi (Fujian province), Xilong (Zhejiang province), and Penghu (Taiwan) for geochemical analysis. The basalt samples show OIB-like trace element patterns and have low PGE contents, with 0.02-0.7 ppb Ir and Pd, 0.05-1.4 ppb Ru, 0.01-0.2 ppb Rh, and 0.06-1.1 ppb Pt. All samples have high Cu/Pd ratios ranging from ~69,000 to 3,500,000, and low Cu/Zr ratios ranging from 0.1 to 0.8, suggesting sulfur-saturated fractionation. Model calculations indicate that the basalts are depleted in PGE due to the retention of 0.001% to 0.1% sulfide in the mantle and the removal of up to 0.0022% sulfide during magma ascent. The crystallization of olivine and spinel, and partial melting are insufficient to account for the observed PGE variation in these basalts. Thus, the distinct PGE patterns in basalts with different ages may reflect the heterogeneity of the mantle source beneath SE China. The source heterogeneity may be due to compositional heterogeneity, particularly variations in oxygen fugacity and PGE mineral phases, or due to variable fluid/melt metasomatic agents in the sub-continental lithospheric mantle. This heterogeneity is possibly related to the westward subduction of the Paleo-Pacific Plate.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Lithos","grobid_abstract_attachment_id":113096424},"translated_abstract":null,"internal_url":"https://www.academia.edu/117167413/Cenozoic_basalts_in_SE_China_Chalcophile_element_geochemistry_sulfide_saturation_history_and_source_heterogeneity","translated_internal_url":"","created_at":"2024-04-06T23:01:16.934-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096424,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096424/thumbnails/1.jpg","file_name":"j.lithos.2017.03.01620240407-1-f6a4hw.pdf","download_url":"https://www.academia.edu/attachments/113096424/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cenozoic_basalts_in_SE_China_Chalcophile.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096424/j.lithos.2017.03.01620240407-1-f6a4hw-libre.pdf?1712471245=\u0026response-content-disposition=attachment%3B+filename%3DCenozoic_basalts_in_SE_China_Chalcophile.pdf\u0026Expires=1733274087\u0026Signature=D0q-hBv9Pi26dtc4XowVSHkpk~TYEfU7FxcMGehn001TTv0zNAYBUVQc6C726necIVnGp2HVs35fZZ9J4Hm~N8D0tqzjcp6czBa~OFRSTqAl9d7rbwqSsezDt~uQgyGmGkTiE3uqgbI1z5fP0RqdIo0o5udTo8MXKSU0Ia7-G2uaOR4K4aseQjr6-A2Cs8jafTBxD1gKZ4iWmAf0vapNP0DdUkOSwLjvq-AcjZG0rmj1tn-WvjmdkT0q0b1SiOIpohIe7lc2r4eJxu50Vc3n-Cg73dKjeorFEptfg3CPG4kSvd7H9iIfZjIt3SoVSM6IeCkfxqTqi~66YRYXvSBF8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cenozoic_basalts_in_SE_China_Chalcophile_element_geochemistry_sulfide_saturation_history_and_source_heterogeneity","translated_slug":"","page_count":58,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096424,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096424/thumbnails/1.jpg","file_name":"j.lithos.2017.03.01620240407-1-f6a4hw.pdf","download_url":"https://www.academia.edu/attachments/113096424/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cenozoic_basalts_in_SE_China_Chalcophile.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096424/j.lithos.2017.03.01620240407-1-f6a4hw-libre.pdf?1712471245=\u0026response-content-disposition=attachment%3B+filename%3DCenozoic_basalts_in_SE_China_Chalcophile.pdf\u0026Expires=1733274087\u0026Signature=D0q-hBv9Pi26dtc4XowVSHkpk~TYEfU7FxcMGehn001TTv0zNAYBUVQc6C726necIVnGp2HVs35fZZ9J4Hm~N8D0tqzjcp6czBa~OFRSTqAl9d7rbwqSsezDt~uQgyGmGkTiE3uqgbI1z5fP0RqdIo0o5udTo8MXKSU0Ia7-G2uaOR4K4aseQjr6-A2Cs8jafTBxD1gKZ4iWmAf0vapNP0DdUkOSwLjvq-AcjZG0rmj1tn-WvjmdkT0q0b1SiOIpohIe7lc2r4eJxu50Vc3n-Cg73dKjeorFEptfg3CPG4kSvd7H9iIfZjIt3SoVSM6IeCkfxqTqi~66YRYXvSBF8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":146480,"name":"Cenozoic","url":"https://www.academia.edu/Documents/in/Cenozoic"},{"id":205576,"name":"Basalt","url":"https://www.academia.edu/Documents/in/Basalt"},{"id":1235582,"name":"Sulfide","url":"https://www.academia.edu/Documents/in/Sulfide"}],"urls":[{"id":40901781,"url":"https://api.elsevier.com/content/article/PII:S0024493717301226?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167412"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167412/Iron_isotopic_fractionation_and_origin_of_chromitites_in_the_paleo_Moho_transition_zone_of_the_Kop_ophiolite_NE_Turkey"><img alt="Research paper thumbnail of Iron isotopic fractionation and origin of chromitites in the paleo-Moho transition zone of the Kop ophiolite, NE Turkey" class="work-thumbnail" src="https://attachments.academia-assets.com/113096421/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167412/Iron_isotopic_fractionation_and_origin_of_chromitites_in_the_paleo_Moho_transition_zone_of_the_Kop_ophiolite_NE_Turkey">Iron isotopic fractionation and origin of chromitites in the paleo-Moho transition zone of the Kop ophiolite, NE Turkey</a></div><div class="wp-workCard_item"><span>Lithos</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7d4555e06a4e3912762a8e2d55f285f3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096421,"asset_id":117167412,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096421/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167412"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167412"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167412; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167412]").text(description); $(".js-view-count[data-work-id=117167412]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167412; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167412']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167412, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7d4555e06a4e3912762a8e2d55f285f3" } } $('.js-work-strip[data-work-id=117167412]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167412,"title":"Iron isotopic fractionation and origin of chromitites in the paleo-Moho transition zone of the Kop ophiolite, NE Turkey","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Lithos"},"translated_abstract":null,"internal_url":"https://www.academia.edu/117167412/Iron_isotopic_fractionation_and_origin_of_chromitites_in_the_paleo_Moho_transition_zone_of_the_Kop_ophiolite_NE_Turkey","translated_internal_url":"","created_at":"2024-04-06T23:01:16.752-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096421,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096421/thumbnails/1.jpg","file_name":"create_pdf.pdf","download_url":"https://www.academia.edu/attachments/113096421/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Iron_isotopic_fractionation_and_origin_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096421/create_pdf-libre.pdf?1712471228=\u0026response-content-disposition=attachment%3B+filename%3DIron_isotopic_fractionation_and_origin_o.pdf\u0026Expires=1733274087\u0026Signature=G4a11MiQTX1RWPDkOHMN5l73oiEkxlT05hJaHmF6AOFOl-a7hCehATHAnxD3BKg6-MZwLoy~ObXEjTbE-5SB9j825rnHkc1N8fL1vuXLI3l0wYcJ5PLs70NnsK-CzAs7jIkrCzj-cNEBaYHtOVAxdtFwn~sKDMIxM2aIoli-SkDLYZiZ6Yy1wEtgw50w~1QcNkUn56Dh9DTZgoOupun5Gyyj7dafX4XiSHrwHreLKf6iYCUDDpaQlNsYPzfp2CLdPqe6TDgOj-5Pek3kN7qQRfGJVQ7q9y3K0hSuCBy0Z2j4plcKL-DGX-5S42G348OfezRv3U99I-voiBa9bWztQA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Iron_isotopic_fractionation_and_origin_of_chromitites_in_the_paleo_Moho_transition_zone_of_the_Kop_ophiolite_NE_Turkey","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096421,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096421/thumbnails/1.jpg","file_name":"create_pdf.pdf","download_url":"https://www.academia.edu/attachments/113096421/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Iron_isotopic_fractionation_and_origin_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096421/create_pdf-libre.pdf?1712471228=\u0026response-content-disposition=attachment%3B+filename%3DIron_isotopic_fractionation_and_origin_o.pdf\u0026Expires=1733274087\u0026Signature=G4a11MiQTX1RWPDkOHMN5l73oiEkxlT05hJaHmF6AOFOl-a7hCehATHAnxD3BKg6-MZwLoy~ObXEjTbE-5SB9j825rnHkc1N8fL1vuXLI3l0wYcJ5PLs70NnsK-CzAs7jIkrCzj-cNEBaYHtOVAxdtFwn~sKDMIxM2aIoli-SkDLYZiZ6Yy1wEtgw50w~1QcNkUn56Dh9DTZgoOupun5Gyyj7dafX4XiSHrwHreLKf6iYCUDDpaQlNsYPzfp2CLdPqe6TDgOj-5Pek3kN7qQRfGJVQ7q9y3K0hSuCBy0Z2j4plcKL-DGX-5S42G348OfezRv3U99I-voiBa9bWztQA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":157242,"name":"chromitite and PGE","url":"https://www.academia.edu/Documents/in/chromitite_and_PGE"},{"id":281808,"name":"Olivine","url":"https://www.academia.edu/Documents/in/Olivine"},{"id":330036,"name":"Ophiolite","url":"https://www.academia.edu/Documents/in/Ophiolite"}],"urls":[{"id":40901780,"url":"https://api.elsevier.com/content/article/PII:S0024493716303590?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167411"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167411/Contribution_of_crustal_materials_to_the_mantle_sources_of_Xiaogulihe_ultrapotassic_volcanic_rocks_Northeast_China_New_constraints_from_mineral_chemistry_and_oxygen_isotopes_of_olivine"><img alt="Research paper thumbnail of Contribution of crustal materials to the mantle sources of Xiaogulihe ultrapotassic volcanic rocks, Northeast China: New constraints from mineral chemistry and oxygen isotopes of olivine" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167411/Contribution_of_crustal_materials_to_the_mantle_sources_of_Xiaogulihe_ultrapotassic_volcanic_rocks_Northeast_China_New_constraints_from_mineral_chemistry_and_oxygen_isotopes_of_olivine">Contribution of crustal materials to the mantle sources of Xiaogulihe ultrapotassic volcanic rocks, Northeast China: New constraints from mineral chemistry and oxygen isotopes of olivine</a></div><div class="wp-workCard_item"><span>Chemical Geology</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT Ultrapotassic igneous rocks can generally be divided into two sub-groups based on the te...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT Ultrapotassic igneous rocks can generally be divided into two sub-groups based on the tectonic settings in which they formed. The orogenic sub-group occurs in subduction-related tectonic settings, while the anorogenic sub-group is confined to stable continental regimes. The Pleistocene Xiaogulihe ultrapotassic volcanic rocks outcrop in the western part of Heilongjiang province, northeast China, and are of intraplate origin with respect to its tectonic settings. Previous elemental and isotopic investigations have suggested that the mantle source of these volcanic rocks had been modified by continental-derived sediments resulting from an ancient subduction (at least older than 1.5 Ga). In this contribution, we performed in-situ oxygen isotope analysis on olivine grains in these ultrapotassic rocks using secondary ionization mass spectrometry (SIMS). The olivine grains generally have higher δ18O values and CaO contents than those of mantle peridotite xenoliths in the nearby Keluo potassic rocks and show linear correlations between major and trace elements, and Fo, suggesting that they are cognate phenocrysts resulted from fractional crystallization processes. The restricted and non-correlated variations in δ18O with the Fo of these olivine grains imply that the fractional crystallization processes might have negligible influence on their δ18O values. The relatively higher δ18O values of the olivine phenocrysts than the normal mantle imply the addition of an 18O-rich crustal component into their mantle source after ruling out the crustal contamination of the host magmas. We propose that the high-δ18O feature of the olivine phenocrysts was inherited from the subducted crustal component in their mantle source. Given the rapid oxygen isotopic diffusion under high temperature and the long period between mantle metasomatism event and volcanic eruption, it is postulated that the high-δ18O signature could only be preserved in the relatively cold and stable subcontinental lithospheric mantle. Such speculation is consistent with our previous inference that the Xiaogulihe ultrapotassic volcanic rocks were mainly generated from the lower subcontinental lithospheric mantle which had been metasomatized by potassium-rich silicate melts derived from ancient subducted continental-derived sediments.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167411"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167411"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167411; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167411]").text(description); $(".js-view-count[data-work-id=117167411]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167411; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167411']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167411, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117167411]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167411,"title":"Contribution of crustal materials to the mantle sources of Xiaogulihe ultrapotassic volcanic rocks, Northeast China: New constraints from mineral chemistry and oxygen isotopes of olivine","translated_title":"","metadata":{"abstract":"ABSTRACT Ultrapotassic igneous rocks can generally be divided into two sub-groups based on the tectonic settings in which they formed. The orogenic sub-group occurs in subduction-related tectonic settings, while the anorogenic sub-group is confined to stable continental regimes. The Pleistocene Xiaogulihe ultrapotassic volcanic rocks outcrop in the western part of Heilongjiang province, northeast China, and are of intraplate origin with respect to its tectonic settings. Previous elemental and isotopic investigations have suggested that the mantle source of these volcanic rocks had been modified by continental-derived sediments resulting from an ancient subduction (at least older than 1.5 Ga). In this contribution, we performed in-situ oxygen isotope analysis on olivine grains in these ultrapotassic rocks using secondary ionization mass spectrometry (SIMS). The olivine grains generally have higher δ18O values and CaO contents than those of mantle peridotite xenoliths in the nearby Keluo potassic rocks and show linear correlations between major and trace elements, and Fo, suggesting that they are cognate phenocrysts resulted from fractional crystallization processes. The restricted and non-correlated variations in δ18O with the Fo of these olivine grains imply that the fractional crystallization processes might have negligible influence on their δ18O values. The relatively higher δ18O values of the olivine phenocrysts than the normal mantle imply the addition of an 18O-rich crustal component into their mantle source after ruling out the crustal contamination of the host magmas. We propose that the high-δ18O feature of the olivine phenocrysts was inherited from the subducted crustal component in their mantle source. Given the rapid oxygen isotopic diffusion under high temperature and the long period between mantle metasomatism event and volcanic eruption, it is postulated that the high-δ18O signature could only be preserved in the relatively cold and stable subcontinental lithospheric mantle. Such speculation is consistent with our previous inference that the Xiaogulihe ultrapotassic volcanic rocks were mainly generated from the lower subcontinental lithospheric mantle which had been metasomatized by potassium-rich silicate melts derived from ancient subducted continental-derived sediments.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Chemical Geology"},"translated_abstract":"ABSTRACT Ultrapotassic igneous rocks can generally be divided into two sub-groups based on the tectonic settings in which they formed. The orogenic sub-group occurs in subduction-related tectonic settings, while the anorogenic sub-group is confined to stable continental regimes. The Pleistocene Xiaogulihe ultrapotassic volcanic rocks outcrop in the western part of Heilongjiang province, northeast China, and are of intraplate origin with respect to its tectonic settings. Previous elemental and isotopic investigations have suggested that the mantle source of these volcanic rocks had been modified by continental-derived sediments resulting from an ancient subduction (at least older than 1.5 Ga). In this contribution, we performed in-situ oxygen isotope analysis on olivine grains in these ultrapotassic rocks using secondary ionization mass spectrometry (SIMS). The olivine grains generally have higher δ18O values and CaO contents than those of mantle peridotite xenoliths in the nearby Keluo potassic rocks and show linear correlations between major and trace elements, and Fo, suggesting that they are cognate phenocrysts resulted from fractional crystallization processes. The restricted and non-correlated variations in δ18O with the Fo of these olivine grains imply that the fractional crystallization processes might have negligible influence on their δ18O values. The relatively higher δ18O values of the olivine phenocrysts than the normal mantle imply the addition of an 18O-rich crustal component into their mantle source after ruling out the crustal contamination of the host magmas. We propose that the high-δ18O feature of the olivine phenocrysts was inherited from the subducted crustal component in their mantle source. Given the rapid oxygen isotopic diffusion under high temperature and the long period between mantle metasomatism event and volcanic eruption, it is postulated that the high-δ18O signature could only be preserved in the relatively cold and stable subcontinental lithospheric mantle. Such speculation is consistent with our previous inference that the Xiaogulihe ultrapotassic volcanic rocks were mainly generated from the lower subcontinental lithospheric mantle which had been metasomatized by potassium-rich silicate melts derived from ancient subducted continental-derived sediments.","internal_url":"https://www.academia.edu/117167411/Contribution_of_crustal_materials_to_the_mantle_sources_of_Xiaogulihe_ultrapotassic_volcanic_rocks_Northeast_China_New_constraints_from_mineral_chemistry_and_oxygen_isotopes_of_olivine","translated_internal_url":"","created_at":"2024-04-06T23:01:16.555-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Contribution_of_crustal_materials_to_the_mantle_sources_of_Xiaogulihe_ultrapotassic_volcanic_rocks_Northeast_China_New_constraints_from_mineral_chemistry_and_oxygen_isotopes_of_olivine","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":16024,"name":"Chemical Geology","url":"https://www.academia.edu/Documents/in/Chemical_Geology"},{"id":281808,"name":"Olivine","url":"https://www.academia.edu/Documents/in/Olivine"},{"id":415323,"name":"Phenocryst","url":"https://www.academia.edu/Documents/in/Phenocryst"},{"id":688910,"name":"Volcanic Rock","url":"https://www.academia.edu/Documents/in/Volcanic_Rock"}],"urls":[{"id":40901778,"url":"https://api.elsevier.com/content/article/PII:S000925411500193X?httpAccept=text/plain"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167409"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167409/Natural_evidence_for_garnet_spinel_transition_GST_in_the_Earth_s_mantle"><img alt="Research paper thumbnail of Natural evidence for garnet-spinel transition (GST) in the Earth’s mantle" class="work-thumbnail" src="https://attachments.academia-assets.com/113096423/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167409/Natural_evidence_for_garnet_spinel_transition_GST_in_the_Earth_s_mantle">Natural evidence for garnet-spinel transition (GST) in the Earth’s mantle</a></div><div class="wp-workCard_item"><span>Nature Precedings</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e4e8c21e55b8c5a6491d8017309a3bad" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096423,"asset_id":117167409,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096423/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167409"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167409"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167409; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167409]").text(description); $(".js-view-count[data-work-id=117167409]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167409; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167409']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167409, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e4e8c21e55b8c5a6491d8017309a3bad" } } $('.js-work-strip[data-work-id=117167409]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167409,"title":"Natural evidence for garnet-spinel transition (GST) in the Earth’s mantle","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","ai_title_tag":"Garnet-Spinel Transition Evidence in Earth's Mantle","grobid_abstract":"This study based on compiled worldwide garnet peridotite data confirms the GST in high P and T conditions, which was obtained from Al-free experimental system (MgO-Cr 2 O 3-SiO 2) by Klemme (2004). A new spinel-phase peridotite zone, garnet peridotite discontinuous zone, is defined, and another GST, although no experimental data, is principally and presumably proposed to exist. The garnet inclusion-bearing spinel harzburgite from Lashaine (Tanzania) provides the first evidence for the existence of ultra-high spinel zone and is explained as recrystallized minerals hosting the interacted residue of ancient oceanic lithosphere subducted into the great depth of more than 220km. These previously unexpected findings are generating great challenges to phase transition in extreme conditions and to our understanding of layered-structure of the Earth. In addition, coexistent five-phase peridotite is suggested to be naturally useful tool to constrain the GST.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Nature Precedings","grobid_abstract_attachment_id":113096423},"translated_abstract":null,"internal_url":"https://www.academia.edu/117167409/Natural_evidence_for_garnet_spinel_transition_GST_in_the_Earth_s_mantle","translated_internal_url":"","created_at":"2024-04-06T23:01:16.384-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096423,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096423/thumbnails/1.jpg","file_name":"npre.2008.1898.2.pdf","download_url":"https://www.academia.edu/attachments/113096423/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Natural_evidence_for_garnet_spinel_trans.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096423/npre.2008.1898.2-libre.pdf?1712471231=\u0026response-content-disposition=attachment%3B+filename%3DNatural_evidence_for_garnet_spinel_trans.pdf\u0026Expires=1733274087\u0026Signature=ddguq7jwJl6hIEoSQY8CF5t0kqtqB21nEyici71~bRKzMnqJolto~9QVWOkpZbdrQZL4p6doD2r5ovZs9Lb-MiY3nEKazsHm1gFukp~Bn8kd2FTFJfGT5ttdkiIoLAFiDUWldnfpjYOXuUXjFd602qmwBEiCQTXBaEwzC-UVg2H35s9kB1QLNh75T~bIoF9HWWQ9e7zkH6iTK~H70tTLiRMbvSyrBYlSwmD5mojXGeVUWmUgv-qbmBmGSDSAHojZkoIDlCULBqBccAX3HEx3wOMVdSePGtkFQAtUBLDVGqWiFn2JvIcXMHmK7sPjTVdBh8rhloqSggYvgogtLUaDfA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Natural_evidence_for_garnet_spinel_transition_GST_in_the_Earth_s_mantle","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096423,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096423/thumbnails/1.jpg","file_name":"npre.2008.1898.2.pdf","download_url":"https://www.academia.edu/attachments/113096423/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Natural_evidence_for_garnet_spinel_trans.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096423/npre.2008.1898.2-libre.pdf?1712471231=\u0026response-content-disposition=attachment%3B+filename%3DNatural_evidence_for_garnet_spinel_trans.pdf\u0026Expires=1733274087\u0026Signature=ddguq7jwJl6hIEoSQY8CF5t0kqtqB21nEyici71~bRKzMnqJolto~9QVWOkpZbdrQZL4p6doD2r5ovZs9Lb-MiY3nEKazsHm1gFukp~Bn8kd2FTFJfGT5ttdkiIoLAFiDUWldnfpjYOXuUXjFd602qmwBEiCQTXBaEwzC-UVg2H35s9kB1QLNh75T~bIoF9HWWQ9e7zkH6iTK~H70tTLiRMbvSyrBYlSwmD5mojXGeVUWmUgv-qbmBmGSDSAHojZkoIDlCULBqBccAX3HEx3wOMVdSePGtkFQAtUBLDVGqWiFn2JvIcXMHmK7sPjTVdBh8rhloqSggYvgogtLUaDfA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":54668,"name":"Peridotite","url":"https://www.academia.edu/Documents/in/Peridotite"},{"id":122773,"name":"Subduction","url":"https://www.academia.edu/Documents/in/Subduction"},{"id":403641,"name":"Spinel","url":"https://www.academia.edu/Documents/in/Spinel"},{"id":668253,"name":"Lithosphere","url":"https://www.academia.edu/Documents/in/Lithosphere"},{"id":3057331,"name":"Transition Zone","url":"https://www.academia.edu/Documents/in/Transition_Zone"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167406"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167406/Ages_and_tectonic_implications_of_the_mafic_ultramafic_carbonatite_intrusive_rocks_and_associated_Cu_Ni_Fe_P_and_apatite_vermiculite_deposits_from_the_Quruqtagh_district_NW_China"><img alt="Research paper thumbnail of Ages and tectonic implications of the mafic–ultramafic-carbonatite intrusive rocks and associated Cu-Ni, Fe-P and apatite-vermiculite deposits from the Quruqtagh district, NW China" class="work-thumbnail" src="https://attachments.academia-assets.com/113096447/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167406/Ages_and_tectonic_implications_of_the_mafic_ultramafic_carbonatite_intrusive_rocks_and_associated_Cu_Ni_Fe_P_and_apatite_vermiculite_deposits_from_the_Quruqtagh_district_NW_China">Ages and tectonic implications of the mafic–ultramafic-carbonatite intrusive rocks and associated Cu-Ni, Fe-P and apatite-vermiculite deposits from the Quruqtagh district, NW China</a></div><div class="wp-workCard_item"><span>Ore Geology Reviews</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cfa6b1e0b3b5791ed9d48c99fe57d333" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096447,"asset_id":117167406,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096447/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167406"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167406"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167406; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167406]").text(description); $(".js-view-count[data-work-id=117167406]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167406; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167406']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167406, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cfa6b1e0b3b5791ed9d48c99fe57d333" } } $('.js-work-strip[data-work-id=117167406]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167406,"title":"Ages and tectonic implications of the mafic–ultramafic-carbonatite intrusive rocks and associated Cu-Ni, Fe-P and apatite-vermiculite deposits from the Quruqtagh district, NW China","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Ages and tectonic implications of the mafic-ultramafic-carbonatite intrusive rocks and associate Cu-Ni, Fe-P and apatite-vermiculite deposits from the Quruqtagh district, NW China","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Ore Geology Reviews","grobid_abstract_attachment_id":113096447},"translated_abstract":null,"internal_url":"https://www.academia.edu/117167406/Ages_and_tectonic_implications_of_the_mafic_ultramafic_carbonatite_intrusive_rocks_and_associated_Cu_Ni_Fe_P_and_apatite_vermiculite_deposits_from_the_Quruqtagh_district_NW_China","translated_internal_url":"","created_at":"2024-04-06T23:01:15.263-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096447,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096447/thumbnails/1.jpg","file_name":"j.oregeorev.2016.07.01120240407-1-4r53fo.pdf","download_url":"https://www.academia.edu/attachments/113096447/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ages_and_tectonic_implications_of_the_ma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096447/j.oregeorev.2016.07.01120240407-1-4r53fo-libre.pdf?1712471253=\u0026response-content-disposition=attachment%3B+filename%3DAges_and_tectonic_implications_of_the_ma.pdf\u0026Expires=1733274087\u0026Signature=Q-tNLo1VPKSKjfzQZieKEGThDUWmZi~jyRNHCI-LETAFANoe5TdE87PsiVVo3BcYJTFr4AvMwWHR7yWtnpVf2jhqGhouhRScto7YaxE0~dR5wXOoEyUXr7xdBgpzP7MdjrNKcqTHr8~1Os7o3jY970195lH0tZSL4Qc4xHFkPzc31RvgOgK5WB~wehCut3nqd21etdWZ6EHUS8S4TqYbuYsn-MzqR7qpnH8Mnp5OZ8h2CH8cWInExmC1r9huZxgbg0vtwEBWatPa7hjZzAdKbImzbFjPelD6lFl7n38qPZWiNybNZusW-eyg7YkVPW6qFYRVCAYvBrog6IdeaJH5fQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Ages_and_tectonic_implications_of_the_mafic_ultramafic_carbonatite_intrusive_rocks_and_associated_Cu_Ni_Fe_P_and_apatite_vermiculite_deposits_from_the_Quruqtagh_district_NW_China","translated_slug":"","page_count":49,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096447,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096447/thumbnails/1.jpg","file_name":"j.oregeorev.2016.07.01120240407-1-4r53fo.pdf","download_url":"https://www.academia.edu/attachments/113096447/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ages_and_tectonic_implications_of_the_ma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096447/j.oregeorev.2016.07.01120240407-1-4r53fo-libre.pdf?1712471253=\u0026response-content-disposition=attachment%3B+filename%3DAges_and_tectonic_implications_of_the_ma.pdf\u0026Expires=1733274087\u0026Signature=Q-tNLo1VPKSKjfzQZieKEGThDUWmZi~jyRNHCI-LETAFANoe5TdE87PsiVVo3BcYJTFr4AvMwWHR7yWtnpVf2jhqGhouhRScto7YaxE0~dR5wXOoEyUXr7xdBgpzP7MdjrNKcqTHr8~1Os7o3jY970195lH0tZSL4Qc4xHFkPzc31RvgOgK5WB~wehCut3nqd21etdWZ6EHUS8S4TqYbuYsn-MzqR7qpnH8Mnp5OZ8h2CH8cWInExmC1r9huZxgbg0vtwEBWatPa7hjZzAdKbImzbFjPelD6lFl7n38qPZWiNybNZusW-eyg7YkVPW6qFYRVCAYvBrog6IdeaJH5fQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":135982,"name":"Rodinia","url":"https://www.academia.edu/Documents/in/Rodinia"},{"id":319883,"name":"Supercontinent","url":"https://www.academia.edu/Documents/in/Supercontinent"},{"id":469741,"name":"Craton","url":"https://www.academia.edu/Documents/in/Craton"},{"id":1464622,"name":"Carbonatite","url":"https://www.academia.edu/Documents/in/Carbonatite"}],"urls":[{"id":40901775,"url":"https://api.elsevier.com/content/article/PII:S0169136816304334?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="5743199" id="papers"><div class="js-work-strip profile--work_container" data-work-id="117167434"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167434/Magnesium_Isotopic_Evidence_for_Ancient_Subducted_Oceanic_Crust_in_Lomu_Like_Potassium_Rich_Volcanic_Rocks"><img alt="Research paper thumbnail of Magnesium Isotopic Evidence for Ancient Subducted Oceanic Crust in Lomu-Like Potassium-Rich Volcanic Rocks" class="work-thumbnail" src="https://attachments.academia-assets.com/113096438/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167434/Magnesium_Isotopic_Evidence_for_Ancient_Subducted_Oceanic_Crust_in_Lomu_Like_Potassium_Rich_Volcanic_Rocks">Magnesium Isotopic Evidence for Ancient Subducted Oceanic Crust in Lomu-Like Potassium-Rich Volcanic Rocks</a></div><div class="wp-workCard_item"><span>GSA Annual Meeting in Seattle, Washington, USA - 2017</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="972421c8f4b22c1814f4510a615e3070" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096438,"asset_id":117167434,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096438/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Niw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167434"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167434"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167434; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167434]").text(description); $(".js-view-count[data-work-id=117167434]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167434; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167434']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167434, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "972421c8f4b22c1814f4510a615e3070" } } $('.js-work-strip[data-work-id=117167434]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167434,"title":"Magnesium Isotopic Evidence for Ancient Subducted Oceanic Crust in Lomu-Like Potassium-Rich Volcanic Rocks","translated_title":"","metadata":{"grobid_abstract":" The low δ 26 Mg feature of the LOMU-like potassium-rich lavas was induced by the incorporation of recycled oceanic crust in the source region. The correlations between δ 26 Mg, (Gd/Yb) N , Sr and Pb isotopes indicate a multistage preconditioning of the mantle source. Magnesium isotopes can be used as a tracer of recycled oceanic crust in the source region of mantle-derived magmas.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"GSA Annual Meeting in Seattle, Washington, USA - 2017","grobid_abstract_attachment_id":113096438},"translated_abstract":null,"internal_url":"https://www.academia.edu/117167434/Magnesium_Isotopic_Evidence_for_Ancient_Subducted_Oceanic_Crust_in_Lomu_Like_Potassium_Rich_Volcanic_Rocks","translated_internal_url":"","created_at":"2024-04-06T23:01:20.329-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096438,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096438/thumbnails/1.jpg","file_name":"2017JB01456020240407-1-li4lz4.pdf","download_url":"https://www.academia.edu/attachments/113096438/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Magnesium_Isotopic_Evidence_for_Ancient.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096438/2017JB01456020240407-1-li4lz4-libre.pdf?1712471240=\u0026response-content-disposition=attachment%3B+filename%3DMagnesium_Isotopic_Evidence_for_Ancient.pdf\u0026Expires=1733274086\u0026Signature=W8me9KgncOtFdWX6N6ph1Y0bVrVZneYPlL3XgJa0jXpODsd2T341~eyDILNMe8Hdx-3GbFHokfpEev5NmermoOUhV-QtLJbkUxPxxlpw7E-Vmz1AC4rtLjR6kanMfhv5qsF5mEA0UmH1cp~lZEyDZcY7aCXELUG00hVteS44trQLNLaMZ4PLoUUzp030WllLpmE~W0jZ7QuTjLH580pmipDVEuuP4gYc~cD5Z2HwwQyU~pT~BGwgwxnpq2nl~3tsPVBD~WkfvPuqwZqcj7FrUCDi0WlTVwPFT3V~6U4MX4m3TyGdkTjJinVYauqzuLsbOmM72c4k7IOXomX0GQCuwg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Magnesium_Isotopic_Evidence_for_Ancient_Subducted_Oceanic_Crust_in_Lomu_Like_Potassium_Rich_Volcanic_Rocks","translated_slug":"","page_count":24,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096438,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096438/thumbnails/1.jpg","file_name":"2017JB01456020240407-1-li4lz4.pdf","download_url":"https://www.academia.edu/attachments/113096438/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Niw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Magnesium_Isotopic_Evidence_for_Ancient.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096438/2017JB01456020240407-1-li4lz4-libre.pdf?1712471240=\u0026response-content-disposition=attachment%3B+filename%3DMagnesium_Isotopic_Evidence_for_Ancient.pdf\u0026Expires=1733274086\u0026Signature=W8me9KgncOtFdWX6N6ph1Y0bVrVZneYPlL3XgJa0jXpODsd2T341~eyDILNMe8Hdx-3GbFHokfpEev5NmermoOUhV-QtLJbkUxPxxlpw7E-Vmz1AC4rtLjR6kanMfhv5qsF5mEA0UmH1cp~lZEyDZcY7aCXELUG00hVteS44trQLNLaMZ4PLoUUzp030WllLpmE~W0jZ7QuTjLH580pmipDVEuuP4gYc~cD5Z2HwwQyU~pT~BGwgwxnpq2nl~3tsPVBD~WkfvPuqwZqcj7FrUCDi0WlTVwPFT3V~6U4MX4m3TyGdkTjJinVYauqzuLsbOmM72c4k7IOXomX0GQCuwg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":108863,"name":"Volcano","url":"https://www.academia.edu/Documents/in/Volcano"},{"id":122773,"name":"Subduction","url":"https://www.academia.edu/Documents/in/Subduction"},{"id":418452,"name":"Crust","url":"https://www.academia.edu/Documents/in/Crust"},{"id":642278,"name":"Adakite","url":"https://www.academia.edu/Documents/in/Adakite"},{"id":688910,"name":"Volcanic Rock","url":"https://www.academia.edu/Documents/in/Volcanic_Rock"},{"id":3085104,"name":"Oceanic crust","url":"https://www.academia.edu/Documents/in/Oceanic_crust"}],"urls":[{"id":40901801,"url":"https://doi.org/10.1130/abs/2017am-304699"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167432"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167432/High_precision_lithium_isotopic_analysis_using_the_Nu_Sapphire_MC_ICP_MS"><img alt="Research paper thumbnail of High-precision lithium isotopic analysis using the Nu Sapphire MC-ICP-MS" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167432/High_precision_lithium_isotopic_analysis_using_the_Nu_Sapphire_MC_ICP_MS">High-precision lithium isotopic analysis using the Nu Sapphire MC-ICP-MS</a></div><div class="wp-workCard_item"><span>Journal of Analytical Atomic Spectrometry</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">With single-column chemical purification, highly accurate δ7Li values for eight international ref...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">With single-column chemical purification, highly accurate δ7Li values for eight international reference materials are presented together with seventeen Chinese geological reference materials from NRCG using the Nu Sapphire.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167432"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167432"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167432; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167432]").text(description); $(".js-view-count[data-work-id=117167432]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167432; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167432']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167432, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117167432]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167432,"title":"High-precision lithium isotopic analysis using the Nu Sapphire MC-ICP-MS","translated_title":"","metadata":{"abstract":"With single-column chemical purification, highly accurate δ7Li values for eight international reference materials are presented together with seventeen Chinese geological reference materials from NRCG using the Nu Sapphire.","publisher":"Royal Society of Chemistry (RSC)","publication_name":"Journal of Analytical Atomic Spectrometry"},"translated_abstract":"With single-column chemical purification, highly accurate δ7Li values for eight international reference materials are presented together with seventeen Chinese geological reference materials from NRCG using the Nu Sapphire.","internal_url":"https://www.academia.edu/117167432/High_precision_lithium_isotopic_analysis_using_the_Nu_Sapphire_MC_ICP_MS","translated_internal_url":"","created_at":"2024-04-06T23:01:20.126-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"High_precision_lithium_isotopic_analysis_using_the_Nu_Sapphire_MC_ICP_MS","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[],"research_interests":[{"id":524,"name":"Analytical Chemistry","url":"https://www.academia.edu/Documents/in/Analytical_Chemistry"},{"id":222413,"name":"Inductively Coupled Plasma Mass Spectrometry","url":"https://www.academia.edu/Documents/in/Inductively_Coupled_Plasma_Mass_Spectrometry"}],"urls":[{"id":40901799,"url":"http://pubs.rsc.org/en/content/articlepdf/2023/JA/D2JA00371F"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167431"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167431/Syn_Mineralization_Hydrous_Fluid_Activity_in_Giant_Jinchuan_Magmatic_Ni_Cu_Sulfide_Deposit_in_North_China_Craton"><img alt="Research paper thumbnail of Syn-Mineralization Hydrous Fluid Activity in Giant Jinchuan Magmatic Ni-Cu Sulfide Deposit in North China Craton" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167431/Syn_Mineralization_Hydrous_Fluid_Activity_in_Giant_Jinchuan_Magmatic_Ni_Cu_Sulfide_Deposit_in_North_China_Craton">Syn-Mineralization Hydrous Fluid Activity in Giant Jinchuan Magmatic Ni-Cu Sulfide Deposit in North China Craton</a></div><div class="wp-workCard_item"><span>SSRN Electronic Journal</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167431"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167431"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167431; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167431]").text(description); $(".js-view-count[data-work-id=117167431]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167431; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167431']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167431, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117167431]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167431,"title":"Syn-Mineralization Hydrous Fluid Activity in Giant Jinchuan Magmatic Ni-Cu Sulfide Deposit in North China Craton","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_name":"SSRN Electronic Journal"},"translated_abstract":null,"internal_url":"https://www.academia.edu/117167431/Syn_Mineralization_Hydrous_Fluid_Activity_in_Giant_Jinchuan_Magmatic_Ni_Cu_Sulfide_Deposit_in_North_China_Craton","translated_internal_url":"","created_at":"2024-04-06T23:01:19.987-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Syn_Mineralization_Hydrous_Fluid_Activity_in_Giant_Jinchuan_Magmatic_Ni_Cu_Sulfide_Deposit_in_North_China_Craton","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":69856,"name":"Social Science Research Network","url":"https://www.academia.edu/Documents/in/Social_Science_Research_Network"},{"id":469741,"name":"Craton","url":"https://www.academia.edu/Documents/in/Craton"},{"id":1235582,"name":"Sulfide","url":"https://www.academia.edu/Documents/in/Sulfide"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167429"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167429/Fluid_Induced_Inhomogeneous_Cr_spinel_in_Dunite_and_Wehrlite_from_the_Duke_Island_Complex_Southeastern_Alaska"><img alt="Research paper thumbnail of Fluid-Induced Inhomogeneous Cr-spinel in Dunite and Wehrlite from the Duke Island Complex, Southeastern Alaska" class="work-thumbnail" src="https://attachments.academia-assets.com/113096396/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167429/Fluid_Induced_Inhomogeneous_Cr_spinel_in_Dunite_and_Wehrlite_from_the_Duke_Island_Complex_Southeastern_Alaska">Fluid-Induced Inhomogeneous Cr-spinel in Dunite and Wehrlite from the Duke Island Complex, Southeastern Alaska</a></div><div class="wp-workCard_item"><span>Minerals</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Cr-spinel [(Mg, Fe2+)(Cr, Al, Fe3+)2O4)] is a common mineral in the ultramafic core of the Duke I...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Cr-spinel [(Mg, Fe2+)(Cr, Al, Fe3+)2O4)] is a common mineral in the ultramafic core of the Duke Island complex in southeastern Alaska, US. Cr-spinel grains with an unmixed texture have been observed in dunite and wehrlite of the complex. Inhomogeneous Cr-spinel with a ratio of Cr/(Al + Cr + Fe3+) &lt;0.37 is prominent in dunite. The inhomogeneous Cr-spinel consists of two completely different compositions: Al-rich Cr-spinel, and Fe3+-rich Cr-spinel with a wide range of Cr content (from 11.8 wt.% to 28.6 wt.% Cr2O3). The unmixed texture is complex, and three subtypes of inhomogeneous Cr-spinel are recognized: Type B1 Cr-spinel showing complete separation, crystallographically oriented type B2 Cr-spinel, and irregular Al-rich Cr-spinel rimmed type B3 Cr-spinel. The unmixed texture was achieved by an unmixing process at around 600 °C due to the miscibility gap of spinel between Al-rich and Fe3+-rich phases. The unmixed patterns of inhomogeneous Cr-spinel are controlled by the initial c...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3e491f982e8a49bed691676caadf86ef" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096396,"asset_id":117167429,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096396/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167429"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167429"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167429; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167429]").text(description); $(".js-view-count[data-work-id=117167429]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167429; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167429']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167429, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3e491f982e8a49bed691676caadf86ef" } } $('.js-work-strip[data-work-id=117167429]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167429,"title":"Fluid-Induced Inhomogeneous Cr-spinel in Dunite and Wehrlite from the Duke Island Complex, Southeastern Alaska","translated_title":"","metadata":{"abstract":"Cr-spinel [(Mg, Fe2+)(Cr, Al, Fe3+)2O4)] is a common mineral in the ultramafic core of the Duke Island complex in southeastern Alaska, US. Cr-spinel grains with an unmixed texture have been observed in dunite and wehrlite of the complex. Inhomogeneous Cr-spinel with a ratio of Cr/(Al + Cr + Fe3+) \u0026lt;0.37 is prominent in dunite. The inhomogeneous Cr-spinel consists of two completely different compositions: Al-rich Cr-spinel, and Fe3+-rich Cr-spinel with a wide range of Cr content (from 11.8 wt.% to 28.6 wt.% Cr2O3). The unmixed texture is complex, and three subtypes of inhomogeneous Cr-spinel are recognized: Type B1 Cr-spinel showing complete separation, crystallographically oriented type B2 Cr-spinel, and irregular Al-rich Cr-spinel rimmed type B3 Cr-spinel. The unmixed texture was achieved by an unmixing process at around 600 °C due to the miscibility gap of spinel between Al-rich and Fe3+-rich phases. The unmixed patterns of inhomogeneous Cr-spinel are controlled by the initial c...","publisher":"MDPI AG","publication_name":"Minerals"},"translated_abstract":"Cr-spinel [(Mg, Fe2+)(Cr, Al, Fe3+)2O4)] is a common mineral in the ultramafic core of the Duke Island complex in southeastern Alaska, US. Cr-spinel grains with an unmixed texture have been observed in dunite and wehrlite of the complex. Inhomogeneous Cr-spinel with a ratio of Cr/(Al + Cr + Fe3+) \u0026lt;0.37 is prominent in dunite. The inhomogeneous Cr-spinel consists of two completely different compositions: Al-rich Cr-spinel, and Fe3+-rich Cr-spinel with a wide range of Cr content (from 11.8 wt.% to 28.6 wt.% Cr2O3). The unmixed texture is complex, and three subtypes of inhomogeneous Cr-spinel are recognized: Type B1 Cr-spinel showing complete separation, crystallographically oriented type B2 Cr-spinel, and irregular Al-rich Cr-spinel rimmed type B3 Cr-spinel. The unmixed texture was achieved by an unmixing process at around 600 °C due to the miscibility gap of spinel between Al-rich and Fe3+-rich phases. The unmixed patterns of inhomogeneous Cr-spinel are controlled by the initial c...","internal_url":"https://www.academia.edu/117167429/Fluid_Induced_Inhomogeneous_Cr_spinel_in_Dunite_and_Wehrlite_from_the_Duke_Island_Complex_Southeastern_Alaska","translated_internal_url":"","created_at":"2024-04-06T23:01:19.631-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096396,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096396/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113096396/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fluid_Induced_Inhomogeneous_Cr_spinel_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096396/pdf-libre.pdf?1712471248=\u0026response-content-disposition=attachment%3B+filename%3DFluid_Induced_Inhomogeneous_Cr_spinel_in.pdf\u0026Expires=1733274086\u0026Signature=Qb4fwHfEsVpuUD6AbTtwmg91dOuvLu90wb10haBjXgrfdQchR5jNXM6lESHbZcGv3Tl5se~SabrCTFHy59xIejMffzxTEiyEBm97tZ3Aq1w0nWWCkuFJDaGDWooRK8JunhItmH9I7MySIEz--SmiIG3KsaR~l7C~5yH8yjyY-pN6mYmSkpWMRZT~xLCXHMbAxQ5DOy4RK70D2snxEzzMQ4t2hQ4ZEUofMYl8aBF-Zptyu2SNTPMvOWNgt2Rlp~nbxyZZGu5mzCOOggXMlEbJCN1IIbh4y5CseZaeHM9q5kLpWZrB~eryKYXaCckwO-GguGVePPTbAMuZS8HR2SjH3A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fluid_Induced_Inhomogeneous_Cr_spinel_in_Dunite_and_Wehrlite_from_the_Duke_Island_Complex_Southeastern_Alaska","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096396,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096396/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113096396/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fluid_Induced_Inhomogeneous_Cr_spinel_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096396/pdf-libre.pdf?1712471248=\u0026response-content-disposition=attachment%3B+filename%3DFluid_Induced_Inhomogeneous_Cr_spinel_in.pdf\u0026Expires=1733274087\u0026Signature=Pe69sXHyV-ZUoKAl3rVjHbvnQ5AyjmpAhcFcL3gXdgXqr4X-uFIPsNemlOxSGtcHWi3CxttkVtBn81Buh5Mpfns4oHGf4mi5FYUjR7qwj2O~j5jbw8KN6qQZpGmsa3cGZprIrnosjxCW4x2qwyy6Rg4yWma90SF8xLj4mEXLmGu4HKgfJZTEeiNImfKt7~npBu3YeLL-Xgmwo3DIXFdycS-dW8Rgpj4nFVRNTgCh6x~f94eAC3A5hyEND2pdG-mTaODpAFu8w4AzPjUwZfBDmho6zQVnaNnJCvkruIdDJeQlbF7egGeuwoiGL99z7NvE8AT9RJCIOwQ4D7hj95ivcQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113096397,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096397/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113096397/download_file","bulk_download_file_name":"Fluid_Induced_Inhomogeneous_Cr_spinel_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096397/pdf-libre.pdf?1712471248=\u0026response-content-disposition=attachment%3B+filename%3DFluid_Induced_Inhomogeneous_Cr_spinel_in.pdf\u0026Expires=1733274087\u0026Signature=bfSDZrjeVu5UYb0YTu91crBjTGGpcmfAeIZeroqlybiuqotSoSe1p16i4VeWkRwDE6aAVaqzo4yFjR9uQm8XTbR4iBEkRgr-jlQFJVwgMLMIi1HDoT5sOjvpgmAWI4DvImd8AFQj8PssXLAU5riDUA6KT3M9WvppjVf75~e3u0lwsijsqh342WXRyGGKHEcaWnxa8Cfy-7knyR4gjpqqZhwTQXroSPvC8MxwlAhI~2H7kqh4dHntBevQME1Ti~Gtjc5e2FrGlnMybPpwGkTM9B6exQyaF5TlWvDixbZkeyZKREL~mI9HvLCCpgdDmhVxCpBmhJ9PdOfvGuwWqriP5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":9533,"name":"Minerals","url":"https://www.academia.edu/Documents/in/Minerals"},{"id":281808,"name":"Olivine","url":"https://www.academia.edu/Documents/in/Olivine"},{"id":403641,"name":"Spinel","url":"https://www.academia.edu/Documents/in/Spinel"}],"urls":[{"id":40901797,"url":"https://www.mdpi.com/2075-163X/12/6/717/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167428"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167428/Amphibole_as_a_witness_of_chromitite_formation_and_fluid_metasomatism_in_ophiolites"><img alt="Research paper thumbnail of Amphibole as a witness of chromitite formation and fluid metasomatism in ophiolites" class="work-thumbnail" src="https://attachments.academia-assets.com/113096433/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167428/Amphibole_as_a_witness_of_chromitite_formation_and_fluid_metasomatism_in_ophiolites">Amphibole as a witness of chromitite formation and fluid metasomatism in ophiolites</a></div><div class="wp-workCard_item"><span>American Mineralogist</span><span>, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Here we present new occurrences of amphibole in a suite of chromitites, dunites, and harzburgites...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Here we present new occurrences of amphibole in a suite of chromitites, dunites, and harzburgites from the mantle sequence of the Lycian ophiolite in the Tauride Belt, southwest Turkey. The amphibole occurs both as interstitial grains among the major constituent minerals and as inclusions in chromite grains. The interstitial amphibole shows generally decreasing trends in Na2O and Al2O3 contents from the chromitites (0.14–1.54 wt% and 0.04–6.67 wt%, respectively) and the dunites (0.09–2.37 wt%; 0.12–11.9 wt%) to the host harzburgites (&lt;0.61 wt%; 0.02–5.41 wt%). Amphibole inclusions in chromite of the amphibole-bearing harzburgites are poorer in Al2O3 (1.12–8.86 wt%), CaO (8.47–13.2 wt%), and Na2O (b.d.l.–1.38 wt%) than their counterparts in the amphibole-bearing chromitites (Al2O3 = 6.13–10.0 wt%; CaO = 12.1–12.9 wt%; Na2O = 1.11–1.91 wt%). Estimated crystallization temperatures for the interstitial amphibole grains and amphibole inclusions range from 706 to 974 °C, with the highe...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c53e33a9591aa8250ec8822aa7dd477a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096433,"asset_id":117167428,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096433/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167428"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167428"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167428; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167428]").text(description); $(".js-view-count[data-work-id=117167428]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167428; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167428']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167428, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c53e33a9591aa8250ec8822aa7dd477a" } } $('.js-work-strip[data-work-id=117167428]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167428,"title":"Amphibole as a witness of chromitite formation and fluid metasomatism in ophiolites","translated_title":"","metadata":{"abstract":"Here we present new occurrences of amphibole in a suite of chromitites, dunites, and harzburgites from the mantle sequence of the Lycian ophiolite in the Tauride Belt, southwest Turkey. The amphibole occurs both as interstitial grains among the major constituent minerals and as inclusions in chromite grains. The interstitial amphibole shows generally decreasing trends in Na2O and Al2O3 contents from the chromitites (0.14–1.54 wt% and 0.04–6.67 wt%, respectively) and the dunites (0.09–2.37 wt%; 0.12–11.9 wt%) to the host harzburgites (\u0026lt;0.61 wt%; 0.02–5.41 wt%). Amphibole inclusions in chromite of the amphibole-bearing harzburgites are poorer in Al2O3 (1.12–8.86 wt%), CaO (8.47–13.2 wt%), and Na2O (b.d.l.–1.38 wt%) than their counterparts in the amphibole-bearing chromitites (Al2O3 = 6.13–10.0 wt%; CaO = 12.1–12.9 wt%; Na2O = 1.11–1.91 wt%). Estimated crystallization temperatures for the interstitial amphibole grains and amphibole inclusions range from 706 to 974 °C, with the highe...","publisher":"Mineralogical Society of America","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"American Mineralogist"},"translated_abstract":"Here we present new occurrences of amphibole in a suite of chromitites, dunites, and harzburgites from the mantle sequence of the Lycian ophiolite in the Tauride Belt, southwest Turkey. The amphibole occurs both as interstitial grains among the major constituent minerals and as inclusions in chromite grains. The interstitial amphibole shows generally decreasing trends in Na2O and Al2O3 contents from the chromitites (0.14–1.54 wt% and 0.04–6.67 wt%, respectively) and the dunites (0.09–2.37 wt%; 0.12–11.9 wt%) to the host harzburgites (\u0026lt;0.61 wt%; 0.02–5.41 wt%). Amphibole inclusions in chromite of the amphibole-bearing harzburgites are poorer in Al2O3 (1.12–8.86 wt%), CaO (8.47–13.2 wt%), and Na2O (b.d.l.–1.38 wt%) than their counterparts in the amphibole-bearing chromitites (Al2O3 = 6.13–10.0 wt%; CaO = 12.1–12.9 wt%; Na2O = 1.11–1.91 wt%). Estimated crystallization temperatures for the interstitial amphibole grains and amphibole inclusions range from 706 to 974 °C, with the highe...","internal_url":"https://www.academia.edu/117167428/Amphibole_as_a_witness_of_chromitite_formation_and_fluid_metasomatism_in_ophiolites","translated_internal_url":"","created_at":"2024-04-06T23:01:19.407-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096433,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096433/thumbnails/1.jpg","file_name":"7593XiaoPreprint.pdf","download_url":"https://www.academia.edu/attachments/113096433/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Amphibole_as_a_witness_of_chromitite_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096433/7593XiaoPreprint-libre.pdf?1712471554=\u0026response-content-disposition=attachment%3B+filename%3DAmphibole_as_a_witness_of_chromitite_for.pdf\u0026Expires=1733274087\u0026Signature=cJeBTJvzAqlIpVfpq4fjm3xvmaV69iP0bz60pUP2LeT565H0pktZU9aqIJKyqn-TKs3P170TV20VcwPUKVp-KocNNLfSHXmpwOH1THCStppdz9tZg-JCqpINOJ9yYxQmJBVOeur~ZFpddnZvagw5k9QshhDJSJ1xXtBpLanThEzrvSAXwpillvkXARK6R1FXc9c0wywjap-pqNgbpJH6IaUis~X3y8fK-XlZQrLDP7k47-YDj9qwdKgE5eAiGF3hIputH3utpse3gNtzfgRg6P8CzSgiIDvpGHBmlSyJpA9j1H1-UKikRrjrh~FPyZFu6T3qhJwNosnjukp~SAslyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Amphibole_as_a_witness_of_chromitite_formation_and_fluid_metasomatism_in_ophiolites","translated_slug":"","page_count":58,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096433,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096433/thumbnails/1.jpg","file_name":"7593XiaoPreprint.pdf","download_url":"https://www.academia.edu/attachments/113096433/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Amphibole_as_a_witness_of_chromitite_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096433/7593XiaoPreprint-libre.pdf?1712471554=\u0026response-content-disposition=attachment%3B+filename%3DAmphibole_as_a_witness_of_chromitite_for.pdf\u0026Expires=1733274087\u0026Signature=cJeBTJvzAqlIpVfpq4fjm3xvmaV69iP0bz60pUP2LeT565H0pktZU9aqIJKyqn-TKs3P170TV20VcwPUKVp-KocNNLfSHXmpwOH1THCStppdz9tZg-JCqpINOJ9yYxQmJBVOeur~ZFpddnZvagw5k9QshhDJSJ1xXtBpLanThEzrvSAXwpillvkXARK6R1FXc9c0wywjap-pqNgbpJH6IaUis~X3y8fK-XlZQrLDP7k47-YDj9qwdKgE5eAiGF3hIputH3utpse3gNtzfgRg6P8CzSgiIDvpGHBmlSyJpA9j1H1-UKikRrjrh~FPyZFu6T3qhJwNosnjukp~SAslyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":54669,"name":"Metasomatism","url":"https://www.academia.edu/Documents/in/Metasomatism"},{"id":157242,"name":"chromitite and PGE","url":"https://www.academia.edu/Documents/in/chromitite_and_PGE"},{"id":330036,"name":"Ophiolite","url":"https://www.academia.edu/Documents/in/Ophiolite"},{"id":895633,"name":"Chromite","url":"https://www.academia.edu/Documents/in/Chromite"},{"id":1278741,"name":"Amphibole","url":"https://www.academia.edu/Documents/in/Amphibole"}],"urls":[{"id":40901796,"url":"https://pubs.geoscienceworld.org/msa/ammin/article-pdf/107/2/294/5515374/am-2021-7593.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167427"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167427/Addition_of_H2O_at_the_Baishiquan_and_Tianyu_magmatic_Ni_Cu_sulfide_deposits_southern_Central_Asian_Orogenic_Belt_China_evidence_from_isotopic_geochemistry_of_olivine_and_zircon"><img alt="Research paper thumbnail of Addition of H2O at the Baishiquan and Tianyu magmatic Ni-Cu sulfide deposits, southern Central Asian Orogenic Belt, China: evidence from isotopic geochemistry of olivine and zircon" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167427/Addition_of_H2O_at_the_Baishiquan_and_Tianyu_magmatic_Ni_Cu_sulfide_deposits_southern_Central_Asian_Orogenic_Belt_China_evidence_from_isotopic_geochemistry_of_olivine_and_zircon">Addition of H2O at the Baishiquan and Tianyu magmatic Ni-Cu sulfide deposits, southern Central Asian Orogenic Belt, China: evidence from isotopic geochemistry of olivine and zircon</a></div><div class="wp-workCard_item"><span>Mineralium Deposita</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Magmatic Ni-Cu sulfide deposits in orogenic belts have distinct petrological and geochemical feat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Magmatic Ni-Cu sulfide deposits in orogenic belts have distinct petrological and geochemical features compared with world-class intraplate magmatic deposits. One such feature is the presence of abundant primary hydrous minerals such as phlogopite and amphibole, indicating a H 2 O-rich parental magma. However, the origin and nature of the fluids have not been established. In the southern Central Asian Orogenic Belt, the Permian Baishiquan and Tianyu mafic–ultramafic intrusions host magmatic Ni-Cu sulfide deposits. Both intrusions are composed of lherzolite, olivine websterite, gabbronorite, gabbro, and diorite. The main ore-host rocks are lherzolite and websterite, with disseminated, net-textured, and massive ores comprising the dominant primary ore types. Low zircon ε Hf (− 6.9 to 7.9 ‰) and varying δ 18 O values (5.2 to 6.6 ‰), as well as both arc-type and MOR-type zircon Nb/Yb (0.0013–0.011) and U/Yb (0.33–10.22), identify an altered lower oceanic crust component in the mantle source. A combination of altered lower oceanic crust and upper crust can account for the zircon Hf–O isotopic characteristics. A mixing model further reveals that the Baishiquan and Tianyu magmatic sulfide deposits originated from a depleted mantle source that experienced two stages of subduction metasomatism with a 30% addition of altered oceanic crust in the first stage and 20% in the second. In the second stage, &gt; 10% oceanic sediment with high δ 18 O must also have been added to result in olivine δ 18 O values higher than those in mantle. This staged evolution is reflected in both the olivine and zircon signatures with olivine from disseminated and net-textured ores at the Tianyu deposit having high δ 18 O (4.6 to 6.3 ‰) with a similar range to zircon and high δ 7 Li isotopic compositions (12.03 to 19.46 ‰). Contamination in the source by oceanic sediment with high δ 18 O values can account for the olivine δ 18 O values (4.8 to 5.7 ‰ at Baishiquan) being higher than those in the mantle, while the addition of brine (5% at the Baishiquan deposit) can explain the olivine δ 7 Li values (20.96 to 31.01 ‰). The results suggest that H 2 O content, Li content, and δ 7 Li and δ 18 O isotopic signatures in olivine and zircon are good indicators of mantle metasomatism and olivine fluid processes in magmatic Ni-Cu sulfide deposits.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167427"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167427"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167427; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167427]").text(description); $(".js-view-count[data-work-id=117167427]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167427; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167427']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167427, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117167427]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167427,"title":"Addition of H2O at the Baishiquan and Tianyu magmatic Ni-Cu sulfide deposits, southern Central Asian Orogenic Belt, China: evidence from isotopic geochemistry of olivine and zircon","translated_title":"","metadata":{"abstract":"Magmatic Ni-Cu sulfide deposits in orogenic belts have distinct petrological and geochemical features compared with world-class intraplate magmatic deposits. One such feature is the presence of abundant primary hydrous minerals such as phlogopite and amphibole, indicating a H 2 O-rich parental magma. However, the origin and nature of the fluids have not been established. In the southern Central Asian Orogenic Belt, the Permian Baishiquan and Tianyu mafic–ultramafic intrusions host magmatic Ni-Cu sulfide deposits. Both intrusions are composed of lherzolite, olivine websterite, gabbronorite, gabbro, and diorite. The main ore-host rocks are lherzolite and websterite, with disseminated, net-textured, and massive ores comprising the dominant primary ore types. Low zircon ε Hf (− 6.9 to 7.9 ‰) and varying δ 18 O values (5.2 to 6.6 ‰), as well as both arc-type and MOR-type zircon Nb/Yb (0.0013–0.011) and U/Yb (0.33–10.22), identify an altered lower oceanic crust component in the mantle source. A combination of altered lower oceanic crust and upper crust can account for the zircon Hf–O isotopic characteristics. A mixing model further reveals that the Baishiquan and Tianyu magmatic sulfide deposits originated from a depleted mantle source that experienced two stages of subduction metasomatism with a 30% addition of altered oceanic crust in the first stage and 20% in the second. In the second stage, \u0026gt; 10% oceanic sediment with high δ 18 O must also have been added to result in olivine δ 18 O values higher than those in mantle. This staged evolution is reflected in both the olivine and zircon signatures with olivine from disseminated and net-textured ores at the Tianyu deposit having high δ 18 O (4.6 to 6.3 ‰) with a similar range to zircon and high δ 7 Li isotopic compositions (12.03 to 19.46 ‰). Contamination in the source by oceanic sediment with high δ 18 O values can account for the olivine δ 18 O values (4.8 to 5.7 ‰ at Baishiquan) being higher than those in the mantle, while the addition of brine (5% at the Baishiquan deposit) can explain the olivine δ 7 Li values (20.96 to 31.01 ‰). The results suggest that H 2 O content, Li content, and δ 7 Li and δ 18 O isotopic signatures in olivine and zircon are good indicators of mantle metasomatism and olivine fluid processes in magmatic Ni-Cu sulfide deposits.","publisher":"Springer Science and Business Media LLC","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Mineralium Deposita"},"translated_abstract":"Magmatic Ni-Cu sulfide deposits in orogenic belts have distinct petrological and geochemical features compared with world-class intraplate magmatic deposits. One such feature is the presence of abundant primary hydrous minerals such as phlogopite and amphibole, indicating a H 2 O-rich parental magma. However, the origin and nature of the fluids have not been established. In the southern Central Asian Orogenic Belt, the Permian Baishiquan and Tianyu mafic–ultramafic intrusions host magmatic Ni-Cu sulfide deposits. Both intrusions are composed of lherzolite, olivine websterite, gabbronorite, gabbro, and diorite. The main ore-host rocks are lherzolite and websterite, with disseminated, net-textured, and massive ores comprising the dominant primary ore types. Low zircon ε Hf (− 6.9 to 7.9 ‰) and varying δ 18 O values (5.2 to 6.6 ‰), as well as both arc-type and MOR-type zircon Nb/Yb (0.0013–0.011) and U/Yb (0.33–10.22), identify an altered lower oceanic crust component in the mantle source. A combination of altered lower oceanic crust and upper crust can account for the zircon Hf–O isotopic characteristics. A mixing model further reveals that the Baishiquan and Tianyu magmatic sulfide deposits originated from a depleted mantle source that experienced two stages of subduction metasomatism with a 30% addition of altered oceanic crust in the first stage and 20% in the second. In the second stage, \u0026gt; 10% oceanic sediment with high δ 18 O must also have been added to result in olivine δ 18 O values higher than those in mantle. This staged evolution is reflected in both the olivine and zircon signatures with olivine from disseminated and net-textured ores at the Tianyu deposit having high δ 18 O (4.6 to 6.3 ‰) with a similar range to zircon and high δ 7 Li isotopic compositions (12.03 to 19.46 ‰). Contamination in the source by oceanic sediment with high δ 18 O values can account for the olivine δ 18 O values (4.8 to 5.7 ‰ at Baishiquan) being higher than those in the mantle, while the addition of brine (5% at the Baishiquan deposit) can explain the olivine δ 7 Li values (20.96 to 31.01 ‰). The results suggest that H 2 O content, Li content, and δ 7 Li and δ 18 O isotopic signatures in olivine and zircon are good indicators of mantle metasomatism and olivine fluid processes in magmatic Ni-Cu sulfide deposits.","internal_url":"https://www.academia.edu/117167427/Addition_of_H2O_at_the_Baishiquan_and_Tianyu_magmatic_Ni_Cu_sulfide_deposits_southern_Central_Asian_Orogenic_Belt_China_evidence_from_isotopic_geochemistry_of_olivine_and_zircon","translated_internal_url":"","created_at":"2024-04-06T23:01:19.205-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Addition_of_H2O_at_the_Baishiquan_and_Tianyu_magmatic_Ni_Cu_sulfide_deposits_southern_Central_Asian_Orogenic_Belt_China_evidence_from_isotopic_geochemistry_of_olivine_and_zircon","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":206457,"name":"Zircon","url":"https://www.academia.edu/Documents/in/Zircon"},{"id":281808,"name":"Olivine","url":"https://www.academia.edu/Documents/in/Olivine"},{"id":3085104,"name":"Oceanic crust","url":"https://www.academia.edu/Documents/in/Oceanic_crust"}],"urls":[{"id":40901795,"url":"https://link.springer.com/content/pdf/10.1007/s00126-021-01063-2.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167426"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167426/Trace_elements_in_olivine_Proxies_for_petrogenesis_mineralization_and_discrimination_of_mafic_ultramafic_rocks"><img alt="Research paper thumbnail of Trace elements in olivine: Proxies for petrogenesis, mineralization and discrimination of mafic-ultramafic rocks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167426/Trace_elements_in_olivine_Proxies_for_petrogenesis_mineralization_and_discrimination_of_mafic_ultramafic_rocks">Trace elements in olivine: Proxies for petrogenesis, mineralization and discrimination of mafic-ultramafic rocks</a></div><div class="wp-workCard_item"><span>Lithos</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Abstract Olivine is a ubiquitous mineral in mafic-ultramafic rocks and has been widely used as a ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Abstract Olivine is a ubiquitous mineral in mafic-ultramafic rocks and has been widely used as a mineral marker in various geological processes. However, its development of trace elements is limited. Here we present newly-obtained trace element data 7Li, 27Al, 29Si, 31P, 43Ca, 45Sc, 49Ti, 51V, 53Cr, 55Mn, 59Co, 60Ni, and 66Zn of olivine in typical mantle xenoliths, mantle peridotites in ophiolites, and plutonic rocks from layered and Alaskan-type intrusions to develop trace element proxies for the petrogenesis, mineralization and discrimination of various mafic-ultramafic rocks. Residual olivine grains in mantle xenoliths and ophiolitic peridotites, which represent residues of mantle melting, have higher Ni/Co (&gt;20) and Ni/Mn (&gt;2) ratios than magmatic olivine (Ni/Co 2 ppm, V/Sc &gt; 0.5) from ophiolitic peridotites (V</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167426"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167426"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167426; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167426]").text(description); $(".js-view-count[data-work-id=117167426]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167426; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167426']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167426, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117167426]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167426,"title":"Trace elements in olivine: Proxies for petrogenesis, mineralization and discrimination of mafic-ultramafic rocks","translated_title":"","metadata":{"abstract":"Abstract Olivine is a ubiquitous mineral in mafic-ultramafic rocks and has been widely used as a mineral marker in various geological processes. However, its development of trace elements is limited. Here we present newly-obtained trace element data 7Li, 27Al, 29Si, 31P, 43Ca, 45Sc, 49Ti, 51V, 53Cr, 55Mn, 59Co, 60Ni, and 66Zn of olivine in typical mantle xenoliths, mantle peridotites in ophiolites, and plutonic rocks from layered and Alaskan-type intrusions to develop trace element proxies for the petrogenesis, mineralization and discrimination of various mafic-ultramafic rocks. Residual olivine grains in mantle xenoliths and ophiolitic peridotites, which represent residues of mantle melting, have higher Ni/Co (\u0026gt;20) and Ni/Mn (\u0026gt;2) ratios than magmatic olivine (Ni/Co 2 ppm, V/Sc \u0026gt; 0.5) from ophiolitic peridotites (V","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Lithos"},"translated_abstract":"Abstract Olivine is a ubiquitous mineral in mafic-ultramafic rocks and has been widely used as a mineral marker in various geological processes. However, its development of trace elements is limited. Here we present newly-obtained trace element data 7Li, 27Al, 29Si, 31P, 43Ca, 45Sc, 49Ti, 51V, 53Cr, 55Mn, 59Co, 60Ni, and 66Zn of olivine in typical mantle xenoliths, mantle peridotites in ophiolites, and plutonic rocks from layered and Alaskan-type intrusions to develop trace element proxies for the petrogenesis, mineralization and discrimination of various mafic-ultramafic rocks. Residual olivine grains in mantle xenoliths and ophiolitic peridotites, which represent residues of mantle melting, have higher Ni/Co (\u0026gt;20) and Ni/Mn (\u0026gt;2) ratios than magmatic olivine (Ni/Co 2 ppm, V/Sc \u0026gt; 0.5) from ophiolitic peridotites (V","internal_url":"https://www.academia.edu/117167426/Trace_elements_in_olivine_Proxies_for_petrogenesis_mineralization_and_discrimination_of_mafic_ultramafic_rocks","translated_internal_url":"","created_at":"2024-04-06T23:01:19.013-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Trace_elements_in_olivine_Proxies_for_petrogenesis_mineralization_and_discrimination_of_mafic_ultramafic_rocks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":16937,"name":"Petrology and Geochemistry","url":"https://www.academia.edu/Documents/in/Petrology_and_Geochemistry"},{"id":205582,"name":"Xenolith","url":"https://www.academia.edu/Documents/in/Xenolith"},{"id":224577,"name":"Trace Elements","url":"https://www.academia.edu/Documents/in/Trace_Elements"},{"id":281808,"name":"Olivine","url":"https://www.academia.edu/Documents/in/Olivine"},{"id":281810,"name":"Mantle xenolith","url":"https://www.academia.edu/Documents/in/Mantle_xenolith"},{"id":319882,"name":"Petrogenesis","url":"https://www.academia.edu/Documents/in/Petrogenesis"},{"id":330036,"name":"Ophiolite","url":"https://www.academia.edu/Documents/in/Ophiolite"},{"id":974134,"name":"Layered Intrusion","url":"https://www.academia.edu/Documents/in/Layered_Intrusion"}],"urls":[{"id":40901794,"url":"https://api.elsevier.com/content/article/PII:S0024493721001213?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167425"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167425/Crustal_Derivation_of_theca_475_Ma_Eppawala_Carbonatites_in_Sri_Lanka"><img alt="Research paper thumbnail of Crustal Derivation of theca. 475 Ma Eppawala Carbonatites in Sri Lanka" class="work-thumbnail" src="https://attachments.academia-assets.com/113096430/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167425/Crustal_Derivation_of_theca_475_Ma_Eppawala_Carbonatites_in_Sri_Lanka">Crustal Derivation of theca. 475 Ma Eppawala Carbonatites in Sri Lanka</a></div><div class="wp-workCard_item"><span>Journal of Petrology</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Although a mantle origin of carbonatites has long been advocated, a few carbonatite bodies with c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Although a mantle origin of carbonatites has long been advocated, a few carbonatite bodies with crustal fingerprints have been identified. The Eppawala carbonatites in Sri Lanka are more similar to orogenic carbonatites than those formed in stable cratons and within plate rifts. They occur within the Pan-African orogenic belt and have a formation age of ca. 475 Ma newly obtained in this study with no contemporary mantle-related magmatism. These carbonatites have higher (87Sr/86Sr)i ratios (0·70479–0·70524) and more enriched Nd and Hf isotopic compositions than carbonatites reported in other parts of the world. Model ages (1·3–2·0 Ga) of both Nd and Hf isotopes [apatite ɛNd(t) = −9·2 to −4·7; rutile εHf(t) = −22·0 to −8·02] are in the age range of metamorphic basement in Sri Lanka, and the carbon and oxygen isotopic compositions (δ13CPDB = −2·36 to −1·71; δ18OSMOW = 13·91–15·13) lie between those of mantle-derived carbonatites and marble. These crustal signatures are compatible with ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="29d776598ea9abd58eac4497998df1df" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096430,"asset_id":117167425,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096430/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167425"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167425"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167425; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167425]").text(description); $(".js-view-count[data-work-id=117167425]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167425; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167425']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167425, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "29d776598ea9abd58eac4497998df1df" } } $('.js-work-strip[data-work-id=117167425]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167425,"title":"Crustal Derivation of theca. 475 Ma Eppawala Carbonatites in Sri Lanka","translated_title":"","metadata":{"abstract":"Although a mantle origin of carbonatites has long been advocated, a few carbonatite bodies with crustal fingerprints have been identified. The Eppawala carbonatites in Sri Lanka are more similar to orogenic carbonatites than those formed in stable cratons and within plate rifts. They occur within the Pan-African orogenic belt and have a formation age of ca. 475 Ma newly obtained in this study with no contemporary mantle-related magmatism. These carbonatites have higher (87Sr/86Sr)i ratios (0·70479–0·70524) and more enriched Nd and Hf isotopic compositions than carbonatites reported in other parts of the world. Model ages (1·3–2·0 Ga) of both Nd and Hf isotopes [apatite ɛNd(t) = −9·2 to −4·7; rutile εHf(t) = −22·0 to −8·02] are in the age range of metamorphic basement in Sri Lanka, and the carbon and oxygen isotopic compositions (δ13CPDB = −2·36 to −1·71; δ18OSMOW = 13·91–15·13) lie between those of mantle-derived carbonatites and marble. These crustal signatures are compatible with ...","publisher":"Oxford University Press (OUP)","ai_title_tag":"Crustal Signatures of 475 Ma Eppawala Carbonatites, Sri Lanka","publication_date":{"day":null,"month":null,"year":2021,"errors":{}},"publication_name":"Journal of Petrology"},"translated_abstract":"Although a mantle origin of carbonatites has long been advocated, a few carbonatite bodies with crustal fingerprints have been identified. The Eppawala carbonatites in Sri Lanka are more similar to orogenic carbonatites than those formed in stable cratons and within plate rifts. They occur within the Pan-African orogenic belt and have a formation age of ca. 475 Ma newly obtained in this study with no contemporary mantle-related magmatism. These carbonatites have higher (87Sr/86Sr)i ratios (0·70479–0·70524) and more enriched Nd and Hf isotopic compositions than carbonatites reported in other parts of the world. Model ages (1·3–2·0 Ga) of both Nd and Hf isotopes [apatite ɛNd(t) = −9·2 to −4·7; rutile εHf(t) = −22·0 to −8·02] are in the age range of metamorphic basement in Sri Lanka, and the carbon and oxygen isotopic compositions (δ13CPDB = −2·36 to −1·71; δ18OSMOW = 13·91–15·13) lie between those of mantle-derived carbonatites and marble. These crustal signatures are compatible with ...","internal_url":"https://www.academia.edu/117167425/Crustal_Derivation_of_theca_475_Ma_Eppawala_Carbonatites_in_Sri_Lanka","translated_internal_url":"","created_at":"2024-04-06T23:01:18.809-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096430,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096430/thumbnails/1.jpg","file_name":"egab075.pdf","download_url":"https://www.academia.edu/attachments/113096430/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Crustal_Derivation_of_theca_475_Ma_Eppaw.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096430/egab075-libre.pdf?1712471270=\u0026response-content-disposition=attachment%3B+filename%3DCrustal_Derivation_of_theca_475_Ma_Eppaw.pdf\u0026Expires=1733274087\u0026Signature=RMPGT1-scmAE3adY1SD9BobP6yTm33viiBwYBuA9aWNRSmXyW0LGI2Xd0sm9wvIg2bev1PRnryXXMdL7yNUz859qInSfIbs94s0IxazZbKrkwEhjdhrTIoFs1Wpi04UX1VMxURbKQX4KTX05aKrarHCqKSx5DnZXZnAl89~6ptXe5XYSDiAP1rGVDwRVuAOB9CdjUtTnqinY9dWBOQSHrKCKZn83RsfB6g63QkDz-Ot05iuThzaMjo08tuFV~~jisoKA83L1niMo8GUK4bBZkWj6oVCTwDRLYkySeYjgcn1DmjrqFKyDh67SR~IMywzgpzpRk7S1I2nX3IobHAVenw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Crustal_Derivation_of_theca_475_Ma_Eppawala_Carbonatites_in_Sri_Lanka","translated_slug":"","page_count":58,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096430,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096430/thumbnails/1.jpg","file_name":"egab075.pdf","download_url":"https://www.academia.edu/attachments/113096430/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Crustal_Derivation_of_theca_475_Ma_Eppaw.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096430/egab075-libre.pdf?1712471270=\u0026response-content-disposition=attachment%3B+filename%3DCrustal_Derivation_of_theca_475_Ma_Eppaw.pdf\u0026Expires=1733274087\u0026Signature=RMPGT1-scmAE3adY1SD9BobP6yTm33viiBwYBuA9aWNRSmXyW0LGI2Xd0sm9wvIg2bev1PRnryXXMdL7yNUz859qInSfIbs94s0IxazZbKrkwEhjdhrTIoFs1Wpi04UX1VMxURbKQX4KTX05aKrarHCqKSx5DnZXZnAl89~6ptXe5XYSDiAP1rGVDwRVuAOB9CdjUtTnqinY9dWBOQSHrKCKZn83RsfB6g63QkDz-Ot05iuThzaMjo08tuFV~~jisoKA83L1niMo8GUK4bBZkWj6oVCTwDRLYkySeYjgcn1DmjrqFKyDh67SR~IMywzgpzpRk7S1I2nX3IobHAVenw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":2404,"name":"Petrology","url":"https://www.academia.edu/Documents/in/Petrology"},{"id":166969,"name":"Gneiss","url":"https://www.academia.edu/Documents/in/Gneiss"},{"id":172299,"name":"Metamorphism","url":"https://www.academia.edu/Documents/in/Metamorphism"},{"id":191873,"name":"Magmatism","url":"https://www.academia.edu/Documents/in/Magmatism"},{"id":1464622,"name":"Carbonatite","url":"https://www.academia.edu/Documents/in/Carbonatite"}],"urls":[{"id":40901793,"url":"http://academic.oup.com/petrology/advance-article-pdf/doi/10.1093/petrology/egab075/40393429/egab075.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167423"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167423/High_Mg_Olivine_Clinopyroxene_and_Orthopyroxene_Reference_Materials_for_In_Situ_Oxygen_Isotope_Determination"><img alt="Research paper thumbnail of High‐Mg# Olivine, Clinopyroxene and Orthopyroxene Reference Materials for In Situ Oxygen Isotope Determination" class="work-thumbnail" src="https://attachments.academia-assets.com/113096432/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167423/High_Mg_Olivine_Clinopyroxene_and_Orthopyroxene_Reference_Materials_for_In_Situ_Oxygen_Isotope_Determination">High‐Mg# Olivine, Clinopyroxene and Orthopyroxene Reference Materials for In Situ Oxygen Isotope Determination</a></div><div class="wp-workCard_item"><span>Geostandards and Geoanalytical Research</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Secondary ion mass spectrometry (SIMS) requires matrix‐matched reference materials to calibrate m...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Secondary ion mass spectrometry (SIMS) requires matrix‐matched reference materials to calibrate mass fractionation during oxygen isotope measurement. Over one thousand SIMS oxygen isotope measurements were conducted on eleven natural mineral samples (five olivines, three clinopyroxenes and three orthopyroxenes) in nineteen sessions using CAMECA IMS 1280 SIMS instruments to evaluate their potential as SIMS reference materials. The obtained results reveal oxygen isotope homogeneity of these samples. No matrix effect was measured for the same variety of mineral samples with limited Mg‐number variations (89.6–94.2, 90–91.9 and 90.1–92.1 for olivine, clinopyroxene and orthopyroxene, respectively). The recommended oxygen isotope compositions of these samples were determined using laser fluorination. These samples are therefore suitable to be used as reference materials for in situ oxygen isotope microanalysis.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9cbc0daf461333feb31d62e15c943439" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096432,"asset_id":117167423,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096432/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167423"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167423"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167423; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167423]").text(description); $(".js-view-count[data-work-id=117167423]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167423; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167423']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167423, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9cbc0daf461333feb31d62e15c943439" } } $('.js-work-strip[data-work-id=117167423]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167423,"title":"High‐Mg# Olivine, Clinopyroxene and Orthopyroxene Reference Materials for In Situ Oxygen Isotope Determination","translated_title":"","metadata":{"abstract":"Secondary ion mass spectrometry (SIMS) requires matrix‐matched reference materials to calibrate mass fractionation during oxygen isotope measurement. Over one thousand SIMS oxygen isotope measurements were conducted on eleven natural mineral samples (five olivines, three clinopyroxenes and three orthopyroxenes) in nineteen sessions using CAMECA IMS 1280 SIMS instruments to evaluate their potential as SIMS reference materials. The obtained results reveal oxygen isotope homogeneity of these samples. No matrix effect was measured for the same variety of mineral samples with limited Mg‐number variations (89.6–94.2, 90–91.9 and 90.1–92.1 for olivine, clinopyroxene and orthopyroxene, respectively). The recommended oxygen isotope compositions of these samples were determined using laser fluorination. These samples are therefore suitable to be used as reference materials for in situ oxygen isotope microanalysis.","publisher":"Wiley","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Geostandards and Geoanalytical Research"},"translated_abstract":"Secondary ion mass spectrometry (SIMS) requires matrix‐matched reference materials to calibrate mass fractionation during oxygen isotope measurement. Over one thousand SIMS oxygen isotope measurements were conducted on eleven natural mineral samples (five olivines, three clinopyroxenes and three orthopyroxenes) in nineteen sessions using CAMECA IMS 1280 SIMS instruments to evaluate their potential as SIMS reference materials. The obtained results reveal oxygen isotope homogeneity of these samples. No matrix effect was measured for the same variety of mineral samples with limited Mg‐number variations (89.6–94.2, 90–91.9 and 90.1–92.1 for olivine, clinopyroxene and orthopyroxene, respectively). The recommended oxygen isotope compositions of these samples were determined using laser fluorination. These samples are therefore suitable to be used as reference materials for in situ oxygen isotope microanalysis.","internal_url":"https://www.academia.edu/117167423/High_Mg_Olivine_Clinopyroxene_and_Orthopyroxene_Reference_Materials_for_In_Situ_Oxygen_Isotope_Determination","translated_internal_url":"","created_at":"2024-04-06T23:01:18.621-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096432,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096432/thumbnails/1.jpg","file_name":"ggr.1228820240407-1-xks09w.pdf","download_url":"https://www.academia.edu/attachments/113096432/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"High_Mg_Olivine_Clinopyroxene_and_Orthop.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096432/ggr.1228820240407-1-xks09w-libre.pdf?1712471238=\u0026response-content-disposition=attachment%3B+filename%3DHigh_Mg_Olivine_Clinopyroxene_and_Orthop.pdf\u0026Expires=1733274087\u0026Signature=aDo~FzeBRHA9514f0IUmgbJIWsfskpiuKP0z7CqrOupQsCgWhmEL7DxB7qTORILI-L1FfMxCKrlvcQNg63-FH7YoISO3TwGqJKAqSgL8H39EbV7ZuYmLBcBIT7tfCAXjz8SWgiYd5HICJbcYp4-w6PcPuPdvdjzO~61sxyHey-tD9q92yzfBy9hW2n~FPTHpCGLBNCioU5YUpAtyLIE8JmzpCxQntnitj3b9JyZTk1qvabkmJZ7cPB6RDp1RyWxrFtCHsIaCoAR7XGW59rsFQ~4jMAkoA6x416v14AsHBmYGL8TJFjcmPv4dhbuwQXX3UvkB9FCx3kZ3-oYuaOUthQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"High_Mg_Olivine_Clinopyroxene_and_Orthopyroxene_Reference_Materials_for_In_Situ_Oxygen_Isotope_Determination","translated_slug":"","page_count":21,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096432,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096432/thumbnails/1.jpg","file_name":"ggr.1228820240407-1-xks09w.pdf","download_url":"https://www.academia.edu/attachments/113096432/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"High_Mg_Olivine_Clinopyroxene_and_Orthop.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096432/ggr.1228820240407-1-xks09w-libre.pdf?1712471238=\u0026response-content-disposition=attachment%3B+filename%3DHigh_Mg_Olivine_Clinopyroxene_and_Orthop.pdf\u0026Expires=1733274087\u0026Signature=aDo~FzeBRHA9514f0IUmgbJIWsfskpiuKP0z7CqrOupQsCgWhmEL7DxB7qTORILI-L1FfMxCKrlvcQNg63-FH7YoISO3TwGqJKAqSgL8H39EbV7ZuYmLBcBIT7tfCAXjz8SWgiYd5HICJbcYp4-w6PcPuPdvdjzO~61sxyHey-tD9q92yzfBy9hW2n~FPTHpCGLBNCioU5YUpAtyLIE8JmzpCxQntnitj3b9JyZTk1qvabkmJZ7cPB6RDp1RyWxrFtCHsIaCoAR7XGW59rsFQ~4jMAkoA6x416v14AsHBmYGL8TJFjcmPv4dhbuwQXX3UvkB9FCx3kZ3-oYuaOUthQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":139599,"name":"Microanalysis","url":"https://www.academia.edu/Documents/in/Microanalysis"},{"id":281808,"name":"Olivine","url":"https://www.academia.edu/Documents/in/Olivine"},{"id":361750,"name":"Isotope","url":"https://www.academia.edu/Documents/in/Isotope"},{"id":526952,"name":"Fractionation","url":"https://www.academia.edu/Documents/in/Fractionation"}],"urls":[{"id":40901791,"url":"https://onlinelibrary.wiley.com/doi/pdf/10.1111/ggr.12288"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167422"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167422/Light_Mg_isotopes_in_mantle_derived_lavas_caused_by_chromite_crystallization_instead_of_carbonatite_metasomatism"><img alt="Research paper thumbnail of Light Mg isotopes in mantle-derived lavas caused by chromite crystallization, instead of carbonatite metasomatism" class="work-thumbnail" src="https://attachments.academia-assets.com/113096431/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167422/Light_Mg_isotopes_in_mantle_derived_lavas_caused_by_chromite_crystallization_instead_of_carbonatite_metasomatism">Light Mg isotopes in mantle-derived lavas caused by chromite crystallization, instead of carbonatite metasomatism</a></div><div class="wp-workCard_item"><span>Earth and Planetary Science Letters</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5a22fc1f202dbc01f788f882990ff0fc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096431,"asset_id":117167422,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096431/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167422"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167422"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167422; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167422]").text(description); $(".js-view-count[data-work-id=117167422]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167422; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167422']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167422, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5a22fc1f202dbc01f788f882990ff0fc" } } $('.js-work-strip[data-work-id=117167422]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167422,"title":"Light Mg isotopes in mantle-derived lavas caused by chromite crystallization, instead of carbonatite metasomatism","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Carbonatite metasomatism plays an important role in modifying the composition of Earth's mantle, however, its effect on mantle Mg isotopic composition is poorly constrained. Here, we report highprecision mineral Mg isotope data for three suites of mantle peridotite xenoliths that experienced variable degrees of carbonatite metasomatism. The δ 26 Mg values of minerals in these xenoliths are variable and range from −0.32 to −0.11h in olivine, from −0.28 to −0.09h in orthopyroxene, from −0.27 to −0.05h in clinopyroxene, from 0.06 to 0.44h in spinel and from −0.61 to −0.37h in garnet. Calculated bulk-rock δ 26 Mg values of the peridotites vary from −0.27 to −0.10h, falling within and slightly higher than the normal mantle range (−0.25 ± 0.07h). The coexisting minerals are in isotopic equilibrium, with clinopyroxene δ 26 Mg values correlated with the carbonatite metasomatic indices such as MgO and Na 2 O in orthopyroxene. These results suggest that carbonatite metasomatism does not produce light Mg isotopic signature in mantle peridotites as previously suggested, instead it might slightly elevate their δ 26 Mg values. Therefore, carbonatite-metasomatized peridotites in the mantle cannot be the primary source rocks of low-δ 26 Mg mantle-derived magmas. Instead, fractional crystallization and accumulation of chromite during ascent of the basaltic magmas may explain the isotopically light basalts, as supported by the covariations of δ 26 Mg with chemical indices of chromite crystallization (e.g., Cr, V, Fe and Ti). Consequently, chromite crystallization may significantly influence the physiochemical processes on the genesis of basalts, which would require comprehensive evaluation in future studies.","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Earth and Planetary Science Letters","grobid_abstract_attachment_id":113096431},"translated_abstract":null,"internal_url":"https://www.academia.edu/117167422/Light_Mg_isotopes_in_mantle_derived_lavas_caused_by_chromite_crystallization_instead_of_carbonatite_metasomatism","translated_internal_url":"","created_at":"2024-04-06T23:01:18.426-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096431,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096431/thumbnails/1.jpg","file_name":"j.epsl.2019.06.01620240407-1-iqkh0l.pdf","download_url":"https://www.academia.edu/attachments/113096431/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Light_Mg_isotopes_in_mantle_derived_lava.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096431/j.epsl.2019.06.01620240407-1-iqkh0l-libre.pdf?1712471241=\u0026response-content-disposition=attachment%3B+filename%3DLight_Mg_isotopes_in_mantle_derived_lava.pdf\u0026Expires=1733274087\u0026Signature=gFMrvJRm47zjVjA~TTLUrrPOMAcbUQi3pSkK5ZsjPElF65h1ZsOZkjxqO54EcUVW0d0RPCZU2wkV3xb6dWli9YY0BLg9AxCN2EYgzwnmj7esgzzl0cocpwpClGXncyWoipR6gfSTNjJQpCE~Tnxo0F077X8U7I1kKts6Swe2pqn72VzuxRXLam63JsN7LWRj-CH13rSsr58igFfvp~a7s9tLR2qDX7WK8-RcroW9xWQpEcqP-MXpy6hfixW1s6j40D-jBRyx4XMpbVgyam2jYzKj~RLce6YKuBGZlV1naCKE2qrhxjcu5a1FoIMFvaGUbOSVqmeqTDan5HMf~wVZ~A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Light_Mg_isotopes_in_mantle_derived_lavas_caused_by_chromite_crystallization_instead_of_carbonatite_metasomatism","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096431,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096431/thumbnails/1.jpg","file_name":"j.epsl.2019.06.01620240407-1-iqkh0l.pdf","download_url":"https://www.academia.edu/attachments/113096431/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Light_Mg_isotopes_in_mantle_derived_lava.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096431/j.epsl.2019.06.01620240407-1-iqkh0l-libre.pdf?1712471241=\u0026response-content-disposition=attachment%3B+filename%3DLight_Mg_isotopes_in_mantle_derived_lava.pdf\u0026Expires=1733274087\u0026Signature=gFMrvJRm47zjVjA~TTLUrrPOMAcbUQi3pSkK5ZsjPElF65h1ZsOZkjxqO54EcUVW0d0RPCZU2wkV3xb6dWli9YY0BLg9AxCN2EYgzwnmj7esgzzl0cocpwpClGXncyWoipR6gfSTNjJQpCE~Tnxo0F077X8U7I1kKts6Swe2pqn72VzuxRXLam63JsN7LWRj-CH13rSsr58igFfvp~a7s9tLR2qDX7WK8-RcroW9xWQpEcqP-MXpy6hfixW1s6j40D-jBRyx4XMpbVgyam2jYzKj~RLce6YKuBGZlV1naCKE2qrhxjcu5a1FoIMFvaGUbOSVqmeqTDan5HMf~wVZ~A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":54668,"name":"Peridotite","url":"https://www.academia.edu/Documents/in/Peridotite"},{"id":54669,"name":"Metasomatism","url":"https://www.academia.edu/Documents/in/Metasomatism"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":205576,"name":"Basalt","url":"https://www.academia.edu/Documents/in/Basalt"},{"id":205582,"name":"Xenolith","url":"https://www.academia.edu/Documents/in/Xenolith"},{"id":281808,"name":"Olivine","url":"https://www.academia.edu/Documents/in/Olivine"},{"id":895633,"name":"Chromite","url":"https://www.academia.edu/Documents/in/Chromite"},{"id":1464622,"name":"Carbonatite","url":"https://www.academia.edu/Documents/in/Carbonatite"}],"urls":[{"id":40901790,"url":"https://api.elsevier.com/content/article/PII:S0012821X19303498?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167421"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167421/Chromite_induced_magnesium_isotope_fractionation_during_mafic_magma_differentiation"><img alt="Research paper thumbnail of Chromite-induced magnesium isotope fractionation during mafic magma differentiation" class="work-thumbnail" src="https://attachments.academia-assets.com/113096427/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167421/Chromite_induced_magnesium_isotope_fractionation_during_mafic_magma_differentiation">Chromite-induced magnesium isotope fractionation during mafic magma differentiation</a></div><div class="wp-workCard_item"><span>Science Bulletin</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3c7d48dddb79228a6380cb9bc1e15a3a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096427,"asset_id":117167421,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096427/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167421"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167421"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167421; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167421]").text(description); $(".js-view-count[data-work-id=117167421]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167421; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167421']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167421, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3c7d48dddb79228a6380cb9bc1e15a3a" } } $('.js-work-strip[data-work-id=117167421]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167421,"title":"Chromite-induced magnesium isotope fractionation during mafic magma differentiation","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"To better understand the mechanism of Mg isotopic variation in magma systems, here we report high precision Mg isotopic data of 17 bulk rock samples including dunite, clinopyroxenite, hornblendite and gabbro and 10 pairs of dunite-hosted olivine and chromite separates from the well-characterized Alaskan-type Xiadong intrusion in NW China, which formed by continuous and high degree of lithological differentiation from mafic magmas. Chromite separates have highly variable d 26 Mg values from À0.10‰ to 0.40‰, and are consistently heavier than coexisting olivine separates (À0.39‰ to À0.15‰). Both mineral d 26 Mg values and the degrees of inter-mineral fractionation are well correlated with geochemical indicators of magma differentiation, indicating that these inter-sample and inter-mineral Mg isotope fractionations are caused by magma evolution. The d 26 Mg values range from À0.20‰ to À0.02‰ in the dunite, À0.43‰ in the clinopyroxenite, À0.43‰ to À0.28‰ in the hornblendite, 0.18‰ in the chromite-bearing hornblendite, and À0.56‰ to À0.16‰ in the gabbro. The Mg isotopic variations in different types of rocks are closely related to fractional crystallization and accumulation of different proportions of oxides vs. silicates. Chromite crystallization and accumulation is the most important factor in controlling Mg isotope fractionation during the formation of the Xiadong intrusion. Compared to basaltic and granitic magmas, differentiation of the Alaskan-type intrusions occurs at a relatively high oxygen fugacity, which favors chromite crystallization and consequently significant Mg isotope fractionations at both mineral and whole-rock scales. Therefore, Mg isotope systematics can be used to trace the degree of magma differentiation and related-mineralization.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Science Bulletin","grobid_abstract_attachment_id":113096427},"translated_abstract":null,"internal_url":"https://www.academia.edu/117167421/Chromite_induced_magnesium_isotope_fractionation_during_mafic_magma_differentiation","translated_internal_url":"","created_at":"2024-04-06T23:01:18.223-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096427,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096427/thumbnails/1.jpg","file_name":"4e0056368f494558a6d3eb89e5b625ad.pdf","download_url":"https://www.academia.edu/attachments/113096427/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Chromite_induced_magnesium_isotope_fract.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096427/4e0056368f494558a6d3eb89e5b625ad-libre.pdf?1712471228=\u0026response-content-disposition=attachment%3B+filename%3DChromite_induced_magnesium_isotope_fract.pdf\u0026Expires=1733274087\u0026Signature=W0ggoSjtVUgPC8-4G3dlg-46~MzhgbLCZTA0jPNyFJfx0Z5XNL1E8UamtqlPhOwu4kJIEzYhzDqtx-McWVJ3nASFEwQHPAZaZKNzb1~mtpHaIkF7Yqdoo-RQ8bNgT~jzmqdSjDQamClxSwDpLKndthFx9JKI8WhQIbFo1lJnAbex3S2e6yvSfofM2zXec7f5YIHGahzY6BoP43hbHsEoLXxqSPXYzSkgc-6AcAtsRf-KsRIO-N5V1hKOePWvSbvnHMT-azj3LmGPEGfF32EreUgEFGDYYp-GM0U1gx32oiYHTetnAbZnJL0UZCFHl1ZbmIQA3LPVEqgJxk0H3hzpow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Chromite_induced_magnesium_isotope_fractionation_during_mafic_magma_differentiation","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096427,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096427/thumbnails/1.jpg","file_name":"4e0056368f494558a6d3eb89e5b625ad.pdf","download_url":"https://www.academia.edu/attachments/113096427/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Chromite_induced_magnesium_isotope_fract.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096427/4e0056368f494558a6d3eb89e5b625ad-libre.pdf?1712471228=\u0026response-content-disposition=attachment%3B+filename%3DChromite_induced_magnesium_isotope_fract.pdf\u0026Expires=1733274087\u0026Signature=W0ggoSjtVUgPC8-4G3dlg-46~MzhgbLCZTA0jPNyFJfx0Z5XNL1E8UamtqlPhOwu4kJIEzYhzDqtx-McWVJ3nASFEwQHPAZaZKNzb1~mtpHaIkF7Yqdoo-RQ8bNgT~jzmqdSjDQamClxSwDpLKndthFx9JKI8WhQIbFo1lJnAbex3S2e6yvSfofM2zXec7f5YIHGahzY6BoP43hbHsEoLXxqSPXYzSkgc-6AcAtsRf-KsRIO-N5V1hKOePWvSbvnHMT-azj3LmGPEGfF32EreUgEFGDYYp-GM0U1gx32oiYHTetnAbZnJL0UZCFHl1ZbmIQA3LPVEqgJxk0H3hzpow__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":281808,"name":"Olivine","url":"https://www.academia.edu/Documents/in/Olivine"},{"id":521382,"name":"Gabbro","url":"https://www.academia.edu/Documents/in/Gabbro"},{"id":895633,"name":"Chromite","url":"https://www.academia.edu/Documents/in/Chromite"},{"id":974134,"name":"Layered Intrusion","url":"https://www.academia.edu/Documents/in/Layered_Intrusion"}],"urls":[{"id":40901788,"url":"https://api.elsevier.com/content/article/PII:S2095927317305558?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167419"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167419/Sequential_Recovery_of_Heavy_and_Noble_Metals_by_Mussel_Inspired_Polydopamine_Polyethyleneimine_Conjugated_Polyurethane_Composite_Bearing_Dithiocarbamate_Moieties"><img alt="Research paper thumbnail of Sequential Recovery of Heavy and Noble Metals by Mussel-Inspired Polydopamine-Polyethyleneimine Conjugated Polyurethane Composite Bearing Dithiocarbamate Moieties" class="work-thumbnail" src="https://attachments.academia-assets.com/113096395/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167419/Sequential_Recovery_of_Heavy_and_Noble_Metals_by_Mussel_Inspired_Polydopamine_Polyethyleneimine_Conjugated_Polyurethane_Composite_Bearing_Dithiocarbamate_Moieties">Sequential Recovery of Heavy and Noble Metals by Mussel-Inspired Polydopamine-Polyethyleneimine Conjugated Polyurethane Composite Bearing Dithiocarbamate Moieties</a></div><div class="wp-workCard_item"><span>Polymers</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Dithiocarbamate-grafted polyurethane (PU) composites were synthesized by anchoring dithiocarbamat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Dithiocarbamate-grafted polyurethane (PU) composites were synthesized by anchoring dithiocarbamate (DTC) as a chelating agent to the polyethyleneimine-polydopamine (PE-DA)-functionalized graphene-based PU matrix (PE-DA@GB@PU), as a new adsorbent material for the recovery of Cu2+, Pb2+, and Cd2+ from industrial effluents. After leaching with acidic media to recover Cu2+, Pb2+, and Cd2+, dithiocarbamate-grafted PE-DA@GB@PU (DTC-g-PE-DA@GB@PU) was decomposed and PE-DA@GP was regenerated. The latter was used to recover Pd2+, Pt4+, and Au3+ from the copper leaching residue and anode slime. The present DTC-g-PE-DA@GB@PU and PE-DA@GB@PU composites show high adsorption performance, effective separation, and quick adsorption of the target ions. The morphologies of the composites were studied by scanning electron microscopy and their structures were investigated by Fourier transform infrared (FT-IR) spectroscopy and Raman spectroscopy. The effects of pH values, contact time, and initial metal...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3a4333905f4506d13a9fd14b3b430382" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096395,"asset_id":117167419,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096395/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167419"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167419"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167419; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167419]").text(description); $(".js-view-count[data-work-id=117167419]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167419; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167419']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167419, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3a4333905f4506d13a9fd14b3b430382" } } $('.js-work-strip[data-work-id=117167419]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167419,"title":"Sequential Recovery of Heavy and Noble Metals by Mussel-Inspired Polydopamine-Polyethyleneimine Conjugated Polyurethane Composite Bearing Dithiocarbamate Moieties","translated_title":"","metadata":{"abstract":"Dithiocarbamate-grafted polyurethane (PU) composites were synthesized by anchoring dithiocarbamate (DTC) as a chelating agent to the polyethyleneimine-polydopamine (PE-DA)-functionalized graphene-based PU matrix (PE-DA@GB@PU), as a new adsorbent material for the recovery of Cu2+, Pb2+, and Cd2+ from industrial effluents. After leaching with acidic media to recover Cu2+, Pb2+, and Cd2+, dithiocarbamate-grafted PE-DA@GB@PU (DTC-g-PE-DA@GB@PU) was decomposed and PE-DA@GP was regenerated. The latter was used to recover Pd2+, Pt4+, and Au3+ from the copper leaching residue and anode slime. The present DTC-g-PE-DA@GB@PU and PE-DA@GB@PU composites show high adsorption performance, effective separation, and quick adsorption of the target ions. The morphologies of the composites were studied by scanning electron microscopy and their structures were investigated by Fourier transform infrared (FT-IR) spectroscopy and Raman spectroscopy. The effects of pH values, contact time, and initial metal...","publisher":"MDPI AG","ai_title_tag":"Recovery of Heavy and Noble Metals using DTC-grafted PU Composites","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Polymers"},"translated_abstract":"Dithiocarbamate-grafted polyurethane (PU) composites were synthesized by anchoring dithiocarbamate (DTC) as a chelating agent to the polyethyleneimine-polydopamine (PE-DA)-functionalized graphene-based PU matrix (PE-DA@GB@PU), as a new adsorbent material for the recovery of Cu2+, Pb2+, and Cd2+ from industrial effluents. After leaching with acidic media to recover Cu2+, Pb2+, and Cd2+, dithiocarbamate-grafted PE-DA@GB@PU (DTC-g-PE-DA@GB@PU) was decomposed and PE-DA@GP was regenerated. The latter was used to recover Pd2+, Pt4+, and Au3+ from the copper leaching residue and anode slime. The present DTC-g-PE-DA@GB@PU and PE-DA@GB@PU composites show high adsorption performance, effective separation, and quick adsorption of the target ions. The morphologies of the composites were studied by scanning electron microscopy and their structures were investigated by Fourier transform infrared (FT-IR) spectroscopy and Raman spectroscopy. The effects of pH values, contact time, and initial metal...","internal_url":"https://www.academia.edu/117167419/Sequential_Recovery_of_Heavy_and_Noble_Metals_by_Mussel_Inspired_Polydopamine_Polyethyleneimine_Conjugated_Polyurethane_Composite_Bearing_Dithiocarbamate_Moieties","translated_internal_url":"","created_at":"2024-04-06T23:01:17.882-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096395,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096395/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113096395/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sequential_Recovery_of_Heavy_and_Noble_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096395/pdf-libre.pdf?1712471256=\u0026response-content-disposition=attachment%3B+filename%3DSequential_Recovery_of_Heavy_and_Noble_M.pdf\u0026Expires=1733274087\u0026Signature=FIH9~iKQYn4ayMBjgE9x-RY4gFKsadsqiwKEus5WdJTZ5ZeDlJUk7MasdC0RkNqvAvvadSMX5y8vRm~bSB6VUEva8k6JE1oHJDGKCKA-1cDhZLMl7mytQz8hCTGwaQoSPlHhJxs1qNJ11W3jCJUPlWI~WphHQTG7bnRkWnNmUcu4D3oKMoi4hzJI76SRZw5uIriZESid~mRZbIp5640cU9jsHIFaXaQdHfwSCbwwOgONAw3~awY8udCKN3wzyI-Fm87eLvMTRH7Z-K30rLZ6tPdTpZCbwBS9Ll~zoZAFhAgV9vdCDNngXQYUvV5Ez-rMjXv76wfZXung4c5tOBjKPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Sequential_Recovery_of_Heavy_and_Noble_Metals_by_Mussel_Inspired_Polydopamine_Polyethyleneimine_Conjugated_Polyurethane_Composite_Bearing_Dithiocarbamate_Moieties","translated_slug":"","page_count":15,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096395,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096395/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113096395/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sequential_Recovery_of_Heavy_and_Noble_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096395/pdf-libre.pdf?1712471256=\u0026response-content-disposition=attachment%3B+filename%3DSequential_Recovery_of_Heavy_and_Noble_M.pdf\u0026Expires=1733274087\u0026Signature=FIH9~iKQYn4ayMBjgE9x-RY4gFKsadsqiwKEus5WdJTZ5ZeDlJUk7MasdC0RkNqvAvvadSMX5y8vRm~bSB6VUEva8k6JE1oHJDGKCKA-1cDhZLMl7mytQz8hCTGwaQoSPlHhJxs1qNJ11W3jCJUPlWI~WphHQTG7bnRkWnNmUcu4D3oKMoi4hzJI76SRZw5uIriZESid~mRZbIp5640cU9jsHIFaXaQdHfwSCbwwOgONAw3~awY8udCKN3wzyI-Fm87eLvMTRH7Z-K30rLZ6tPdTpZCbwBS9Ll~zoZAFhAgV9vdCDNngXQYUvV5Ez-rMjXv76wfZXung4c5tOBjKPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113096394,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096394/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/113096394/download_file","bulk_download_file_name":"Sequential_Recovery_of_Heavy_and_Noble_M.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096394/pdf-libre.pdf?1712471257=\u0026response-content-disposition=attachment%3B+filename%3DSequential_Recovery_of_Heavy_and_Noble_M.pdf\u0026Expires=1733274087\u0026Signature=SuZaoJUkLxDiyxNcMKZFJCGY2bXj2fvqmMw5Q-uc5ASfFSsiQ~qnKLRZNr-DEsjp6Kik0VCNZ49weaAPDoHxClOpibx0NH~SpJSNHPMzk7Cq46lDG6u1QmT12ZU5rcgJagBR8ndb2RKiYE2CXVzuJD99dat7Imhbt1I2Ba7r6Nm3Lph8s9HL6NwN~qWFcFNNvVg8YQTQ-8dyPPoY5Yhuha0z-n25kEtGEd1KAaOozOV6oBf0LgQYpLA66O8vmuLEzyO5It1Yeh5XOTAnOojGX0kTYwWNRr9ez-iI~RK8BJ1u9KtAFG10gICFUtZ7znrQ~RNSQ6Kf9SvIGYoXDIBFxw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":511,"name":"Materials Science","url":"https://www.academia.edu/Documents/in/Materials_Science"},{"id":523,"name":"Chemistry","url":"https://www.academia.edu/Documents/in/Chemistry"},{"id":21466,"name":"Polymers","url":"https://www.academia.edu/Documents/in/Polymers"},{"id":26327,"name":"Medicine","url":"https://www.academia.edu/Documents/in/Medicine"},{"id":26931,"name":"Nuclear Chemistry","url":"https://www.academia.edu/Documents/in/Nuclear_Chemistry"},{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":94868,"name":"Dithiocarbamate","url":"https://www.academia.edu/Documents/in/Dithiocarbamate"},{"id":387424,"name":"Polyurethane","url":"https://www.academia.edu/Documents/in/Polyurethane"},{"id":398650,"name":"Fourier transform infrared spectroscopy","url":"https://www.academia.edu/Documents/in/Fourier_transform_infrared_spectroscopy"}],"urls":[{"id":40901787,"url":"https://www.mdpi.com/2073-4360/11/7/1125/pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167418"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167418/Redox_state_of_the_Baogutu_reduced_porphyry_Cu_deposit_in_the_Central_Asian_Orogenic_belt"><img alt="Research paper thumbnail of Redox state of the Baogutu reduced porphyry Cu deposit in the Central Asian Orogenic belt" class="work-thumbnail" src="https://attachments.academia-assets.com/113096426/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167418/Redox_state_of_the_Baogutu_reduced_porphyry_Cu_deposit_in_the_Central_Asian_Orogenic_belt">Redox state of the Baogutu reduced porphyry Cu deposit in the Central Asian Orogenic belt</a></div><div class="wp-workCard_item"><span>Ore Geology Reviews</span><span>, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f6e82ad920afe3c1ad64c0e24acc123c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096426,"asset_id":117167418,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096426/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167418"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167418"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167418; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167418]").text(description); $(".js-view-count[data-work-id=117167418]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167418; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167418']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167418, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f6e82ad920afe3c1ad64c0e24acc123c" } } $('.js-work-strip[data-work-id=117167418]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167418,"title":"Redox state of the Baogutu reduced porphyry Cu deposit in the Central Asian Orogenic belt","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Reduced porphyry Cu deposits are scarce and their origins remain enigmatic. The Late Carboniferous Baogutu reduced porphyry Cu deposit in the western Junggar Terrane, NW China, provides an opportunity to address this issue. In this study, we conducted systematic analyses in terms of petrography, mineral chemistry, major elements, trace elements and Fe isotopes to investigate the redox state of its primary magma and further constrain the origin of Baogutu copper deposit. Based on the petrological observation and mineral chemistry, two magmatic stages have been recognized during the formation of ore-forming diorite. The early stage is characterized by the crystallization of magnetite and high Mg # [Mg/(Mg + Fe 2+)] hornblende under oxidized condition (ΔNNO \u003e 2.36, calculated by the equation given by Scaillet and Evans, 1999). The late stage is characterized by the crystallization of ilmenite and low Mg # biotite under reduced condition (ΔNNO \u003c-0.6). The large *","publication_date":{"day":null,"month":null,"year":2018,"errors":{}},"publication_name":"Ore Geology Reviews","grobid_abstract_attachment_id":113096426},"translated_abstract":null,"internal_url":"https://www.academia.edu/117167418/Redox_state_of_the_Baogutu_reduced_porphyry_Cu_deposit_in_the_Central_Asian_Orogenic_belt","translated_internal_url":"","created_at":"2024-04-06T23:01:17.518-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096426,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096426/thumbnails/1.jpg","file_name":"j.oregeorev.2018.08.02420240407-1-1r1fmu.pdf","download_url":"https://www.academia.edu/attachments/113096426/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Redox_state_of_the_Baogutu_reduced_porph.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096426/j.oregeorev.2018.08.02420240407-1-1r1fmu-libre.pdf?1712471252=\u0026response-content-disposition=attachment%3B+filename%3DRedox_state_of_the_Baogutu_reduced_porph.pdf\u0026Expires=1733274087\u0026Signature=SosDjgCzHrFJ8OudngcHrQySErOMFPEsbzVBxMOe4EmRlp5stYGZr7-D7MzSmJKVE8lc1gLosGhUlh6Cm7OGUrfA7FUKJtdBDjrZhsH-HwS1XCLB1iu3lSWASVTAWaWq6NexijTCbUulnMHwvfYENfjaQs2EIDQQVjdl8DB5EGtcY195a2dRH7jc3wly8T1bHVoQAa2RZ3~40laW52rWpdXDxgYHlMK0PBnfRUsVuSRx53bgmWPjgCjuJPSn7xO8MQ-5zEBMZAB~~TlPKmWOLRDNvVJsBLZFdM65Z3N2C2QI3vUAVfEyjesOc4FpDLMFo6OUWllDbcn~nJZZM2bGsQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Redox_state_of_the_Baogutu_reduced_porphyry_Cu_deposit_in_the_Central_Asian_Orogenic_belt","translated_slug":"","page_count":47,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096426,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096426/thumbnails/1.jpg","file_name":"j.oregeorev.2018.08.02420240407-1-1r1fmu.pdf","download_url":"https://www.academia.edu/attachments/113096426/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Redox_state_of_the_Baogutu_reduced_porph.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096426/j.oregeorev.2018.08.02420240407-1-1r1fmu-libre.pdf?1712471252=\u0026response-content-disposition=attachment%3B+filename%3DRedox_state_of_the_Baogutu_reduced_porph.pdf\u0026Expires=1733274087\u0026Signature=SosDjgCzHrFJ8OudngcHrQySErOMFPEsbzVBxMOe4EmRlp5stYGZr7-D7MzSmJKVE8lc1gLosGhUlh6Cm7OGUrfA7FUKJtdBDjrZhsH-HwS1XCLB1iu3lSWASVTAWaWq6NexijTCbUulnMHwvfYENfjaQs2EIDQQVjdl8DB5EGtcY195a2dRH7jc3wly8T1bHVoQAa2RZ3~40laW52rWpdXDxgYHlMK0PBnfRUsVuSRx53bgmWPjgCjuJPSn7xO8MQ-5zEBMZAB~~TlPKmWOLRDNvVJsBLZFdM65Z3N2C2QI3vUAVfEyjesOc4FpDLMFo6OUWllDbcn~nJZZM2bGsQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":103767,"name":"Petrography","url":"https://www.academia.edu/Documents/in/Petrography"},{"id":197592,"name":"Magma","url":"https://www.academia.edu/Documents/in/Magma"},{"id":456199,"name":"Biotite","url":"https://www.academia.edu/Documents/in/Biotite"},{"id":1146625,"name":"Porphyry Copper Deposit","url":"https://www.academia.edu/Documents/in/Porphyry_Copper_Deposit"}],"urls":[{"id":40901786,"url":"https://api.elsevier.com/content/article/PII:S0169136817301543?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167416"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167416/Lithium_isotopic_composition_of_Alaskan_type_intrusion_and_its_implication"><img alt="Research paper thumbnail of Lithium isotopic composition of Alaskan-type intrusion and its implication" class="work-thumbnail" src="https://attachments.academia-assets.com/113096425/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167416/Lithium_isotopic_composition_of_Alaskan_type_intrusion_and_its_implication">Lithium isotopic composition of Alaskan-type intrusion and its implication</a></div><div class="wp-workCard_item"><span>Lithos</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5f7579105ff1db27e963c5440b2d1c75" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096425,"asset_id":117167416,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096425/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167416"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167416"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167416; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167416]").text(description); $(".js-view-count[data-work-id=117167416]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167416; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167416']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167416, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5f7579105ff1db27e963c5440b2d1c75" } } $('.js-work-strip[data-work-id=117167416]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167416,"title":"Lithium isotopic composition of Alaskan-type intrusion and its implication","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"To determine whether fractionation of Li isotopes could occur at high temperatures, we examined major element and Li isotopic compositions of olivine from the Xiadong intrusion, an Alaskan-type complex in the Central Asian Orogenic Belt. Olivine in thirteen dunites, displaying characteristic cumulus textures, yielded large variations in Li concentration (0.10 to 11.18 ppm) and isotopic composition (δ 7 Li =-7.18 to +34.41‰). These variations are too large to be attributed entirely to diffusive processes. The correlations between Li elemental or isotopic composition and differentiation indices such as Fo and MnO contents of olivine, and NiO content of chromite, suggest probable Li isotope fractionation during early stage of differentiation. We speculate that while Li behaves mildly incompatible during differentiation, 7 Li is preferentially","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Lithos","grobid_abstract_attachment_id":113096425},"translated_abstract":null,"internal_url":"https://www.academia.edu/117167416/Lithium_isotopic_composition_of_Alaskan_type_intrusion_and_its_implication","translated_internal_url":"","created_at":"2024-04-06T23:01:17.314-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096425,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096425/thumbnails/1.jpg","file_name":"j.lithos.2017.06.02420240407-1-68am59.pdf","download_url":"https://www.academia.edu/attachments/113096425/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lithium_isotopic_composition_of_Alaskan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096425/j.lithos.2017.06.02420240407-1-68am59-libre.pdf?1712471239=\u0026response-content-disposition=attachment%3B+filename%3DLithium_isotopic_composition_of_Alaskan.pdf\u0026Expires=1733274087\u0026Signature=e0qBHGCOSUA3klbdM6QiHx0tIJw~fNVziRe3JzU8GNT5HATcya-ClWDk21uuOU-j78SHlbuh7RbKnuQ-lXGfE5h5VgQJrRVKX71pTlAstu6jRUNt6nMWYT0CVJ5hkR65AO32-6irdxZFQdX-jmx~7k7cJuUojW4w-eRd95DWfG0CkD9HjE-qmhJuB~AwWW~8POIecaGUJAxv3Ys7~dJX86mD2YcIjkZ1-QQRzLiHZAxTn2ZIdd6sn8B-PIiMjyRKCJxIXdAjmLtrFvwZwHEyI5S5-1b5C8bJI6VE6oISi~7KF6i4Ht0mGa01cOCuUUYuvjiWMNJIvlR49cbKliU8DQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Lithium_isotopic_composition_of_Alaskan_type_intrusion_and_its_implication","translated_slug":"","page_count":26,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096425,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096425/thumbnails/1.jpg","file_name":"j.lithos.2017.06.02420240407-1-68am59.pdf","download_url":"https://www.academia.edu/attachments/113096425/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lithium_isotopic_composition_of_Alaskan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096425/j.lithos.2017.06.02420240407-1-68am59-libre.pdf?1712471239=\u0026response-content-disposition=attachment%3B+filename%3DLithium_isotopic_composition_of_Alaskan.pdf\u0026Expires=1733274087\u0026Signature=e0qBHGCOSUA3klbdM6QiHx0tIJw~fNVziRe3JzU8GNT5HATcya-ClWDk21uuOU-j78SHlbuh7RbKnuQ-lXGfE5h5VgQJrRVKX71pTlAstu6jRUNt6nMWYT0CVJ5hkR65AO32-6irdxZFQdX-jmx~7k7cJuUojW4w-eRd95DWfG0CkD9HjE-qmhJuB~AwWW~8POIecaGUJAxv3Ys7~dJX86mD2YcIjkZ1-QQRzLiHZAxTn2ZIdd6sn8B-PIiMjyRKCJxIXdAjmLtrFvwZwHEyI5S5-1b5C8bJI6VE6oISi~7KF6i4Ht0mGa01cOCuUUYuvjiWMNJIvlR49cbKliU8DQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"}],"urls":[{"id":40901784,"url":"https://api.elsevier.com/content/article/PII:S0024493717302359?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167415"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167415/Geochemical_and_zircon_U_Pb_and_Lu_Hf_isotopic_constraints_on_the_origin_of_supracrustal_rocks_from_the_mid_Qilian_terrane_A_comparison_between_supracrustal_rocks_on_the_two_sides_of_the_eastern_segment_of_the_Altyn_Tagh_Fault"><img alt="Research paper thumbnail of Geochemical and zircon U-Pb and Lu-Hf isotopic constraints on the origin of supracrustal rocks from the mid-Qilian terrane: A comparison between supracrustal rocks on the two sides of the eastern segment of the Altyn Tagh Fault" class="work-thumbnail" src="https://attachments.academia-assets.com/113096422/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167415/Geochemical_and_zircon_U_Pb_and_Lu_Hf_isotopic_constraints_on_the_origin_of_supracrustal_rocks_from_the_mid_Qilian_terrane_A_comparison_between_supracrustal_rocks_on_the_two_sides_of_the_eastern_segment_of_the_Altyn_Tagh_Fault">Geochemical and zircon U-Pb and Lu-Hf isotopic constraints on the origin of supracrustal rocks from the mid-Qilian terrane: A comparison between supracrustal rocks on the two sides of the eastern segment of the Altyn Tagh Fault</a></div><div class="wp-workCard_item"><span>Precambrian Research</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3a8fed6966105bb4c440a269415be525" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096422,"asset_id":117167415,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096422/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167415"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167415"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167415; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167415]").text(description); $(".js-view-count[data-work-id=117167415]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167415; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167415']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167415, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3a8fed6966105bb4c440a269415be525" } } $('.js-work-strip[data-work-id=117167415]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167415,"title":"Geochemical and zircon U-Pb and Lu-Hf isotopic constraints on the origin of supracrustal rocks from the mid-Qilian terrane: A comparison between supracrustal rocks on the two sides of the eastern segment of the Altyn Tagh Fault","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Precambrian Research"},"translated_abstract":null,"internal_url":"https://www.academia.edu/117167415/Geochemical_and_zircon_U_Pb_and_Lu_Hf_isotopic_constraints_on_the_origin_of_supracrustal_rocks_from_the_mid_Qilian_terrane_A_comparison_between_supracrustal_rocks_on_the_two_sides_of_the_eastern_segment_of_the_Altyn_Tagh_Fault","translated_internal_url":"","created_at":"2024-04-06T23:01:17.121-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096422,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096422/thumbnails/1.jpg","file_name":"EGU2017-5856.pdf","download_url":"https://www.academia.edu/attachments/113096422/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Geochemical_and_zircon_U_Pb_and_Lu_Hf_is.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096422/EGU2017-5856-libre.pdf?1712471230=\u0026response-content-disposition=attachment%3B+filename%3DGeochemical_and_zircon_U_Pb_and_Lu_Hf_is.pdf\u0026Expires=1733274087\u0026Signature=QFWNVRs~PvpI6giejbcFoZ-MQiOYAIhSYgdc5OePQ6KcJaA1cnHGy2ES6~yu-xIloRsamkhxIu1GML4o2SyG-NXG3E0qP6ABSE2bS64BQ8siQxrgYdzQlI8Tnj0Wm80-ahDsGnukntKPvudnxixpS0fQ1F~RnHn5ny3g95hc7RuQqUjKKQJ8H0WSm1~ouHZY28MwUPpy6NujPvdZRkiS~gB77TuthyTnP7z1hXGGgkzE4Q5NdkMZ9Kpp3emu6DRJRdjagIbSlVjtgdswTAotIQIx8~IrYogDhNh5geWsxtHEGJ0cwK8MHrZtpFiM2LLWnpTNij~dpcoWSrj0A~8zLg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Geochemical_and_zircon_U_Pb_and_Lu_Hf_isotopic_constraints_on_the_origin_of_supracrustal_rocks_from_the_mid_Qilian_terrane_A_comparison_between_supracrustal_rocks_on_the_two_sides_of_the_eastern_segment_of_the_Altyn_Tagh_Fault","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096422,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096422/thumbnails/1.jpg","file_name":"EGU2017-5856.pdf","download_url":"https://www.academia.edu/attachments/113096422/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Geochemical_and_zircon_U_Pb_and_Lu_Hf_is.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096422/EGU2017-5856-libre.pdf?1712471230=\u0026response-content-disposition=attachment%3B+filename%3DGeochemical_and_zircon_U_Pb_and_Lu_Hf_is.pdf\u0026Expires=1733274087\u0026Signature=QFWNVRs~PvpI6giejbcFoZ-MQiOYAIhSYgdc5OePQ6KcJaA1cnHGy2ES6~yu-xIloRsamkhxIu1GML4o2SyG-NXG3E0qP6ABSE2bS64BQ8siQxrgYdzQlI8Tnj0Wm80-ahDsGnukntKPvudnxixpS0fQ1F~RnHn5ny3g95hc7RuQqUjKKQJ8H0WSm1~ouHZY28MwUPpy6NujPvdZRkiS~gB77TuthyTnP7z1hXGGgkzE4Q5NdkMZ9Kpp3emu6DRJRdjagIbSlVjtgdswTAotIQIx8~IrYogDhNh5geWsxtHEGJ0cwK8MHrZtpFiM2LLWnpTNij~dpcoWSrj0A~8zLg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":10477,"name":"Provenance","url":"https://www.academia.edu/Documents/in/Provenance"},{"id":78114,"name":"Precambrian","url":"https://www.academia.edu/Documents/in/Precambrian"},{"id":206457,"name":"Zircon","url":"https://www.academia.edu/Documents/in/Zircon"},{"id":469741,"name":"Craton","url":"https://www.academia.edu/Documents/in/Craton"}],"urls":[{"id":40901782,"url":"https://api.elsevier.com/content/article/PII:S0301926817300244?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167413"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167413/Cenozoic_basalts_in_SE_China_Chalcophile_element_geochemistry_sulfide_saturation_history_and_source_heterogeneity"><img alt="Research paper thumbnail of Cenozoic basalts in SE China: Chalcophile element geochemistry, sulfide saturation history, and source heterogeneity" class="work-thumbnail" src="https://attachments.academia-assets.com/113096424/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167413/Cenozoic_basalts_in_SE_China_Chalcophile_element_geochemistry_sulfide_saturation_history_and_source_heterogeneity">Cenozoic basalts in SE China: Chalcophile element geochemistry, sulfide saturation history, and source heterogeneity</a></div><div class="wp-workCard_item"><span>Lithos</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dce1a86f55c310ee3dea8928061fe6ce" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096424,"asset_id":117167413,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096424/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167413"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167413"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167413; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167413]").text(description); $(".js-view-count[data-work-id=117167413]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167413; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167413']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167413, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dce1a86f55c310ee3dea8928061fe6ce" } } $('.js-work-strip[data-work-id=117167413]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167413,"title":"Cenozoic basalts in SE China: Chalcophile element geochemistry, sulfide saturation history, and source heterogeneity","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Cenozoic basalts in SE China may be derived from a mixture of depleted MORB mantle (DMM) and enriched mantle 2 (EM2) sources, but whether these basalts share a common mantle source or magmatic history remains unknown. To investigate these unresolved issues, this study sampled basalts from Niutoushan and Mingxi (Fujian province), Xilong (Zhejiang province), and Penghu (Taiwan) for geochemical analysis. The basalt samples show OIB-like trace element patterns and have low PGE contents, with 0.02-0.7 ppb Ir and Pd, 0.05-1.4 ppb Ru, 0.01-0.2 ppb Rh, and 0.06-1.1 ppb Pt. All samples have high Cu/Pd ratios ranging from ~69,000 to 3,500,000, and low Cu/Zr ratios ranging from 0.1 to 0.8, suggesting sulfur-saturated fractionation. Model calculations indicate that the basalts are depleted in PGE due to the retention of 0.001% to 0.1% sulfide in the mantle and the removal of up to 0.0022% sulfide during magma ascent. The crystallization of olivine and spinel, and partial melting are insufficient to account for the observed PGE variation in these basalts. Thus, the distinct PGE patterns in basalts with different ages may reflect the heterogeneity of the mantle source beneath SE China. The source heterogeneity may be due to compositional heterogeneity, particularly variations in oxygen fugacity and PGE mineral phases, or due to variable fluid/melt metasomatic agents in the sub-continental lithospheric mantle. This heterogeneity is possibly related to the westward subduction of the Paleo-Pacific Plate.","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Lithos","grobid_abstract_attachment_id":113096424},"translated_abstract":null,"internal_url":"https://www.academia.edu/117167413/Cenozoic_basalts_in_SE_China_Chalcophile_element_geochemistry_sulfide_saturation_history_and_source_heterogeneity","translated_internal_url":"","created_at":"2024-04-06T23:01:16.934-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096424,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096424/thumbnails/1.jpg","file_name":"j.lithos.2017.03.01620240407-1-f6a4hw.pdf","download_url":"https://www.academia.edu/attachments/113096424/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cenozoic_basalts_in_SE_China_Chalcophile.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096424/j.lithos.2017.03.01620240407-1-f6a4hw-libre.pdf?1712471245=\u0026response-content-disposition=attachment%3B+filename%3DCenozoic_basalts_in_SE_China_Chalcophile.pdf\u0026Expires=1733274087\u0026Signature=D0q-hBv9Pi26dtc4XowVSHkpk~TYEfU7FxcMGehn001TTv0zNAYBUVQc6C726necIVnGp2HVs35fZZ9J4Hm~N8D0tqzjcp6czBa~OFRSTqAl9d7rbwqSsezDt~uQgyGmGkTiE3uqgbI1z5fP0RqdIo0o5udTo8MXKSU0Ia7-G2uaOR4K4aseQjr6-A2Cs8jafTBxD1gKZ4iWmAf0vapNP0DdUkOSwLjvq-AcjZG0rmj1tn-WvjmdkT0q0b1SiOIpohIe7lc2r4eJxu50Vc3n-Cg73dKjeorFEptfg3CPG4kSvd7H9iIfZjIt3SoVSM6IeCkfxqTqi~66YRYXvSBF8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Cenozoic_basalts_in_SE_China_Chalcophile_element_geochemistry_sulfide_saturation_history_and_source_heterogeneity","translated_slug":"","page_count":58,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096424,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096424/thumbnails/1.jpg","file_name":"j.lithos.2017.03.01620240407-1-f6a4hw.pdf","download_url":"https://www.academia.edu/attachments/113096424/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Cenozoic_basalts_in_SE_China_Chalcophile.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096424/j.lithos.2017.03.01620240407-1-f6a4hw-libre.pdf?1712471245=\u0026response-content-disposition=attachment%3B+filename%3DCenozoic_basalts_in_SE_China_Chalcophile.pdf\u0026Expires=1733274087\u0026Signature=D0q-hBv9Pi26dtc4XowVSHkpk~TYEfU7FxcMGehn001TTv0zNAYBUVQc6C726necIVnGp2HVs35fZZ9J4Hm~N8D0tqzjcp6czBa~OFRSTqAl9d7rbwqSsezDt~uQgyGmGkTiE3uqgbI1z5fP0RqdIo0o5udTo8MXKSU0Ia7-G2uaOR4K4aseQjr6-A2Cs8jafTBxD1gKZ4iWmAf0vapNP0DdUkOSwLjvq-AcjZG0rmj1tn-WvjmdkT0q0b1SiOIpohIe7lc2r4eJxu50Vc3n-Cg73dKjeorFEptfg3CPG4kSvd7H9iIfZjIt3SoVSM6IeCkfxqTqi~66YRYXvSBF8g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":146480,"name":"Cenozoic","url":"https://www.academia.edu/Documents/in/Cenozoic"},{"id":205576,"name":"Basalt","url":"https://www.academia.edu/Documents/in/Basalt"},{"id":1235582,"name":"Sulfide","url":"https://www.academia.edu/Documents/in/Sulfide"}],"urls":[{"id":40901781,"url":"https://api.elsevier.com/content/article/PII:S0024493717301226?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167412"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167412/Iron_isotopic_fractionation_and_origin_of_chromitites_in_the_paleo_Moho_transition_zone_of_the_Kop_ophiolite_NE_Turkey"><img alt="Research paper thumbnail of Iron isotopic fractionation and origin of chromitites in the paleo-Moho transition zone of the Kop ophiolite, NE Turkey" class="work-thumbnail" src="https://attachments.academia-assets.com/113096421/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167412/Iron_isotopic_fractionation_and_origin_of_chromitites_in_the_paleo_Moho_transition_zone_of_the_Kop_ophiolite_NE_Turkey">Iron isotopic fractionation and origin of chromitites in the paleo-Moho transition zone of the Kop ophiolite, NE Turkey</a></div><div class="wp-workCard_item"><span>Lithos</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7d4555e06a4e3912762a8e2d55f285f3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096421,"asset_id":117167412,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096421/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167412"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167412"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167412; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167412]").text(description); $(".js-view-count[data-work-id=117167412]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167412; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167412']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167412, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7d4555e06a4e3912762a8e2d55f285f3" } } $('.js-work-strip[data-work-id=117167412]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167412,"title":"Iron isotopic fractionation and origin of chromitites in the paleo-Moho transition zone of the Kop ophiolite, NE Turkey","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"Lithos"},"translated_abstract":null,"internal_url":"https://www.academia.edu/117167412/Iron_isotopic_fractionation_and_origin_of_chromitites_in_the_paleo_Moho_transition_zone_of_the_Kop_ophiolite_NE_Turkey","translated_internal_url":"","created_at":"2024-04-06T23:01:16.752-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096421,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096421/thumbnails/1.jpg","file_name":"create_pdf.pdf","download_url":"https://www.academia.edu/attachments/113096421/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Iron_isotopic_fractionation_and_origin_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096421/create_pdf-libre.pdf?1712471228=\u0026response-content-disposition=attachment%3B+filename%3DIron_isotopic_fractionation_and_origin_o.pdf\u0026Expires=1733274087\u0026Signature=G4a11MiQTX1RWPDkOHMN5l73oiEkxlT05hJaHmF6AOFOl-a7hCehATHAnxD3BKg6-MZwLoy~ObXEjTbE-5SB9j825rnHkc1N8fL1vuXLI3l0wYcJ5PLs70NnsK-CzAs7jIkrCzj-cNEBaYHtOVAxdtFwn~sKDMIxM2aIoli-SkDLYZiZ6Yy1wEtgw50w~1QcNkUn56Dh9DTZgoOupun5Gyyj7dafX4XiSHrwHreLKf6iYCUDDpaQlNsYPzfp2CLdPqe6TDgOj-5Pek3kN7qQRfGJVQ7q9y3K0hSuCBy0Z2j4plcKL-DGX-5S42G348OfezRv3U99I-voiBa9bWztQA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Iron_isotopic_fractionation_and_origin_of_chromitites_in_the_paleo_Moho_transition_zone_of_the_Kop_ophiolite_NE_Turkey","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096421,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096421/thumbnails/1.jpg","file_name":"create_pdf.pdf","download_url":"https://www.academia.edu/attachments/113096421/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Iron_isotopic_fractionation_and_origin_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096421/create_pdf-libre.pdf?1712471228=\u0026response-content-disposition=attachment%3B+filename%3DIron_isotopic_fractionation_and_origin_o.pdf\u0026Expires=1733274087\u0026Signature=G4a11MiQTX1RWPDkOHMN5l73oiEkxlT05hJaHmF6AOFOl-a7hCehATHAnxD3BKg6-MZwLoy~ObXEjTbE-5SB9j825rnHkc1N8fL1vuXLI3l0wYcJ5PLs70NnsK-CzAs7jIkrCzj-cNEBaYHtOVAxdtFwn~sKDMIxM2aIoli-SkDLYZiZ6Yy1wEtgw50w~1QcNkUn56Dh9DTZgoOupun5Gyyj7dafX4XiSHrwHreLKf6iYCUDDpaQlNsYPzfp2CLdPqe6TDgOj-5Pek3kN7qQRfGJVQ7q9y3K0hSuCBy0Z2j4plcKL-DGX-5S42G348OfezRv3U99I-voiBa9bWztQA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":409,"name":"Geophysics","url":"https://www.academia.edu/Documents/in/Geophysics"},{"id":157242,"name":"chromitite and PGE","url":"https://www.academia.edu/Documents/in/chromitite_and_PGE"},{"id":281808,"name":"Olivine","url":"https://www.academia.edu/Documents/in/Olivine"},{"id":330036,"name":"Ophiolite","url":"https://www.academia.edu/Documents/in/Ophiolite"}],"urls":[{"id":40901780,"url":"https://api.elsevier.com/content/article/PII:S0024493716303590?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167411"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167411/Contribution_of_crustal_materials_to_the_mantle_sources_of_Xiaogulihe_ultrapotassic_volcanic_rocks_Northeast_China_New_constraints_from_mineral_chemistry_and_oxygen_isotopes_of_olivine"><img alt="Research paper thumbnail of Contribution of crustal materials to the mantle sources of Xiaogulihe ultrapotassic volcanic rocks, Northeast China: New constraints from mineral chemistry and oxygen isotopes of olivine" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167411/Contribution_of_crustal_materials_to_the_mantle_sources_of_Xiaogulihe_ultrapotassic_volcanic_rocks_Northeast_China_New_constraints_from_mineral_chemistry_and_oxygen_isotopes_of_olivine">Contribution of crustal materials to the mantle sources of Xiaogulihe ultrapotassic volcanic rocks, Northeast China: New constraints from mineral chemistry and oxygen isotopes of olivine</a></div><div class="wp-workCard_item"><span>Chemical Geology</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT Ultrapotassic igneous rocks can generally be divided into two sub-groups based on the te...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT Ultrapotassic igneous rocks can generally be divided into two sub-groups based on the tectonic settings in which they formed. The orogenic sub-group occurs in subduction-related tectonic settings, while the anorogenic sub-group is confined to stable continental regimes. The Pleistocene Xiaogulihe ultrapotassic volcanic rocks outcrop in the western part of Heilongjiang province, northeast China, and are of intraplate origin with respect to its tectonic settings. Previous elemental and isotopic investigations have suggested that the mantle source of these volcanic rocks had been modified by continental-derived sediments resulting from an ancient subduction (at least older than 1.5 Ga). In this contribution, we performed in-situ oxygen isotope analysis on olivine grains in these ultrapotassic rocks using secondary ionization mass spectrometry (SIMS). The olivine grains generally have higher δ18O values and CaO contents than those of mantle peridotite xenoliths in the nearby Keluo potassic rocks and show linear correlations between major and trace elements, and Fo, suggesting that they are cognate phenocrysts resulted from fractional crystallization processes. The restricted and non-correlated variations in δ18O with the Fo of these olivine grains imply that the fractional crystallization processes might have negligible influence on their δ18O values. The relatively higher δ18O values of the olivine phenocrysts than the normal mantle imply the addition of an 18O-rich crustal component into their mantle source after ruling out the crustal contamination of the host magmas. We propose that the high-δ18O feature of the olivine phenocrysts was inherited from the subducted crustal component in their mantle source. Given the rapid oxygen isotopic diffusion under high temperature and the long period between mantle metasomatism event and volcanic eruption, it is postulated that the high-δ18O signature could only be preserved in the relatively cold and stable subcontinental lithospheric mantle. Such speculation is consistent with our previous inference that the Xiaogulihe ultrapotassic volcanic rocks were mainly generated from the lower subcontinental lithospheric mantle which had been metasomatized by potassium-rich silicate melts derived from ancient subducted continental-derived sediments.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167411"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167411"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167411; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167411]").text(description); $(".js-view-count[data-work-id=117167411]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167411; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167411']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167411, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=117167411]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167411,"title":"Contribution of crustal materials to the mantle sources of Xiaogulihe ultrapotassic volcanic rocks, Northeast China: New constraints from mineral chemistry and oxygen isotopes of olivine","translated_title":"","metadata":{"abstract":"ABSTRACT Ultrapotassic igneous rocks can generally be divided into two sub-groups based on the tectonic settings in which they formed. The orogenic sub-group occurs in subduction-related tectonic settings, while the anorogenic sub-group is confined to stable continental regimes. The Pleistocene Xiaogulihe ultrapotassic volcanic rocks outcrop in the western part of Heilongjiang province, northeast China, and are of intraplate origin with respect to its tectonic settings. Previous elemental and isotopic investigations have suggested that the mantle source of these volcanic rocks had been modified by continental-derived sediments resulting from an ancient subduction (at least older than 1.5 Ga). In this contribution, we performed in-situ oxygen isotope analysis on olivine grains in these ultrapotassic rocks using secondary ionization mass spectrometry (SIMS). The olivine grains generally have higher δ18O values and CaO contents than those of mantle peridotite xenoliths in the nearby Keluo potassic rocks and show linear correlations between major and trace elements, and Fo, suggesting that they are cognate phenocrysts resulted from fractional crystallization processes. The restricted and non-correlated variations in δ18O with the Fo of these olivine grains imply that the fractional crystallization processes might have negligible influence on their δ18O values. The relatively higher δ18O values of the olivine phenocrysts than the normal mantle imply the addition of an 18O-rich crustal component into their mantle source after ruling out the crustal contamination of the host magmas. We propose that the high-δ18O feature of the olivine phenocrysts was inherited from the subducted crustal component in their mantle source. Given the rapid oxygen isotopic diffusion under high temperature and the long period between mantle metasomatism event and volcanic eruption, it is postulated that the high-δ18O signature could only be preserved in the relatively cold and stable subcontinental lithospheric mantle. Such speculation is consistent with our previous inference that the Xiaogulihe ultrapotassic volcanic rocks were mainly generated from the lower subcontinental lithospheric mantle which had been metasomatized by potassium-rich silicate melts derived from ancient subducted continental-derived sediments.","publisher":"Elsevier BV","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Chemical Geology"},"translated_abstract":"ABSTRACT Ultrapotassic igneous rocks can generally be divided into two sub-groups based on the tectonic settings in which they formed. The orogenic sub-group occurs in subduction-related tectonic settings, while the anorogenic sub-group is confined to stable continental regimes. The Pleistocene Xiaogulihe ultrapotassic volcanic rocks outcrop in the western part of Heilongjiang province, northeast China, and are of intraplate origin with respect to its tectonic settings. Previous elemental and isotopic investigations have suggested that the mantle source of these volcanic rocks had been modified by continental-derived sediments resulting from an ancient subduction (at least older than 1.5 Ga). In this contribution, we performed in-situ oxygen isotope analysis on olivine grains in these ultrapotassic rocks using secondary ionization mass spectrometry (SIMS). The olivine grains generally have higher δ18O values and CaO contents than those of mantle peridotite xenoliths in the nearby Keluo potassic rocks and show linear correlations between major and trace elements, and Fo, suggesting that they are cognate phenocrysts resulted from fractional crystallization processes. The restricted and non-correlated variations in δ18O with the Fo of these olivine grains imply that the fractional crystallization processes might have negligible influence on their δ18O values. The relatively higher δ18O values of the olivine phenocrysts than the normal mantle imply the addition of an 18O-rich crustal component into their mantle source after ruling out the crustal contamination of the host magmas. We propose that the high-δ18O feature of the olivine phenocrysts was inherited from the subducted crustal component in their mantle source. Given the rapid oxygen isotopic diffusion under high temperature and the long period between mantle metasomatism event and volcanic eruption, it is postulated that the high-δ18O signature could only be preserved in the relatively cold and stable subcontinental lithospheric mantle. Such speculation is consistent with our previous inference that the Xiaogulihe ultrapotassic volcanic rocks were mainly generated from the lower subcontinental lithospheric mantle which had been metasomatized by potassium-rich silicate melts derived from ancient subducted continental-derived sediments.","internal_url":"https://www.academia.edu/117167411/Contribution_of_crustal_materials_to_the_mantle_sources_of_Xiaogulihe_ultrapotassic_volcanic_rocks_Northeast_China_New_constraints_from_mineral_chemistry_and_oxygen_isotopes_of_olivine","translated_internal_url":"","created_at":"2024-04-06T23:01:16.555-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Contribution_of_crustal_materials_to_the_mantle_sources_of_Xiaogulihe_ultrapotassic_volcanic_rocks_Northeast_China_New_constraints_from_mineral_chemistry_and_oxygen_isotopes_of_olivine","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":16024,"name":"Chemical Geology","url":"https://www.academia.edu/Documents/in/Chemical_Geology"},{"id":281808,"name":"Olivine","url":"https://www.academia.edu/Documents/in/Olivine"},{"id":415323,"name":"Phenocryst","url":"https://www.academia.edu/Documents/in/Phenocryst"},{"id":688910,"name":"Volcanic Rock","url":"https://www.academia.edu/Documents/in/Volcanic_Rock"}],"urls":[{"id":40901778,"url":"https://api.elsevier.com/content/article/PII:S000925411500193X?httpAccept=text/plain"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167409"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167409/Natural_evidence_for_garnet_spinel_transition_GST_in_the_Earth_s_mantle"><img alt="Research paper thumbnail of Natural evidence for garnet-spinel transition (GST) in the Earth’s mantle" class="work-thumbnail" src="https://attachments.academia-assets.com/113096423/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167409/Natural_evidence_for_garnet_spinel_transition_GST_in_the_Earth_s_mantle">Natural evidence for garnet-spinel transition (GST) in the Earth’s mantle</a></div><div class="wp-workCard_item"><span>Nature Precedings</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e4e8c21e55b8c5a6491d8017309a3bad" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096423,"asset_id":117167409,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096423/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167409"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167409"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167409; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167409]").text(description); $(".js-view-count[data-work-id=117167409]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167409; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167409']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167409, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e4e8c21e55b8c5a6491d8017309a3bad" } } $('.js-work-strip[data-work-id=117167409]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167409,"title":"Natural evidence for garnet-spinel transition (GST) in the Earth’s mantle","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","ai_title_tag":"Garnet-Spinel Transition Evidence in Earth's Mantle","grobid_abstract":"This study based on compiled worldwide garnet peridotite data confirms the GST in high P and T conditions, which was obtained from Al-free experimental system (MgO-Cr 2 O 3-SiO 2) by Klemme (2004). A new spinel-phase peridotite zone, garnet peridotite discontinuous zone, is defined, and another GST, although no experimental data, is principally and presumably proposed to exist. The garnet inclusion-bearing spinel harzburgite from Lashaine (Tanzania) provides the first evidence for the existence of ultra-high spinel zone and is explained as recrystallized minerals hosting the interacted residue of ancient oceanic lithosphere subducted into the great depth of more than 220km. These previously unexpected findings are generating great challenges to phase transition in extreme conditions and to our understanding of layered-structure of the Earth. In addition, coexistent five-phase peridotite is suggested to be naturally useful tool to constrain the GST.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Nature Precedings","grobid_abstract_attachment_id":113096423},"translated_abstract":null,"internal_url":"https://www.academia.edu/117167409/Natural_evidence_for_garnet_spinel_transition_GST_in_the_Earth_s_mantle","translated_internal_url":"","created_at":"2024-04-06T23:01:16.384-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096423,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096423/thumbnails/1.jpg","file_name":"npre.2008.1898.2.pdf","download_url":"https://www.academia.edu/attachments/113096423/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Natural_evidence_for_garnet_spinel_trans.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096423/npre.2008.1898.2-libre.pdf?1712471231=\u0026response-content-disposition=attachment%3B+filename%3DNatural_evidence_for_garnet_spinel_trans.pdf\u0026Expires=1733274087\u0026Signature=ddguq7jwJl6hIEoSQY8CF5t0kqtqB21nEyici71~bRKzMnqJolto~9QVWOkpZbdrQZL4p6doD2r5ovZs9Lb-MiY3nEKazsHm1gFukp~Bn8kd2FTFJfGT5ttdkiIoLAFiDUWldnfpjYOXuUXjFd602qmwBEiCQTXBaEwzC-UVg2H35s9kB1QLNh75T~bIoF9HWWQ9e7zkH6iTK~H70tTLiRMbvSyrBYlSwmD5mojXGeVUWmUgv-qbmBmGSDSAHojZkoIDlCULBqBccAX3HEx3wOMVdSePGtkFQAtUBLDVGqWiFn2JvIcXMHmK7sPjTVdBh8rhloqSggYvgogtLUaDfA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Natural_evidence_for_garnet_spinel_transition_GST_in_the_Earth_s_mantle","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096423,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096423/thumbnails/1.jpg","file_name":"npre.2008.1898.2.pdf","download_url":"https://www.academia.edu/attachments/113096423/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Natural_evidence_for_garnet_spinel_trans.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096423/npre.2008.1898.2-libre.pdf?1712471231=\u0026response-content-disposition=attachment%3B+filename%3DNatural_evidence_for_garnet_spinel_trans.pdf\u0026Expires=1733274087\u0026Signature=ddguq7jwJl6hIEoSQY8CF5t0kqtqB21nEyici71~bRKzMnqJolto~9QVWOkpZbdrQZL4p6doD2r5ovZs9Lb-MiY3nEKazsHm1gFukp~Bn8kd2FTFJfGT5ttdkiIoLAFiDUWldnfpjYOXuUXjFd602qmwBEiCQTXBaEwzC-UVg2H35s9kB1QLNh75T~bIoF9HWWQ9e7zkH6iTK~H70tTLiRMbvSyrBYlSwmD5mojXGeVUWmUgv-qbmBmGSDSAHojZkoIDlCULBqBccAX3HEx3wOMVdSePGtkFQAtUBLDVGqWiFn2JvIcXMHmK7sPjTVdBh8rhloqSggYvgogtLUaDfA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":54668,"name":"Peridotite","url":"https://www.academia.edu/Documents/in/Peridotite"},{"id":122773,"name":"Subduction","url":"https://www.academia.edu/Documents/in/Subduction"},{"id":403641,"name":"Spinel","url":"https://www.academia.edu/Documents/in/Spinel"},{"id":668253,"name":"Lithosphere","url":"https://www.academia.edu/Documents/in/Lithosphere"},{"id":3057331,"name":"Transition Zone","url":"https://www.academia.edu/Documents/in/Transition_Zone"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="117167406"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/117167406/Ages_and_tectonic_implications_of_the_mafic_ultramafic_carbonatite_intrusive_rocks_and_associated_Cu_Ni_Fe_P_and_apatite_vermiculite_deposits_from_the_Quruqtagh_district_NW_China"><img alt="Research paper thumbnail of Ages and tectonic implications of the mafic–ultramafic-carbonatite intrusive rocks and associated Cu-Ni, Fe-P and apatite-vermiculite deposits from the Quruqtagh district, NW China" class="work-thumbnail" src="https://attachments.academia-assets.com/113096447/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/117167406/Ages_and_tectonic_implications_of_the_mafic_ultramafic_carbonatite_intrusive_rocks_and_associated_Cu_Ni_Fe_P_and_apatite_vermiculite_deposits_from_the_Quruqtagh_district_NW_China">Ages and tectonic implications of the mafic–ultramafic-carbonatite intrusive rocks and associated Cu-Ni, Fe-P and apatite-vermiculite deposits from the Quruqtagh district, NW China</a></div><div class="wp-workCard_item"><span>Ore Geology Reviews</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cfa6b1e0b3b5791ed9d48c99fe57d333" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113096447,"asset_id":117167406,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113096447/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="117167406"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="117167406"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 117167406; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=117167406]").text(description); $(".js-view-count[data-work-id=117167406]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 117167406; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='117167406']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 117167406, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cfa6b1e0b3b5791ed9d48c99fe57d333" } } $('.js-work-strip[data-work-id=117167406]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":117167406,"title":"Ages and tectonic implications of the mafic–ultramafic-carbonatite intrusive rocks and associated Cu-Ni, Fe-P and apatite-vermiculite deposits from the Quruqtagh district, NW China","translated_title":"","metadata":{"publisher":"Elsevier BV","grobid_abstract":"Ages and tectonic implications of the mafic-ultramafic-carbonatite intrusive rocks and associate Cu-Ni, Fe-P and apatite-vermiculite deposits from the Quruqtagh district, NW China","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Ore Geology Reviews","grobid_abstract_attachment_id":113096447},"translated_abstract":null,"internal_url":"https://www.academia.edu/117167406/Ages_and_tectonic_implications_of_the_mafic_ultramafic_carbonatite_intrusive_rocks_and_associated_Cu_Ni_Fe_P_and_apatite_vermiculite_deposits_from_the_Quruqtagh_district_NW_China","translated_internal_url":"","created_at":"2024-04-06T23:01:15.263-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":52838898,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113096447,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096447/thumbnails/1.jpg","file_name":"j.oregeorev.2016.07.01120240407-1-4r53fo.pdf","download_url":"https://www.academia.edu/attachments/113096447/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ages_and_tectonic_implications_of_the_ma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096447/j.oregeorev.2016.07.01120240407-1-4r53fo-libre.pdf?1712471253=\u0026response-content-disposition=attachment%3B+filename%3DAges_and_tectonic_implications_of_the_ma.pdf\u0026Expires=1733274087\u0026Signature=Q-tNLo1VPKSKjfzQZieKEGThDUWmZi~jyRNHCI-LETAFANoe5TdE87PsiVVo3BcYJTFr4AvMwWHR7yWtnpVf2jhqGhouhRScto7YaxE0~dR5wXOoEyUXr7xdBgpzP7MdjrNKcqTHr8~1Os7o3jY970195lH0tZSL4Qc4xHFkPzc31RvgOgK5WB~wehCut3nqd21etdWZ6EHUS8S4TqYbuYsn-MzqR7qpnH8Mnp5OZ8h2CH8cWInExmC1r9huZxgbg0vtwEBWatPa7hjZzAdKbImzbFjPelD6lFl7n38qPZWiNybNZusW-eyg7YkVPW6qFYRVCAYvBrog6IdeaJH5fQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Ages_and_tectonic_implications_of_the_mafic_ultramafic_carbonatite_intrusive_rocks_and_associated_Cu_Ni_Fe_P_and_apatite_vermiculite_deposits_from_the_Quruqtagh_district_NW_China","translated_slug":"","page_count":49,"language":"en","content_type":"Work","owner":{"id":52838898,"first_name":"Ben-Xun","middle_initials":null,"last_name":"Su","page_name":"BenXunSu","domain_name":"independent","created_at":"2016-09-01T17:44:04.844-07:00","display_name":"Ben-Xun Su","url":"https://independent.academia.edu/BenXunSu"},"attachments":[{"id":113096447,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113096447/thumbnails/1.jpg","file_name":"j.oregeorev.2016.07.01120240407-1-4r53fo.pdf","download_url":"https://www.academia.edu/attachments/113096447/download_file?st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&st=MTczMzI3MDQ4Nyw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ages_and_tectonic_implications_of_the_ma.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113096447/j.oregeorev.2016.07.01120240407-1-4r53fo-libre.pdf?1712471253=\u0026response-content-disposition=attachment%3B+filename%3DAges_and_tectonic_implications_of_the_ma.pdf\u0026Expires=1733274087\u0026Signature=Q-tNLo1VPKSKjfzQZieKEGThDUWmZi~jyRNHCI-LETAFANoe5TdE87PsiVVo3BcYJTFr4AvMwWHR7yWtnpVf2jhqGhouhRScto7YaxE0~dR5wXOoEyUXr7xdBgpzP7MdjrNKcqTHr8~1Os7o3jY970195lH0tZSL4Qc4xHFkPzc31RvgOgK5WB~wehCut3nqd21etdWZ6EHUS8S4TqYbuYsn-MzqR7qpnH8Mnp5OZ8h2CH8cWInExmC1r9huZxgbg0vtwEBWatPa7hjZzAdKbImzbFjPelD6lFl7n38qPZWiNybNZusW-eyg7YkVPW6qFYRVCAYvBrog6IdeaJH5fQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":135982,"name":"Rodinia","url":"https://www.academia.edu/Documents/in/Rodinia"},{"id":319883,"name":"Supercontinent","url":"https://www.academia.edu/Documents/in/Supercontinent"},{"id":469741,"name":"Craton","url":"https://www.academia.edu/Documents/in/Craton"},{"id":1464622,"name":"Carbonatite","url":"https://www.academia.edu/Documents/in/Carbonatite"}],"urls":[{"id":40901775,"url":"https://api.elsevier.com/content/article/PII:S0169136816304334?httpAccept=text/xml"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "56eae78303133d9c687c2edc5da185c274fde976cf77320555060cc156395a78", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="mLfRs4j3O/+CU9xTUQ/pB5MBtNRwshFqmpCvCLdoKCr8mF1Hyql8r8pfQKW6RVSd0FPftq/Ltq/IcAReEt12qg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://independent.academia.edu/BenXunSu" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="P47dzDYq+5zCpioVmHGtwUAULGhuOkB1hdg1HeA2gjhboVE4dHS8zIqqtuNzOxBbA0ZHCrFD57DXOJ5LRYPcuA==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>