CINXE.COM

Lithium-ion battery - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Lithium-ion battery - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"feec2e30-2a75-4348-a810-1411b0e36ef0","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Lithium-ion_battery","wgTitle":"Lithium-ion battery","wgCurRevisionId":1276147824,"wgRevisionId":1276147824,"wgArticleId":201485,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Webarchive template wayback links","Webarchive template warnings","All accuracy disputes","Articles with disputed statements from June 2010","CS1: long volume value","Articles with short description","Short description is different from Wikidata","Use dmy dates from October 2019","All articles with unsourced statements","Articles with unsourced statements from April 2024","Articles with disputed statements from February 2022","All articles lacking reliable references", "Articles lacking reliable references from August 2014","Articles with unsourced statements from October 2017","Articles with unsourced statements from January 2024","Articles with unsourced statements from September 2021","All articles with failed verification","Articles with failed verification from February 2018","All articles needing additional references","Articles needing additional references from February 2023","Articles lacking reliable references from November 2016","Articles containing potentially dated statements from January 2014","All articles containing potentially dated statements","Articles with unsourced statements from July 2024","Articles with unsourced statements from July 2020","Articles with specifically marked weasel-worded phrases from July 2020","Articles with excerpts","Articles with unsourced statements from October 2021","Articles with unsourced statements from June 2021","Commons category link is on Wikidata","Articles with Encyclopædia Britannica links", "Japanese inventions","Lithium-ion batteries","20th-century inventions","Metal-ion batteries","American inventions","English inventions"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Lithium-ion_battery","wgRelevantArticleId":201485,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":200000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false, "wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q2822895","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.tablesorter.styles":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"}; RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.tablesorter","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cjquery.tablesorter.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.16"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Nokia_Battery.jpg/1200px-Nokia_Battery.jpg"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="875"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Nokia_Battery.jpg/800px-Nokia_Battery.jpg"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="584"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Nokia_Battery.jpg/640px-Nokia_Battery.jpg"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="467"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Lithium-ion battery - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Lithium-ion_battery"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Lithium-ion_battery&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Lithium-ion_battery"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Lithium-ion_battery rootpage-Lithium-ion_battery skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Lithium-ion+battery" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Lithium-ion+battery" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Lithium-ion+battery" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Lithium-ion+battery" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Design" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Design"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Design</span> </div> </a> <button aria-controls="toc-Design-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Design subsection</span> </button> <ul id="toc-Design-sublist" class="vector-toc-list"> <li id="toc-Electrochemistry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Electrochemistry"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Electrochemistry</span> </div> </a> <ul id="toc-Electrochemistry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Discharging_and_charging" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Discharging_and_charging"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Discharging and charging</span> </div> </a> <ul id="toc-Discharging_and_charging-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cathode" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cathode"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Cathode</span> </div> </a> <ul id="toc-Cathode-sublist" class="vector-toc-list"> <li id="toc-Layered_Oxides" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Layered_Oxides"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3.1</span> <span>Layered Oxides</span> </div> </a> <ul id="toc-Layered_Oxides-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cubic_oxides_(spinels)" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Cubic_oxides_(spinels)"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3.2</span> <span>Cubic oxides (spinels)</span> </div> </a> <ul id="toc-Cubic_oxides_(spinels)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Oxoanionic/olivins" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Oxoanionic/olivins"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3.3</span> <span>Oxoanionic/olivins</span> </div> </a> <ul id="toc-Oxoanionic/olivins-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Anode" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Anode"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Anode</span> </div> </a> <ul id="toc-Anode-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Electrolyte" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Electrolyte"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Electrolyte</span> </div> </a> <ul id="toc-Electrolyte-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Battery_designs_and_formats" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Battery_designs_and_formats"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Battery designs and formats</span> </div> </a> <button aria-controls="toc-Battery_designs_and_formats-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Battery designs and formats subsection</span> </button> <ul id="toc-Battery_designs_and_formats-sublist" class="vector-toc-list"> <li id="toc-Electrode_Layers_and_Electrolyte" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Electrode_Layers_and_Electrolyte"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Electrode Layers and Electrolyte</span> </div> </a> <ul id="toc-Electrode_Layers_and_Electrolyte-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cells" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cells"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Cells</span> </div> </a> <ul id="toc-Cells-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Electrode_Layers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Electrode_Layers"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Electrode Layers</span> </div> </a> <ul id="toc-Electrode_Layers-sublist" class="vector-toc-list"> <li id="toc-Cell_voltage" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Cell_voltage"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3.1</span> <span>Cell voltage</span> </div> </a> <ul id="toc-Cell_voltage-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-Uses" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Uses"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Uses</span> </div> </a> <ul id="toc-Uses-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Performance" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Performance"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Performance</span> </div> </a> <button aria-controls="toc-Performance-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Performance subsection</span> </button> <ul id="toc-Performance-sublist" class="vector-toc-list"> <li id="toc-Round-trip_efficiency" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Round-trip_efficiency"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Round-trip efficiency</span> </div> </a> <ul id="toc-Round-trip_efficiency-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Lifespan" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Lifespan"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Lifespan</span> </div> </a> <button aria-controls="toc-Lifespan-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Lifespan subsection</span> </button> <ul id="toc-Lifespan-sublist" class="vector-toc-list"> <li id="toc-Detailed_degradation_description" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Detailed_degradation_description"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Detailed degradation description</span> </div> </a> <ul id="toc-Detailed_degradation_description-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Recommendations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Recommendations"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Recommendations</span> </div> </a> <ul id="toc-Recommendations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Safety" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Safety"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Safety</span> </div> </a> <button aria-controls="toc-Safety-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Safety subsection</span> </button> <ul id="toc-Safety-sublist" class="vector-toc-list"> <li id="toc-Fire_hazard" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fire_hazard"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Fire hazard</span> </div> </a> <ul id="toc-Fire_hazard-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Damaging_and_overloading" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Damaging_and_overloading"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Damaging and overloading</span> </div> </a> <ul id="toc-Damaging_and_overloading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Voltage_limits" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Voltage_limits"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Voltage limits</span> </div> </a> <ul id="toc-Voltage_limits-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Recalls" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Recalls"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.4</span> <span>Recalls</span> </div> </a> <ul id="toc-Recalls-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Non-flammable_electrolyte" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Non-flammable_electrolyte"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.5</span> <span>Non-flammable electrolyte</span> </div> </a> <ul id="toc-Non-flammable_electrolyte-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Supply_chain" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Supply_chain"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Supply chain</span> </div> </a> <button aria-controls="toc-Supply_chain-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Supply chain subsection</span> </button> <ul id="toc-Supply_chain-sublist" class="vector-toc-list"> <li id="toc-Environmental_impact" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Environmental_impact"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Environmental impact</span> </div> </a> <ul id="toc-Environmental_impact-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Solid_waste_and_recycling" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Solid_waste_and_recycling"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Solid waste and recycling</span> </div> </a> <ul id="toc-Solid_waste_and_recycling-sublist" class="vector-toc-list"> <li id="toc-Pyrometallurgical_recovery" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Pyrometallurgical_recovery"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2.1</span> <span>Pyrometallurgical recovery</span> </div> </a> <ul id="toc-Pyrometallurgical_recovery-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hydrometallurgical_metals_reclamation" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Hydrometallurgical_metals_reclamation"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2.2</span> <span>Hydrometallurgical metals reclamation</span> </div> </a> <ul id="toc-Hydrometallurgical_metals_reclamation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Direct_recycling" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Direct_recycling"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2.3</span> <span>Direct recycling</span> </div> </a> <ul id="toc-Direct_recycling-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Physical_materials_separation" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Physical_materials_separation"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2.4</span> <span>Physical materials separation</span> </div> </a> <ul id="toc-Physical_materials_separation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Biological_metals_reclamation" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Biological_metals_reclamation"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2.5</span> <span>Biological metals reclamation</span> </div> </a> <ul id="toc-Biological_metals_reclamation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Electrolyte_recycling" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Electrolyte_recycling"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2.6</span> <span>Electrolyte recycling</span> </div> </a> <ul id="toc-Electrolyte_recycling-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Human_rights_impact" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Human_rights_impact"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3</span> <span>Human rights impact</span> </div> </a> <ul id="toc-Human_rights_impact-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Research" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Research"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Research</span> </div> </a> <ul id="toc-Research-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sources" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Sources"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Sources</span> </div> </a> <ul id="toc-Sources-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Lithium-ion battery</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 53 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-53" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">53 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Litiumioonbattery" title="Litiumioonbattery – Afrikaans" lang="af" hreflang="af" data-title="Litiumioonbattery" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A8%D8%B7%D8%A7%D8%B1%D9%8A%D8%A9_%D8%A3%D9%8A%D9%88%D9%86%D8%A7%D8%AA_%D8%A7%D9%84%D9%84%D9%8A%D8%AB%D9%8A%D9%88%D9%85" title="بطارية أيونات الليثيوم – Arabic" lang="ar" hreflang="ar" data-title="بطارية أيونات الليثيوم" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%B2%E0%A6%BF%E0%A6%A5%E0%A6%BF%E0%A6%AF%E0%A6%BC%E0%A6%BE%E0%A6%AE-%E0%A6%86%E0%A6%AF%E0%A6%BC%E0%A6%A8_%E0%A6%AC%E0%A7%8D%E0%A6%AF%E0%A6%BE%E0%A6%9F%E0%A6%BE%E0%A6%B0%E0%A6%BF" title="লিথিয়াম-আয়ন ব্যাটারি – Bangla" lang="bn" hreflang="bn" data-title="লিথিয়াম-আয়ন ব্যাটারি" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9B%D0%B8%D1%82%D0%B8%D0%B5%D0%B2%D0%BE%D0%B9%D0%BE%D0%BD%D0%BD%D0%B0_%D0%B1%D0%B0%D1%82%D0%B5%D1%80%D0%B8%D1%8F" title="Литиевойонна батерия – Bulgarian" lang="bg" hreflang="bg" data-title="Литиевойонна батерия" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Bateria_d%27i%C3%B3_liti" title="Bateria d&#039;ió liti – Catalan" lang="ca" hreflang="ca" data-title="Bateria d&#039;ió liti" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Lithium-iontov%C3%BD_akumul%C3%A1tor" title="Lithium-iontový akumulátor – Czech" lang="cs" hreflang="cs" data-title="Lithium-iontový akumulátor" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Batri_lithiwm-ion" title="Batri lithiwm-ion – Welsh" lang="cy" hreflang="cy" data-title="Batri lithiwm-ion" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Lithium-ion-akkumulator" title="Lithium-ion-akkumulator – Danish" lang="da" hreflang="da" data-title="Lithium-ion-akkumulator" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Lithium-Ionen-Akkumulator" title="Lithium-Ionen-Akkumulator – German" lang="de" hreflang="de" data-title="Lithium-Ionen-Akkumulator" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Liitiumioonaku" title="Liitiumioonaku – Estonian" lang="et" hreflang="et" data-title="Liitiumioonaku" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9C%CF%80%CE%B1%CF%84%CE%B1%CF%81%CE%AF%CE%B1_%CE%B9%CF%8C%CE%BD%CF%84%CF%89%CE%BD_%CE%BB%CE%B9%CE%B8%CE%AF%CE%BF%CF%85" title="Μπαταρία ιόντων λιθίου – Greek" lang="el" hreflang="el" data-title="Μπαταρία ιόντων λιθίου" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Bater%C3%ADa_de_ion_de_litio" title="Batería de ion de litio – Spanish" lang="es" hreflang="es" data-title="Batería de ion de litio" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Litia-jona_akumulatoro" title="Litia-jona akumulatoro – Esperanto" lang="eo" hreflang="eo" data-title="Litia-jona akumulatoro" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Litio-ioizko_bateria" title="Litio-ioizko bateria – Basque" lang="eu" hreflang="eu" data-title="Litio-ioizko bateria" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A8%D8%A7%D8%AA%D8%B1%DB%8C_%DB%8C%D9%88%D9%86%E2%80%8C%D9%84%DB%8C%D8%AA%DB%8C%D9%85" title="باتری یون‌لیتیم – Persian" lang="fa" hreflang="fa" data-title="باتری یون‌لیتیم" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Accumulateur_lithium-ion" title="Accumulateur lithium-ion – French" lang="fr" hreflang="fr" data-title="Accumulateur lithium-ion" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%A6%AC%ED%8A%AC_%EC%9D%B4%EC%98%A8_%EC%A0%84%EC%A7%80" title="리튬 이온 전지 – Korean" lang="ko" hreflang="ko" data-title="리튬 이온 전지" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B2%E0%A5%80%E0%A4%A5%E0%A4%BF%E0%A4%AF%E0%A4%AE_%E0%A4%91%E0%A4%AF%E0%A4%A8_%E0%A4%AC%E0%A5%88%E0%A4%9F%E0%A4%B0%E0%A5%80" title="लीथियम ऑयन बैटरी – Hindi" lang="hi" hreflang="hi" data-title="लीथियम ऑयन बैटरी" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Litij-ionska_baterija" title="Litij-ionska baterija – Croatian" lang="hr" hreflang="hr" data-title="Litij-ionska baterija" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Baterai_ion_litium" title="Baterai ion litium – Indonesian" lang="id" hreflang="id" data-title="Baterai ion litium" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Li%C3%BE%C3%ADn-j%C3%B3na-rafhla%C3%B0a" title="Liþín-jóna-rafhlaða – Icelandic" lang="is" hreflang="is" data-title="Liþín-jóna-rafhlaða" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Accumulatore_agli_ioni_di_litio" title="Accumulatore agli ioni di litio – Italian" lang="it" hreflang="it" data-title="Accumulatore agli ioni di litio" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A1%D7%95%D7%9C%D7%9C%D7%AA_%D7%99%D7%95%D7%A0%D7%99_%D7%9C%D7%99%D7%AA%D7%99%D7%95%D7%9D" title="סוללת יוני ליתיום – Hebrew" lang="he" hreflang="he" data-title="סוללת יוני ליתיום" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9B%D0%B8%D1%82%D0%B8%D0%B9-%D0%B8%D0%BE%D0%BD%D0%B4%D1%8B_%D0%B1%D0%B0%D1%82%D0%B0%D1%80%D0%B5%D1%8F" title="Литий-ионды батарея – Kazakh" lang="kk" hreflang="kk" data-title="Литий-ионды батарея" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/L%C3%ADtiumion-akkumul%C3%A1tor" title="Lítiumion-akkumulátor – Hungarian" lang="hu" hreflang="hu" data-title="Lítiumion-akkumulátor" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%B2%E0%B4%BF%E0%B4%A5%E0%B4%BF%E0%B4%AF%E0%B4%82-%E0%B4%85%E0%B4%AF%E0%B5%BA_%E0%B4%AC%E0%B4%BE%E0%B4%B1%E0%B5%8D%E0%B4%B1%E0%B4%B1%E0%B4%BF" title="ലിഥിയം-അയൺ ബാറ്ററി – Malayalam" lang="ml" hreflang="ml" data-title="ലിഥിയം-അയൺ ബാറ്ററി" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Bateri_ion_litium" title="Bateri ion litium – Malay" lang="ms" hreflang="ms" data-title="Bateri ion litium" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Lithium-ion-accu" title="Lithium-ion-accu – Dutch" lang="nl" hreflang="nl" data-title="Lithium-ion-accu" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ne mw-list-item"><a href="https://ne.wikipedia.org/wiki/%E0%A4%B2%E0%A4%BF%E0%A4%A5%E0%A4%BF%E0%A4%AF%E0%A4%AE_%E0%A4%86%E0%A4%AF%E0%A4%A8_%E0%A4%AC%E0%A5%8D%E0%A4%AF%E0%A4%BE%E0%A4%9F%E0%A5%8D%E0%A4%B0%E0%A5%80" title="लिथियम आयन ब्याट्री – Nepali" lang="ne" hreflang="ne" data-title="लिथियम आयन ब्याट्री" data-language-autonym="नेपाली" data-language-local-name="Nepali" class="interlanguage-link-target"><span>नेपाली</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%AA%E3%83%81%E3%82%A6%E3%83%A0%E3%82%A4%E3%82%AA%E3%83%B3%E4%BA%8C%E6%AC%A1%E9%9B%BB%E6%B1%A0" title="リチウムイオン二次電池 – Japanese" lang="ja" hreflang="ja" data-title="リチウムイオン二次電池" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Litiumionbatteri" title="Litiumionbatteri – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Litiumionbatteri" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Akumulator_litowo-jonowy" title="Akumulator litowo-jonowy – Polish" lang="pl" hreflang="pl" data-title="Akumulator litowo-jonowy" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Bateria_de_i%C3%A3o_l%C3%ADtio" title="Bateria de ião lítio – Portuguese" lang="pt" hreflang="pt" data-title="Bateria de ião lítio" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Acumulator_litiu-ion" title="Acumulator litiu-ion – Romanian" lang="ro" hreflang="ro" data-title="Acumulator litiu-ion" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9B%D0%B8%D1%82%D0%B8%D0%B9-%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9_%D0%B0%D0%BA%D0%BA%D1%83%D0%BC%D1%83%D0%BB%D1%8F%D1%82%D0%BE%D1%80" title="Литий-ионный аккумулятор – Russian" lang="ru" hreflang="ru" data-title="Литий-ионный аккумулятор" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sat mw-list-item"><a href="https://sat.wikipedia.org/wiki/%E1%B1%9E%E1%B1%A4%E1%B1%9B%E1%B1%B7%E1%B1%A4%E1%B1%AD%E1%B1%9A%E1%B1%A2_%E1%B1%9F%E1%B1%AD%E1%B1%9A%E1%B1%B1_%E1%B1%B5%E1%B1%AE%E1%B1%B4%E1%B1%A8%E1%B1%A4" title="ᱞᱤᱛᱷᱤᱭᱚᱢ ᱟᱭᱚᱱ ᱵᱮᱴᱨᱤ – Santali" lang="sat" hreflang="sat" data-title="ᱞᱤᱛᱷᱤᱭᱚᱢ ᱟᱭᱚᱱ ᱵᱮᱴᱨᱤ" data-language-autonym="ᱥᱟᱱᱛᱟᱲᱤ" data-language-local-name="Santali" class="interlanguage-link-target"><span>ᱥᱟᱱᱛᱟᱲᱤ</span></a></li><li class="interlanguage-link interwiki-sco mw-list-item"><a href="https://sco.wikipedia.org/wiki/Lithium-ion_battery" title="Lithium-ion battery – Scots" lang="sco" hreflang="sco" data-title="Lithium-ion battery" data-language-autonym="Scots" data-language-local-name="Scots" class="interlanguage-link-target"><span>Scots</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Bateria_litium-jon" title="Bateria litium-jon – Albanian" lang="sq" hreflang="sq" data-title="Bateria litium-jon" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Lithium-ion_battery" title="Lithium-ion battery – Simple English" lang="en-simple" hreflang="en-simple" data-title="Lithium-ion battery" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Litij-ionska_baterija" title="Litij-ionska baterija – Slovenian" lang="sl" hreflang="sl" data-title="Litij-ionska baterija" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/Litijum-jonska_baterija" title="Litijum-jonska baterija – Serbian" lang="sr" hreflang="sr" data-title="Litijum-jonska baterija" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Litijum-jonska_baterija" title="Litijum-jonska baterija – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Litijum-jonska baterija" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Litiumioniakku" title="Litiumioniakku – Finnish" lang="fi" hreflang="fi" data-title="Litiumioniakku" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Litiumjonbatteri" title="Litiumjonbatteri – Swedish" lang="sv" hreflang="sv" data-title="Litiumjonbatteri" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%87%E0%AE%B2%E0%AE%BF%E0%AE%A4%E0%AF%8D%E0%AE%A4%E0%AE%BF%E0%AE%AF%E0%AE%AE%E0%AF%8D_%E0%AE%85%E0%AE%AF%E0%AE%A9%E0%AE%BF_%E0%AE%AE%E0%AE%BF%E0%AE%A9%E0%AF%8D%E0%AE%95%E0%AE%B2%E0%AE%AE%E0%AF%8D" title="இலித்தியம் அயனி மின்கலம் – Tamil" lang="ta" hreflang="ta" data-title="இலித்தியம் அயனி மின்கலம்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%B2%E0%B0%BF%E0%B0%A5%E0%B0%BF%E0%B0%AF%E0%B0%82_%E0%B0%85%E0%B0%AF%E0%B0%BE%E0%B0%A8%E0%B1%8D_%E0%B0%AC%E0%B1%8D%E0%B0%AF%E0%B0%BE%E0%B0%9F%E0%B0%B0%E0%B1%80" title="లిథియం అయాన్ బ్యాటరీ – Telugu" lang="te" hreflang="te" data-title="లిథియం అయాన్ బ్యాటరీ" data-language-autonym="తెలుగు" data-language-local-name="Telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B9%81%E0%B8%9A%E0%B8%95%E0%B9%80%E0%B8%95%E0%B8%AD%E0%B8%A3%E0%B8%B5%E0%B9%88%E0%B8%A5%E0%B8%B4%E0%B9%80%E0%B8%98%E0%B8%B5%E0%B8%A2%E0%B8%A1%E0%B9%84%E0%B8%AD%E0%B8%AD%E0%B8%AD%E0%B8%99" title="แบตเตอรี่ลิเธียมไอออน – Thai" lang="th" hreflang="th" data-title="แบตเตอรี่ลิเธียมไอออน" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Lityum_iyon_pil" title="Lityum iyon pil – Turkish" lang="tr" hreflang="tr" data-title="Lityum iyon pil" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tk mw-list-item"><a href="https://tk.wikipedia.org/wiki/Li%C2%ADti%C3%BD_%E2%80%93_ion_ak%C2%ADku%C2%ADmul%C2%AD%C3%BDa%C2%ADtor%C2%AD%C2%AD" title="Li­tiý – ion ak­ku­mul­ýa­tor­­ – Turkmen" lang="tk" hreflang="tk" data-title="Li­tiý – ion ak­ku­mul­ýa­tor­­" data-language-autonym="Türkmençe" data-language-local-name="Turkmen" class="interlanguage-link-target"><span>Türkmençe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9B%D1%96%D1%82%D1%96%D0%B9-%D1%96%D0%BE%D0%BD%D0%BD%D0%B8%D0%B9_%D0%B0%D0%BA%D1%83%D0%BC%D1%83%D0%BB%D1%8F%D1%82%D0%BE%D1%80" title="Літій-іонний акумулятор – Ukrainian" lang="uk" hreflang="uk" data-title="Літій-іонний акумулятор" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Pin_Li-ion" title="Pin Li-ion – Vietnamese" lang="vi" hreflang="vi" data-title="Pin Li-ion" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E9%8B%B0%E9%9B%A2%E5%AD%90%E9%9B%BB%E6%B1%A0" title="鋰離子電池 – Cantonese" lang="yue" hreflang="yue" data-title="鋰離子電池" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E9%94%82%E7%A6%BB%E5%AD%90%E7%94%B5%E6%B1%A0" title="锂离子电池 – Chinese" lang="zh" hreflang="zh" data-title="锂离子电池" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2822895#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Lithium-ion_battery" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Lithium-ion_battery" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Lithium-ion_battery"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Lithium-ion_battery&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Lithium-ion_battery"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Lithium-ion_battery&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Lithium-ion_battery" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Lithium-ion_battery" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Lithium-ion_battery&amp;oldid=1276147824" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Lithium-ion_battery&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Lithium-ion_battery&amp;id=1276147824&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLithium-ion_battery"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLithium-ion_battery"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Lithium-ion_battery&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Lithium-ion_battery&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Lithium-ion_batteries" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2822895" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Type of rechargeable battery</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">"Lithium-ion" redirects here. For the metal element, see <a href="/wiki/Lithium" title="Lithium">Lithium</a>.</div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">"Liion" redirects here. Not to be confused with <a href="/wiki/Lion" title="Lion">Lion</a>.</div> <p class="mw-empty-elt"> </p> <style data-mw-deduplicate="TemplateStyles:r1257001546">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><table class="infobox"><caption class="infobox-title">Lithium-ion battery</caption><tbody><tr><td colspan="2" class="infobox-image"><span class="mw-default-size" typeof="mw:File/Frameless"><a href="/wiki/File:Nokia_Battery.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Nokia_Battery.jpg/220px-Nokia_Battery.jpg" decoding="async" width="220" height="160" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Nokia_Battery.jpg/330px-Nokia_Battery.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b2/Nokia_Battery.jpg/440px-Nokia_Battery.jpg 2x" data-file-width="2425" data-file-height="1769" /></a></span><div class="infobox-caption">A 3.6&#160;V Li-ion battery from a <a href="/wiki/Nokia_3310" title="Nokia 3310">Nokia 3310</a> <a href="/wiki/Mobile_phone" title="Mobile phone">mobile phone</a></div></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Specific_energy" title="Specific energy">Specific energy</a></th><td class="infobox-data">1–270&#160;W⋅h/kg (3.6–972.0&#160;kJ/kg)<sup id="cite_ref-mw_1-0" class="reference"><a href="#cite_note-mw-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Energy_density" title="Energy density">Energy density</a></th><td class="infobox-data">250–693&#160;W⋅h/L (900–2,490&#160;J/cm<sup>3</sup>)<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Power-to-weight_ratio" title="Power-to-weight ratio">Specific power</a></th><td class="infobox-data"><span class="nowrap">1–10,000 W/kg</span><sup id="cite_ref-mw_1-1" class="reference"><a href="#cite_note-mw-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></td></tr><tr><th scope="row" class="infobox-label">Charge/discharge efficiency</th><td class="infobox-data">80–90%<sup id="cite_ref-Valøen-2007_4-0" class="reference"><a href="#cite_note-Valøen-2007-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup></td></tr><tr><th scope="row" class="infobox-label">Energy/consumer-price</th><td class="infobox-data">8.7 Wh/US$ (US$115/kWh)<sup id="cite_ref-Bloomberg-2021_5-0" class="reference"><a href="#cite_note-Bloomberg-2021-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup></td></tr><tr><th scope="row" class="infobox-label">Self-discharge rate</th><td class="infobox-data">0.35% to 2.5% per month depending on state of charge<sup id="cite_ref-Redondo-Iglesias-2016_6-0" class="reference"><a href="#cite_note-Redondo-Iglesias-2016-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup></td></tr><tr><th scope="row" class="infobox-label">Cycle durability</th><td class="infobox-data"><span class="nowrap">400–1,200 <a href="/wiki/Battery_cycle" class="mw-redirect" title="Battery cycle">cycles</a></span> <sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup></td></tr><tr><th scope="row" class="infobox-label">Nominal cell voltage</th><td class="infobox-data"><span class="nowrap">3.6 / 3.7 / 3.8 / 3.85 <a href="/wiki/Volts" class="mw-redirect" title="Volts">V</a>,</span> <span class="nowrap">LiFePO<sub>4</sub> 3.2 <a href="/wiki/Volts" class="mw-redirect" title="Volts">V</a>,</span> <span class="nowrap">Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> 2.3 <a href="/wiki/Volts" class="mw-redirect" title="Volts">V</a></span></td></tr></tbody></table> <p>A <b>lithium-ion</b> or <b>Li-ion battery</b> is a type of <a href="/wiki/Rechargeable_battery" title="Rechargeable battery">rechargeable battery</a> that uses the reversible <a href="/wiki/Intercalation_(chemistry)" title="Intercalation (chemistry)">intercalation</a> of Li<sup>+</sup> ions into <a href="/wiki/Electronically" class="mw-redirect" title="Electronically">electronically</a> <a href="/wiki/Electrical_conductor" title="Electrical conductor">conducting</a> solids to store energy. In comparison with other commercial <a href="/wiki/Rechargeable_batteries" class="mw-redirect" title="Rechargeable batteries">rechargeable batteries</a>, Li-ion batteries are characterized by higher <a href="/wiki/Specific_energy" title="Specific energy">specific energy</a>, higher <a href="/wiki/Energy_density" title="Energy density">energy density</a>, higher <a href="/wiki/Energy_efficiency_(physics)" class="mw-redirect" title="Energy efficiency (physics)">energy efficiency</a>, a longer <a href="/wiki/Cycle_life" class="mw-redirect" title="Cycle life">cycle life</a>, and a longer <a href="/wiki/Durability" title="Durability">calendar life</a>. Also noteworthy is a dramatic improvement in lithium-ion battery properties after their market introduction in 1991: over the following 30 years, their volumetric energy density increased threefold while their cost dropped tenfold.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> In late 2024 global demand passed 1 <a href="/wiki/Metric_prefix" title="Metric prefix">Tera</a><a href="/wiki/Kilowatt-hour" title="Kilowatt-hour">watt-hour</a> per year,<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> while production capacity was more than twice that.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p><p>The invention and commercialization of Li-ion batteries may have had one of the greatest impacts of all <a href="/wiki/Timeline_of_historic_inventions" title="Timeline of historic inventions">technologies in human history</a>,<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> as recognized by the 2019 <a href="/wiki/List_of_Nobel_laureates_in_Chemistry" title="List of Nobel laureates in Chemistry">Nobel Prize in Chemistry</a>. More specifically, Li-ion batteries enabled portable <a href="/wiki/Consumer_electronics" title="Consumer electronics">consumer electronics</a>, <a href="/wiki/Laptop_computers" class="mw-redirect" title="Laptop computers">laptop computers</a>, <a href="/wiki/Cellular_phones" class="mw-redirect" title="Cellular phones">cellular phones</a>, and <a href="/wiki/Electric_cars" class="mw-redirect" title="Electric cars">electric cars</a>. Li-ion batteries also see significant use for <a href="/wiki/Battery_storage_power_station" class="mw-redirect" title="Battery storage power station">grid-scale energy storage</a> as well as military and <a href="/wiki/Aerospace" title="Aerospace">aerospace</a> applications. </p><p>Lithium-ion cells can be manufactured to optimize energy or power density.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> Handheld electronics mostly use <a href="/wiki/Lithium_polymer_battery" title="Lithium polymer battery">lithium polymer batteries</a> (with a polymer gel as an electrolyte), a <a href="/wiki/Lithium_cobalt_oxide" title="Lithium cobalt oxide">lithium cobalt oxide</a> (<span class="chemf nowrap">LiCoO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span>) cathode material, and a <a href="/wiki/Graphite" title="Graphite">graphite</a> anode, which together offer high energy density.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Ellis-2020_14-0" class="reference"><a href="#cite_note-Ellis-2020-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Lithium_iron_phosphate" title="Lithium iron phosphate">Lithium iron phosphate</a> (<span class="chemf nowrap">LiFePO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span>), <a href="/wiki/Lithium_ion_manganese_oxide_battery" title="Lithium ion manganese oxide battery">lithium manganese oxide</a> (<span class="chemf nowrap">LiMn<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span>O<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span> <a href="/wiki/Spinel" title="Spinel">spinel</a>, or <span class="chemf nowrap">Li<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span>MnO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span></span></span>-based lithium-rich layered materials, LMR-NMC), and <a href="/wiki/Lithium_nickel_manganese_cobalt_oxide" class="mw-redirect" title="Lithium nickel manganese cobalt oxide">lithium nickel manganese cobalt oxide</a> (<span class="chemf nowrap">LiNiMnCoO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span> or NMC) may offer longer life and a higher discharge rate. NMC and its derivatives are widely used in the <a href="/wiki/Electrification_of_transport" class="mw-redirect" title="Electrification of transport">electrification of transport</a>, one of the main technologies (combined with <a href="/wiki/Renewable_energy" title="Renewable energy">renewable energy</a>) for reducing <a href="/wiki/Greenhouse_gas_emissions" title="Greenhouse gas emissions">greenhouse gas emissions from vehicles</a>.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/M._Stanley_Whittingham" title="M. Stanley Whittingham">M. Stanley Whittingham</a> conceived <a href="/wiki/Intercalation_(chemistry)" title="Intercalation (chemistry)">intercalation</a> electrodes in the 1970s and created the first rechargeable lithium-ion battery, based on a <a href="/wiki/Titanium_disulfide" title="Titanium disulfide">titanium disulfide</a> cathode and a lithium-aluminium anode, although it suffered from safety problems and was never commercialized.<sup id="cite_ref-TRFSUNY-2017_16-0" class="reference"><a href="#cite_note-TRFSUNY-2017-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/John_Goodenough" class="mw-redirect" title="John Goodenough">John Goodenough</a> expanded on this work in 1980 by using <a href="/wiki/Lithium_cobalt_oxide" title="Lithium cobalt oxide">lithium cobalt oxide</a> as a cathode.<sup id="cite_ref-NobelPrize-2019_17-0" class="reference"><a href="#cite_note-NobelPrize-2019-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> The first prototype of the modern Li-ion battery, which uses a carbonaceous anode rather than lithium metal, was developed by <a href="/wiki/Akira_Yoshino" title="Akira Yoshino">Akira Yoshino</a> in 1985 and commercialized by a <a href="/wiki/Sony" title="Sony">Sony</a> and <a href="/wiki/Asahi_Kasei" title="Asahi Kasei">Asahi Kasei</a> team led by Yoshio Nishi in 1991.<sup id="cite_ref-NAE_18-0" class="reference"><a href="#cite_note-NAE-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> Whittingham, Goodenough, and Yoshino were awarded the 2019 <a href="/wiki/Nobel_Prize_in_Chemistry" title="Nobel Prize in Chemistry">Nobel Prize in Chemistry</a> for their contributions to the development of lithium-ion batteries. </p><p>Lithium-ion batteries can be a safety hazard if not properly engineered and manufactured because they have flammable electrolytes that, if damaged or incorrectly charged, can lead to explosions and fires. Much progress has been made in the development and manufacturing of safe lithium-ion batteries.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> Lithium-ion <a href="/wiki/Solid-state_battery" title="Solid-state battery">solid-state batteries</a> are being developed to eliminate the flammable electrolyte. Improperly <a href="/wiki/Battery_recycling" title="Battery recycling">recycled batteries</a> can create toxic waste, especially from toxic metals, and are at risk of fire. Moreover, both <a href="/wiki/Lithium" title="Lithium">lithium</a> and other key strategic minerals used in batteries have significant issues at extraction, with lithium being water intensive in often arid regions and other minerals used in some Li-ion chemistries potentially being <a href="/wiki/Conflict_resource" class="mw-redirect" title="Conflict resource">conflict minerals</a> such as <a href="/wiki/Cobalt" title="Cobalt">cobalt</a>.<sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources in the body of the article. (April 2024)">not verified in body</span></a></i>&#93;</sup> Both <a href="/wiki/Environmental_impacts_of_lithium-ion_batteries" title="Environmental impacts of lithium-ion batteries">environmental issues</a> have encouraged some researchers to improve mineral efficiency and find alternatives such as <a href="/wiki/Lithium_iron_phosphate" title="Lithium iron phosphate">lithium iron phosphate</a> lithium-ion chemistries or non-lithium-based battery chemistries like <a href="/wiki/Iron-air_battery" class="mw-redirect" title="Iron-air battery">iron-air batteries</a>. </p><p>There are at least 12 different chemistries of Li-ion batteries; see "<a href="/wiki/List_of_battery_types" title="List of battery types">List of battery types</a>." </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/History_of_the_lithium-ion_battery" title="History of the lithium-ion battery">History of the lithium-ion battery</a></div> <p>Research on rechargeable Li-ion batteries dates to the 1960s; one of the earliest examples is a <span class="chemf nowrap">CuF<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span>/Li battery developed by <a href="/wiki/NASA" title="NASA">NASA</a> in 1965. The breakthrough that produced the earliest form of the modern Li-ion battery was made by British chemist <a href="/wiki/M._Stanley_Whittingham" title="M. Stanley Whittingham">M. Stanley Whittingham</a> in 1974, who first used <a href="/wiki/Titanium_disulfide" title="Titanium disulfide">titanium disulfide</a> (<span class="chemf nowrap">TiS<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span>) as a cathode material, which has a layered structure that can <a href="/wiki/Intercalation_(chemistry)" title="Intercalation (chemistry)">take in lithium ions</a> without significant changes to its <a href="/wiki/Crystal_structure" title="Crystal structure">crystal structure</a>. <a href="/wiki/Exxon" class="mw-redirect" title="Exxon">Exxon</a> tried to commercialize this battery in the late 1970s, but found the synthesis expensive and complex, as <span class="chemf nowrap">TiS<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span> is sensitive to moisture and releases toxic <a href="/wiki/Hydrogen_sulfide" title="Hydrogen sulfide">hydrogen sulfide (<span class="chemf nowrap">H<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span>S</span>)</a> gas on contact with water. More prohibitively, the batteries were also prone to spontaneously catch fire due to the presence of metallic lithium in the cells. For this, and other reasons, Exxon discontinued the development of Whittingham's lithium-titanium disulfide battery.<sup id="cite_ref-Li-2018a_20-0" class="reference"><a href="#cite_note-Li-2018a-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 1980, working in separate groups Ned A. Godshall et al.,<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> and, shortly thereafter, <a href="/wiki/Koichi_Mizushima_(scientist)" title="Koichi Mizushima (scientist)">Koichi Mizushima</a> and <a href="/wiki/John_B._Goodenough" title="John B. Goodenough">John B. Goodenough</a>, after testing a range of alternative materials, replaced <span class="chemf nowrap">TiS<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span> with <a href="/wiki/Lithium_cobalt_oxide" title="Lithium cobalt oxide">lithium cobalt oxide</a> (<span class="chemf nowrap">LiCoO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span>, or LCO), which has a similar layered structure but offers a higher voltage and is much more stable in air. This material would later be used in the first commercial Li-ion battery, although it did not, on its own, resolve the persistent issue of flammability.<sup id="cite_ref-Li-2018a_20-1" class="reference"><a href="#cite_note-Li-2018a-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p><p>These early attempts to develop rechargeable Li-ion batteries used lithium metal anodes, which were ultimately abandoned due to safety concerns, as lithium metal is unstable and prone to <a href="/wiki/Dendrite_(crystal)" title="Dendrite (crystal)">dendrite</a> formation, which can cause <a href="/wiki/Short_circuit" title="Short circuit">short-circuiting</a>. The eventual solution was to use an intercalation anode, similar to that used for the cathode, which prevents the formation of lithium metal during battery charging. The first to demonstrate lithium ion reversible intercalation into graphite anodes was <a href="/w/index.php?title=J%C3%BCrgen_Otto_Besenhard&amp;action=edit&amp;redlink=1" class="new" title="Jürgen Otto Besenhard (page does not exist)">Jürgen Otto Besenhard</a> in 1974.<sup id="cite_ref-Besenhard-1974_24-0" class="reference"><a href="#cite_note-Besenhard-1974-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Li-2018b_25-0" class="reference"><a href="#cite_note-Li-2018b-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> Besenhard used organic solvents such as carbonates, however these solvents decomposed rapidly providing short battery cycle life. Later, in 1980, <a href="/wiki/Rachid_Yazami" title="Rachid Yazami">Rachid Yazami</a> used a solid organic electrolyte, <a href="/wiki/Polyethylene_oxide" class="mw-redirect" title="Polyethylene oxide">polyethylene oxide</a>, which was more stable.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 1985, <a href="/wiki/Akira_Yoshino" title="Akira Yoshino">Akira Yoshino</a> at <a href="/wiki/Asahi_Kasei" title="Asahi Kasei">Asahi Kasei</a> Corporation discovered that <a href="/wiki/Petroleum_coke" title="Petroleum coke">petroleum coke</a>, a less graphitized form of carbon, can reversibly intercalate Li-ions at a low potential of ~0.5 V relative to Li+ /Li without structural degradation.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> Its structural stability originates from its <a href="/wiki/Amorphous_carbon" title="Amorphous carbon">amorphous carbon</a> regions, which serving as covalent joints to pin the layers together. Although it has a lower capacity compared to graphite (~Li0.5C6, 186&#160;mAh g–1), it became the first commercial intercalation anode for Li-ion batteries owing to its cycling stability. In 1987, Yoshino patented what would become the first commercial lithium-ion battery using this anode. He used Goodenough's previously reported <a href="/wiki/LiCoO2" class="mw-redirect" title="LiCoO2">LiCoO<sub>2</sub></a> as the cathode and a <a href="/wiki/Carbonate_ester" title="Carbonate ester">carbonate ester</a>-based electrolyte. The battery was assembled in the discharged state, which made it safer and cheaper to manufacture. In 1991, using Yoshino's design, <a href="/wiki/Sony" title="Sony">Sony</a> began producing and selling the world's first rechargeable lithium-ion batteries. The following year, a <a href="/wiki/Joint_venture" title="Joint venture">joint venture</a> between <a href="/wiki/Toshiba" title="Toshiba">Toshiba</a> and <a href="/wiki/Asahi_Kasei" title="Asahi Kasei">Asahi Kasei</a> Co. also released a lithium-ion battery.<sup id="cite_ref-Li-2018a_20-2" class="reference"><a href="#cite_note-Li-2018a-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p><p>Significant improvements in energy density were achieved in the 1990s by replacing Yoshino's soft carbon anode first with <a href="/wiki/Hard_carbon" title="Hard carbon">hard carbon</a> and later with graphite. In 1990, <a href="/wiki/Jeff_Dahn" title="Jeff Dahn">Jeff Dahn</a> and two colleagues at <a href="/wiki/Dalhousie_University" title="Dalhousie University">Dalhousie University</a> (Canada) reported reversible intercalation of lithium ions into graphite in the presence of <a href="/wiki/Ethylene_carbonate" title="Ethylene carbonate">ethylene carbonate</a> solvent (which is solid at room temperature and is mixed with other solvents to make a liquid). This represented the final innovation of the era that created the basic design of the modern lithium-ion battery.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 2010, global lithium-ion battery production capacity was 20 gigawatt-hours.<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> By 2016, it was 28 GWh, with 16.4 GWh in China.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> Global production capacity was 767 GWh in 2020, with China accounting for 75%.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> Production in 2021 is estimated by various sources to be between 200 and 600 GWh, and predictions for 2023 range from 400 to 1,100 GWh.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 2012, <a href="/wiki/John_B._Goodenough" title="John B. Goodenough">John B. Goodenough</a>, <a href="/wiki/Rachid_Yazami" title="Rachid Yazami">Rachid Yazami</a> and <a href="/wiki/Akira_Yoshino" title="Akira Yoshino">Akira Yoshino</a> received the 2012 IEEE Medal for Environmental and Safety Technologies for developing the lithium-ion battery; Goodenough, Whittingham, and Yoshino were awarded the 2019 <a href="/wiki/Nobel_Prize_in_Chemistry" title="Nobel Prize in Chemistry">Nobel Prize in Chemistry</a> "for the development of lithium-ion batteries".<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Jeff_Dahn" title="Jeff Dahn">Jeff Dahn</a> received the ECS Battery Division Technology Award (2011) and the Yeager award from the International Battery Materials Association (2016). </p><p>In April 2023, <a href="/wiki/CATL" title="CATL">CATL</a> announced that it would begin scaled-up production of its semi-solid condensed matter battery that produces a then record 500 <a href="/wiki/Wh/kg" class="mw-redirect" title="Wh/kg">Wh/kg</a>. They use electrodes made from a gelled material, requiring fewer binding agents. This in turn shortens the manufacturing cycle. One potential application is in battery-powered airplanes.<sup id="cite_ref-Hanley-2023_35-0" class="reference"><a href="#cite_note-Hanley-2023-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-China-2023_36-0" class="reference"><a href="#cite_note-China-2023-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Warwick-2023_37-0" class="reference"><a href="#cite_note-Warwick-2023-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> Another new development of lithium-ion batteries are <a href="/wiki/Flow_batteries" class="mw-redirect" title="Flow batteries">flow batteries</a> with redox-targeted solids, that use no binders or electron-conducting additives, and allow for completely independent scaling of energy and power.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Design">Design</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=2" title="Edit section: Design"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Lithium-Ion_Cell_cylindric.JPG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6b/Lithium-Ion_Cell_cylindric.JPG/220px-Lithium-Ion_Cell_cylindric.JPG" decoding="async" width="220" height="204" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6b/Lithium-Ion_Cell_cylindric.JPG/330px-Lithium-Ion_Cell_cylindric.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6b/Lithium-Ion_Cell_cylindric.JPG/440px-Lithium-Ion_Cell_cylindric.JPG 2x" data-file-width="2737" data-file-height="2532" /></a><figcaption>Cylindrical Panasonic <a href="/wiki/18650_battery" title="18650 battery">18650</a> lithium-ion cell before closing.</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Lithium_Ionen_Akku_%C3%9Cberwachungselektronik.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c0/Lithium_Ionen_Akku_%C3%9Cberwachungselektronik.jpg/220px-Lithium_Ionen_Akku_%C3%9Cberwachungselektronik.jpg" decoding="async" width="220" height="165" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c0/Lithium_Ionen_Akku_%C3%9Cberwachungselektronik.jpg/330px-Lithium_Ionen_Akku_%C3%9Cberwachungselektronik.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c0/Lithium_Ionen_Akku_%C3%9Cberwachungselektronik.jpg/440px-Lithium_Ionen_Akku_%C3%9Cberwachungselektronik.jpg 2x" data-file-width="2524" data-file-height="1892" /></a><figcaption>Lithium-ion battery monitoring electronics (over-charge and deep-discharge protection)</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Liion-18650-AA-battery.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2a/Liion-18650-AA-battery.jpg/170px-Liion-18650-AA-battery.jpg" decoding="async" width="170" height="273" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2a/Liion-18650-AA-battery.jpg/255px-Liion-18650-AA-battery.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2a/Liion-18650-AA-battery.jpg/340px-Liion-18650-AA-battery.jpg 2x" data-file-width="716" data-file-height="1150" /></a><figcaption>Left: AA alkaline battery. Right: 18650 lithium ion battery</figcaption></figure> <p>Generally, the negative electrode of a conventional lithium-ion cell is <a href="/wiki/Graphite" title="Graphite">graphite</a> made from <a href="/wiki/Carbon" title="Carbon">carbon</a>. The positive electrode is typically a metal <a href="/wiki/Oxide" title="Oxide">oxide</a> or phosphate. The <a href="/wiki/Electrolyte" title="Electrolyte">electrolyte</a> is a <a href="/wiki/Lithium" title="Lithium">lithium</a> <a href="/wiki/Salt_(chemistry)" title="Salt (chemistry)">salt</a> in an <a href="/wiki/Organic_compound" title="Organic compound">organic</a> <a href="/wiki/Solvent" title="Solvent">solvent</a>.<sup id="cite_ref-Silberberg-2006_39-0" class="reference"><a href="#cite_note-Silberberg-2006-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> The negative electrode (which is the <a href="/wiki/Anode" title="Anode">anode</a> when the cell is discharging) and the positive electrode (which is the <a href="/wiki/Cathode" title="Cathode">cathode</a> when discharging) are prevented from shorting by a separator.<sup id="cite_ref-Li-2021_40-0" class="reference"><a href="#cite_note-Li-2021-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> The electrodes are connected to the powered circuit through two pieces of metal called current collectors.<sup id="cite_ref-Zhu-2020_41-0" class="reference"><a href="#cite_note-Zhu-2020-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> </p><p>The negative and positive electrodes swap their electrochemical roles (<a href="/wiki/Anode" title="Anode">anode</a> and <a href="/wiki/Cathode" title="Cathode">cathode</a>) when the cell is charged. Despite this, in discussions of battery design the negative electrode of a rechargeable cell is often just called "the anode" and the positive electrode "the cathode". </p><p>In its fully lithiated state of LiC<sub>6</sub>, graphite correlates to a theoretical capacity of 1339 <a href="/wiki/Coulomb" title="Coulomb">coulombs</a> per gram (372 mAh/g).<sup id="cite_ref-Shao-2020_42-0" class="reference"><a href="#cite_note-Shao-2020-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> The positive electrode is generally one of three materials: a layered <a href="/wiki/Oxide" title="Oxide">oxide</a> (such as <a href="/wiki/Lithium_cobalt_oxide" title="Lithium cobalt oxide">lithium cobalt oxide</a>), a <a href="/wiki/Polyelectrolyte" title="Polyelectrolyte">polyanion</a> (such as <a href="/wiki/Lithium_iron_phosphate" title="Lithium iron phosphate">lithium iron phosphate</a>) or a <a href="/wiki/Spinel" title="Spinel">spinel</a> (such as lithium <a href="/wiki/Manganese_oxide" title="Manganese oxide">manganese oxide</a>).<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> More experimental materials include <a href="/wiki/Graphene" title="Graphene">graphene</a>-containing electrodes, although these remain far from commercially viable due to their high cost.<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> </p><p>Lithium reacts vigorously with water to form <a href="/wiki/Lithium_hydroxide" title="Lithium hydroxide">lithium hydroxide</a> (LiOH) and <a href="/wiki/Hydrogen" title="Hydrogen">hydrogen</a> gas. Thus, a non-aqueous electrolyte is typically used, and a sealed container rigidly excludes moisture from the battery pack. The non-aqueous electrolyte is typically a mixture of organic carbonates such as <a href="/wiki/Ethylene_carbonate" title="Ethylene carbonate">ethylene carbonate</a> and <a href="/wiki/Propylene_carbonate" title="Propylene carbonate">propylene carbonate</a> containing <a href="/wiki/Coordination_complex" title="Coordination complex">complexes</a> of lithium ions.<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Ethylene_carbonate" title="Ethylene carbonate">Ethylene carbonate</a> is essential for making solid electrolyte interphase on the carbon anode,<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> but since it is solid at room temperature, a liquid <a href="/wiki/Solvent" title="Solvent">solvent</a> (such as <a href="/wiki/Propylene_carbonate" title="Propylene carbonate">propylene carbonate</a> or <a href="/wiki/Diethyl_carbonate" title="Diethyl carbonate">diethyl carbonate</a>) is added. </p><p>The electrolyte salt is almost always<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (April 2024)">citation needed</span></a></i>&#93;</sup> <a href="/wiki/Lithium_hexafluorophosphate" title="Lithium hexafluorophosphate">lithium hexafluorophosphate</a> (<span class="chemf nowrap">LiPF<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">6</sub></span></span></span>), which combines good <a href="/wiki/Conductivity_(electrolytic)" title="Conductivity (electrolytic)">ionic conductivity</a> with chemical and electrochemical stability. The <a href="/wiki/Hexafluorophosphate" title="Hexafluorophosphate">hexafluorophosphate</a> <a href="/wiki/Ion#Anions_and_cations" title="Ion">anion</a> is essential for <a href="/wiki/Passivation_(chemistry)" title="Passivation (chemistry)">passivating</a> the aluminium current collector used for the positive electrode. A titanium tab is ultrasonically <a href="/wiki/Welded" class="mw-redirect" title="Welded">welded</a> to the aluminium current collector. Other salts like <a href="/wiki/Lithium_perchlorate" title="Lithium perchlorate">lithium perchlorate</a> (<span class="chemf nowrap">LiClO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span>), <a href="/wiki/Lithium_tetrafluoroborate" title="Lithium tetrafluoroborate">lithium tetrafluoroborate</a> (<span class="chemf nowrap">LiBF<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span>), and <a href="/wiki/Lithium_bis(trifluoromethanesulfonyl)imide" title="Lithium bis(trifluoromethanesulfonyl)imide">lithium bis(trifluoromethanesulfonyl)imide</a> (<span class="chemf nowrap">LiC<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span>F<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">6</sub></span></span>NO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span>S<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span>) are frequently used in research in tab-less <a href="/wiki/Button_cell" title="Button cell">coin cells</a>, but are not usable in larger format cells,<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> often because they are not compatible with the aluminium current collector. Copper (with a <a href="/wiki/Spot_welding" title="Spot welding">spot-welded</a> <a href="/wiki/Nickel" title="Nickel">nickel</a> tab) is used as the current collector at the negative electrode. </p><p>Current collector design and surface treatments may take various forms: foil, mesh, foam (dealloyed), etched (wholly or selectively), and coated (with various materials) to improve electrical characteristics.<sup id="cite_ref-Zhu-2020_41-1" class="reference"><a href="#cite_note-Zhu-2020-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> </p><p>Depending on materials choices, the <a href="/wiki/Voltage" title="Voltage">voltage</a>, <a href="/wiki/Energy_density" title="Energy density">energy density</a>, life, and safety of a lithium-ion cell can change dramatically. Current effort has been exploring the use of <a href="/wiki/Nanoarchitectures_for_lithium-ion_batteries" title="Nanoarchitectures for lithium-ion batteries">novel architectures</a> using <a href="/wiki/Nanotechnology" title="Nanotechnology">nanotechnology</a> to improve performance. Areas of interest include nano-scale electrode materials and alternative electrode structures.<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Electrochemistry">Electrochemistry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=3" title="Edit section: Electrochemistry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The reactants in the electrochemical reactions in a lithium-ion cell are the materials of the electrodes, both of which are compounds containing lithium atoms. Although many thousands of different materials have been investigated for use in lithium-ion batteries, only a very small number are commercially usable. All commercial Li-ion cells use <a href="/wiki/Intercalation_(chemistry)" title="Intercalation (chemistry)">intercalation</a> compounds as active materials.<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> The negative electrode is usually <a href="/wiki/Graphite" title="Graphite">graphite</a>, although <a href="/wiki/Lithium%E2%80%93silicon_battery" title="Lithium–silicon battery">silicon</a> is often mixed in to increase the capacity. The electrolyte is usually <a href="/wiki/Lithium_hexafluorophosphate" title="Lithium hexafluorophosphate">lithium hexafluorophosphate</a>, dissolved in a mixture of <a href="/wiki/Carbonate_ester" title="Carbonate ester">organic carbonates</a>. A number of different materials are used for the positive electrode, such as <a href="/wiki/LiCoO2" class="mw-redirect" title="LiCoO2">LiCoO<sub>2</sub></a>, <a href="/wiki/LiFePO4" class="mw-redirect" title="LiFePO4">LiFePO<sub>4</sub></a>, and <a href="/wiki/Lithium_nickel_manganese_cobalt_oxides" title="Lithium nickel manganese cobalt oxides">lithium nickel manganese cobalt oxides</a>. </p><p>During cell discharge the negative electrode is the <a href="/wiki/Anode" title="Anode">anode</a> and the positive electrode the <a href="/wiki/Cathode" title="Cathode">cathode</a>: electrons flow from the anode to the cathode through the external circuit. An oxidation <a href="/wiki/Half-reaction" title="Half-reaction">half-reaction</a> at the anode produces positively charged lithium ions and negatively charged electrons. The oxidation half-reaction may also produce uncharged material that remains at the anode. Lithium ions move through the electrolyte; electrons move through the external circuit toward the cathode where they recombine with the cathode material in a reduction half-reaction. The electrolyte provides a conductive medium for lithium ions but does not partake in the electrochemical reaction. The reactions during discharge lower the chemical potential of the cell, so discharging transfers <a href="/wiki/Energy" title="Energy">energy</a> from the cell to wherever the electric current dissipates its energy, mostly in the external circuit. </p><p>During charging these reactions and transports go in the opposite direction: electrons move from the positive electrode to the negative electrode through the external circuit. To charge the cell the external circuit has to provide electrical energy. This energy is then stored as chemical energy in the cell (with some loss, e. g., due to <a href="/wiki/Coulombic_efficiency" class="mw-redirect" title="Coulombic efficiency">coulombic efficiency</a> lower than 1). </p><p>Both electrodes allow lithium ions to move in and out of their structures with a process called <i>insertion</i> (<i><a href="/wiki/Intercalation_(chemistry)" title="Intercalation (chemistry)">intercalation</a></i>) or <i>extraction</i> (<i>deintercalation</i>), respectively. </p><p>As the lithium ions "rock" back and forth between the two electrodes, these batteries are also known as "rocking-chair batteries" or "swing batteries" (a term given by some European industries).<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> </p><p>The following equations exemplify the chemistry (left to right: discharging, right to left: charging). </p><p>The negative electrode half-reaction for the graphite is<sup id="cite_ref-Bergveld-2002_52-0" class="reference"><a href="#cite_note-Bergveld-2002-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Dhameja-2001_53-0" class="reference"><a href="#cite_note-Dhameja-2001-53"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\ce {LiC6 &lt;=&gt; C6 + Li+ + e^-}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mtext>LiC</mtext> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mpadded height="0" depth="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">&#x21BD;<!-- ↽ --></mo> </mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </mpadded> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">&#x21C0;<!-- ⇀ --></mo> </mrow> </mrow> </mstyle> </mrow> </mover> </mrow> <msubsup> <mtext>C</mtext> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> <mo>+</mo> <msup> <mtext>Li</mtext> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>+</mo> <msup> <mtext>e</mtext> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\ce {LiC6 &lt;=&gt; C6 + Li+ + e^-}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0169904f54e5d1a00fbca78f4bf8afa11dc93667" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.047ex; height:3.343ex;" alt="{\displaystyle {\ce {LiC6 &lt;=&gt; C6 + Li+ + e^-}}}"></span></dd></dl> <p>The positive electrode half-reaction in the lithium-doped cobalt oxide substrate is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\ce {CoO2 + Li+ + e- &lt;=&gt; LiCoO2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mtext>CoO</mtext> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> <mo>+</mo> <msup> <mtext>Li</mtext> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>+</mo> <msup> <mtext>e</mtext> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mpadded height="0" depth="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">&#x21BD;<!-- ↽ --></mo> </mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </mpadded> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">&#x21C0;<!-- ⇀ --></mo> </mrow> </mrow> </mstyle> </mrow> </mover> </mrow> <msubsup> <mtext>LiCoO</mtext> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\ce {CoO2 + Li+ + e- &lt;=&gt; LiCoO2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30cdc79eb9e6715e9bf38da3936c6595703842bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:29.988ex; height:3.343ex;" alt="{\displaystyle {\ce {CoO2 + Li+ + e- &lt;=&gt; LiCoO2}}}"></span></dd></dl> <p>The full reaction being </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\ce {LiC6 + CoO2 &lt;=&gt; C6 + LiCoO2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mtext>LiC</mtext> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> <mo>+</mo> <msubsup> <mtext>CoO</mtext> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mpadded height="0" depth="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">&#x21BD;<!-- ↽ --></mo> </mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </mpadded> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">&#x21C0;<!-- ⇀ --></mo> </mrow> </mrow> </mstyle> </mrow> </mover> </mrow> <msubsup> <mtext>C</mtext> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> <mo>+</mo> <msubsup> <mtext>LiCoO</mtext> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\ce {LiC6 + CoO2 &lt;=&gt; C6 + LiCoO2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99d08f43f6745e058113b489b07f3c7e585a6268" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:31.398ex; height:3.343ex;" alt="{\displaystyle {\ce {LiC6 + CoO2 &lt;=&gt; C6 + LiCoO2}}}"></span></dd></dl> <p>The overall reaction has its limits. Overdischarging supersaturates <a href="/wiki/Lithium_cobalt_oxide" title="Lithium cobalt oxide">lithium cobalt oxide</a>, leading to the production of <a href="/wiki/Lithium_oxide" title="Lithium oxide">lithium oxide</a>,<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> possibly by the following irreversible reaction: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\ce {Li+ + e^- + LiCoO2 -&gt; Li2O + CoO}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mtext>Li</mtext> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>+</mo> <msup> <mtext>e</mtext> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> <mo>+</mo> <msubsup> <mtext>LiCoO</mtext> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> <mo stretchy="false">&#x27F6;<!-- ⟶ --></mo> <msubsup> <mtext>Li</mtext> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> <mtext>O</mtext> <mo>+</mo> <mtext>CoO</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\ce {Li+ + e^- + LiCoO2 -&gt; Li2O + CoO}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7d4eff7c8deea0e6c3fddf4d7eff1082c916450" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:37.184ex; height:3.176ex;" alt="{\displaystyle {\ce {Li+ + e^- + LiCoO2 -&gt; Li2O + CoO}}}"></span></dd></dl> <p><a href="/wiki/Overcharging_(battery)" class="mw-redirect" title="Overcharging (battery)">Overcharging</a> up to 5.2&#160;<a href="/wiki/Volts" class="mw-redirect" title="Volts">volts</a> leads to the synthesis of cobalt (IV) oxide, as evidenced by <a href="/wiki/X-ray_diffraction" title="X-ray diffraction">x-ray diffraction</a>:<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\ce {LiCoO2 -&gt; Li+ + CoO2 + e^-}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mtext>LiCoO</mtext> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> <mo stretchy="false">&#x27F6;<!-- ⟶ --></mo> <msup> <mtext>Li</mtext> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>+</mo> <msubsup> <mtext>CoO</mtext> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> <mo>+</mo> <msup> <mtext>e</mtext> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msup> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\ce {LiCoO2 -&gt; Li+ + CoO2 + e^-}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2726c9cc7ad43efffabb14ceb256cd176c58c044" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:30.436ex; height:3.176ex;" alt="{\displaystyle {\ce {LiCoO2 -&gt; Li+ + CoO2 + e^-}}}"></span></dd></dl> <p>The <a href="/wiki/Transition_metal" title="Transition metal">transition metal</a> in the positive electrode, cobalt (<a href="/wiki/Cobalt" title="Cobalt">Co</a>), is reduced from <span class="chemf nowrap">Co<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">4+</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></span> to <span class="chemf nowrap">Co<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">3+</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></span> during discharge, and oxidized from <span class="chemf nowrap">Co<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">3+</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></span> to <span class="chemf nowrap">Co<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">4+</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></span> during charge. </p><p>The cell's energy is equal to the voltage times the charge. Each gram of lithium represents <a href="/wiki/Faraday%27s_constant" class="mw-redirect" title="Faraday&#39;s constant">Faraday's constant</a>/6.941, or 13,901 coulombs. At 3&#160;V, this gives 41.7&#160;kJ per gram of lithium, or 11.6&#160;kWh per kilogram of lithium. This is slightly more than the <a href="/wiki/Heat_of_combustion" title="Heat of combustion">heat of combustion</a> of <a href="/wiki/Gasoline" title="Gasoline">gasoline</a>; however, lithium-ion batteries as a whole are still significantly heavier per unit of energy due to the additional materials used in production. </p><p>Note that the cell voltages involved in these reactions are larger than the potential at which an <a href="/wiki/Aqueous_solution" title="Aqueous solution">aqueous solutions</a> would <a href="/wiki/Electrolysis" title="Electrolysis">electrolyze</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Discharging_and_charging">Discharging and charging</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=4" title="Edit section: Discharging and charging"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>During discharge, lithium ions (<span class="chemf nowrap">Li<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:0.8em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">+</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sub></span></span></span>) carry the <a href="/wiki/Electrical_current" class="mw-redirect" title="Electrical current">current</a> within the battery cell from the negative to the positive electrode, through the non-<a href="/wiki/Aqueous_solution" title="Aqueous solution">aqueous</a> <a href="/wiki/Electrolyte" title="Electrolyte">electrolyte</a> and separator diaphragm.<sup id="cite_ref-Linden-2002_56-0" class="reference"><a href="#cite_note-Linden-2002-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> </p><p>During charging, an external electrical power source applies an over-voltage (a voltage greater than the cell's own voltage) to the cell, forcing electrons to flow from the positive to the negative electrode. The lithium ions also migrate (through the electrolyte) from the positive to the negative electrode where they become embedded in the porous electrode material in a process known as <a href="/wiki/Intercalation_(chemistry)" title="Intercalation (chemistry)">intercalation</a>. </p><p>Energy losses arising from electrical <a href="/wiki/Contact_resistance" title="Contact resistance">contact resistance</a> at interfaces between <a href="/wiki/Electrode" title="Electrode">electrode</a> layers and at contacts with current collectors can be as high as 20% of the entire energy flow of batteries under typical operating conditions.<sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> </p><p>The charging procedures for single Li-ion cells, and complete Li-ion batteries, are slightly different: </p> <ul><li>A single Li-ion cell is charged in two stages:<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup></li></ul> <ol><li><a href="/wiki/Constant_current" title="Constant current">Constant current</a> (CC)</li> <li><a href="/wiki/Voltage_source" title="Voltage source">Constant voltage</a> (CV)</li></ol> <ul><li>A Li-ion battery (a set of Li-ion cells in series) is charged in three stages:</li></ul> <ol><li><a href="/wiki/Constant_current" title="Constant current">Constant current</a></li> <li>Balance (only required when cell groups become unbalanced during use)</li> <li><a href="/wiki/Voltage_source" title="Voltage source">Constant voltage</a></li></ol> <p>During the <i>constant current</i> phase, the charger applies a constant current to the battery at a steadily increasing voltage, until the top-of-charge voltage limit per cell is reached. </p><p>During the <i>balance</i> phase, the charger/battery reduces the charging current (or cycles the charging on and off to reduce the average current) while the <a href="/wiki/State_of_charge" title="State of charge">state of charge</a> of individual cells is brought to the same level by a balancing circuit until the battery is balanced. Balancing typically occurs whenever one or more cells reach their top-of-charge voltage before the other(s), as it is generally inaccurate to do so at other stages of the charge cycle. This is most commonly done by passive balancing, which <a href="/wiki/Dissipation" title="Dissipation">dissipates</a> excess charge as heat via <a href="/wiki/Resistor" title="Resistor">resistors</a> connected momentarily across the cells to be balanced. Active balancing is less common, more expensive, but more efficient, returning excess energy to other cells (or the entire pack) via a <a href="/wiki/DC-to-DC_converter" title="DC-to-DC converter">DC-DC converter</a> or other circuitry. Balancing most often occurs during the constant voltage stage of charging, switching between charge modes until complete. The pack is usually fully charged only when balancing is complete, as even a single cell group lower in charge than the rest will limit the entire battery's usable capacity to that of its own. Balancing can last hours or even days, depending on the magnitude of the imbalance in the battery. </p><p>During the <i>constant voltage</i> phase, the charger applies a voltage equal to the maximum cell voltage times the number of cells in series to the battery, as the current gradually declines towards 0, until the current is below a set threshold of about 3% of initial constant charge current. </p><p>Periodic topping charge about once per 500 hours. Top charging is recommended to be initiated when voltage goes below <span class="nowrap">4.05 V/cell.</span> <sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Accuracy_dispute#Disputed_statement" title="Wikipedia:Accuracy dispute"><span title="The material near this tag is possibly inaccurate or nonfactual. (February 2022)">dubious</span></a>&#32;&#8211; <a href="/wiki/Talk:Lithium-ion_battery#Charge/Discharge" title="Talk:Lithium-ion battery">discuss</a></i>&#93;</sup> </p><p>Failure to follow current and voltage limitations can result in an explosion.<sup id="cite_ref-Schweber-2015_60-0" class="reference"><a href="#cite_note-Schweber-2015-60"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-illinois.edu_61-0" class="reference"><a href="#cite_note-illinois.edu-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> </p><p>Charging temperature limits for Li-ion are stricter than the operating limits. Lithium-ion chemistry performs well at elevated temperatures but prolonged exposure to heat reduces battery life. Li‑ion batteries offer good charging performance at cooler temperatures and may even allow "fast-charging" within a temperature range of 5 to 45&#160;°C (41 to 113&#160;°F).<sup id="cite_ref-Lithium_Ion_Rechargeable_Batteries_62-0" class="reference"><a href="#cite_note-Lithium_Ion_Rechargeable_Batteries-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template noprint noexcerpt Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:NOTRS" class="mw-redirect" title="Wikipedia:NOTRS"><span title="Primary source, does not include authors nor publishing date. See talk page for discussion. (August 2014)">better&#160;source&#160;needed</span></a></i>&#93;</sup> Charging should be performed within this temperature range. At temperatures from 0 to 5&#160;°C charging is possible, but the charge current should be reduced. During a low-temperature (under 0&#160;°C) charge, the slight temperature rise above ambient due to the internal cell resistance is beneficial. High temperatures during charging may lead to battery degradation and charging at temperatures above 45&#160;°C will degrade battery performance, whereas at lower temperatures the internal resistance of the battery may increase, resulting in slower charging and thus longer charging times.<sup id="cite_ref-Lithium_Ion_Rechargeable_Batteries_62-1" class="reference"><a href="#cite_note-Lithium_Ion_Rechargeable_Batteries-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template noprint noexcerpt Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:NOTRS" class="mw-redirect" title="Wikipedia:NOTRS"><span title="Primary source, does not include authors nor publishing date. See talk page for discussion. (August 2014)">better&#160;source&#160;needed</span></a></i>&#93;</sup> </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Li_ion_laptop_battery.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1a/Li_ion_laptop_battery.jpg/220px-Li_ion_laptop_battery.jpg" decoding="async" width="220" height="134" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1a/Li_ion_laptop_battery.jpg/330px-Li_ion_laptop_battery.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1a/Li_ion_laptop_battery.jpg/440px-Li_ion_laptop_battery.jpg 2x" data-file-width="3537" data-file-height="2157" /></a><figcaption>A lithium-ion battery from a <a href="/wiki/Laptop" title="Laptop">laptop</a> computer </figcaption></figure> <p>Batteries gradually self-discharge even if not connected and delivering current. Li-ion rechargeable batteries have a <a href="/wiki/Self-discharge" title="Self-discharge">self-discharge</a> rate typically stated by manufacturers to be 1.5–2% per month.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> </p><p>The rate increases with temperature and state of charge. A 2004 study found that for most cycling conditions self-discharge was primarily time-dependent; however, after several months of stand on open circuit or float charge, state-of-charge dependent losses became significant. The self-discharge rate did not increase monotonically with state-of-charge, but dropped somewhat at intermediate states of charge.<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> Self-discharge rates may increase as batteries age.<sup id="cite_ref-Weicker-2013_66-0" class="reference"><a href="#cite_note-Weicker-2013-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> In 1999, self-discharge per month was measured at 8% at 21&#160;°C, 15% at 40&#160;°C, 31% at 60&#160;°C.<sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup> By 2007, monthly self-discharge rate was estimated at 2% to 3%, and 2<sup id="cite_ref-Redondo-Iglesias-2016_6-1" class="reference"><a href="#cite_note-Redondo-Iglesias-2016-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup>–3% by 2016.<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> </p><p>By comparison, the self-discharge rate for <a href="/wiki/Nickel%E2%80%93metal_hydride_battery" title="Nickel–metal hydride battery">NiMH batteries</a> dropped, as of 2017, from up to 30% per month for previously common cells<sup id="cite_ref-Winter-2004a_69-0" class="reference"><a href="#cite_note-Winter-2004a-69"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup> to about 0.08–0.33% per month for <a href="/wiki/Low_self-discharge_NiMH_battery#Low_self-discharge_cells" class="mw-redirect" title="Low self-discharge NiMH battery">low self-discharge NiMH</a> batteries, and is about 10% per month in <a href="/wiki/Nickel%E2%80%93cadmium_battery" title="Nickel–cadmium battery">NiCd batteries</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (October 2017)">citation needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Cathode">Cathode</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=5" title="Edit section: Cathode"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are three classes of commercial cathode materials in lithium-ion batteries: (1) layered oxides, (2) spinel oxides and (3) oxoanion complexes. All of them were discovered by <a href="/wiki/John_Goodenough" class="mw-redirect" title="John Goodenough">John Goodenough</a> and his collaborators.<sup id="cite_ref-Manthiram-2020_70-0" class="reference"><a href="#cite_note-Manthiram-2020-70"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Layered_Oxides">Layered Oxides</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=6" title="Edit section: Layered Oxides"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/LiCoO2" class="mw-redirect" title="LiCoO2">LiCoO<sub>2</sub></a> was used in the first commercial lithium-ion battery made by Sony in 1991. The layered oxides have a pseudo-<a href="/wiki/Tetrahedron" title="Tetrahedron">tetrahedral</a> structure comprising layers made of MO<sub>6</sub> <a href="/wiki/Octahedron" title="Octahedron">octahedra</a> separated by interlayer spaces that allow for two-dimensional lithium-ion <a href="/wiki/Diffusion" title="Diffusion">diffusion</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (January 2024)">citation needed</span></a></i>&#93;</sup> The <a href="/wiki/Electronic_band_structure" title="Electronic band structure">band structure</a> of Li<sub>x</sub>CoO<sub>2</sub> allows for true <a href="/wiki/Electrical_resistivity_and_conductivity" title="Electrical resistivity and conductivity">electronic</a> (rather than <a href="/wiki/Polaron" title="Polaron">polaronic</a>) conductivity. However, due to an overlap between the Co<sup>4+</sup> t<sub>2g</sub> d-band with the O<sup>2-</sup> 2p-band, the x must be &gt;0.5, otherwise O<sub>2</sub> evolution occurs. This limits the charge capacity of this material to ~140 mA h g<sup>−1</sup>.<sup id="cite_ref-Manthiram-2020_70-1" class="reference"><a href="#cite_note-Manthiram-2020-70"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup> </p><p>Several other first-row (3d) <a href="/wiki/Transition_metal" title="Transition metal">transition metals</a> also form layered LiMO<sub>2</sub> salts. Some can be directly prepared from <a href="/wiki/Lithium_oxide" title="Lithium oxide">lithium oxide</a> and M<sub>2</sub>O<sub>3</sub> (e.g. for M=Ti, V, Cr, Co, Ni), while others (M= Mn or Fe) can be prepared by <a href="/wiki/Ion_exchange" title="Ion exchange">ion exchange</a> from NaMO<sub>2</sub>. LiVO<sub>2</sub>, LiMnO<sub>2</sub> and LiFeO<sub>2</sub> suffer from structural instabilities (including mixing between M and Li sites) due to a low energy difference between octahedral and tetrahedral environments for the metal ion M. For this reason, they are not used in lithium-ion batteries.<sup id="cite_ref-Manthiram-2020_70-2" class="reference"><a href="#cite_note-Manthiram-2020-70"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup> However, Na<sup>+</sup> and Fe<sup>3+</sup> have sufficiently different sizes that NaFeO<sub>2</sub> can be used in <a href="/wiki/Sodium-ion_batteries" class="mw-redirect" title="Sodium-ion batteries">sodium-ion batteries</a>.<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> </p><p>Similarly, LiCrO<sub>2</sub> shows reversible lithium (de)intercalation around 3.2&#160;V with 170–270&#160;mAh/g.<sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup> However, its <a href="/wiki/Charge_cycle" title="Charge cycle">cycle</a> life is short, because of <a href="/wiki/Disproportionation" title="Disproportionation">disproportionation</a> of Cr<sup>4+</sup> followed by translocation of Cr<sup>6+</sup> into tetrahedral sites.<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> On the other hand, NaCrO<sub>2</sub> shows a much better cycling stability.<sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup> LiTiO<sub>2</sub> shows Li+ (de)intercalation at a voltage of ~1.5 V, which is too low for a cathode material. </p><p>These problems leave <span class="chemf nowrap">LiCoO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span> and <span class="chemf nowrap">LiNiO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span> as the only practical layered oxide materials for lithium-ion battery cathodes. The cobalt-based cathodes show high theoretical specific (per-mass) charge capacity, high volumetric capacity, low self-discharge, high discharge voltage, and good cycling performance. Unfortunately, they suffer from a high cost of the material.<sup id="cite_ref-Nitta-2015_75-0" class="reference"><a href="#cite_note-Nitta-2015-75"><span class="cite-bracket">&#91;</span>75<span class="cite-bracket">&#93;</span></a></sup> For this reason, the current trend among lithium-ion battery manufacturers is to switch to cathodes with higher Ni content and lower Co content.<sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> </p><p>In addition to a lower (than cobalt) cost, nickel-oxide based materials benefit from the two-electron redox chemistry of Ni: in layered oxides comprising nickel (such as nickel-cobalt-manganese <a href="/wiki/Lithium_nickel_manganese_cobalt_oxides" title="Lithium nickel manganese cobalt oxides">NCM</a> and nickel-cobalt-aluminium oxides <a href="/wiki/Lithium_nickel_cobalt_aluminium_oxides" title="Lithium nickel cobalt aluminium oxides">NCA</a>), Ni cycles between the oxidation states +2 and +4 (in one step between +3.5 and +4.3 V),<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Manthiram-2020_70-3" class="reference"><a href="#cite_note-Manthiram-2020-70"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup> cobalt- between +2 and +3, while Mn (usually &gt;20%) and Al (typically, only 5% is needed)<sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup> remain in +4 and 3+, respectively. Thus increasing the Ni content increases the cyclable charge. For example, NCM111 shows 160&#160;mAh/g, while <style data-mw-deduplicate="TemplateStyles:r1123817410">.mw-parser-output .template-chem2-su{display:inline-block;font-size:80%;line-height:1;vertical-align:-0.35em}.mw-parser-output .template-chem2-su>span{display:block;text-align:left}.mw-parser-output sub.template-chem2-sub{font-size:80%;vertical-align:-0.35em}.mw-parser-output sup.template-chem2-sup{font-size:80%;vertical-align:0.65em}</style><span class="chemf nowrap">LiNi<sub class="template-chem2-sub">0.8</sub>Co<sub class="template-chem2-sub">0.1</sub>Mn<sub class="template-chem2-sub">0.1</sub>O<sub class="template-chem2-sub">2</sub></span> (NCM811) and <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">LiNi<sub class="template-chem2-sub">0.8</sub>Co<sub class="template-chem2-sub">0.15</sub>Al<sub class="template-chem2-sub">0.05</sub>O<sub class="template-chem2-sub">2</sub></span> (NCA) deliver a higher capacity of ~200 mAh/g.<sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup> </p><p>It is worth mentioning so-called "lithium-rich" cathodes, that can be produced from traditional NCM (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">LiMO<sub class="template-chem2-sub">2</sub></span>, where M=Ni, Co, Mn) layered cathode materials upon cycling them to voltages/charges corresponding to Li:M&lt;0.5. Under such conditions a new semi-reversible redox transition at a higher voltage with ca. 0.4-0.8 electrons/metal site charge appears. This transition involves non-binding electron orbitals centered mostly on O atoms. Despite significant initial interest, this phenomenon did not result in marketable products because of the fast structural degradation (O2 evolution and lattice rearrangements) of such "lithium-rich" phases.<sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Cubic_oxides_(spinels)"><span id="Cubic_oxides_.28spinels.29"></span>Cubic oxides (spinels)</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=7" title="Edit section: Cubic oxides (spinels)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Lithium_ion_manganese_oxide_battery" title="Lithium ion manganese oxide battery">LiMn<sub>2</sub>O<sub>4</sub></a> adopts a cubic lattice, which allows for three-dimensional lithium-ion diffusion.<sup id="cite_ref-SigmaAldrich_81-0" class="reference"><a href="#cite_note-SigmaAldrich-81"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup> Manganese cathodes are attractive because manganese is less expensive than cobalt or nickel. The operating voltage of Li-LiMn<sub>2</sub>O<sub>4</sub> battery is 4&#160;V, and ca. one lithium per two Mn ions can be reversibly extracted from the tetrahedral sites, resulting in a practical capacity of &lt;130 mA h g–1. However, Mn<sup>3+</sup> is not a stable oxidation state, as it tends to <a href="/wiki/Disproportionation" title="Disproportionation">disporportionate</a> into insoluble Mn<sup>4+</sup> and soluble Mn<sup>2+</sup>.<sup id="cite_ref-Nitta-2015_75-1" class="reference"><a href="#cite_note-Nitta-2015-75"><span class="cite-bracket">&#91;</span>75<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Nature-2020_82-0" class="reference"><a href="#cite_note-Nature-2020-82"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup> LiMn<sub>2</sub>O<sub>4</sub> can also intercalate more than 0.5 Li per Mn at a lower voltage around +3.0 V. However, this results in an irreversible <a href="/wiki/Phase_transition" title="Phase transition">phase transition</a> due to <a href="/wiki/Jahn-Teller" class="mw-redirect" title="Jahn-Teller">Jahn-Teller</a> distortion in Mn3+:t2g3eg1, as well as <a href="/wiki/Disproportionation" title="Disproportionation">disproportionation</a> and dissolution of Mn<sup>3+</sup>. </p><p>An important improvement of Mn spinel are related cubic structures of the LiMn<sub>1.5</sub>Ni<sub>0.5</sub>O<sub>4</sub> type, where Mn exists as Mn4+ and Ni cycles reversibly between the <a href="/wiki/Oxidation_states" class="mw-redirect" title="Oxidation states">oxidation states</a> +2 and +4.<sup id="cite_ref-Manthiram-2020_70-4" class="reference"><a href="#cite_note-Manthiram-2020-70"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup> This materials show a reversible Li-ion capacity of ca. 135&#160;mAh/g around 4.7&#160;V. Although such high voltage is beneficial for increasing the <a href="/wiki/Specific_energy" title="Specific energy">specific energy</a> of batteries, the adoption of such materials is currently hindered by the lack of suitable high-voltage electrolytes.<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup> In general, materials with a high <a href="/wiki/Nickel" title="Nickel">nickel</a> content are favored in 2023, because of the possibility of a 2-electron cycling of Ni between the <a href="/wiki/Oxidation_states" class="mw-redirect" title="Oxidation states">oxidation states</a> +2 and +4. </p><p>LiV<sub>2</sub>O<sub>4</sub> (lithium vanadium oxide) operates as a lower (ca. +3.0&#160;V) voltage than <a href="/wiki/Lithium_ion_manganese_oxide_battery" title="Lithium ion manganese oxide battery">LiMn<sub>2</sub>O<sub>4</sub></a>, suffers from similar durability issues, is more expensive, and thus is not considered of practical interest.<sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">&#91;</span>84<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Oxoanionic/olivins"><span id="Oxoanionic.2Folivins"></span>Oxoanionic/olivins</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=8" title="Edit section: Oxoanionic/olivins"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Around 1980 <a href="/w/index.php?title=Manthiram&amp;action=edit&amp;redlink=1" class="new" title="Manthiram (page does not exist)">Manthiram</a> discovered that <a href="/wiki/Oxoanions" class="mw-redirect" title="Oxoanions">oxoanions</a> (<a href="/wiki/Molybdates" class="mw-redirect" title="Molybdates">molybdates</a> and <a href="/w/index.php?title=Tungstates&amp;action=edit&amp;redlink=1" class="new" title="Tungstates (page does not exist)">tungstates</a> in that particular case) cause a substantial positive shift in the redox potential of the metal-ion compared to oxides.<sup id="cite_ref-85" class="reference"><a href="#cite_note-85"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup> In addition, these oxoanionic cathode materials offer better stability/safety than the corresponding oxides. However, they also suffer from poor electronic conductivity due to the long distance between redox-active metal centers, which slows down the electron transport. This necessitates the use of small (less than 200&#160;nm) cathode particles and coating each particle with a layer of electronically-<a href="/wiki/Conductive_agent" title="Conductive agent">conducting carbon</a>.<sup id="cite_ref-86" class="reference"><a href="#cite_note-86"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup> This reduces the <a href="/wiki/Packing_density" title="Packing density">packing density</a> of these materials. </p><p>Although numerous combinations of oxoanions (<a href="/wiki/Sulfate" title="Sulfate">sulfate</a>, <a href="/wiki/Phosphate" title="Phosphate">phosphate</a>, <a href="/wiki/Silicate" title="Silicate">silicate</a>) with various metals (mostly Mn, Fe, Co, Ni) have been studied, <a href="/wiki/LiFePO4" class="mw-redirect" title="LiFePO4">LiFePO4</a> is the only one that has been commercialized. Although it was originally used primarily for <a href="/wiki/Stationary_energy_storage" class="mw-redirect" title="Stationary energy storage">stationary energy storage</a> due to its lower energy density compared to layered oxides,<sup id="cite_ref-Olivetti-2017_87-0" class="reference"><a href="#cite_note-Olivetti-2017-87"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup> it has begun to be widely used in electric vehicles since the 2020s.<sup id="cite_ref-Lienert-2023_88-0" class="reference"><a href="#cite_note-Lienert-2023-88"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> </p> <table class="wikitable sortable"> <caption>Positive electrode </caption> <tbody><tr> <th>Technology</th> <th>Major producers (2023)</th> <th>Target application</th> <th>Advantages </th></tr> <tr> <td><a href="/wiki/Lithium_nickel_manganese_cobalt_oxides" title="Lithium nickel manganese cobalt oxides">Lithium nickel manganese cobalt oxide</a><br /><b>NMC</b>, LiNi<sub>x</sub>Mn<sub>y</sub>Co<sub>z</sub>O<sub>2</sub> </td> <td style="max-width:0;"><a href="/wiki/Ronbay_Technology" title="Ronbay Technology">Ronbay Technology</a>, Easpring, Ecopro, <a href="/wiki/Umicore" title="Umicore">Umicore</a>, L&amp;F, <a href="/wiki/POSCO_Future_M" title="POSCO Future M">Posco</a><sup id="cite_ref-Hettesheimer-2023_89-0" class="reference"><a href="#cite_note-Hettesheimer-2023-89"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup> </td> <td><a href="/wiki/Electric_vehicle" title="Electric vehicle">Electric vehicles</a>, <a href="/wiki/Power_tool" title="Power tool">power tools</a>, <a href="/wiki/Grid_energy_storage" title="Grid energy storage">grid energy storage</a> </td> <td>Good specific energy and specific power density </td></tr> <tr> <td><a href="/wiki/Lithium_nickel_cobalt_aluminium_oxides" title="Lithium nickel cobalt aluminium oxides">Lithium nickel cobalt aluminium oxide</a><br /><b>NCA</b>, LiNiCoAlO<sub>2</sub> </td> <td>Ronbay Technology, Ecopro<sup id="cite_ref-Hettesheimer-2023_89-1" class="reference"><a href="#cite_note-Hettesheimer-2023-89"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup> </td> <td><a href="/wiki/Electric_vehicle" title="Electric vehicle">Electric vehicles</a>, <a href="/wiki/Power_tool" title="Power tool">power tools</a>, <a href="/wiki/Grid_energy_storage" title="Grid energy storage">grid energy storage</a> </td> <td>High energy density, good life span </td></tr> <tr> <td>Lithium nickel cobalt manganese aluminium oxide<br /><b>NCMA</b>, <span class="chemf nowrap">LiNi<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0.89</sub></span></span>Co<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0.05</sub></span></span>Mn<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0.05</sub></span></span>Al<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0.01</sub></span></span>O<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span> </td> <td style="max-width:0;"><a href="/wiki/LG_Chem" title="LG Chem">LG Chem</a>,<sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Hanyang_University" title="Hanyang University">Hanyang University</a><sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">&#91;</span>91<span class="cite-bracket">&#93;</span></a></sup> </td> <td><a href="/wiki/Electric_vehicle" title="Electric vehicle">Electric vehicles</a>, <a href="/wiki/Grid_energy_storage" title="Grid energy storage">grid energy storage</a> </td> <td>Good specific energy, improved long-term cycling stability, faster charging </td></tr> <tr> <td><a href="/wiki/Lithium_ion_manganese_oxide_battery" title="Lithium ion manganese oxide battery">Lithium manganese oxide</a><br /><b>LMO</b>, LiMn<sub>2</sub>O<sub>4</sub> </td> <td style="max-width:0;">Posco, L&amp;F<sup id="cite_ref-Hettesheimer-2023_89-2" class="reference"><a href="#cite_note-Hettesheimer-2023-89"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup> </td> <td>Power tools, electric vehicles<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">&#91;</span>92<span class="cite-bracket">&#93;</span></a></sup> </td> <td>Fast charging speed, cheap </td></tr> <tr> <td><a href="/wiki/Lithium_iron_phosphate_battery" title="Lithium iron phosphate battery">Lithium iron phosphate</a><br /><b>LFP</b>, LiFePO<sub>4</sub> </td> <td style="max-width:0"><a href="/w/index.php?title=Shenzhen_Dynanonic&amp;action=edit&amp;redlink=1" class="new" title="Shenzhen Dynanonic (page does not exist)">Shenzhen Dynanonic</a>, <a href="/w/index.php?title=Hunan_Yuneng&amp;action=edit&amp;redlink=1" class="new" title="Hunan Yuneng (page does not exist)">Hunan Yuneng</a>, LOPAL, Ronbay Technology<sup id="cite_ref-Hettesheimer-2023_89-3" class="reference"><a href="#cite_note-Hettesheimer-2023-89"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup> </td> <td style="max-width:0"><a href="/wiki/Electric_vehicle" title="Electric vehicle">Electric vehicles</a>,<sup id="cite_ref-Lienert-2023_88-1" class="reference"><a href="#cite_note-Lienert-2023-88"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> grid energy storage<sup id="cite_ref-Olivetti-2017_87-1" class="reference"><a href="#cite_note-Olivetti-2017-87"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup> </td> <td style="max-width:0">Higher safety compared to layered oxides. Very long cycle life. Thermal stability &gt;60&#160;°C (140&#160;°F) </td></tr> <tr> <td><a href="/wiki/Lithium_cobalt_oxide" title="Lithium cobalt oxide">Lithium cobalt oxide</a><br /><b>LCO</b>, LiCoO<sub>2</sub> </td> <td>Easpring, Umicore<sup id="cite_ref-Hettesheimer-2023_89-4" class="reference"><a href="#cite_note-Hettesheimer-2023-89"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup> </td> <td><a href="/wiki/Mobile_device" title="Mobile device">Handheld electronics</a><sup id="cite_ref-Hettesheimer-2023_89-5" class="reference"><a href="#cite_note-Hettesheimer-2023-89"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup> </td> <td>High energy density </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Anode">Anode</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=9" title="Edit section: Anode"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Research_in_lithium-ion_batteries#Anode" title="Research in lithium-ion batteries">Research in lithium-ion batteries §&#160;Anode</a></div> <p>Negative electrode materials are traditionally constructed from graphite and other carbon materials, although newer silicon-based materials are being increasingly used (see <a href="/wiki/Nanowire_battery" title="Nanowire battery">Nanowire battery</a>). In 2016, 89% of lithium-ion batteries contained graphite (43% artificial and 46% natural), 7% contained amorphous carbon (either soft carbon or <a href="/wiki/Hard_carbon" title="Hard carbon">hard carbon</a>), 2% contained lithium titanate (LTO) and 2% contained silicon or tin-based materials.<sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">&#91;</span>93<span class="cite-bracket">&#93;</span></a></sup> </p><p>These materials are used because they are abundant, electrically conducting and can <a href="/wiki/Intercalation_(chemistry)" title="Intercalation (chemistry)">intercalate</a> lithium ions to store electrical charge with modest volume expansion (~10%).<sup id="cite_ref-Hayner-2012_94-0" class="reference"><a href="#cite_note-Hayner-2012-94"><span class="cite-bracket">&#91;</span>94<span class="cite-bracket">&#93;</span></a></sup> Graphite is the dominant material because of its low intercalation voltage and excellent performance. Various alternative materials with higher capacities have been proposed, but they usually have higher voltages, which reduces energy density.<sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">&#91;</span>95<span class="cite-bracket">&#93;</span></a></sup> Low voltage is the key requirement for anodes; otherwise, the excess capacity is useless in terms of energy density. </p> <table class="wikitable sortable"> <caption>Negative electrode </caption> <tbody><tr> <th>Technology</th> <th>Energy density</th> <th>Durability</th> <th>Company</th> <th>Target application</th> <th>Comments </th></tr> <tr> <td>Graphite </td> <td>260 Wh/kg</td> <td></td> <td><a href="/wiki/Tesla,_Inc." title="Tesla, Inc.">Tesla</a> </td> <td style="max-width:0;">The dominant negative electrode material used in lithium-ion batteries, limited to a capacity of 372&#160;mAh/g.<sup id="cite_ref-Shao-2020_42-1" class="reference"><a href="#cite_note-Shao-2020-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> </td> <td style="max-width:0;">Low cost and good energy density. Graphite anodes can accommodate one lithium atom for every six carbon atoms. Charging rate is governed by the shape of the long, thin graphene sheets that constitute graphite. While charging, the lithium ions must travel to the outer edges of the graphene sheet before coming to rest (intercalating) between the sheets. The circuitous route takes so long that they encounter congestion around those edges.<sup id="cite_ref-Electroiq.com-2018_96-0" class="reference"><a href="#cite_note-Electroiq.com-2018-96"><span class="cite-bracket">&#91;</span>96<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>Lithium&#160;titanate<br /><b>LTO</b>, Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub></td> <td></td> <td></td> <td style="max-width:0;">Toshiba, <a href="/wiki/Altairnano" title="Altairnano">Altairnano</a></td> <td style="max-width:0;">Automotive (<a href="/wiki/Phoenix_Motorcars" title="Phoenix Motorcars">Phoenix Motorcars</a>), electrical grid (PJM Interconnection Regional Transmission Organization control area,<sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">&#91;</span>97<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/United_States_Department_of_Defense" title="United States Department of Defense">United States Department of Defense</a><sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">&#91;</span>98<span class="cite-bracket">&#93;</span></a></sup>), bus (Proterra)</td> <td>Improved output, charging time, durability (safety, operating temperature −50–70&#160;°C (−58–158&#160;°F)).<sup id="cite_ref-99" class="reference"><a href="#cite_note-99"><span class="cite-bracket">&#91;</span>99<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>Hard carbon </td> <td></td> <td></td> <td>Energ2<sup id="cite_ref-100" class="reference"><a href="#cite_note-100"><span class="cite-bracket">&#91;</span>100<span class="cite-bracket">&#93;</span></a></sup> </td> <td>Home electronics </td> <td>Greater storage capacity. </td></tr> <tr> <td>Tin/cobalt alloy </td> <td></td> <td></td> <td>Sony </td> <td>Consumer electronics (Sony Nexelion battery) </td> <td>Larger capacity than a cell with graphite (3.5 Ah 18650-type cell). </td></tr> <tr> <td>Silicon/carbon </td> <td><span class="nowrap">730 Wh/L</span><br />450&#160;Wh/kg </td> <td> </td> <td>Amprius<sup id="cite_ref-101" class="reference"><a href="#cite_note-101"><span class="cite-bracket">&#91;</span>101<span class="cite-bracket">&#93;</span></a></sup> </td> <td>Smartphones, providing 5000&#160;mAh capacity </td> <td>Uses &lt;&#160;10% with <a href="/wiki/Silicon_nanowire" title="Silicon nanowire">silicon nanowires</a> combined with graphite and binders. Energy density: ~74&#160;mAh/g. <p>Another approach used carbon-coated 15&#160;nm thick crystal silicon flakes. The tested half-cell achieved 1200&#160;mAh/g over 800 cycles.<sup id="cite_ref-102" class="reference"><a href="#cite_note-102"><span class="cite-bracket">&#91;</span>102<span class="cite-bracket">&#93;</span></a></sup> </p> </td></tr></tbody></table> <p>As graphite is limited to a maximum capacity of 372&#160;mAh/g<sup id="cite_ref-Shao-2020_42-2" class="reference"><a href="#cite_note-Shao-2020-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> much research has been dedicated to the development of materials that exhibit higher theoretical capacities and overcoming the technical challenges that presently encumber their implementation. The extensive 2007 Review Article by Kasavajjula et al.<sup id="cite_ref-Kasavajjula-2007_103-0" class="reference"><a href="#cite_note-Kasavajjula-2007-103"><span class="cite-bracket">&#91;</span>103<span class="cite-bracket">&#93;</span></a></sup> summarizes early research on silicon-based anodes for lithium-ion secondary cells. In particular, Hong Li et al.<sup id="cite_ref-Li-2000_104-0" class="reference"><a href="#cite_note-Li-2000-104"><span class="cite-bracket">&#91;</span>104<span class="cite-bracket">&#93;</span></a></sup> showed in 2000 that the electrochemical insertion of lithium ions in silicon <a href="/wiki/Nanoparticle" title="Nanoparticle">nanoparticles</a> and silicon nanowires leads to the formation of an amorphous Li-Si alloy. The same year, Bo Gao and his doctoral advisor, Professor Otto Zhou described the cycling of electrochemical cells with anodes comprising silicon nanowires, with a reversible capacity ranging from at least approximately 900 to 1500&#160;mAh/g.<sup id="cite_ref-105" class="reference"><a href="#cite_note-105"><span class="cite-bracket">&#91;</span>105<span class="cite-bracket">&#93;</span></a></sup> </p><p>Diamond-like carbon coatings can increase retention capacity by 40% and cycle life by 400% for lithium based batteries.<sup id="cite_ref-106" class="reference"><a href="#cite_note-106"><span class="cite-bracket">&#91;</span>106<span class="cite-bracket">&#93;</span></a></sup> </p><p>To improve the stability of the lithium anode, several approaches to installing a protective layer have been suggested.<sup id="cite_ref-Girishkumar-2010_107-0" class="reference"><a href="#cite_note-Girishkumar-2010-107"><span class="cite-bracket">&#91;</span>107<span class="cite-bracket">&#93;</span></a></sup> Silicon is beginning to be looked at as an anode material because it can accommodate significantly more lithium ions, storing up to 10 times the electric charge, however this alloying between lithium and silicon results in significant volume expansion (ca. 400%),<sup id="cite_ref-Hayner-2012_94-1" class="reference"><a href="#cite_note-Hayner-2012-94"><span class="cite-bracket">&#91;</span>94<span class="cite-bracket">&#93;</span></a></sup> which causes catastrophic failure for the cell.<sup id="cite_ref-108" class="reference"><a href="#cite_note-108"><span class="cite-bracket">&#91;</span>108<span class="cite-bracket">&#93;</span></a></sup> Silicon has been used as an anode material but the insertion and extraction of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\ce {\scriptstyle Li+}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="1"> <msup> <mtext>Li</mtext> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\ce {\scriptstyle Li+}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/038f53409796b6f42f236704a40f60e639a97f00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.687ex; height:2.009ex;" alt="{\displaystyle {\ce {\scriptstyle Li+}}}"></span> can create cracks in the material. These cracks expose the Si surface to an electrolyte, causing decomposition and the formation of a solid electrolyte interphase (SEI) on the new Si surface (crumpled graphene encapsulated Si nanoparticles). This SEI will continue to grow thicker, deplete the available <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\ce {\scriptstyle Li+}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="1"> <msup> <mtext>Li</mtext> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\ce {\scriptstyle Li+}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/038f53409796b6f42f236704a40f60e639a97f00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.687ex; height:2.009ex;" alt="{\displaystyle {\ce {\scriptstyle Li+}}}"></span>, and degrade the capacity and cycling stability of the anode. </p><p>In addition to carbon- and silicon- based anode materials for lithium-ion batteries, high-entropy metal oxide materials are being developed. These conversion (rather than intercalation) materials comprise an alloy (or subnanometer mixed phases) of several metal oxides performing different functions. For example, Zn and Co can act as electroactive charge-storing species, Cu can provide an electronically conducting support phase and MgO can prevent pulverization.<sup id="cite_ref-109" class="reference"><a href="#cite_note-109"><span class="cite-bracket">&#91;</span>109<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Electrolyte">Electrolyte</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=10" title="Edit section: Electrolyte"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Liquid" title="Liquid">Liquid</a> electrolytes in lithium-ion batteries consist of lithium <a href="/wiki/Salt_(chemistry)" title="Salt (chemistry)">salts</a>, such as <a href="/wiki/Lithium_hexafluorophosphate" title="Lithium hexafluorophosphate"><span class="chemf nowrap">LiPF<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">6</sub></span></span></span></a>, <a href="/wiki/Lithium_tetrafluoroborate" title="Lithium tetrafluoroborate"><span class="chemf nowrap">LiBF<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span></a> or <a href="/wiki/Lithium_perchlorate" title="Lithium perchlorate"><span class="chemf nowrap">LiClO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span></a> in an <a href="/wiki/Organic_compound" title="Organic compound">organic</a> <a href="/wiki/Solvent" title="Solvent">solvent</a>, such as <a href="/wiki/Ethylene_carbonate" title="Ethylene carbonate">ethylene carbonate</a>, <a href="/wiki/Dimethyl_carbonate" title="Dimethyl carbonate">dimethyl carbonate</a>, and <a href="/wiki/Diethyl_carbonate" title="Diethyl carbonate">diethyl carbonate</a>.<sup id="cite_ref-110" class="reference"><a href="#cite_note-110"><span class="cite-bracket">&#91;</span>110<span class="cite-bracket">&#93;</span></a></sup> A liquid electrolyte acts as a conductive pathway for the movement of cations passing from the negative to the positive electrodes during discharge. Typical conductivities of liquid electrolyte at room temperature (20&#160;°C (68&#160;°F)) are in the range of 10&#160;<a href="/wiki/Millisiemens" class="mw-redirect" title="Millisiemens">mS</a>/cm, increasing by approximately 30–40% at 40&#160;°C (104&#160;°F) and decreasing slightly at 0&#160;°C (32&#160;°F).<sup id="cite_ref-111" class="reference"><a href="#cite_note-111"><span class="cite-bracket">&#91;</span>111<span class="cite-bracket">&#93;</span></a></sup> The combination of linear and cyclic carbonates (e.g., <a href="/wiki/Ethylene_carbonate" title="Ethylene carbonate">ethylene carbonate</a> (EC) and <a href="/wiki/Dimethyl_carbonate" title="Dimethyl carbonate">dimethyl carbonate</a> (DMC)) offers high conductivity and <a href="/wiki/Lithium%E2%80%93silicon_battery#Solid_electrolyte_interphase_layer" title="Lithium–silicon battery">solid electrolyte interphase</a> (SEI)-forming ability. Organic solvents easily decompose on the negative electrodes during charge. When appropriate <a href="/wiki/Organic_solvent" class="mw-redirect" title="Organic solvent">organic solvents</a> are used as the electrolyte, the solvent decomposes on initial charging and forms a solid layer called the solid electrolyte interphase,<sup id="cite_ref-112" class="reference"><a href="#cite_note-112"><span class="cite-bracket">&#91;</span>112<span class="cite-bracket">&#93;</span></a></sup> which is electrically insulating, yet provides significant ionic conductivity. The interphase prevents further decomposition of the electrolyte after the second charge. For example, <a href="/wiki/Ethylene_carbonate" title="Ethylene carbonate">ethylene carbonate</a> is decomposed at a relatively high voltage, 0.7&#160;V vs. lithium, and forms a dense and stable interface.<sup id="cite_ref-113" class="reference"><a href="#cite_note-113"><span class="cite-bracket">&#91;</span>113<span class="cite-bracket">&#93;</span></a></sup> Composite electrolytes based on POE (poly(oxyethylene)) provide a relatively stable interface.<sup id="cite_ref-114" class="reference"><a href="#cite_note-114"><span class="cite-bracket">&#91;</span>114<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-115" class="reference"><a href="#cite_note-115"><span class="cite-bracket">&#91;</span>115<span class="cite-bracket">&#93;</span></a></sup> It can be either solid (high molecular weight) and be applied in dry Li-polymer cells, or liquid (low molecular weight) and be applied in regular Li-ion cells. <a href="/wiki/Room-temperature_ionic_liquid" class="mw-redirect" title="Room-temperature ionic liquid">Room-temperature ionic liquids</a> (RTILs) are another approach to limiting the flammability and volatility of organic electrolytes.<sup id="cite_ref-116" class="reference"><a href="#cite_note-116"><span class="cite-bracket">&#91;</span>116<span class="cite-bracket">&#93;</span></a></sup> </p><p>Recent advances in battery technology involve using a solid as the electrolyte material. The most promising of these are ceramics.<sup id="cite_ref-117" class="reference"><a href="#cite_note-117"><span class="cite-bracket">&#91;</span>117<span class="cite-bracket">&#93;</span></a></sup> Solid ceramic electrolytes are mostly lithium metal <a href="/wiki/Oxide" title="Oxide">oxides</a>, which allow lithium-ion transport through the solid more readily due to the intrinsic lithium. The main benefit of solid electrolytes is that there is no risk of <a href="/wiki/Battery_leakage" title="Battery leakage">leaks</a>, which is a serious safety issue for batteries with liquid electrolytes.<sup id="cite_ref-118" class="reference"><a href="#cite_note-118"><span class="cite-bracket">&#91;</span>118<span class="cite-bracket">&#93;</span></a></sup> Solid ceramic electrolytes can be further broken down into two main categories: ceramic and glassy. <a href="/wiki/Ceramic" title="Ceramic">Ceramic</a> solid electrolytes are highly ordered compounds with <a href="/wiki/Crystal_structure" title="Crystal structure">crystal structures</a> that usually have ion transport channels.<sup id="cite_ref-119" class="reference"><a href="#cite_note-119"><span class="cite-bracket">&#91;</span>119<span class="cite-bracket">&#93;</span></a></sup> Common ceramic electrolytes are lithium <a href="/wiki/Fast-ion_conductor" title="Fast-ion conductor">super ion conductors</a> (LISICON) and <a href="/wiki/Perovskite_(structure)" title="Perovskite (structure)">perovskites</a>. <a href="/wiki/Glass" title="Glass">Glassy</a> solid electrolytes are <a href="/wiki/Amorphous" class="mw-redirect" title="Amorphous">amorphous</a> atomic structures made up of similar elements to ceramic solid electrolytes but have higher <a href="/wiki/Ionic_conductivity_(solid_state)" title="Ionic conductivity (solid state)">conductivities</a> overall due to higher conductivity at grain boundaries.<sup id="cite_ref-120" class="reference"><a href="#cite_note-120"><span class="cite-bracket">&#91;</span>120<span class="cite-bracket">&#93;</span></a></sup> Both glassy and ceramic electrolytes can be made more ionically conductive by substituting sulfur for oxygen. The larger radius of sulfur and its higher ability to be <a href="/wiki/Polarizability" title="Polarizability">polarized</a> allow higher conductivity of lithium. This contributes to conductivities of solid electrolytes are nearing parity with their liquid counterparts, with most on the order of 0.1&#160;mS/cm and the best at 10&#160;mS/cm.<sup id="cite_ref-121" class="reference"><a href="#cite_note-121"><span class="cite-bracket">&#91;</span>121<span class="cite-bracket">&#93;</span></a></sup> An efficient and economic way to tune targeted electrolytes properties is by adding a third component in small concentrations, known as an additive.<sup id="cite_ref-122" class="reference"><a href="#cite_note-122"><span class="cite-bracket">&#91;</span>122<span class="cite-bracket">&#93;</span></a></sup> By adding the additive in small amounts, the bulk properties of the electrolyte system will not be affected whilst the targeted property can be significantly improved. The numerous additives that have been tested can be divided into the following three distinct categories: (1) those used for SEI chemistry modifications; (2) those used for enhancing the ion conduction properties; (3) those used for improving the safety of the cell (e.g. prevent overcharging).<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (September 2021)">citation needed</span></a></i>&#93;</sup> </p><p>Electrolyte alternatives have also played a significant role, for example the <a href="/wiki/Lithium_polymer_battery" title="Lithium polymer battery">lithium polymer battery</a>. Polymer electrolytes are promising for minimizing the dendrite formation of lithium. Polymers are supposed to prevent short circuits and maintain conductivity.<sup id="cite_ref-Girishkumar-2010_107-1" class="reference"><a href="#cite_note-Girishkumar-2010-107"><span class="cite-bracket">&#91;</span>107<span class="cite-bracket">&#93;</span></a></sup> </p><p>The ions in the electrolyte diffuse because there are small changes in the electrolyte concentration. Linear diffusion is only considered here. The change in concentration <i>c</i>, as a function of time <i>t</i> and distance <i>x</i>, is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial c}{\partial t}}={\frac {D}{\varepsilon }}{\frac {\partial ^{2}c}{\partial x^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>c</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>D</mi> <mi>&#x03B5;<!-- ε --></mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>c</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial c}{\partial t}}={\frac {D}{\varepsilon }}{\frac {\partial ^{2}c}{\partial x^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f45b24978221165b4ed480b2b4eb4ae26e63d25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:14.205ex; height:6.009ex;" alt="{\displaystyle {\frac {\partial c}{\partial t}}={\frac {D}{\varepsilon }}{\frac {\partial ^{2}c}{\partial x^{2}}}.}"></span></dd></dl> <p>In this equation, <i>D</i> is the <a href="/wiki/Diffusion_coefficient" class="mw-redirect" title="Diffusion coefficient">diffusion coefficient</a> for the lithium ion. It has a value of <span class="nowrap"><span data-sort-value="6990750000000000000♠"></span>7.5<span style="margin-left:0.25em;margin-right:0.15em;">×</span>10<sup>−10</sup>&#160;m<sup>2</sup>/s</span> in the <span class="chemf nowrap">LiPF<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">6</sub></span></span></span> electrolyte. The value for <i>ε</i>, the porosity of the electrolyte, is 0.724.<sup id="cite_ref-123" class="reference"><a href="#cite_note-123"><span class="cite-bracket">&#91;</span>123<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Battery_designs_and_formats">Battery designs and formats</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=11" title="Edit section: Battery designs and formats"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Nissan_Leaf_012.JPG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/Nissan_Leaf_012.JPG/240px-Nissan_Leaf_012.JPG" decoding="async" width="240" height="128" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/Nissan_Leaf_012.JPG/360px-Nissan_Leaf_012.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/40/Nissan_Leaf_012.JPG/480px-Nissan_Leaf_012.JPG 2x" data-file-width="1280" data-file-height="680" /></a><figcaption><a href="/wiki/Nissan_Leaf" title="Nissan Leaf">Nissan Leaf</a>'s lithium-ion battery pack</figcaption></figure><p>Lithium-ion batteries may have multiple levels of structure. Small batteries consist of a single battery cell. Larger batteries connect cells <a href="/wiki/Series_and_parallel_circuits" title="Series and parallel circuits">in parallel</a> into a module and connect modules <a href="/wiki/In_series" class="mw-redirect" title="In series">in series</a> and parallel into a pack. Multiple packs may be connected <a href="/wiki/Series_and_parallel_circuits" title="Series and parallel circuits">in series</a> to increase the voltage.<sup id="cite_ref-124" class="reference"><a href="#cite_note-124"><span class="cite-bracket">&#91;</span>124<span class="cite-bracket">&#93;</span></a></sup> </p><div class="mw-heading mw-heading3"><h3 id="Electrode_Layers_and_Electrolyte">Electrode Layers and Electrolyte</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=12" title="Edit section: Electrode Layers and Electrolyte"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>On the macrostructral level (length scale 0.1–5&#160;mm) almost all commercial lithium-ion batteries comprise foil current collectors (<a href="/wiki/Aluminium" title="Aluminium">aluminium</a> for <a href="/wiki/Cathode" title="Cathode">cathode</a> and <a href="/wiki/Copper" title="Copper">copper</a> for <a href="/wiki/Anode" title="Anode">anode</a>). Copper is selected for the anode, because lithium does not alloy with it. Aluminum is used for the cathode, because it passivates in LiPF<sub>6</sub> electrolytes. </p> <div class="mw-heading mw-heading3"><h3 id="Cells">Cells</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=13" title="Edit section: Cells"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Li-ion cells are available in various form factors, which can generally be divided into four types:<sup id="cite_ref-FOOTNOTEAndrea20102_125-0" class="reference"><a href="#cite_note-FOOTNOTEAndrea20102-125"><span class="cite-bracket">&#91;</span>125<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li>Coin cells have a rugged design with metal (stainless steel, usually) casing. Because of their poor <a href="/wiki/Specific_energy" title="Specific energy">specific energy</a> (in Wh/kg) and small energy (Wh) per cell, their use is limited to <a href="/w/index.php?title=Handwatches&amp;action=edit&amp;redlink=1" class="new" title="Handwatches (page does not exist)">handwatches</a>, <a href="/w/index.php?title=Portable_calculators&amp;action=edit&amp;redlink=1" class="new" title="Portable calculators (page does not exist)">portable calculators</a> and research. Notably, coin format cells are more commonly used for primary <a href="/w/index.php?title=Lithium-metal_batteries&amp;action=edit&amp;redlink=1" class="new" title="Lithium-metal batteries (page does not exist)">lithium-metal batteries</a>.</li> <li>Small cylindrical (solid body without terminals, such as those used in most <a href="/wiki/Electric_bicycle" title="Electric bicycle">e-bikes</a> and most <a href="/wiki/Electric_vehicle_battery" title="Electric vehicle battery">electric vehicle battery</a> and older laptop batteries); they typically come in <a href="/wiki/List_of_battery_sizes#Lithium-ion_batteries_(rechargeable)" title="List of battery sizes">standard sizes</a>.</li> <li>Large cylindrical (solid body with large threaded terminals)</li> <li>Flat or pouch (soft, flat body, such as those used in cell phones and newer laptops; these are <a href="/wiki/Lithium-ion_polymer_batteries" class="mw-redirect" title="Lithium-ion polymer batteries">lithium-ion polymer batteries</a>.<sup id="cite_ref-126" class="reference"><a href="#cite_note-126"><span class="cite-bracket">&#91;</span>126<span class="cite-bracket">&#93;</span></a></sup></li> <li>Rigid plastic case with large threaded terminals (such as electric vehicle traction packs)</li></ul> <p>Cells with a cylindrical shape are made in a characteristic "<a href="/wiki/Jelly_roll_(battery)" title="Jelly roll (battery)">swiss roll</a>" manner (known as a "jelly roll" in the US), which means it is a single long "sandwich" of the positive electrode, separator, negative electrode, and separator rolled into a single spool. The result is encased in a container. One advantage of cylindrical cells is faster production speed. One disadvantage can be a large radial temperature gradient at high discharge rates. </p><p>The absence of a case gives pouch cells the highest gravimetric energy density; however, many applications require containment to prevent expansion when their <a href="/wiki/State_of_charge" title="State of charge">state of charge</a> (SOC) level is high,<sup id="cite_ref-FOOTNOTEAndrea2010234_127-0" class="reference"><a href="#cite_note-FOOTNOTEAndrea2010234-127"><span class="cite-bracket">&#91;</span>127<span class="cite-bracket">&#93;</span></a></sup> and for general structural stability. Both rigid plastic and pouch-style cells are sometimes referred to as <a href="/wiki/Prism_(geometry)" title="Prism (geometry)">prismatic</a> cells due to their rectangular shapes.<sup id="cite_ref-128" class="reference"><a href="#cite_note-128"><span class="cite-bracket">&#91;</span>128<span class="cite-bracket">&#93;</span></a></sup> Three basic battery types are used in 2020s-era electric vehicles: cylindrical cells (e.g., Tesla), prismatic pouch (e.g., from <a href="/wiki/LG_Corporation" class="mw-redirect" title="LG Corporation">LG</a>), and prismatic can cells (e.g., from LG, <a href="/wiki/Samsung" title="Samsung">Samsung</a>, <a href="/wiki/Panasonic" title="Panasonic">Panasonic</a>, and others).<sup id="cite_ref-Ellis-2020_14-1" class="reference"><a href="#cite_note-Ellis-2020-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Lithium-ion_flow_battery" title="Lithium-ion flow battery">Lithium-ion flow batteries</a> have been demonstrated that suspend the cathode or anode material in an aqueous or organic solution.<sup id="cite_ref-129" class="reference"><a href="#cite_note-129"><span class="cite-bracket">&#91;</span>129<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-130" class="reference"><a href="#cite_note-130"><span class="cite-bracket">&#91;</span>130<span class="cite-bracket">&#93;</span></a></sup> </p><p>As of 2014, the smallest Li-ion cell was <a href="/wiki/Pin" title="Pin">pin</a>-shaped with a diameter of 3.5&#160;mm and a weight of 0.6&#160;g, made by <a href="/wiki/Panasonic" title="Panasonic">Panasonic</a>.<sup id="cite_ref-131" class="reference"><a href="#cite_note-131"><span class="cite-bracket">&#91;</span>131<span class="cite-bracket">&#93;</span></a></sup> A <a href="/wiki/Coin_cell" class="mw-redirect" title="Coin cell">coin cell</a> form factor is available for LiCoO<sub>2</sub> cells, usually designated with a "LiR" prefix.<sup id="cite_ref-132" class="reference"><a href="#cite_note-132"><span class="cite-bracket">&#91;</span>132<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-AA-2018_133-0" class="reference"><a href="#cite_note-AA-2018-133"><span class="cite-bracket">&#91;</span>133<span class="cite-bracket">&#93;</span></a></sup> </p><p>Batteries may be equipped with temperature sensors, heating/cooling systems, <a href="/wiki/Voltage_regulator" title="Voltage regulator">voltage regulator</a> circuits, <a href="/wiki/Tap_changer" title="Tap changer">voltage taps</a>, and charge-state monitors. These components address safety risks like overheating and <a href="/wiki/Short_circuit" title="Short circuit">short circuiting</a>.<sup id="cite_ref-Goodwins2006-2006_134-0" class="reference"><a href="#cite_note-Goodwins2006-2006-134"><span class="cite-bracket">&#91;</span>134<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Electrode_Layers">Electrode Layers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=14" title="Edit section: Electrode Layers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Cell_voltage">Cell voltage</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=15" title="Edit section: Cell voltage"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The average voltage of LCO (lithium cobalt oxide) chemistry is 3.6v if made with hard carbon cathode and 3.7v if made with graphite cathode. Comparatively, the latter has a flatter discharge voltage curve.<sup id="cite_ref-135" class="reference"><a href="#cite_note-135"><span class="cite-bracket">&#91;</span>135<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Pages: 25–26">&#58;&#8202;25–26&#8202;</span></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Uses">Uses</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=16" title="Edit section: Uses"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Lithium ion batteries are used in a multitude of applications from <a href="/wiki/Consumer_electronics" title="Consumer electronics">consumer electronics</a>, toys, power tools and electric vehicles.<sup id="cite_ref-136" class="reference"><a href="#cite_note-136"><span class="cite-bracket">&#91;</span>136<span class="cite-bracket">&#93;</span></a></sup> </p><p>More niche uses include backup power in telecommunications applications. Lithium-ion batteries are also frequently discussed as a potential option for <a href="/wiki/Grid_energy_storage" title="Grid energy storage">grid energy storage</a>,<sup id="cite_ref-137" class="reference"><a href="#cite_note-137"><span class="cite-bracket">&#91;</span>137<span class="cite-bracket">&#93;</span></a></sup> although as of 2020, they were not yet cost-competitive at scale.<sup id="cite_ref-138" class="reference"><a href="#cite_note-138"><span class="cite-bracket">&#91;</span>138<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Performance">Performance</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=17" title="Edit section: Performance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1257001546"><table class="infobox"><tbody><tr><th scope="row" class="infobox-label">Specific&#160;energy&#160;density</th><td class="infobox-data">100 to 250 <a href="/wiki/Watt-hour" class="mw-redirect" title="Watt-hour">W·h</a>/kg (360 to 900 <a href="/wiki/Kilojoule" class="mw-redirect" title="Kilojoule">kJ</a>/kg)<sup id="cite_ref-139" class="reference"><a href="#cite_note-139"><span class="cite-bracket">&#91;</span>139<span class="cite-bracket">&#93;</span></a></sup></td></tr><tr><th scope="row" class="infobox-label">Volumetric energy density</th><td class="infobox-data">250 to 680 W·h/<a href="/wiki/Litre" title="Litre">L</a> (900 to 2230 J/cm<sup>3</sup>)<sup id="cite_ref-greencarcongress_140-0" class="reference"><a href="#cite_note-greencarcongress-140"><span class="cite-bracket">&#91;</span>140<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Quinn-2018_141-0" class="reference"><a href="#cite_note-Quinn-2018-141"><span class="cite-bracket">&#91;</span>141<span class="cite-bracket">&#93;</span></a></sup></td></tr><tr><th scope="row" class="infobox-label">Specific power density</th><td class="infobox-data">1 to 10,000&#160;W/kg<sup id="cite_ref-mw_1-2" class="reference"><a href="#cite_note-mw-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></td></tr></tbody></table> <p>Because lithium-ion batteries can have a variety of positive and negative electrode materials, the energy density and voltage vary accordingly. </p><p>The <a href="/wiki/Open-circuit_voltage" title="Open-circuit voltage">open-circuit voltage</a> is higher than in <a href="/wiki/Aqueous_battery" title="Aqueous battery">aqueous batteries</a> (such as <a href="/wiki/Lead%E2%80%93acid_battery" title="Lead–acid battery">lead–acid</a>, <a href="/wiki/Nickel%E2%80%93metal_hydride_battery" title="Nickel–metal hydride battery">nickel–metal hydride</a> and <a href="/wiki/Nickel%E2%80%93cadmium_battery" title="Nickel–cadmium battery">nickel–cadmium</a>).<sup id="cite_ref-Winter-2004_142-0" class="reference"><a href="#cite_note-Winter-2004-142"><span class="cite-bracket">&#91;</span>142<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability"><span title="The material near this tag failed verification of its source citation(s). (February 2018)">failed verification</span></a></i>&#93;</sup> <a href="/wiki/Internal_resistance" title="Internal resistance">Internal resistance</a> increases with both cycling and age,<sup id="cite_ref-FOOTNOTEAndrea201012_143-0" class="reference"><a href="#cite_note-FOOTNOTEAndrea201012-143"><span class="cite-bracket">&#91;</span>143<span class="cite-bracket">&#93;</span></a></sup> although this depends strongly on the voltage and temperature the batteries are stored at.<sup id="cite_ref-144" class="reference"><a href="#cite_note-144"><span class="cite-bracket">&#91;</span>144<span class="cite-bracket">&#93;</span></a></sup> Rising internal resistance causes the voltage at the terminals to drop under load, which reduces the maximum current draw. Eventually, increasing resistance will leave the battery in a state such that it can no longer support the normal discharge currents requested of it without unacceptable voltage drop or overheating. </p><p>Batteries with a lithium iron phosphate positive and graphite negative electrodes have a nominal open-circuit voltage of 3.2&#160;V and a typical charging voltage of 3.6&#160;V. Lithium nickel manganese cobalt (NMC) oxide positives with graphite negatives have a 3.7&#160;V nominal voltage with a 4.2&#160;V maximum while charging. The charging procedure is performed at constant voltage with current-limiting circuitry (i.e., charging with constant current until a voltage of 4.2&#160;V is reached in the cell and continuing with a constant voltage applied until the current drops close to zero). Typically, the charge is terminated at 3% of the initial charge current. In the past, lithium-ion batteries could not be fast-charged and needed at least two hours to fully charge. Current-generation cells can be fully charged in 45 minutes or less. In 2015 researchers demonstrated a small 600&#160;mAh capacity battery charged to 68 percent capacity in two minutes and a 3,000&#160;mAh battery charged to 48 percent capacity in five minutes. The latter battery has an energy density of 620&#160;W·h/L. The device employed heteroatoms bonded to graphite molecules in the anode.<sup id="cite_ref-145" class="reference"><a href="#cite_note-145"><span class="cite-bracket">&#91;</span>145<span class="cite-bracket">&#93;</span></a></sup> </p><p>Performance of manufactured batteries has improved over time. For example, from 1991 to 2005 the energy capacity per price of lithium-ion batteries improved more than ten-fold, from 0.3&#160;W·h per dollar to over 3&#160;W·h per dollar.<sup id="cite_ref-146" class="reference"><a href="#cite_note-146"><span class="cite-bracket">&#91;</span>146<span class="cite-bracket">&#93;</span></a></sup> In the period from 2011 to 2017, progress has averaged 7.5% annually.<sup id="cite_ref-147" class="reference"><a href="#cite_note-147"><span class="cite-bracket">&#91;</span>147<span class="cite-bracket">&#93;</span></a></sup> Overall, between 1991 and 2018, prices for all types of lithium-ion cells (in dollars per kWh) fell approximately 97%.<sup id="cite_ref-Ziegler-2021_148-0" class="reference"><a href="#cite_note-Ziegler-2021-148"><span class="cite-bracket">&#91;</span>148<span class="cite-bracket">&#93;</span></a></sup> Over the same time period, energy density more than tripled.<sup id="cite_ref-Ziegler-2021_148-1" class="reference"><a href="#cite_note-Ziegler-2021-148"><span class="cite-bracket">&#91;</span>148<span class="cite-bracket">&#93;</span></a></sup> Efforts to increase energy density contributed significantly to cost reduction.<sup id="cite_ref-149" class="reference"><a href="#cite_note-149"><span class="cite-bracket">&#91;</span>149<span class="cite-bracket">&#93;</span></a></sup> Energy density can also be increased by improvements in the chemistry if the cell, for instance, by full or partial replacement of graphite with silicon. Silicon anodes enhanced with graphene nanotubes to eliminate the premature degradation of silicon open the door to reaching record-breaking battery energy density of up to 350&#160;Wh/kg and lowering EV prices to be competitive with ICEs.<sup id="cite_ref-150" class="reference"><a href="#cite_note-150"><span class="cite-bracket">&#91;</span>150<span class="cite-bracket">&#93;</span></a></sup> </p><p>Differently sized cells with similar chemistry can also have different energy densities. The <a href="/wiki/21700_battery" class="mw-redirect" title="21700 battery">21700 cell</a> has 50% more energy than the <a href="/wiki/18650_battery" title="18650 battery">18650 cell</a>, and the bigger size reduces heat transfer to its surroundings.<sup id="cite_ref-Quinn-2018_141-1" class="reference"><a href="#cite_note-Quinn-2018-141"><span class="cite-bracket">&#91;</span>141<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Round-trip_efficiency">Round-trip efficiency</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=18" title="Edit section: Round-trip efficiency"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The table below shows the result of an experimental evaluation of a "high-energy" type 3.0&#160;Ah 18650 NMC cell in 2021, round-trip efficiency which compared the energy going into the cell and energy extracted from the cell from 100% (4.2v) SoC to 0% SoC (cut off 2.0v). A roundtrip efficiency is the percent of energy that can be used relative to the energy that went into charging the battery.<sup id="cite_ref-151" class="reference"><a href="#cite_note-151"><span class="cite-bracket">&#91;</span>151<span class="cite-bracket">&#93;</span></a></sup> </p> <table class="wikitable"> <caption> </caption> <tbody><tr> <th>C rate </th> <th>efficiency </th> <th>estimated charge efficiency </th> <th>estimated discharged efficiency </th></tr> <tr> <td>0.2 </td> <td>86% </td> <td>93% </td> <td>92% </td></tr> <tr> <td>0.4 </td> <td>82% </td> <td>92% </td> <td>90% </td></tr> <tr> <td>0.6 </td> <td>81% </td> <td>91% </td> <td>89% </td></tr> <tr> <td>0.8 </td> <td>77% </td> <td>90% </td> <td>86% </td></tr> <tr> <td>1.0 </td> <td>75% </td> <td>89% </td> <td>85% </td></tr> <tr> <td>1.2 </td> <td>73% </td> <td>89% </td> <td>83% </td></tr></tbody></table> <p>Characterization of a cell in a different experiment in 2017 reported round-trip efficiency of 85.5% at 2C and 97.6% at 0.1C<sup id="cite_ref-152" class="reference"><a href="#cite_note-152"><span class="cite-bracket">&#91;</span>152<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Lifespan">Lifespan</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=19" title="Edit section: Lifespan"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Electronic_waste" title="Electronic waste">Electronic waste</a> and <a href="/wiki/Technology-critical_element" title="Technology-critical element">Technology-critical element</a></div> <p>The lifespan of a lithium-ion battery is typically defined as the number of full charge-discharge cycles to reach a failure threshold in terms of capacity loss or impedance rise. Manufacturers' datasheet typically uses the word "cycle life" to specify lifespan in terms of the number of cycles to reach 80% of the rated battery capacity.<sup id="cite_ref-153" class="reference"><a href="#cite_note-153"><span class="cite-bracket">&#91;</span>153<span class="cite-bracket">&#93;</span></a></sup> Simply storing lithium-ion batteries in the charged state also reduces their capacity (the amount of cyclable <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">Li<sup class="template-chem2-sup">+</sup></span>) and increases the cell resistance (primarily due to the continuous growth of the solid electrolyte interface on the <a href="/wiki/Anode" title="Anode">anode</a>). Calendar life is used to represent the whole life cycle of battery involving both the cycle and inactive storage operations. Battery cycle life is affected by many different stress factors including temperature, discharge current, charge current, and state of charge ranges (depth of discharge).<sup id="cite_ref-Wang-2011_154-0" class="reference"><a href="#cite_note-Wang-2011-154"><span class="cite-bracket">&#91;</span>154<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Saxena-2016_155-0" class="reference"><a href="#cite_note-Saxena-2016-155"><span class="cite-bracket">&#91;</span>155<span class="cite-bracket">&#93;</span></a></sup> Batteries are not fully charged and discharged in real applications such as smartphones, laptops and electric cars and hence defining battery life via full discharge cycles can be misleading. To avoid this confusion, researchers sometimes use cumulative discharge<sup id="cite_ref-Wang-2011_154-1" class="reference"><a href="#cite_note-Wang-2011-154"><span class="cite-bracket">&#91;</span>154<span class="cite-bracket">&#93;</span></a></sup> defined as the total amount of charge (Ah) delivered by the battery during its entire life or equivalent full cycles,<sup id="cite_ref-Saxena-2016_155-1" class="reference"><a href="#cite_note-Saxena-2016-155"><span class="cite-bracket">&#91;</span>155<span class="cite-bracket">&#93;</span></a></sup> which represents the summation of the partial cycles as fractions of a full charge-discharge cycle. Battery degradation during storage is affected by temperature and battery state of charge (SOC) and a combination of full charge (100% SOC) and high temperature (usually &gt;&#160;50&#160;°C) can result in a sharp capacity drop and gas generation.<sup id="cite_ref-156" class="reference"><a href="#cite_note-156"><span class="cite-bracket">&#91;</span>156<span class="cite-bracket">&#93;</span></a></sup> Multiplying the battery cumulative discharge by the rated nominal voltage gives the total energy delivered over the life of the battery. From this one can calculate the cost per kWh of the energy (including the cost of charging). </p><p>Over their lifespan batteries degrade gradually leading to reduced cyclable charge (a.k.a. Ah capacity) and increased resistance (the latter translates into a lower operating cell voltage).<sup id="cite_ref-Hendricks-2016_157-0" class="reference"><a href="#cite_note-Hendricks-2016-157"><span class="cite-bracket">&#91;</span>157<span class="cite-bracket">&#93;</span></a></sup> </p><p>Several degradation processes occur in lithium-ion batteries, some during cycling, some during storage, and some all the time:<sup id="cite_ref-Voelker-2014_158-0" class="reference"><a href="#cite_note-Voelker-2014-158"><span class="cite-bracket">&#91;</span>158<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Vermeer-2022_159-0" class="reference"><a href="#cite_note-Vermeer-2022-159"><span class="cite-bracket">&#91;</span>159<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Hendricks-2016_157-1" class="reference"><a href="#cite_note-Hendricks-2016-157"><span class="cite-bracket">&#91;</span>157<span class="cite-bracket">&#93;</span></a></sup> Degradation is strongly temperature-dependent: degradation at room temperature is minimal but increases for batteries stored or used in high temperature (usually &gt; 35&#160;°C) or low temperature (usually &lt; 5&#160;°C) environments.<sup id="cite_ref-Waldmann-2014_160-0" class="reference"><a href="#cite_note-Waldmann-2014-160"><span class="cite-bracket">&#91;</span>160<span class="cite-bracket">&#93;</span></a></sup> High charge levels also hasten <a href="/wiki/Capacity_loss" title="Capacity loss">capacity loss</a>.<sup id="cite_ref-161" class="reference"><a href="#cite_note-161"><span class="cite-bracket">&#91;</span>161<span class="cite-bracket">&#93;</span></a></sup> Frequent charge to &gt; 90% and discharge to &lt; 10% may also hasten <a href="/wiki/Capacity_loss" title="Capacity loss">capacity loss</a>. Keeping the li-ion battery status to about 60% to 80% can reduce the capacity loss.<sup id="cite_ref-162" class="reference"><a href="#cite_note-162"><span class="cite-bracket">&#91;</span>162<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-163" class="reference"><a href="#cite_note-163"><span class="cite-bracket">&#91;</span>163<span class="cite-bracket">&#93;</span></a></sup> </p><p>In a study, scientists provided 3D imaging and model analysis to reveal main causes, mechanics, and potential mitigations of the problematic <a href="/wiki/Wear_and_tear" title="Wear and tear">degradation</a> of the batteries over <a href="/wiki/Charge_cycle" title="Charge cycle">charge cycles</a>. They found "[p]article cracking increases and contact loss between particles and carbon-binder domain are observed to correlate with the cell degradation" and indicates that "the reaction heterogeneity within the thick cathode caused by the unbalanced electron conduction is the main cause of the battery degradation over cycling".<sup id="cite_ref-164" class="reference"><a href="#cite_note-164"><span class="cite-bracket">&#91;</span>164<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-165" class="reference"><a href="#cite_note-165"><span class="cite-bracket">&#91;</span>165<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs additional references to reliable sources. (February 2023)">additional citation(s) needed</span></a></i>&#93;</sup> </p><p>The most common degradation mechanisms in lithium-ion batteries include:<sup id="cite_ref-Attia-2022_166-0" class="reference"><a href="#cite_note-Attia-2022-166"><span class="cite-bracket">&#91;</span>166<span class="cite-bracket">&#93;</span></a></sup> </p> <ol><li>Reduction of the organic carbonate electrolyte at the anode, which results in the growth of <a href="/w/index.php?title=Solid_Electrolyte_Interface&amp;action=edit&amp;redlink=1" class="new" title="Solid Electrolyte Interface (page does not exist)">Solid Electrolyte Interface</a> (SEI), where <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">Li<sup class="template-chem2-sup">+</sup></span> ions get irreversibly trapped, i.e. loss of lithium inventory. This shows as increased ohmic impedance of the negative electrode and a drop in the cyclable Ah charge. At constant temperature, the SEI film thickness (and therefore, the SEI resistance and the loss in cyclable <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">Li<sup class="template-chem2-sup">+</sup></span>) increases as a square root of the time spent in the charged state. The number of cycles is not a useful metric in characterizing this degradation pathway. Under high temperatures or in the presence of a mechanical damage the electrolyte reduction can proceed explosively.</li> <li>Lithium metal plating also results in the loss of lithium inventory (cyclable Ah charge), as well as internal short-circuiting and ignition of a battery. Once Li plating commences during cycling, it results in larger slopes of capacity loss per cycle and resistance increase per cycle. This degradation mechanism become more prominent during fast charging and low temperatures.</li> <li>Loss of the (negative or positive) electroactive materials due to dissolution (e.g. of <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">Mn<sup>3+</sup></span> species), cracking, exfoliation, detachment or even simple regular volume change during cycling. It shows up as both charge and power fade (increased resistance). Both positive and negative electrode materials are subject to fracturing due to the volumetric strain of repeated (de)lithiation cycles.</li> <li>Structural degradation of cathode materials, such as <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">Li<sup class="template-chem2-sup">+</sup>/Ni<sup>2+</sup></span> cation mixing in nickel-rich materials. This manifests as “electrode saturation", loss of cyclable Ah charge and as a "voltage fade".</li> <li>Other material degradations. Negative copper current collector is particularly prone to corrosion/dissolution at low cell voltages. PVDF binder also degrades, causing the detachment of the electroactive materials, and the loss of cyclable Ah charge.</li></ol> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:2022-Vermeer-F2.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d9/2022-Vermeer-F2.jpg/220px-2022-Vermeer-F2.jpg" decoding="async" width="220" height="109" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d9/2022-Vermeer-F2.jpg/330px-2022-Vermeer-F2.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d9/2022-Vermeer-F2.jpg/440px-2022-Vermeer-F2.jpg 2x" data-file-width="2732" data-file-height="1353" /></a><figcaption>Overview of the correlation between operational stress factors (the causes for degradation), the corresponding aging mechanisms, aging mode, and their effect on Lithium-ion batteries aging.</figcaption></figure> <p>These are shown in the figure on the right. A change from one main degradation mechanism to another appears as a knee (slope change) in the capacity vs. cycle number plot.<sup id="cite_ref-Attia-2022_166-1" class="reference"><a href="#cite_note-Attia-2022-166"><span class="cite-bracket">&#91;</span>166<span class="cite-bracket">&#93;</span></a></sup> </p><p>Most studies of lithium-ion battery aging have been done at elevated (50–60&#160;°C) temperatures in order to complete the experiments sooner. Under these storage conditions, fully charged nickel-cobalt-aluminum and lithium-iron phosphate cells lose ca. 20% of their cyclable charge in 1–2 years. It is believed that the aforementioned anode aging is the most important degradation pathway in these cases. On the other hand, manganese-based cathodes show a (ca. 20–50%) faster degradation under these conditions, probably due to the additional mechanism of Mn ion dissolution.<sup id="cite_ref-Vermeer-2022_159-1" class="reference"><a href="#cite_note-Vermeer-2022-159"><span class="cite-bracket">&#91;</span>159<span class="cite-bracket">&#93;</span></a></sup> At 25&#160;°C the degradation of lithium-ion batteries seems to follow the same pathway(s) as the degradation at 50&#160;°C, but with half the speed.<sup id="cite_ref-Vermeer-2022_159-2" class="reference"><a href="#cite_note-Vermeer-2022-159"><span class="cite-bracket">&#91;</span>159<span class="cite-bracket">&#93;</span></a></sup> In other words, based on the limited extrapolated experimental data, lithium-ion batteries are expected to lose irreversibly ca. 20% of their cyclable charge in 3–5 years or 1000–2000 cycles at 25&#160;°C.<sup id="cite_ref-Attia-2022_166-2" class="reference"><a href="#cite_note-Attia-2022-166"><span class="cite-bracket">&#91;</span>166<span class="cite-bracket">&#93;</span></a></sup> Lithium-ion batteries with titanate anodes do not suffer from SEI growth, and last longer (&gt;5000 cycles) than graphite anodes. However, in complete cells other degradation mechanisms (i.e. the dissolution of <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">Mn<sup>3+</sup></span> and the <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">Ni<sup>2+</sup>/Li<sup class="template-chem2-sup">+</sup></span> place exchange, decomposition of PVDF binder and particle detachment) show up after 1000–2000 days, and the use titanate anode does not improve full cell durability in practice. </p> <div class="mw-heading mw-heading3"><h3 id="Detailed_degradation_description">Detailed degradation description</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=20" title="Edit section: Detailed degradation description"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A more detailed description of some of these mechanisms is provided below: </p> <div><ol><li>The negative (anode) SEI layer, a passivation coating formed by electrolyte (such as <a href="/wiki/Ethylene_carbonate" title="Ethylene carbonate">ethylene carbonate</a>, <a href="/wiki/Dimethyl_carbonate" title="Dimethyl carbonate">dimethyl carbonate</a> but not <a href="/wiki/Propylene_carbonate" title="Propylene carbonate">propylene carbonate</a>) reduction products, is essential for providing Li<sup>+</sup> ion conduction, while preventing electron transfer (and, thus, further solvent reduction). Under typical operating conditions, the negative SEI layer reaches a fixed thickness after the first few charges (formation cycles), allowing the device to operate for years. However, at elevated temperatures or due to mechanical detachment of the negative SEI, this <a href="/wiki/Exothermic" class="mw-redirect" title="Exothermic">exothermic</a> electrolyte reduction can proceed violently and lead to an explosion via several reactions.<sup id="cite_ref-Voelker-2014_158-1" class="reference"><a href="#cite_note-Voelker-2014-158"><span class="cite-bracket">&#91;</span>158<span class="cite-bracket">&#93;</span></a></sup> Lithium-ion batteries are prone to capacity fading over hundreds<sup id="cite_ref-167" class="reference"><a href="#cite_note-167"><span class="cite-bracket">&#91;</span>167<span class="cite-bracket">&#93;</span></a></sup> to thousands of cycles. Formation of the SEI consumes lithium ions, reducing the overall charge and discharge efficiency of the electrode material.<sup id="cite_ref-168" class="reference"><a href="#cite_note-168"><span class="cite-bracket">&#91;</span>168<span class="cite-bracket">&#93;</span></a></sup> as a decomposition product, various SEI-forming additives can be added to the electrolyte to promote the formation of a more stable SEI that remains selective for lithium ions to pass through while blocking electrons.<sup id="cite_ref-169" class="reference"><a href="#cite_note-169"><span class="cite-bracket">&#91;</span>169<span class="cite-bracket">&#93;</span></a></sup> Cycling cells at high temperature or at fast rates can promote the degradation of Li-ion batteries due in part to the degradation of the SEI or <a href="/wiki/Lithium" title="Lithium">lithium</a> plating.<sup id="cite_ref-170" class="reference"><a href="#cite_note-170"><span class="cite-bracket">&#91;</span>170<span class="cite-bracket">&#93;</span></a></sup> Charging Li-ion batteries beyond 80% can drastically accelerate battery degradation.<sup id="cite_ref-171" class="reference"><a href="#cite_note-171"><span class="cite-bracket">&#91;</span>171<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-172" class="reference"><a href="#cite_note-172"><span class="cite-bracket">&#91;</span>172<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-173" class="reference"><a href="#cite_note-173"><span class="cite-bracket">&#91;</span>173<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-174" class="reference"><a href="#cite_note-174"><span class="cite-bracket">&#91;</span>174<span class="cite-bracket">&#93;</span></a></sup> <p>Depending on the electrolyte and additives,<sup id="cite_ref-175" class="reference"><a href="#cite_note-175"><span class="cite-bracket">&#91;</span>175<span class="cite-bracket">&#93;</span></a></sup> common components of the SEI layer that forms on the anode include a mixture of lithium oxide, <a href="/wiki/Lithium_fluoride" title="Lithium fluoride">lithium fluoride</a> and semicarbonates (e.g., lithium alkyl carbonates). At elevated temperatures, alkyl carbonates in the electrolyte decompose into insoluble species such as <span class="chemf nowrap"><a href="/wiki/Li2CO3" class="mw-redirect" title="Li2CO3">Li<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span>CO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span></span></a></span>&#160;that increases the film thickness. This increases cell impedance and reduces cycling capacity.<sup id="cite_ref-Waldmann-2014_160-1" class="reference"><a href="#cite_note-Waldmann-2014-160"><span class="cite-bracket">&#91;</span>160<span class="cite-bracket">&#93;</span></a></sup> Gases formed by electrolyte decomposition can increase the cell's internal pressure and are a potential safety issue in demanding environments such as mobile devices.<sup id="cite_ref-Voelker-2014_158-2" class="reference"><a href="#cite_note-Voelker-2014-158"><span class="cite-bracket">&#91;</span>158<span class="cite-bracket">&#93;</span></a></sup> Below 25&#160;°C, plating of metallic Lithium on the anodes and subsequent reaction with the electrolyte is leading to loss of cyclable Lithium.<sup id="cite_ref-Waldmann-2014_160-2" class="reference"><a href="#cite_note-Waldmann-2014-160"><span class="cite-bracket">&#91;</span>160<span class="cite-bracket">&#93;</span></a></sup> Extended storage can trigger an incremental increase in film thickness and capacity loss.<sup id="cite_ref-Voelker-2014_158-3" class="reference"><a href="#cite_note-Voelker-2014-158"><span class="cite-bracket">&#91;</span>158<span class="cite-bracket">&#93;</span></a></sup> Charging at greater than 4.2 V can initiate Li<sup>+</sup>&#160;plating on the anode, producing irreversible capacity loss. </p><p>Electrolyte degradation mechanisms include hydrolysis and thermal decomposition.<sup id="cite_ref-Voelker-2014_158-4" class="reference"><a href="#cite_note-Voelker-2014-158"><span class="cite-bracket">&#91;</span>158<span class="cite-bracket">&#93;</span></a></sup> At concentrations as low as 10 ppm, water begins catalyzing a number of degradation products that can affect the electrolyte, anode and cathode.<sup id="cite_ref-Voelker-2014_158-5" class="reference"><a href="#cite_note-Voelker-2014-158"><span class="cite-bracket">&#91;</span>158<span class="cite-bracket">&#93;</span></a></sup> <span class="chemf nowrap">LiPF<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">6</sub></span></span></span> participates in an <a href="/wiki/Chemical_equilibrium" title="Chemical equilibrium">equilibrium</a> reaction with LiF and <span class="chemf nowrap">PF<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">5</sub></span></span></span>. Under typical conditions, the equilibrium lies far to the left. However the presence of water generates substantial LiF, an insoluble, electrically insulating product. LiF binds to the anode surface, increasing film thickness.<sup id="cite_ref-Voelker-2014_158-6" class="reference"><a href="#cite_note-Voelker-2014-158"><span class="cite-bracket">&#91;</span>158<span class="cite-bracket">&#93;</span></a></sup> <span class="chemf nowrap">LiPF<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">6</sub></span></span></span> hydrolysis yields <span class="chemf nowrap">PF<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">5</sub></span></span></span>, a strong <a href="/wiki/Lewis_acid" class="mw-redirect" title="Lewis acid">Lewis acid</a> that reacts with electron-rich species, such as water. <span class="chemf nowrap">PF<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">5</sub></span></span></span> reacts with water to form <a href="/wiki/Hydrofluoric_acid" title="Hydrofluoric acid">hydrofluoric acid</a> (HF) and <a href="/wiki/Phosphorus_oxyfluoride" class="mw-redirect" title="Phosphorus oxyfluoride">phosphorus oxyfluoride</a>. Phosphorus oxyfluoride in turn reacts to form additional HF and difluorohydroxy <a href="/wiki/Phosphoric_acid" title="Phosphoric acid">phosphoric acid</a>. HF converts the rigid SEI film into a fragile one. On the cathode, the carbonate solvent can then diffuse onto the cathode oxide over time, releasing heat and potentially causing thermal runaway.<sup id="cite_ref-Voelker-2014_158-7" class="reference"><a href="#cite_note-Voelker-2014-158"><span class="cite-bracket">&#91;</span>158<span class="cite-bracket">&#93;</span></a></sup> Decomposition of electrolyte salts and interactions between the salts and solvent start at as low as 70&#160;°C. Significant decomposition occurs at higher temperatures. At 85&#160;°C <a href="/wiki/Transesterification" title="Transesterification">transesterification</a> products, such as dimethyl-2,5-dioxahexane carboxylate (DMDOHC) are formed from EC reacting with DMC.<sup id="cite_ref-Voelker-2014_158-8" class="reference"><a href="#cite_note-Voelker-2014-158"><span class="cite-bracket">&#91;</span>158<span class="cite-bracket">&#93;</span></a></sup> </p><p>Batteries generate heat when being charged or discharged, especially at high currents. Large battery packs, such as those used in electric vehicles, are generally equipped with thermal management systems that maintain a temperature between 15&#160;°C (59&#160;°F) and 35&#160;°C (95&#160;°F).<sup id="cite_ref-176" class="reference"><a href="#cite_note-176"><span class="cite-bracket">&#91;</span>176<span class="cite-bracket">&#93;</span></a></sup> Pouch and cylindrical cell temperatures depend linearly on the discharge current.<sup id="cite_ref-177" class="reference"><a href="#cite_note-177"><span class="cite-bracket">&#91;</span>177<span class="cite-bracket">&#93;</span></a></sup> Poor internal ventilation may increase temperatures. For large batteries consisting of multiple cells, non-uniform temperatures can lead to non-uniform and accelerated degradation.<sup id="cite_ref-178" class="reference"><a href="#cite_note-178"><span class="cite-bracket">&#91;</span>178<span class="cite-bracket">&#93;</span></a></sup> In contrast, the calendar life of <a href="/wiki/Lithium_iron_phosphate_battery" title="Lithium iron phosphate battery"><span class="chemf nowrap">LiFePO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span></a> cells is not affected by high charge states.<sup id="cite_ref-FOOTNOTEAndrea20109_179-0" class="reference"><a href="#cite_note-FOOTNOTEAndrea20109-179"><span class="cite-bracket">&#91;</span>179<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-180" class="reference"><a href="#cite_note-180"><span class="cite-bracket">&#91;</span>180<span class="cite-bracket">&#93;</span></a></sup> </p> Positive SEI layer in lithium-ion batteries is much less understood than the negative SEI. It is believed to have a low-ionic conductivity and shows up as an increased interfacial resistance of the cathode during cycling and calendar aging.<sup id="cite_ref-Voelker-2014_158-9" class="reference"><a href="#cite_note-Voelker-2014-158"><span class="cite-bracket">&#91;</span>158<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Vermeer-2022_159-3" class="reference"><a href="#cite_note-Vermeer-2022-159"><span class="cite-bracket">&#91;</span>159<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Hendricks-2016_157-2" class="reference"><a href="#cite_note-Hendricks-2016-157"><span class="cite-bracket">&#91;</span>157<span class="cite-bracket">&#93;</span></a></sup></li><li>Lithium plating is a phenomenon in which certain conditions lead to metallic lithium forming and depositing onto the surface of the battery’s anode rather than intercalating within the anode material’s structure. Low temperatures, overcharging and high charging rates can exacerbate this occurrence.<sup id="cite_ref-181" class="reference"><a href="#cite_note-181"><span class="cite-bracket">&#91;</span>181<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-182" class="reference"><a href="#cite_note-182"><span class="cite-bracket">&#91;</span>182<span class="cite-bracket">&#93;</span></a></sup> During these conditions, lithium ions may not intercalate uniformly into the anode material and form layers of lithium ion on the surface in the form of <a href="/wiki/Dendrite_(crystal)" title="Dendrite (crystal)">dendrites</a>. Dendrites are tiny needle-like structures that can accumulate and pierce the separator, causing a <a href="/wiki/Short_circuit" title="Short circuit">short circuit</a> can initiate <a href="/wiki/Thermal_runaway" title="Thermal runaway">thermal runaway</a>.<sup id="cite_ref-Voelker-2014_158-10" class="reference"><a href="#cite_note-Voelker-2014-158"><span class="cite-bracket">&#91;</span>158<span class="cite-bracket">&#93;</span></a></sup> This cascade of rapid and uncontrolled energy can lead to battery swelling, increased heat, fires and or explosions.<sup id="cite_ref-183" class="reference"><a href="#cite_note-183"><span class="cite-bracket">&#91;</span>183<span class="cite-bracket">&#93;</span></a></sup> Additionally, this dendritic growth can lead to side reactions with the electrolyte and convert the fresh plated lithium into electrochemically inert dead lithium.<sup id="cite_ref-Besenhard-1974_24-1" class="reference"><a href="#cite_note-Besenhard-1974-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> Moreover, the dendritic growth brought on by lithium plating can degrade the lithium-ion battery and lead to poor cycling efficiency and safety hazards. Some ways to mitigate lithium plating and the dendritic growth is by controlling the temperature, optimizing the charging conditions, and improving the materials used.<sup id="cite_ref-184" class="reference"><a href="#cite_note-184"><span class="cite-bracket">&#91;</span>184<span class="cite-bracket">&#93;</span></a></sup> In terms of temperature, the ideal charging temperature is anywhere between 0&#160;°C to 45&#160;°C, but also room temperature is ideal (20&#160;°C to 25&#160;°C).<sup id="cite_ref-185" class="reference"><a href="#cite_note-185"><span class="cite-bracket">&#91;</span>185<span class="cite-bracket">&#93;</span></a></sup> Advancements in materials innovation requires much <a href="/wiki/Research_in_lithium-ion_batteries" title="Research in lithium-ion batteries">research and development</a> in the electrolyte selection and improving the anode resistance to plating. One such materials innovation would be to add other compounds to the electrolyte like fluoroethylene carbonate (FEC) to form a rich LiF SEI.<sup id="cite_ref-186" class="reference"><a href="#cite_note-186"><span class="cite-bracket">&#91;</span>186<span class="cite-bracket">&#93;</span></a></sup> Another novel method would be to coat the separator in a protective shield that essentially “kills” the lithium ions before it can form these dendrites.<sup id="cite_ref-187" class="reference"><a href="#cite_note-187"><span class="cite-bracket">&#91;</span>187<span class="cite-bracket">&#93;</span></a></sup></li><li>Certain manganese containing cathodes can degrade by the Hunter degradation mechanism resulting in manganese dissolution and reduction on the anode.<sup id="cite_ref-Voelker-2014_158-11" class="reference"><a href="#cite_note-Voelker-2014-158"><span class="cite-bracket">&#91;</span>158<span class="cite-bracket">&#93;</span></a></sup> By the Hunter mechanism for <span class="chemf nowrap">LiMn<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span>O<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span>, hydrofluoric acid catalyzes the loss of manganese through disproportionation of a surface trivalent manganese to form a tetravalent manganese and a soluble divalent manganese:<sup id="cite_ref-Voelker-2014_158-12" class="reference"><a href="#cite_note-Voelker-2014-158"><span class="cite-bracket">&#91;</span>158<span class="cite-bracket">&#93;</span></a></sup> <dl><dd>2Mn<sup>3+</sup> → Mn<sup>2+</sup>+ Mn<sup>4+</sup></dd></dl> Material loss of the spinel results in capacity fade. Temperatures as low as 50&#160;°C initiate Mn<sup>2+ </sup>deposition on the anode as metallic manganese with the same effects as lithium and copper plating.<sup id="cite_ref-Waldmann-2014_160-3" class="reference"><a href="#cite_note-Waldmann-2014-160"><span class="cite-bracket">&#91;</span>160<span class="cite-bracket">&#93;</span></a></sup> Cycling over the theoretical max and min voltage plateaus destroys the <a href="/wiki/Crystal_lattice" class="mw-redirect" title="Crystal lattice">crystal lattice</a> via <a href="/wiki/Jahn-Teller_distortion" class="mw-redirect" title="Jahn-Teller distortion">Jahn-Teller distortion</a>, which occurs when Mn<sup>4+</sup> is reduced to Mn<sup>3+</sup> during discharge.<sup id="cite_ref-Voelker-2014_158-13" class="reference"><a href="#cite_note-Voelker-2014-158"><span class="cite-bracket">&#91;</span>158<span class="cite-bracket">&#93;</span></a></sup> Storage of a battery charged to greater than 3.6 V initiates electrolyte oxidation by the cathode and induces SEI layer formation on the cathode. As with the anode, excessive SEI formation forms an insulator resulting in capacity fade and uneven current distribution.<sup id="cite_ref-Voelker-2014_158-14" class="reference"><a href="#cite_note-Voelker-2014-158"><span class="cite-bracket">&#91;</span>158<span class="cite-bracket">&#93;</span></a></sup> Storage at less than 2 V results in the slow degradation of <span class="chemf nowrap">LiCoO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span> and <span class="chemf nowrap">LiMn<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span>O<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span> cathodes, the release of oxygen and irreversible capacity loss.<sup id="cite_ref-Voelker-2014_158-15" class="reference"><a href="#cite_note-Voelker-2014-158"><span class="cite-bracket">&#91;</span>158<span class="cite-bracket">&#93;</span></a></sup></li><li>Discharging below <span class="nowrap"><span data-sort-value="7000200000000000000♠"></span>2&#160;V</span> can also result in the dissolution of the copper anode current collector and, thus, in catastrophic internal short-circuiting on recharge.</li></ol></div> <div class="mw-heading mw-heading3"><h3 id="Recommendations">Recommendations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=21" title="Edit section: Recommendations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/IEEE" class="mw-redirect" title="IEEE">IEEE</a> standard 1188–1996 recommends replacing lithium-ion batteries in an electric vehicle, when their charge capacity drops to 80% of the nominal value.<sup id="cite_ref-189" class="reference"><a href="#cite_note-189"><span class="cite-bracket">&#91;</span>189<span class="cite-bracket">&#93;</span></a></sup> In what follows, we shall use the 20% capacity loss as a comparison point between different studies. We shall note, nevertheless, that the linear model of degradation (the constant&#160;% of charge loss per cycle or per calendar time) is not always applicable, and that a “knee point”, observed as a change of the slope, and related to the change of the main degradation mechanism, is often observed.<sup id="cite_ref-190" class="reference"><a href="#cite_note-190"><span class="cite-bracket">&#91;</span>190<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Safety">Safety</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=22" title="Edit section: Safety"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The problem of lithium-ion battery safety has been recognized even before these batteries were first commercially released in 1991. The two main reasons for lithium-ion battery fires and explosions are related to processes on the negative electrode (cathode). During a normal battery charge lithium ions intercalate into graphite. However, if the charge is forced to go too fast (or at a too low temperature) lithium metal starts plating on the anode, and the resulting dendrites can penetrate the battery separator, internally short-circuit the cell, resulting in high electric current, heating and ignition. In other mechanism, an explosive reaction between the charge anode material (LiC<sub>6</sub>) and the solvent (liquid organic carbonate) occurs even at open circuit, provided that the anode temperature exceeds a certain threshold above 70&#160;°C.<sup id="cite_ref-191" class="reference"><a href="#cite_note-191"><span class="cite-bracket">&#91;</span>191<span class="cite-bracket">&#93;</span></a></sup> </p><p>Nowadays, all reputable manufacturers employ at least two safety devices in all their lithium-ion batteries of an 18650 format or larger: a current interrupt (CID) device and a positive temperature coefficient (PTC) device. The CID comprises two metal disks, that make an electric contact with each other. When pressure inside the cell increases, the distance between the two disks increases too and they lose the electric contact with each other, thus terminating the flow of electric current through the battery. The PTC device is made of an electrically conducting polymer. When the current going through the PTC device increases, the polymer gets hot, and its electric resistance rises sharply, thus reducing the current through the battery.<sup id="cite_ref-192" class="reference"><a href="#cite_note-192"><span class="cite-bracket">&#91;</span>192<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Fire_hazard">Fire hazard</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=23" title="Edit section: Fire hazard"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Plug-in_electric_vehicle_fire_incidents" class="mw-redirect" title="Plug-in electric vehicle fire incidents">Plug-in electric vehicle fire incidents</a></div> <p>Lithium-ion batteries can be a safety hazard since they contain a flammable electrolyte and may become pressurized if they become damaged. A battery cell charged too quickly could cause a <a href="/wiki/Short_circuit" title="Short circuit">short circuit</a>, leading to overheating, explosions, and fires.<sup id="cite_ref-Hislop-2017_193-0" class="reference"><a href="#cite_note-Hislop-2017-193"><span class="cite-bracket">&#91;</span>193<span class="cite-bracket">&#93;</span></a></sup> A Li-ion battery fire can be started due to (1) thermal abuse, e.g. poor cooling or external fire, (2) electrical abuse, e.g. overcharge or external short circuit, (3) mechanical abuse, e.g. penetration or crash, or (4) internal short circuit, e.g. due to manufacturing flaws or aging.<sup id="cite_ref-194" class="reference"><a href="#cite_note-194"><span class="cite-bracket">&#91;</span>194<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-195" class="reference"><a href="#cite_note-195"><span class="cite-bracket">&#91;</span>195<span class="cite-bracket">&#93;</span></a></sup> Because of these risks, testing standards are more stringent than those for acid-electrolyte batteries, requiring both a broader range of test conditions and additional battery-specific tests, and there are shipping limitations imposed by safety regulators.<sup id="cite_ref-Schweber-2015_60-1" class="reference"><a href="#cite_note-Schweber-2015-60"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-196" class="reference"><a href="#cite_note-196"><span class="cite-bracket">&#91;</span>196<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-IEC-2012_197-0" class="reference"><a href="#cite_note-IEC-2012-197"><span class="cite-bracket">&#91;</span>197<span class="cite-bracket">&#93;</span></a></sup> There have been battery-related recalls by some companies, including the 2016 <a href="/wiki/Samsung" title="Samsung">Samsung</a> <a href="/wiki/Samsung_Galaxy_Note_7#Battery_faults" title="Samsung Galaxy Note 7">Galaxy Note 7 recall</a> for battery fires.<sup id="cite_ref-Kwon-2016_198-0" class="reference"><a href="#cite_note-Kwon-2016-198"><span class="cite-bracket">&#91;</span>198<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-newscomau-2016_199-0" class="reference"><a href="#cite_note-newscomau-2016-199"><span class="cite-bracket">&#91;</span>199<span class="cite-bracket">&#93;</span></a></sup> </p><p>Lithium-ion batteries have a flammable liquid electrolyte.<sup id="cite_ref-Kanellos-2006_200-0" class="reference"><a href="#cite_note-Kanellos-2006-200"><span class="cite-bracket">&#91;</span>200<span class="cite-bracket">&#93;</span></a></sup> A faulty battery can cause a serious <a href="/wiki/Conflagration" title="Conflagration">fire</a>.<sup id="cite_ref-Hislop-2017_193-1" class="reference"><a href="#cite_note-Hislop-2017-193"><span class="cite-bracket">&#91;</span>193<span class="cite-bracket">&#93;</span></a></sup> Faulty chargers can affect the safety of the battery because they can destroy the battery's protection circuit. While charging at temperatures below 0&#160;°C, the negative electrode of the cells gets plated with pure lithium, which can compromise the safety of the whole pack. </p><p><a href="/wiki/Short_circuit" title="Short circuit">Short-circuiting</a> a battery will cause the cell to overheat and possibly to catch fire.<sup id="cite_ref-Electrochem-2006_201-0" class="reference"><a href="#cite_note-Electrochem-2006-201"><span class="cite-bracket">&#91;</span>201<span class="cite-bracket">&#93;</span></a></sup> Smoke from thermal runaway in a Li-ion battery is both flammable and toxic.<sup id="cite_ref-202" class="reference"><a href="#cite_note-202"><span class="cite-bracket">&#91;</span>202<span class="cite-bracket">&#93;</span></a></sup> The fire energy content (electrical + chemical) of cobalt-oxide cells is about 100 to 150 kJ/(<a href="/wiki/A%C2%B7h" class="mw-redirect" title="A·h">A·h</a>), most of it chemical.<sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Reliable_sources" title="Wikipedia:Reliable sources"><span title="The material near this tag may rely on an unreliable source. This document contains much erroneous material that is solely derived from the discredited and self published batteryuniversity.com website (November 2016)">unreliable source?</span></a></i>&#93;</sup><sup id="cite_ref-Mikolajczak-2011_203-0" class="reference"><a href="#cite_note-Mikolajczak-2011-203"><span class="cite-bracket">&#91;</span>203<span class="cite-bracket">&#93;</span></a></sup> </p><p>Around 2010, large lithium-ion batteries were introduced in place of other chemistries to power systems on some aircraft; as of January&#160;2014<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Lithium-ion_battery&amp;action=edit">&#91;update&#93;</a></sup>, there had been at least four serious <a href="/wiki/Boeing_787_Dreamliner_battery_problems" class="mw-redirect" title="Boeing 787 Dreamliner battery problems">lithium-ion battery fires, or smoke, on the Boeing 787</a> passenger aircraft, introduced in 2011, which did not cause crashes but had the potential to do so.<sup id="cite_ref-204" class="reference"><a href="#cite_note-204"><span class="cite-bracket">&#91;</span>204<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-205" class="reference"><a href="#cite_note-205"><span class="cite-bracket">&#91;</span>205<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/UPS_Airlines_Flight_6" title="UPS Airlines Flight 6">UPS Airlines Flight 6</a> crashed in <a href="/wiki/Dubai" title="Dubai">Dubai</a> after its payload of batteries spontaneously ignited. </p><p>To reduce fire hazards, research projects are intended to develop non-flammable electrolytes.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (July 2024)">citation needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Damaging_and_overloading">Damaging and overloading</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=24" title="Edit section: Damaging and overloading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If a lithium-ion battery is damaged, crushed, or is subjected to a higher electrical load without having overcharge protection, problems may arise. External short circuit can trigger a battery explosion.<sup id="cite_ref-206" class="reference"><a href="#cite_note-206"><span class="cite-bracket">&#91;</span>206<span class="cite-bracket">&#93;</span></a></sup> Such incidents can occur when lithium-ion batteries are not disposed of through the appropriate channels, but are thrown away with other waste. The way they are treated by recycling companies can damage them and cause fires, which in turn can lead to large-scale conflagrations. Twelve such fires were recorded in Swiss recycling facilities in 2023.<sup id="cite_ref-207" class="reference"><a href="#cite_note-207"><span class="cite-bracket">&#91;</span>207<span class="cite-bracket">&#93;</span></a></sup> </p><p>If overheated or overcharged, Li-ion batteries may suffer <a href="/wiki/Thermal_runaway" title="Thermal runaway">thermal runaway</a> and cell rupture.<sup id="cite_ref-Spotnitz-2003_208-0" class="reference"><a href="#cite_note-Spotnitz-2003-208"><span class="cite-bracket">&#91;</span>208<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Finegan-2015_209-0" class="reference"><a href="#cite_note-Finegan-2015-209"><span class="cite-bracket">&#91;</span>209<span class="cite-bracket">&#93;</span></a></sup> During thermal runaway, internal degradation and <a href="/wiki/Oxidisation" class="mw-redirect" title="Oxidisation">oxidization</a> processes can keep cell temperatures above 500&#160;°C, with the possibility of igniting secondary combustibles, as well as leading to leakage, explosion or fire in extreme cases.<sup id="cite_ref-210" class="reference"><a href="#cite_note-210"><span class="cite-bracket">&#91;</span>210<span class="cite-bracket">&#93;</span></a></sup> To reduce these risks, many lithium-ion cells (and battery packs) contain fail-safe circuitry that disconnects the battery when its voltage is outside the safe range of 3–4.2&#160;V per cell,<sup id="cite_ref-GoldPeak-2003_211-0" class="reference"><a href="#cite_note-GoldPeak-2003-211"><span class="cite-bracket">&#91;</span>211<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Winter-2004a_69-1" class="reference"><a href="#cite_note-Winter-2004a-69"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup> or when overcharged or discharged. Lithium battery packs, whether constructed by a vendor or the end-user, without effective battery management circuits are susceptible to these issues. Poorly designed or implemented battery management circuits also may cause problems; it is difficult to be certain that any particular battery management circuitry is properly implemented. </p> <div class="mw-heading mw-heading3"><h3 id="Voltage_limits">Voltage limits</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=25" title="Edit section: Voltage limits"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Lithium-ion cells are susceptible to stress by voltage ranges outside of safe ones between 2.5 and 3.65/4.1/4.2 or 4.35&#160;V (depending on the components of the cell). Exceeding this voltage range results in premature aging and in safety risks due to the reactive components in the cells.<sup id="cite_ref-Väyrynen-2012_212-0" class="reference"><a href="#cite_note-Väyrynen-2012-212"><span class="cite-bracket">&#91;</span>212<span class="cite-bracket">&#93;</span></a></sup> When stored for long periods the small current draw of the protection circuitry may drain the battery below its shutoff voltage; normal chargers may then be useless since the <a href="/wiki/Battery_management_system" title="Battery management system">battery management system</a> (BMS) may retain a record of this battery (or charger) "failure". Many types of lithium-ion cells cannot be charged safely below 0&#160;°C,<sup id="cite_ref-213" class="reference"><a href="#cite_note-213"><span class="cite-bracket">&#91;</span>213<span class="cite-bracket">&#93;</span></a></sup> as this can result in plating of lithium on the anode of the cell, which may cause complications such as internal short-circuit paths.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (July 2020)">citation needed</span></a></i>&#93;</sup> </p><p>Other safety features are required<sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Manual_of_Style/Words_to_watch#Unsupported_attributions" title="Wikipedia:Manual of Style/Words to watch"><span title="The material near this tag may use weasel words or too-vague attribution. (July 2020)">by whom?</span></a></i>&#93;</sup> in each cell:<sup id="cite_ref-GoldPeak-2003_211-1" class="reference"><a href="#cite_note-GoldPeak-2003-211"><span class="cite-bracket">&#91;</span>211<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li>Shut-down separator (for overheating)</li> <li>Tear-away tab (for internal pressure relief)</li> <li>Vent (pressure relief in case of severe outgassing)</li> <li>Thermal interrupt (overcurrent/overcharging/environmental exposure)</li></ul> <p>These features are required because the negative electrode produces heat during use, while the positive electrode may produce oxygen. However, these additional devices occupy space inside the cells, add points of failure, and may irreversibly disable the cell when activated. Further, these features increase costs compared to <a href="/wiki/Nickel%E2%80%93metal_hydride_battery" title="Nickel–metal hydride battery">nickel metal hydride batteries</a>, which require only a hydrogen/oxygen recombination device and a back-up pressure valve.<sup id="cite_ref-Winter-2004a_69-2" class="reference"><a href="#cite_note-Winter-2004a-69"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup> Contaminants inside the cells can defeat these safety devices. Also, these features can not be applied to all kinds of cells, e.g., prismatic high current cells cannot be equipped with a vent or thermal interrupt. High current cells must not produce excessive heat or oxygen, lest there be a failure, possibly violent. Instead, they must be equipped with internal thermal fuses which act before the anode and cathode reach their thermal limits.<sup id="cite_ref-214" class="reference"><a href="#cite_note-214"><span class="cite-bracket">&#91;</span>214<span class="cite-bracket">&#93;</span></a></sup> </p><p>Replacing the <a href="/wiki/Lithium_cobalt_oxide" title="Lithium cobalt oxide">lithium cobalt oxide</a> positive electrode material in lithium-ion batteries with a lithium metal phosphate such as lithium iron phosphate (LFP) improves cycle counts, shelf life and safety, but lowers capacity. As of 2006, these safer lithium-ion batteries were mainly used in <a href="/wiki/Electric_car" title="Electric car">electric cars</a> and other large-capacity battery applications, where safety is critical.<sup id="cite_ref-215" class="reference"><a href="#cite_note-215"><span class="cite-bracket">&#91;</span>215<span class="cite-bracket">&#93;</span></a></sup> In 2016, an LFP-based energy storage system was chosen to be installed in <a href="/wiki/Paiyun_Lodge" title="Paiyun Lodge">Paiyun Lodge</a> on <a href="/wiki/Yu_Shan" title="Yu Shan">Mt.Jade (Yushan)</a> (the highest lodge in <a href="/wiki/Taiwan" title="Taiwan">Taiwan</a>). As of June 2024, the system was still operating safely.<sup id="cite_ref-Chung-2024_216-0" class="reference"><a href="#cite_note-Chung-2024-216"><span class="cite-bracket">&#91;</span>216<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Recalls">Recalls</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=26" title="Edit section: Recalls"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2006, approximately 10 million Sony batteries used in laptops were recalled, including those in laptops from <a href="/wiki/Dell" title="Dell">Dell</a>, <a href="/wiki/Sony" title="Sony">Sony</a>, <a href="/wiki/Apple_Inc." title="Apple Inc.">Apple</a>, <a href="/wiki/Lenovo" title="Lenovo">Lenovo</a>, <a href="/wiki/Panasonic" title="Panasonic">Panasonic</a>, <a href="/wiki/Toshiba" title="Toshiba">Toshiba</a>, <a href="/wiki/Hitachi,_Ltd." class="mw-redirect" title="Hitachi, Ltd.">Hitachi</a>, <a href="/wiki/Fujitsu" title="Fujitsu">Fujitsu</a> and <a href="/wiki/Sharp_Corporation" title="Sharp Corporation">Sharp</a>. The batteries were found to be susceptible to internal contamination by metal particles during manufacture. Under some circumstances, these particles could pierce the separator, causing a dangerous short circuit.<sup id="cite_ref-217" class="reference"><a href="#cite_note-217"><span class="cite-bracket">&#91;</span>217<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:1-7-12_JAL787_APU_Battery.JPG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/20/1-7-12_JAL787_APU_Battery.JPG/220px-1-7-12_JAL787_APU_Battery.JPG" decoding="async" width="220" height="147" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/20/1-7-12_JAL787_APU_Battery.JPG/330px-1-7-12_JAL787_APU_Battery.JPG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/20/1-7-12_JAL787_APU_Battery.JPG/440px-1-7-12_JAL787_APU_Battery.JPG 2x" data-file-width="3456" data-file-height="2304" /></a><figcaption>Japan Airlines Boeing 787 lithium cobalt oxide battery <a href="/wiki/Boeing_787_Dreamliner_battery_problems" class="mw-redirect" title="Boeing 787 Dreamliner battery problems">that caught fire in 2013</a></figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:ADR_9A.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e6/ADR_9A.svg/170px-ADR_9A.svg.png" decoding="async" width="170" height="170" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e6/ADR_9A.svg/255px-ADR_9A.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e6/ADR_9A.svg/340px-ADR_9A.svg.png 2x" data-file-width="227" data-file-height="227" /></a><figcaption>Transport Class 9A:Lithium batteries</figcaption></figure> <p><a href="/wiki/International_Air_Transport_Association" title="International Air Transport Association">IATA</a> estimates that over a billion <a href="/wiki/Lithium_metal_battery" title="Lithium metal battery">lithium metal</a> and lithium-ion cells are flown each year.<sup id="cite_ref-Mikolajczak-2011_203-1" class="reference"><a href="#cite_note-Mikolajczak-2011-203"><span class="cite-bracket">&#91;</span>203<span class="cite-bracket">&#93;</span></a></sup> Some kinds of lithium batteries may be prohibited aboard aircraft because of the fire hazard.<sup id="cite_ref-218" class="reference"><a href="#cite_note-218"><span class="cite-bracket">&#91;</span>218<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-219" class="reference"><a href="#cite_note-219"><span class="cite-bracket">&#91;</span>219<span class="cite-bracket">&#93;</span></a></sup> Some postal administrations restrict air shipping (including <a href="/wiki/Express_Mail_Service" class="mw-redirect" title="Express Mail Service">EMS</a>) of lithium and lithium-ion batteries, either separately or installed in equipment. </p> <div class="mw-heading mw-heading3"><h3 id="Non-flammable_electrolyte">Non-flammable electrolyte</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=27" title="Edit section: Non-flammable electrolyte"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 2023, most commercial Li-ion batteries employed <a href="/w/index.php?title=Alkylcarbonate&amp;action=edit&amp;redlink=1" class="new" title="Alkylcarbonate (page does not exist)">alkylcarbonate</a> solvent(s) to assure the formation <a href="/w/index.php?title=Solid_electrolyte_interface&amp;action=edit&amp;redlink=1" class="new" title="Solid electrolyte interface (page does not exist)">solid electrolyte interface</a> on the negative electrode. Since such solvents are readily flammable, there has been active research to replace them with non-flammable solvents or to add <a href="/w/index.php?title=Fire_suppressants&amp;action=edit&amp;redlink=1" class="new" title="Fire suppressants (page does not exist)">fire suppressants</a>. Another source of hazard is <a href="/wiki/Hexafluorophosphate" title="Hexafluorophosphate">hexafluorophosphate</a> anion, which is needed to passitivate the negative current collector made of <a href="/wiki/Aluminium" title="Aluminium">aluminium</a>. Hexafluorophosphate reacts with water and releases volatile and toxic <a href="/wiki/Hydrogen_fluoride" title="Hydrogen fluoride">hydrogen fluoride</a>. Efforts to replace hexafluorophosphate have been less successful. </p> <div class="mw-heading mw-heading2"><h2 id="Supply_chain">Supply chain</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=28" title="Edit section: Supply chain"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="excerpt-block"><style data-mw-deduplicate="TemplateStyles:r1066933788">.mw-parser-output .excerpt-hat .mw-editsection-like{font-style:normal}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable dablink excerpt-hat selfref">This section is an excerpt from <a href="/wiki/Electric_vehicle_supply_chain" title="Electric vehicle supply chain">Electric vehicle supply chain</a>.<span class="mw-editsection-like plainlinks"><span class="mw-editsection-bracket">[</span><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Electric_vehicle_supply_chain&amp;action=edit">edit</a><span class="mw-editsection-bracket">]</span></span></div><div class="excerpt"> The <a href="/wiki/Electric_vehicle_supply_chain" title="Electric vehicle supply chain">electric vehicle supply chain</a> comprises the <a href="/wiki/Mining" title="Mining">mining</a> and refining of raw materials and the manufacturing processes that produce batteries and other components for <a href="/wiki/Electric_vehicle" title="Electric vehicle">electric vehicles</a>.</div></div> <p>Li-ion battery production is heavily concentrated, with 60% coming from <a href="/wiki/China" title="China">China</a> in 2024.<sup id="cite_ref-220" class="reference"><a href="#cite_note-220"><span class="cite-bracket">&#91;</span>220<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the 1990s, the United States was the World’s largest miner of lithium minerals, contributing to 1/3 of the total production. By 2010 <a href="/wiki/Chile" title="Chile">Chile</a> replaced the USA the leading miner, thanks to the development of lithium brines in <a href="/wiki/Salar_de_Atacama" title="Salar de Atacama">Salar de Atacama</a>. By 2024, <a href="/wiki/Australia" title="Australia">Australia</a> and China joined Chile as the top 3 miners. </p> <div class="mw-heading mw-heading3"><h3 id="Environmental_impact">Environmental impact</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=29" title="Edit section: Environmental impact"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Environmental_impacts_of_lithium-ion_batteries" title="Environmental impacts of lithium-ion batteries">Environmental impacts of lithium-ion batteries</a></div><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Lithium#Environmental_issues" title="Lithium">Lithium §&#160;Environmental issues</a></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Geographical_distribution_of_the_global_battery_supply_chain.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/36/Geographical_distribution_of_the_global_battery_supply_chain.png/270px-Geographical_distribution_of_the_global_battery_supply_chain.png" decoding="async" width="270" height="138" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/36/Geographical_distribution_of_the_global_battery_supply_chain.png/405px-Geographical_distribution_of_the_global_battery_supply_chain.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/36/Geographical_distribution_of_the_global_battery_supply_chain.png/540px-Geographical_distribution_of_the_global_battery_supply_chain.png 2x" data-file-width="1161" data-file-height="592" /></a><figcaption>Geographical distribution of the <a href="/wiki/Electric_vehicle_supply_chain" title="Electric vehicle supply chain">global battery supply chain</a> in 2024<sup id="cite_ref-221" class="reference"><a href="#cite_note-221"><span class="cite-bracket">&#91;</span>221<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: 58">&#58;&#8202;58&#8202;</span></sup></figcaption></figure> <p>Extraction of <a href="/wiki/Lithium" title="Lithium">lithium</a>, <a href="/wiki/Nickel" title="Nickel">nickel</a>, and <a href="/wiki/Cobalt" title="Cobalt">cobalt</a>, manufacture of solvents, and mining byproducts present significant environmental and health hazards.<sup id="cite_ref-Amui-2020_222-0" class="reference"><a href="#cite_note-Amui-2020-222"><span class="cite-bracket">&#91;</span>222<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-USEPA-2013_223-0" class="reference"><a href="#cite_note-USEPA-2013-223"><span class="cite-bracket">&#91;</span>223<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Environmental_Leader-2013_224-0" class="reference"><a href="#cite_note-Environmental_Leader-2013-224"><span class="cite-bracket">&#91;</span>224<span class="cite-bracket">&#93;</span></a></sup> Lithium extraction can be fatal to aquatic life due to water pollution.<sup id="cite_ref-Katwala2021_225-0" class="reference"><a href="#cite_note-Katwala2021-225"><span class="cite-bracket">&#91;</span>225<span class="cite-bracket">&#93;</span></a></sup> It is known to cause surface water contamination, drinking water contamination, respiratory problems, ecosystem degradation and landscape damage.<sup id="cite_ref-Amui-2020_222-1" class="reference"><a href="#cite_note-Amui-2020-222"><span class="cite-bracket">&#91;</span>222<span class="cite-bracket">&#93;</span></a></sup> It also leads to unsustainable water consumption in arid regions (1.9 million liters per ton of lithium).<sup id="cite_ref-Amui-2020_222-2" class="reference"><a href="#cite_note-Amui-2020-222"><span class="cite-bracket">&#91;</span>222<span class="cite-bracket">&#93;</span></a></sup> Massive byproduct generation of lithium extraction also presents unsolved problems, such as large amounts of magnesium and lime waste.<sup id="cite_ref-Draper-2019_226-0" class="reference"><a href="#cite_note-Draper-2019-226"><span class="cite-bracket">&#91;</span>226<span class="cite-bracket">&#93;</span></a></sup> </p><p>Lithium mining takes place in North and South America, Asia, South Africa, Australia, and China.<sup id="cite_ref-227" class="reference"><a href="#cite_note-227"><span class="cite-bracket">&#91;</span>227<span class="cite-bracket">&#93;</span></a></sup> </p><p>Cobalt for Li-ion batteries is largely mined in the Congo (see also <a href="/wiki/Mining_industry_of_the_Democratic_Republic_of_the_Congo" title="Mining industry of the Democratic Republic of the Congo">Mining industry of the Democratic Republic of the Congo</a>). Open-pit <a href="/wiki/Copper_extraction" title="Copper extraction">cobalt mining</a> has led to <a href="/wiki/Deforestation_in_the_Democratic_Republic_of_the_Congo" title="Deforestation in the Democratic Republic of the Congo">deforestation</a> and habitat destruction in the Democratic Republic of Congo.<sup id="cite_ref-228" class="reference"><a href="#cite_note-228"><span class="cite-bracket">&#91;</span>228<span class="cite-bracket">&#93;</span></a></sup> </p><p>Open-pit <a href="/wiki/Nickel_mine" title="Nickel mine">nickel mining</a> has led to environmental degradation and pollution in developing countries such as the <a href="/wiki/List_of_mines_in_the_Philippines" title="List of mines in the Philippines">Philippines</a> and <a href="/wiki/List_of_mines_in_Indonesia" title="List of mines in Indonesia">Indonesia</a>.<sup id="cite_ref-229" class="reference"><a href="#cite_note-229"><span class="cite-bracket">&#91;</span>229<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-230" class="reference"><a href="#cite_note-230"><span class="cite-bracket">&#91;</span>230<span class="cite-bracket">&#93;</span></a></sup> In 2024, nickel mining and processing was one of the main causes of <a href="/wiki/Deforestation_in_Indonesia" title="Deforestation in Indonesia">deforestation in Indonesia</a>.<sup id="cite_ref-231" class="reference"><a href="#cite_note-231"><span class="cite-bracket">&#91;</span>231<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-232" class="reference"><a href="#cite_note-232"><span class="cite-bracket">&#91;</span>232<span class="cite-bracket">&#93;</span></a></sup> </p><p>Manufacturing a kg of Li-ion battery takes about 67 <a href="/wiki/Megajoule" class="mw-redirect" title="Megajoule">megajoule</a> (MJ) of energy.<sup id="cite_ref-233" class="reference"><a href="#cite_note-233"><span class="cite-bracket">&#91;</span>233<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-234" class="reference"><a href="#cite_note-234"><span class="cite-bracket">&#91;</span>234<span class="cite-bracket">&#93;</span></a></sup> The <a href="/wiki/Global_warming_potential" title="Global warming potential">global warming potential</a> of lithium-ion batteries manufacturing strongly depends on the energy source used in mining and manufacturing operations, and is difficult to estimate, but one 2019 study estimated 73&#160;kg CO2e/kWh.<sup id="cite_ref-235" class="reference"><a href="#cite_note-235"><span class="cite-bracket">&#91;</span>235<span class="cite-bracket">&#93;</span></a></sup> Effective recycling can reduce the carbon footprint of the production significantly.<sup id="cite_ref-236" class="reference"><a href="#cite_note-236"><span class="cite-bracket">&#91;</span>236<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Solid_waste_and_recycling">Solid waste and recycling</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=30" title="Edit section: Solid waste and recycling"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Battery_recycling" title="Battery recycling">Battery recycling</a></div> <p>Li-ion battery elements including iron, copper, nickel and cobalt are considered safe for <a href="/wiki/Incinerators" class="mw-redirect" title="Incinerators">incinerators</a> and <a href="/wiki/Landfills" class="mw-redirect" title="Landfills">landfills</a>.<sup id="cite_ref-237" class="reference"><a href="#cite_note-237"><span class="cite-bracket">&#91;</span>237<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (October 2021)">citation needed</span></a></i>&#93;</sup> These metals can be <a href="/wiki/Recycle" class="mw-redirect" title="Recycle">recycled</a>,<sup id="cite_ref-Hanisch-2015_238-0" class="reference"><a href="#cite_note-Hanisch-2015-238"><span class="cite-bracket">&#91;</span>238<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-239" class="reference"><a href="#cite_note-239"><span class="cite-bracket">&#91;</span>239<span class="cite-bracket">&#93;</span></a></sup> usually by burning away the other materials,<sup id="cite_ref-Morris-2020_240-0" class="reference"><a href="#cite_note-Morris-2020-240"><span class="cite-bracket">&#91;</span>240<span class="cite-bracket">&#93;</span></a></sup> but mining generally remains cheaper than recycling;<sup id="cite_ref-Kamyamkhane-2011_241-0" class="reference"><a href="#cite_note-Kamyamkhane-2011-241"><span class="cite-bracket">&#91;</span>241<span class="cite-bracket">&#93;</span></a></sup> recycling may cost $3/kg,<sup id="cite_ref-242" class="reference"><a href="#cite_note-242"><span class="cite-bracket">&#91;</span>242<span class="cite-bracket">&#93;</span></a></sup> and in 2019 less than 5% of lithium-ion batteries were being recycled.<sup id="cite_ref-Jacoby-2019a_243-0" class="reference"><a href="#cite_note-Jacoby-2019a-243"><span class="cite-bracket">&#91;</span>243<span class="cite-bracket">&#93;</span></a></sup> Since 2018, the recycling yield was increased significantly, and recovering lithium, manganese, aluminum, the organic solvents of the electrolyte, and graphite is possible at industrial scales.<sup id="cite_ref-244" class="reference"><a href="#cite_note-244"><span class="cite-bracket">&#91;</span>244<span class="cite-bracket">&#93;</span></a></sup> The most expensive metal involved in the construction of the cell is cobalt. <a href="/wiki/Lithium" title="Lithium">Lithium</a> is less expensive than other metals used and is rarely recycled,<sup id="cite_ref-Morris-2020_240-1" class="reference"><a href="#cite_note-Morris-2020-240"><span class="cite-bracket">&#91;</span>240<span class="cite-bracket">&#93;</span></a></sup> but recycling could prevent a future shortage.<sup id="cite_ref-Hanisch-2015_238-1" class="reference"><a href="#cite_note-Hanisch-2015-238"><span class="cite-bracket">&#91;</span>238<span class="cite-bracket">&#93;</span></a></sup> </p><p>Accumulation of battery waste presents technical challenges and health hazards.<sup id="cite_ref-Jacoby-2019b_245-0" class="reference"><a href="#cite_note-Jacoby-2019b-245"><span class="cite-bracket">&#91;</span>245<span class="cite-bracket">&#93;</span></a></sup> Since the environmental impact of electric cars is heavily affected by the production of lithium-ion batteries, the development of efficient ways to repurpose waste is crucial.<sup id="cite_ref-Jacoby-2019a_243-1" class="reference"><a href="#cite_note-Jacoby-2019a-243"><span class="cite-bracket">&#91;</span>243<span class="cite-bracket">&#93;</span></a></sup> Recycling is a multi-step process, starting with the storage of batteries before disposal, followed by manual testing, disassembling, and finally the chemical separation of battery components. Re-use of the battery is preferred over complete recycling as there is less <a href="/wiki/Embodied_energy" title="Embodied energy">embodied energy</a> in the process. As these batteries are a lot more reactive than classical vehicle waste like tire rubber, there are significant risks to stockpiling used batteries.<sup id="cite_ref-246" class="reference"><a href="#cite_note-246"><span class="cite-bracket">&#91;</span>246<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Pyrometallurgical_recovery">Pyrometallurgical recovery</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=31" title="Edit section: Pyrometallurgical recovery"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Pyrometallurgy" title="Pyrometallurgy">pyrometallurgical</a> method uses a high-temperature furnace to reduce the components of the metal oxides in the battery to an alloy of Co, Cu, Fe, and Ni. This is the most common and commercially established method of recycling and can be combined with other similar batteries to increase smelting efficiency and improve <a href="/wiki/Thermodynamics" title="Thermodynamics">thermodynamics</a>. The metal <a href="/wiki/Current_collector" title="Current collector">current collectors</a> aid the smelting process, allowing whole cells or modules to be melted at once.<sup id="cite_ref-247" class="reference"><a href="#cite_note-247"><span class="cite-bracket">&#91;</span>247<span class="cite-bracket">&#93;</span></a></sup> The product of this method is a collection of metallic alloy, <a href="/wiki/Slag" title="Slag">slag</a>, and gas. At high temperatures, the polymers used to hold the battery cells together burn off and the metal alloy can be separated through a hydrometallurgical process into its separate components. The slag can be further refined or used in the <a href="/wiki/Cement" title="Cement">cement</a> industry. The process is relatively risk-free and the <a href="/wiki/Exothermic_process" title="Exothermic process">exothermic</a> reaction from polymer combustion reduces the required input energy. However, in the process, the plastics, <a href="/wiki/Electrolyte" title="Electrolyte">electrolytes</a>, and lithium salts will be lost.<sup id="cite_ref-248" class="reference"><a href="#cite_note-248"><span class="cite-bracket">&#91;</span>248<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Hydrometallurgical_metals_reclamation">Hydrometallurgical metals reclamation</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=32" title="Edit section: Hydrometallurgical metals reclamation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This method involves the use of <a href="/wiki/Aqueous_solution" title="Aqueous solution">aqueous solutions</a> to remove the desired metals from the cathode. The most common reagent is <a href="/wiki/Sulfuric_acid" title="Sulfuric acid">sulfuric acid</a>.<sup id="cite_ref-249" class="reference"><a href="#cite_note-249"><span class="cite-bracket">&#91;</span>249<span class="cite-bracket">&#93;</span></a></sup> Factors that affect the leaching rate include the concentration of the acid, time, temperature, solid-to-liquid-ratio, and <a href="/wiki/Reducing_agent" title="Reducing agent">reducing agent</a>.<sup id="cite_ref-250" class="reference"><a href="#cite_note-250"><span class="cite-bracket">&#91;</span>250<span class="cite-bracket">&#93;</span></a></sup> It is experimentally proven that H<sub>2</sub>O<sub>2</sub> acts as a reducing agent to speed up the rate of leaching through the reaction:<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (June 2021)">citation needed</span></a></i>&#93;</sup> </p> <dl><dd>2 LiCoO<sub>2</sub> <sub>(s)</sub> + 3 H<sub>2</sub>SO<sub>4</sub> + H<sub>2</sub>O<sub>2</sub> → 2 CoSO<sub>4</sub> <sub>(aq)</sub> + Li<sub>2</sub>SO<sub>4</sub> + 4 H<sub>2</sub>O + O<sub>2</sub></dd></dl> <p>Once <a href="/wiki/Leaching_(metallurgy)" title="Leaching (metallurgy)">leached</a>, the metals can be extracted through <a href="/wiki/Precipitation_(chemistry)" title="Precipitation (chemistry)">precipitation</a> reactions controlled by changing the pH level of the solution. Cobalt, the most expensive metal, can then be recovered in the form of sulfate, oxalate, hydroxide, or carbonate. [75] More recently recycling methods experiment with the direct reproduction of the cathode from the leached metals. In these procedures, concentrations of the various leached metals are premeasured to match the target cathode and then the cathodes are directly synthesized.<sup id="cite_ref-251" class="reference"><a href="#cite_note-251"><span class="cite-bracket">&#91;</span>251<span class="cite-bracket">&#93;</span></a></sup> </p><p>The main issues with this method, however, is that a large volume of <a href="/wiki/Solvent" title="Solvent">solvent</a> is required and the high cost of neutralization. Although it's easy to shred up the battery, mixing the cathode and anode at the beginning complicates the process, so they will also need to be separated. Unfortunately, the current design of batteries makes the process extremely complex and it is difficult to separate the metals in a closed-loop battery system. Shredding and dissolving may occur at different locations.<sup id="cite_ref-252" class="reference"><a href="#cite_note-252"><span class="cite-bracket">&#91;</span>252<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Direct_recycling">Direct recycling</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=33" title="Edit section: Direct recycling"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Direct recycling is the removal of the cathode or anode from the electrode, reconditioned, and then reused in a new battery. Mixed metal-oxides can be added to the new electrode with very little change to the crystal morphology. The process generally involves the addition of new lithium to replenish the loss of lithium in the cathode due to degradation from cycling. Cathode strips are obtained from the dismantled batteries, then soaked in <a href="/wiki/N-Methyl-2-pyrrolidone" title="N-Methyl-2-pyrrolidone">NMP</a>, and undergo sonication to remove excess deposits. It is treated hydrothermally with a solution containing LiOH/Li<sub>2</sub>SO<sub>4</sub> before annealing.<sup id="cite_ref-253" class="reference"><a href="#cite_note-253"><span class="cite-bracket">&#91;</span>253<span class="cite-bracket">&#93;</span></a></sup> </p><p>This method is extremely cost-effective for noncobalt-based batteries as the raw materials do not make up the bulk of the cost. Direct recycling avoids the time-consuming and expensive purification steps, which is great for low-cost cathodes such as LiMn<sub>2</sub>O<sub>4</sub> and LiFePO<sub>4</sub>. For these cheaper cathodes, most of the cost, embedded energy, and <a href="/wiki/Carbon_footprint" title="Carbon footprint">carbon footprint</a> is associated with the manufacturing rather than the raw material.<sup id="cite_ref-254" class="reference"><a href="#cite_note-254"><span class="cite-bracket">&#91;</span>254<span class="cite-bracket">&#93;</span></a></sup> It is experimentally shown that direct recycling can reproduce similar properties to pristine graphite. </p><p>The drawback of the method lies in the condition of the retired battery. In the case where the battery is relatively healthy, direct recycling can cheaply restore its properties. However, for batteries where the state of charge is low, direct recycling may not be worth the investment. The process must also be tailored to the specific cathode composition, and therefore the process must be configured to one type of battery at a time.<sup id="cite_ref-255" class="reference"><a href="#cite_note-255"><span class="cite-bracket">&#91;</span>255<span class="cite-bracket">&#93;</span></a></sup> Lastly, in a time with rapidly developing battery technology, the design of a battery today may no longer be desirable a decade from now, rendering direct recycling ineffective. </p> <div class="mw-heading mw-heading4"><h4 id="Physical_materials_separation">Physical materials separation</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=34" title="Edit section: Physical materials separation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Physical materials separation recovered materials by mechanical crushing and exploiting physical properties of different components such as particle size, density, ferromagnetism and hydrophobicity. Copper, aluminum and steel casing can be recovered by sorting. The remaining materials, called "black mass", which is composed of nickel, cobalt, lithium and manganese, need a secondary treatment to recover.<sup id="cite_ref-Ciez-2019_256-0" class="reference"><a href="#cite_note-Ciez-2019-256"><span class="cite-bracket">&#91;</span>256<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Biological_metals_reclamation">Biological metals reclamation</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=35" title="Edit section: Biological metals reclamation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For the biological metals reclamation or bio-leaching, the process uses microorganisms to digest metal oxides selectively. Then, recyclers can reduce these oxides to produce metal nanoparticles. Although bio-leaching has been used successfully in the mining industry, this process is still nascent to the recycling industry and plenty of opportunities exists for further investigation.<sup id="cite_ref-Ciez-2019_256-1" class="reference"><a href="#cite_note-Ciez-2019-256"><span class="cite-bracket">&#91;</span>256<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Electrolyte_recycling">Electrolyte recycling</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=36" title="Edit section: Electrolyte recycling"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Electrolyte recycling consists of two phases. The collection phase extracts the electrolyte from the spent Li-ion battery. This can be achieved through mechanical processes, <a href="/wiki/Distillation" title="Distillation">distillation</a>, freezing, <a href="/wiki/Liquid%E2%80%93liquid_extraction" title="Liquid–liquid extraction">solvent extraction</a>, and <a href="/wiki/Supercritical_fluid_extraction" title="Supercritical fluid extraction">supercritical fluid extraction</a>. Due to the volatility, flammability, and sensitivity of the electrolyte, the collection process poses a greater difficulty than the collection process for other components of a Li-ion battery. The next phase consists of separation/electrolyte regeneration. Separation consists of isolating the individual components of the electrolyte. This approach is often used for the direct recovery of the Li salts from the organic solvents. In contrast, regeneration of the electrolyte aims to preserve the electrolyte composition by removing impurities which can be achieved through filtration methods.<sup id="cite_ref-257" class="reference"><a href="#cite_note-257"><span class="cite-bracket">&#91;</span>257<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-258" class="reference"><a href="#cite_note-258"><span class="cite-bracket">&#91;</span>258<span class="cite-bracket">&#93;</span></a></sup> </p><p>The recycling of the electrolytes, which consists 10-15 wt.% of the Li-ion battery, provides both an economic and environmental benefits. These benefits include the recovery of the valuable Li-based salts and the prevention of hazardous compounds, such as volatile organic compounds (<a href="/wiki/Volatile_organic_compound" title="Volatile organic compound">VOCs</a>) and carcinogens, being released into the environment. </p><p>Compared to electrode recycling, less focus is placed on recycling the electrolyte of Li-ion batteries which can be attributed to lower economic benefits and greater process challenges. Such challenges can include the difficulty associated with recycling different electrolyte compositions,<sup id="cite_ref-259" class="reference"><a href="#cite_note-259"><span class="cite-bracket">&#91;</span>259<span class="cite-bracket">&#93;</span></a></sup> removing side products accumulated from electrolyte decomposition during its runtime,<sup id="cite_ref-260" class="reference"><a href="#cite_note-260"><span class="cite-bracket">&#91;</span>260<span class="cite-bracket">&#93;</span></a></sup> and removal of electrolyte adsorbed onto the electrodes.<sup id="cite_ref-261" class="reference"><a href="#cite_note-261"><span class="cite-bracket">&#91;</span>261<span class="cite-bracket">&#93;</span></a></sup> Due to these challenges, current pyrometallurgical methods of Li-ion battery recycling forgo electrolyte recovery, releasing hazardous gases upon heating. However, due to high energy consumption and environmental impact, future recycling methods are being directed away from this approach.<sup id="cite_ref-262" class="reference"><a href="#cite_note-262"><span class="cite-bracket">&#91;</span>262<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Human_rights_impact">Human rights impact</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=37" title="Edit section: Human rights impact"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Extraction of raw materials for lithium-ion batteries may present dangers to local people, especially land-based indigenous populations.<sup id="cite_ref-263" class="reference"><a href="#cite_note-263"><span class="cite-bracket">&#91;</span>263<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Cobalt#Democratic_Republic_of_the_Congo" title="Cobalt">Cobalt sourced from the Democratic Republic of the Congo</a> is often mined by workers using hand tools with few safety precautions, resulting in frequent injuries and deaths.<sup id="cite_ref-264" class="reference"><a href="#cite_note-264"><span class="cite-bracket">&#91;</span>264<span class="cite-bracket">&#93;</span></a></sup> Pollution from these mines has exposed people to toxic chemicals that health officials believe to cause birth defects and breathing difficulties.<sup id="cite_ref-265" class="reference"><a href="#cite_note-265"><span class="cite-bracket">&#91;</span>265<span class="cite-bracket">&#93;</span></a></sup> Human rights activists have alleged, and <a href="/wiki/Investigative_journalism" title="Investigative journalism">investigative journalism</a> reported confirmation,<sup id="cite_ref-266" class="reference"><a href="#cite_note-266"><span class="cite-bracket">&#91;</span>266<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-267" class="reference"><a href="#cite_note-267"><span class="cite-bracket">&#91;</span>267<span class="cite-bracket">&#93;</span></a></sup> that <a href="/wiki/Child_labor" class="mw-redirect" title="Child labor">child labor</a> is used in these mines.<sup id="cite_ref-Frankel-2016_268-0" class="reference"><a href="#cite_note-Frankel-2016-268"><span class="cite-bracket">&#91;</span>268<span class="cite-bracket">&#93;</span></a></sup> </p><p>A study of relationships between lithium extraction companies and indigenous peoples in Argentina indicated that the state may not have protected indigenous peoples' right to <a href="/wiki/Free,_prior_and_informed_consent" title="Free, prior and informed consent">free prior and informed consent</a>, and that extraction companies generally controlled community access to information and set the terms for discussion of the projects and benefit sharing.<sup id="cite_ref-269" class="reference"><a href="#cite_note-269"><span class="cite-bracket">&#91;</span>269<span class="cite-bracket">&#93;</span></a></sup> </p><p>Development of the <a href="/wiki/Thacker_Pass_Lithium_Mine" class="mw-redirect" title="Thacker Pass Lithium Mine">Thacker Pass lithium mine</a> in Nevada, USA has met with protests and lawsuits from several indigenous tribes who have said they were not provided free prior and informed consent and that the project threatens cultural and sacred sites.<sup id="cite_ref-270" class="reference"><a href="#cite_note-270"><span class="cite-bracket">&#91;</span>270<span class="cite-bracket">&#93;</span></a></sup> Links between resource extraction and <a href="/wiki/Missing_and_murdered_Indigenous_women" class="mw-redirect" title="Missing and murdered Indigenous women">missing and murdered indigenous women</a> have also prompted local communities to express concerns that the project will create risks to indigenous women.<sup id="cite_ref-271" class="reference"><a href="#cite_note-271"><span class="cite-bracket">&#91;</span>271<span class="cite-bracket">&#93;</span></a></sup> Protestors have been occupying the site of the proposed mine since January, 2021.<sup id="cite_ref-NWT-2021_272-0" class="reference"><a href="#cite_note-NWT-2021-272"><span class="cite-bracket">&#91;</span>272<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-273" class="reference"><a href="#cite_note-273"><span class="cite-bracket">&#91;</span>273<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Research">Research</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=38" title="Edit section: Research"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Research_in_lithium-ion_batteries" title="Research in lithium-ion batteries">Research in lithium-ion batteries</a></div> <p>Researchers are actively working to improve the power density, safety, cycle durability (battery life), recharge time, cost, flexibility, and other characteristics, as well as research methods and uses, of these batteries. <a href="/wiki/Solid-state_battery" title="Solid-state battery">Solid-state batteries</a> are being researched as a breakthrough in technological barriers. Currently, <a href="/wiki/Solid-state_battery" title="Solid-state battery">solid-state batteries</a> are expected to be the most promising next-generation battery, and various companies are working to popularize them. </p><p>Research areas for lithium-ion batteries include extending lifetime, increasing energy density, improving safety, reducing cost, and increasing charging speed,<sup id="cite_ref-274" class="reference"><a href="#cite_note-274"><span class="cite-bracket">&#91;</span>274<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-275" class="reference"><a href="#cite_note-275"><span class="cite-bracket">&#91;</span>275<span class="cite-bracket">&#93;</span></a></sup> among others. Research has been under way in the area of non-flammable electrolytes as a pathway to increased safety based on the flammability and volatility of the organic solvents used in the typical electrolyte. Strategies include <a href="/wiki/Aqueous_lithium-ion_battery" title="Aqueous lithium-ion battery">aqueous lithium-ion batteries</a>, ceramic solid electrolytes, polymer electrolytes, ionic liquids, and heavily fluorinated systems.<sup id="cite_ref-276" class="reference"><a href="#cite_note-276"><span class="cite-bracket">&#91;</span>276<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-277" class="reference"><a href="#cite_note-277"><span class="cite-bracket">&#91;</span>277<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-278" class="reference"><a href="#cite_note-278"><span class="cite-bracket">&#91;</span>278<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-279" class="reference"><a href="#cite_note-279"><span class="cite-bracket">&#91;</span>279<span class="cite-bracket">&#93;</span></a></sup> </p><p>One of the ways to improve batteries is to combine the various cathode materials. This allows researchers to improve on the qualities of a material, while limiting the negatives. One possibility is coating lithium nickel manganese oxide with lithium iron phosphate through resonant acoustic mixing. The resulting material benefits from an increase electrochemical performance and improved capacity retention.<sup id="cite_ref-280" class="reference"><a href="#cite_note-280"><span class="cite-bracket">&#91;</span>280<span class="cite-bracket">&#93;</span></a></sup> Similar work was done with iron (III) phosphate.<sup id="cite_ref-281" class="reference"><a href="#cite_note-281"><span class="cite-bracket">&#91;</span>281<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=39" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1266661725">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Crystal_energy.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/14/Crystal_energy.svg/29px-Crystal_energy.svg.png" decoding="async" width="29" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/14/Crystal_energy.svg/44px-Crystal_energy.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/14/Crystal_energy.svg/59px-Crystal_energy.svg.png 2x" data-file-width="130" data-file-height="124" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Energy" title="Portal:Energy">Energy portal</a></span></li><li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Noun-manufacturing-7481278.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c1/Noun-manufacturing-7481278.svg/27px-Noun-manufacturing-7481278.svg.png" decoding="async" width="27" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c1/Noun-manufacturing-7481278.svg/40px-Noun-manufacturing-7481278.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c1/Noun-manufacturing-7481278.svg/53px-Noun-manufacturing-7481278.svg.png 2x" data-file-width="101" data-file-height="106" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Manufacturing" title="Portal:Manufacturing">Manufacturing portal</a></span></li></ul> <ul><li><a href="/wiki/Anode-free_battery" title="Anode-free battery">Anode-free battery</a></li> <li><a href="/wiki/Blade_battery" class="mw-redirect" title="Blade battery">Blade battery</a></li> <li><a href="/wiki/Borate_oxalate" title="Borate oxalate">Borate oxalate</a></li> <li><a href="/wiki/Comparison_of_commercial_battery_types" title="Comparison of commercial battery types">Comparison of commercial battery types</a></li> <li><a href="/wiki/European_Battery_Alliance" title="European Battery Alliance">European Battery Alliance</a></li> <li><a href="/wiki/Flow_battery" title="Flow battery">Flow battery</a></li> <li><a href="/wiki/Nanowire_battery" title="Nanowire battery">Nanowire battery</a></li> <li><a href="/wiki/Sodium-ion_battery" title="Sodium-ion battery">Sodium-ion battery</a></li> <li><a href="/wiki/Thin-film_lithium-ion_battery" title="Thin-film lithium-ion battery">Thin-film lithium-ion battery</a></li> <li><a href="/wiki/VRLA_battery" title="VRLA battery">VRLA battery</a></li> <li><a href="/wiki/Ultium" title="Ultium">Ultium</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=40" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-mw-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-mw_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-mw_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-mw_1-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.researchgate.net/figure/Specific-power-vs-specific-energy-of-Li-Ion-batteries-distinguished-by-cell-chemistry_fig2_269297116">"Specific power vs. specific energy of Li-Ion batteries distinguished by cell chemistry"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">3 November</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Specific+power+vs.+specific+energy+of+Li-Ion+batteries+distinguished+by+cell+chemistry&amp;rft_id=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FSpecific-power-vs-specific-energy-of-Li-Ion-batteries-distinguished-by-cell-chemistry_fig2_269297116&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20180817085228/https://na.industrial.panasonic.com/sites/default/pidsa/files/ncr18650b.pdf">"NCR18650B"</a> <span class="cs1-format">(PDF)</span>. Panasonic. Archived from <a rel="nofollow" class="external text" href="https://www.orbtronic.com/content/NCR18650B-Datasheet-Panasonic-Specifications.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 17 August 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">7 October</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=NCR18650B&amp;rft.pub=Panasonic&amp;rft_id=https%3A%2F%2Fwww.orbtronic.com%2Fcontent%2FNCR18650B-Datasheet-Panasonic-Specifications.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://cdn.shopify.com/s/files/1/0674/3651/files/panasonic-ncr18650-ga-spec-sheet.pdf">"NCR18650GA"</a> <span class="cs1-format">(PDF)</span>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210308084905/https://cdn.shopify.com/s/files/1/0674/3651/files/panasonic-ncr18650-ga-spec-sheet.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 8 March 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">2 July</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=NCR18650GA&amp;rft_id=https%3A%2F%2Fcdn.shopify.com%2Fs%2Ffiles%2F1%2F0674%2F3651%2Ffiles%2Fpanasonic-ncr18650-ga-spec-sheet.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Valøen-2007-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-Valøen-2007_4-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFValøenShoesmith2007" class="citation conference cs1">Valøen, Lars Ole; Shoesmith, Mark I. (1–2 November 2007). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090326150713/http://www.pluginhighway.ca/PHEV2007/proceedings/PluginHwy_PHEV2007_PaperReviewed_Valoen.pdf"><i>The effect of PHEV and HEV duty cycles on battery and battery pack performance</i></a> <span class="cs1-format">(PDF)</span>. Proceedings of the Plug-in Highway Electric Vehicle Conference. Archived from <a rel="nofollow" class="external text" href="http://www.pluginhighway.ca/PHEV2007/proceedings/PluginHwy_PHEV2007_PaperReviewed_Valoen.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 26 March 2009.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=The+effect+of+PHEV+and+HEV+duty+cycles+on+battery+and+battery+pack+performance&amp;rft.date=2007-11-01%2F2007-11-02&amp;rft.aulast=Val%C3%B8en&amp;rft.aufirst=Lars+Ole&amp;rft.au=Shoesmith%2C+Mark+I.&amp;rft_id=http%3A%2F%2Fwww.pluginhighway.ca%2FPHEV2007%2Fproceedings%2FPluginHwy_PHEV2007_PaperReviewed_Valoen.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Bloomberg-2021-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bloomberg-2021_5-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://about.bnef.com/blog/lithium-ion-battery-pack-prices-see-largest-drop-since-2017-falling-to-115-per-kilowatt-hour-bloombergnef/">"Lithium-Ion Battery Pack Prices See Largest Drop Since 2017, Falling to $115 per Kilowatt-Hour: BloombergNEF"</a>. Bloomberg New Energy Finance. 10 December 2024<span class="reference-accessdate">. Retrieved <span class="nowrap">13 December</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Lithium-Ion+Battery+Pack+Prices+See+Largest+Drop+Since+2017%2C+Falling+to+%24115+per+Kilowatt-Hour%3A+BloombergNEF&amp;rft.pub=Bloomberg+New+Energy+Finance&amp;rft.date=2024-12-10&amp;rft_id=https%3A%2F%2Fabout.bnef.com%2Fblog%2Flithium-ion-battery-pack-prices-see-largest-drop-since-2017-falling-to-115-per-kilowatt-hour-bloombergnef%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Redondo-Iglesias-2016-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-Redondo-Iglesias-2016_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Redondo-Iglesias-2016_6-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRedondo-IglesiasVenetPelissier2016" class="citation book cs1">Redondo-Iglesias, Eduardo; Venet, Pascal; Pelissier, Serge (2016). <a rel="nofollow" class="external text" href="https://hal.archives-ouvertes.fr/hal-01393614/document">"Measuring Reversible and Irreversible Capacity Losses on Lithium-Ion Batteries"</a>. <a rel="nofollow" class="external text" href="https://hal.archives-ouvertes.fr/hal-01393614"><i>2016 IEEE Vehicle Power and Propulsion Conference (VPPC)</i></a>. p.&#160;7. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FVPPC.2016.7791723">10.1109/VPPC.2016.7791723</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-5090-3528-1" title="Special:BookSources/978-1-5090-3528-1"><bdi>978-1-5090-3528-1</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:22822329">22822329</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210428034748/https://hal.archives-ouvertes.fr/hal-01393614">Archived</a> from the original on 28 April 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">20 October</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Measuring+Reversible+and+Irreversible+Capacity+Losses+on+Lithium-Ion+Batteries&amp;rft.btitle=2016+IEEE+Vehicle+Power+and+Propulsion+Conference+%28VPPC%29&amp;rft.pages=7&amp;rft.date=2016&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A22822329%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FVPPC.2016.7791723&amp;rft.isbn=978-1-5090-3528-1&amp;rft.aulast=Redondo-Iglesias&amp;rft.aufirst=Eduardo&amp;rft.au=Venet%2C+Pascal&amp;rft.au=Pelissier%2C+Serge&amp;rft_id=https%3A%2F%2Fhal.archives-ouvertes.fr%2Fhal-01393614%2Fdocument&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.thermoanalytics.com/support/publications/batterytypesdoc.html">Battery Types and Characteristics for HEV</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150520021436/http://www.thermoanalytics.com/support/publications/batterytypesdoc.html">Archived</a> 20 May 2015<span style="font-size:100%" class="error citation-comment"><sup>(Date mismatch)</sup></span> at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> ThermoAnalytics, Inc., 2007. Retrieved 11 June 2010.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChagasJeongHasaPasserini2019" class="citation journal cs1">Chagas, Luciana Gomes; Jeong, Sangsik; Hasa, Ivana; Passerini, Stefano (26 June 2019). <a rel="nofollow" class="external text" href="https://pubs.acs.org/doi/10.1021/acsami.9b03813">"Ionic Liquid-Based Electrolytes for Sodium-Ion Batteries: Tuning Properties To Enhance the Electrochemical Performance of Manganese-Based Layered Oxide Cathode"</a>. <i>ACS Applied Materials &amp; Interfaces</i>. <b>11</b> (25): <span class="nowrap">22278–</span>22289. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facsami.9b03813">10.1021/acsami.9b03813</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1944-8244">1944-8244</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/31144802">31144802</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ACS+Applied+Materials+%26+Interfaces&amp;rft.atitle=Ionic+Liquid-Based+Electrolytes+for+Sodium-Ion+Batteries%3A+Tuning+Properties+To+Enhance+the+Electrochemical+Performance+of+Manganese-Based+Layered+Oxide+Cathode&amp;rft.volume=11&amp;rft.issue=25&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E22278-%3C%2Fspan%3E22289&amp;rft.date=2019-06-26&amp;rft.issn=1944-8244&amp;rft_id=info%3Apmid%2F31144802&amp;rft_id=info%3Adoi%2F10.1021%2Facsami.9b03813&amp;rft.aulast=Chagas&amp;rft.aufirst=Luciana+Gomes&amp;rft.au=Jeong%2C+Sangsik&amp;rft.au=Hasa%2C+Ivana&amp;rft.au=Passerini%2C+Stefano&amp;rft_id=https%3A%2F%2Fpubs.acs.org%2Fdoi%2F10.1021%2Facsami.9b03813&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaisch2024" class="citation web cs1">Maisch, Marija (20 December 2024). <a rel="nofollow" class="external text" href="https://www.ess-news.com/2024/12/20/annual-lithium-ion-demand-surpasses-1-twh-for-the-first-time/">"Annual lithium-ion demand surpasses 1 TWh for the first time"</a>. <i>Energy Storage</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Energy+Storage&amp;rft.atitle=Annual+lithium-ion+demand+surpasses+1+TWh+for+the+first+time&amp;rft.date=2024-12-20&amp;rft.aulast=Maisch&amp;rft.aufirst=Marija&amp;rft_id=https%3A%2F%2Fwww.ess-news.com%2F2024%2F12%2F20%2Fannual-lithium-ion-demand-surpasses-1-twh-for-the-first-time%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRayner2025" class="citation web cs1">Rayner, Tristan (2 January 2025). <a rel="nofollow" class="external text" href="https://www.ess-news.com/2025/01/02/the-battery-boom-of-2024-as-one-of-five-trends-in-renewables/">"The battery boom of 2024 as one of five trends in renewables"</a>. <i>Energy Storage</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Energy+Storage&amp;rft.atitle=The+battery+boom+of+2024+as+one+of+five+trends+in+renewables&amp;rft.date=2025-01-02&amp;rft.aulast=Rayner&amp;rft.aufirst=Tristan&amp;rft_id=https%3A%2F%2Fwww.ess-news.com%2F2025%2F01%2F02%2Fthe-battery-boom-of-2024-as-one-of-five-trends-in-renewables%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">The lithium-ion battery: State of the art and future perspectives. 2018. Renew Sust Energ Rev. 89/292-308. G. Zubi, R. Dufo-Lopez, M. Carvalho, G. Pasaoglu. doi: 10.1016/j.rser.2018.03.002.</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLainBrandonKendrick2019" class="citation journal cs1">Lain, Michael J.; Brandon, James; Kendrick, Emma (December 2019). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fbatteries5040064">"Design Strategies for High Power vs. High Energy Lithium Ion Cells"</a>. <i>Batteries</i>. <b>5</b> (4): 64. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fbatteries5040064">10.3390/batteries5040064</a></span>. <q>Commercial lithium ion cells are now optimized for either high energy density or high power density. There is a trade-off in cell design between power and energy requirements.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Batteries&amp;rft.atitle=Design+Strategies+for+High+Power+vs.+High+Energy+Lithium+Ion+Cells&amp;rft.volume=5&amp;rft.issue=4&amp;rft.pages=64&amp;rft.date=2019-12&amp;rft_id=info%3Adoi%2F10.3390%2Fbatteries5040064&amp;rft.aulast=Lain&amp;rft.aufirst=Michael+J.&amp;rft.au=Brandon%2C+James&amp;rft.au=Kendrick%2C+Emma&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Fbatteries5040064&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaugerJulien2017" class="citation journal cs1">Mauger, A; Julien, C.M. (28 June 2017). <a rel="nofollow" class="external text" href="https://hal.sorbonne-universite.fr/hal-01558209/file/Mauger_2017_Critical_review_on.pdf">"Critical review on lithium-ion batteries: are they safe? Sustainable?"</a> <span class="cs1-format">(PDF)</span>. <i>Ionics</i>. <b>23</b> (8): <span class="nowrap">1933–</span>1947. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11581-017-2177-8">10.1007/s11581-017-2177-8</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:103350576">103350576</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230302135828/https://hal.sorbonne-universite.fr/hal-01558209/file/Mauger_2017_Critical_review_on.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2 March 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">26 July</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Ionics&amp;rft.atitle=Critical+review+on+lithium-ion+batteries%3A+are+they+safe%3F+Sustainable%3F&amp;rft.volume=23&amp;rft.issue=8&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1933-%3C%2Fspan%3E1947&amp;rft.date=2017-06-28&amp;rft_id=info%3Adoi%2F10.1007%2Fs11581-017-2177-8&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A103350576%23id-name%3DS2CID&amp;rft.aulast=Mauger&amp;rft.aufirst=A&amp;rft.au=Julien%2C+C.M.&amp;rft_id=https%3A%2F%2Fhal.sorbonne-universite.fr%2Fhal-01558209%2Ffile%2FMauger_2017_Critical_review_on.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Ellis-2020-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-Ellis-2020_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Ellis-2020_14-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation audio-visual cs1">Mark Ellis, Sandy Munro (4 June 2020). <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=WigjD2CZAJE&amp;t=233s"><i>Sandy Munro on Tesla's Battery Tech Domination</i></a> (video). E for Electric. Event occurs at 3:53–5:50. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220707172944/https://www.youtube.com/watch?v=WigjD2CZAJE&amp;t=233s">Archived</a> from the original on 7 July 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">29 June</span> 2020</span> &#8211; via YouTube.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Sandy+Munro+on+Tesla%27s+Battery+Tech+Domination&amp;rft.pub=E+for+Electric&amp;rft.date=2020-06-04&amp;rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DWigjD2CZAJE%26t%3D233s&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhangFujimori2020" class="citation journal cs1">Zhang, Runsen; Fujimori, Shinichiro (19 February 2020). <a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1748-9326%2Fab6658">"The role of transport electrification in global climate change mitigation scenarios"</a>. <i>Environmental Research Letters</i>. <b>15</b> (3): 034019. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020ERL....15c4019Z">2020ERL....15c4019Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1748-9326%2Fab6658">10.1088/1748-9326/ab6658</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2433%2F245921">2433/245921</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1748-9326">1748-9326</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:212866886">212866886</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Environmental+Research+Letters&amp;rft.atitle=The+role+of+transport+electrification+in+global+climate+change+mitigation+scenarios&amp;rft.volume=15&amp;rft.issue=3&amp;rft.pages=034019&amp;rft.date=2020-02-19&amp;rft_id=info%3Ahdl%2F2433%2F245921&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A212866886%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2020ERL....15c4019Z&amp;rft.issn=1748-9326&amp;rft_id=info%3Adoi%2F10.1088%2F1748-9326%2Fab6658&amp;rft.aulast=Zhang&amp;rft.aufirst=Runsen&amp;rft.au=Fujimori%2C+Shinichiro&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1088%252F1748-9326%252Fab6658&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-TRFSUNY-2017-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-TRFSUNY-2017_16-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.rfsuny.org/rf-news/binghamton-energy/binghamton---energy.html">"Binghamton professor recognized for energy research"</a>. <i>The Research Foundation for the State University of New York</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20171030175258/https://www.rfsuny.org/rf-news/binghamton-energy/binghamton---energy.html">Archived</a> from the original on 30 October 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">10 October</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=The+Research+Foundation+for+the+State+University+of+New+York&amp;rft.atitle=Binghamton+professor+recognized+for+energy+research&amp;rft_id=https%3A%2F%2Fwww.rfsuny.org%2Frf-news%2Fbinghamton-energy%2Fbinghamton---energy.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-NobelPrize-2019-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-NobelPrize-2019_17-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.nobelprize.org/prizes/chemistry/2019/summary/">"The Nobel Prize in Chemistry 2019"</a>. <i><a href="/wiki/Nobel_Prize" title="Nobel Prize">Nobel Prize</a></i>. <a href="/wiki/Nobel_Foundation" title="Nobel Foundation">Nobel Foundation</a>. 2019. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200521195355/https://www.nobelprize.org/prizes/chemistry/2019/summary/">Archived</a> from the original on 21 May 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">1 January</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Nobel+Prize&amp;rft.atitle=The+Nobel+Prize+in+Chemistry+2019&amp;rft.date=2019&amp;rft_id=https%3A%2F%2Fwww.nobelprize.org%2Fprizes%2Fchemistry%2F2019%2Fsummary%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-NAE-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-NAE_18-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.nae.edu/105800/Yoshio-Nishi">"Yoshio Nishi"</a>. <i><a href="/wiki/National_Academy_of_Engineering" title="National Academy of Engineering">National Academy of Engineering</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190411130013/https://www.nae.edu/105800/Yoshio-Nishi">Archived</a> from the original on 11 April 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">12 October</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=National+Academy+of+Engineering&amp;rft.atitle=Yoshio+Nishi&amp;rft_id=https%3A%2F%2Fwww.nae.edu%2F105800%2FYoshio-Nishi&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenKangZhaoWang2021" class="citation journal cs1">Chen, Yuqing; Kang, Yuqiong; Zhao, Yun; Wang, Li; Liu, Jilei; Li, Yanxi; Liang, Zheng; He, Xiangming; Li, Xing; Tavajohi, Naser; Li, Baohua (2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jechem.2020.10.017">"A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards"</a>. <i>Journal of Energy Chemistry</i>. <b>59</b>: <span class="nowrap">83–</span>99. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021JEnCh..59...83C">2021JEnCh..59...83C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jechem.2020.10.017">10.1016/j.jechem.2020.10.017</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:228845089">228845089</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Energy+Chemistry&amp;rft.atitle=A+review+of+lithium-ion+battery+safety+concerns%3A+The+issues%2C+strategies%2C+and+testing+standards&amp;rft.volume=59&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E83-%3C%2Fspan%3E99&amp;rft.date=2021&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A228845089%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jechem.2020.10.017&amp;rft_id=info%3Abibcode%2F2021JEnCh..59...83C&amp;rft.aulast=Chen&amp;rft.aufirst=Yuqing&amp;rft.au=Kang%2C+Yuqiong&amp;rft.au=Zhao%2C+Yun&amp;rft.au=Wang%2C+Li&amp;rft.au=Liu%2C+Jilei&amp;rft.au=Li%2C+Yanxi&amp;rft.au=Liang%2C+Zheng&amp;rft.au=He%2C+Xiangming&amp;rft.au=Li%2C+Xing&amp;rft.au=Tavajohi%2C+Naser&amp;rft.au=Li%2C+Baohua&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.jechem.2020.10.017&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Li-2018a-20"><span class="mw-cite-backlink">^ <a href="#cite_ref-Li-2018a_20-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Li-2018a_20-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Li-2018a_20-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiLuChenAmine2018" class="citation journal cs1">Li, Matthew; Lu, Jun; Chen, Zhongwei; Amine, Khalil (14 June 2018). <a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadma.201800561">"30 Years of Lithium-Ion Batteries"</a>. <i>Advanced Materials</i>. <b>30</b> (33): 1800561. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018AdM....3000561L">2018AdM....3000561L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadma.201800561">10.1002/adma.201800561</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0935-9648">0935-9648</a>. <a href="/wiki/OSTI_(identifier)" class="mw-redirect" title="OSTI (identifier)">OSTI</a>&#160;<a rel="nofollow" class="external text" href="https://www.osti.gov/biblio/1468617">1468617</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/29904941">29904941</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:205286653">205286653</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Materials&amp;rft.atitle=30+Years+of+Lithium-Ion+Batteries&amp;rft.volume=30&amp;rft.issue=33&amp;rft.pages=1800561&amp;rft.date=2018-06-14&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A205286653%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.osti.gov%2Fbiblio%2F1468617%23id-name%3DOSTI&amp;rft_id=info%3Abibcode%2F2018AdM....3000561L&amp;rft.issn=0935-9648&amp;rft_id=info%3Adoi%2F10.1002%2Fadma.201800561&amp;rft_id=info%3Apmid%2F29904941&amp;rft.aulast=Li&amp;rft.aufirst=Matthew&amp;rft.au=Lu%2C+Jun&amp;rft.au=Chen%2C+Zhongwei&amp;rft.au=Amine%2C+Khalil&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1002%252Fadma.201800561&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGodshallRaistrickHuggins1980" class="citation journal cs1">Godshall, N.A.; Raistrick, I.D.; Huggins, R.A. (1980). "Thermodynamic investigations of ternary lithium-transition metal-oxygen cathode materials". <i>Materials Research Bulletin</i>. <b>15</b> (5): 561. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0025-5408%2880%2990135-X">10.1016/0025-5408(80)90135-X</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Materials+Research+Bulletin&amp;rft.atitle=Thermodynamic+investigations+of+ternary+lithium-transition+metal-oxygen+cathode+materials&amp;rft.volume=15&amp;rft.issue=5&amp;rft.pages=561&amp;rft.date=1980&amp;rft_id=info%3Adoi%2F10.1016%2F0025-5408%2880%2990135-X&amp;rft.aulast=Godshall&amp;rft.aufirst=N.A.&amp;rft.au=Raistrick%2C+I.D.&amp;rft.au=Huggins%2C+R.A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text">Godshall, Ned A. (17 October 1979) "Electrochemical and Thermodynamic Investigation of Ternary Lithium-Transition Metal-Oxide Cathode Materials for Lithium Batteries: Li<sub>2</sub>MnO<sub>4</sub> <a href="/wiki/Spinel" title="Spinel">spinel</a>, LiCoO<sub>2</sub>, and LiFeO<sub>2</sub>", Presentation at 156th Meeting of the Electrochemical Society, Los Angeles, CA.</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text">Godshall, Ned A. (18 May 1980) <i>Electrochemical and Thermodynamic Investigation of Ternary Lithium-Transition Metal-Oxygen Cathode Materials for Lithium Batteries</i>. Ph.D. Dissertation, Stanford University</span> </li> <li id="cite_note-Besenhard-1974-24"><span class="mw-cite-backlink">^ <a href="#cite_ref-Besenhard-1974_24-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Besenhard-1974_24-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBesenhardFritz1974" class="citation journal cs1">Besenhard, J. O.; Fritz, H. P. (25 June 1974). <a rel="nofollow" class="external text" href="https://linkinghub.elsevier.com/retrieve/pii/S0022072874801464">"Cathodic reduction of graphite in organic solutions of alkali and NR4+ salts"</a>. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i>. <b>53</b> (2): <span class="nowrap">329–</span>333. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0022-0728%2874%2980146-4">10.1016/S0022-0728(74)80146-4</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0022-0728">0022-0728</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Electroanalytical+Chemistry+and+Interfacial+Electrochemistry&amp;rft.atitle=Cathodic+reduction+of+graphite+in+organic+solutions+of+alkali+and+NR4%2B+salts&amp;rft.volume=53&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E329-%3C%2Fspan%3E333&amp;rft.date=1974-06-25&amp;rft_id=info%3Adoi%2F10.1016%2FS0022-0728%2874%2980146-4&amp;rft.issn=0022-0728&amp;rft.aulast=Besenhard&amp;rft.aufirst=J.+O.&amp;rft.au=Fritz%2C+H.+P.&amp;rft_id=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0022072874801464&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Li-2018b-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-Li-2018b_25-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiLuChenAmine2018" class="citation journal cs1">Li, Matthew; Lu, Jun; Chen, Zhongwei; Amine, Khalil (14 June 2018). <a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadma.201800561">"30 Years of Lithium-Ion Batteries"</a>. <i>Advanced Materials</i>. <b>30</b> (33): 1800561. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018AdM....3000561L">2018AdM....3000561L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadma.201800561">10.1002/adma.201800561</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0935-9648">0935-9648</a>. <a href="/wiki/OSTI_(identifier)" class="mw-redirect" title="OSTI (identifier)">OSTI</a>&#160;<a rel="nofollow" class="external text" href="https://www.osti.gov/biblio/1468617">1468617</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/29904941">29904941</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:205286653">205286653</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Materials&amp;rft.atitle=30+Years+of+Lithium-Ion+Batteries&amp;rft.volume=30&amp;rft.issue=33&amp;rft.pages=1800561&amp;rft.date=2018-06-14&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A205286653%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.osti.gov%2Fbiblio%2F1468617%23id-name%3DOSTI&amp;rft_id=info%3Abibcode%2F2018AdM....3000561L&amp;rft.issn=0935-9648&amp;rft_id=info%3Adoi%2F10.1002%2Fadma.201800561&amp;rft_id=info%3Apmid%2F29904941&amp;rft.aulast=Li&amp;rft.aufirst=Matthew&amp;rft.au=Lu%2C+Jun&amp;rft.au=Chen%2C+Zhongwei&amp;rft.au=Amine%2C+Khalil&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1002%252Fadma.201800561&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text">International Meeting on Lithium Batteries, Rome, 27–29 April 1982, C.L.U.P. Ed. Milan, Abstract #23</span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYazamiTouzain1983" class="citation journal cs1">Yazami, R.; Touzain, P. (1983). "A reversible graphite-lithium negative electrode for electrochemical generators". <i>Journal of Power Sources</i>. <b>9</b> (3): <span class="nowrap">365–</span>371. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1983JPS.....9..365Y">1983JPS.....9..365Y</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0378-7753%2883%2987040-2">10.1016/0378-7753(83)87040-2</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Power+Sources&amp;rft.atitle=A+reversible+graphite-lithium+negative+electrode+for+electrochemical+generators&amp;rft.volume=9&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E365-%3C%2Fspan%3E371&amp;rft.date=1983&amp;rft_id=info%3Adoi%2F10.1016%2F0378-7753%2883%2987040-2&amp;rft_id=info%3Abibcode%2F1983JPS.....9..365Y&amp;rft.aulast=Yazami&amp;rft.aufirst=R.&amp;rft.au=Touzain%2C+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text">Yoshino, A., Sanechika, K. &amp; Nakajima, T. Secondary battery. JP patent 1989293 (1985)</span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFongvon_SackenDahn1990" class="citation journal cs1">Fong, R.; von Sacken, U.; Dahn, Jeff (1990). "Studies of lithium intercalation into carbons using nonaqueous electrochemical cells". <i>J. Electrochem. Soc</i>. <b>137</b> (7): <span class="nowrap">2009–</span>2013. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1990JElS..137.2009F">1990JElS..137.2009F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F1.2086855">10.1149/1.2086855</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=J.+Electrochem.+Soc.&amp;rft.atitle=Studies+of+lithium+intercalation+into+carbons+using+nonaqueous+electrochemical+cells.&amp;rft.volume=137&amp;rft.issue=7&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E2009-%3C%2Fspan%3E2013&amp;rft.date=1990&amp;rft_id=info%3Adoi%2F10.1149%2F1.2086855&amp;rft_id=info%3Abibcode%2F1990JElS..137.2009F&amp;rft.aulast=Fong&amp;rft.aufirst=R.&amp;rft.au=von+Sacken%2C+U.&amp;rft.au=Dahn%2C+Jeff&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://setis.ec.europa.eu/document/download/9c5d115b-2b45-4378-b454-06affaf9a44c_en">"Lithium-ion batteries for mobility and stationary storage applications"</a>. <a href="/wiki/European_Commission" title="European Commission">European Commission</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190714021601/https://ec.europa.eu/jrc/sites/jrcsh/files/jrc114616_li-ion_batteries_two-pager_final.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 14 July 2019. <q>global lithium-ion battery production from about 20GWh (~6.5bn€) in 2010</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Lithium-ion+batteries+for+mobility+and+stationary+storage+applications&amp;rft.pub=European+Commission&amp;rft_id=https%3A%2F%2Fsetis.ec.europa.eu%2Fdocument%2Fdownload%2F9c5d115b-2b45-4378-b454-06affaf9a44c_en&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.greentechmedia.com/articles/read/switching-from-lithium-ion-could-be-harder-than-you-think">"Switching From Lithium-Ion Could Be Harder Than You Think"</a>. 19 October 2017. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20171019202000/https://www.greentechmedia.com/articles/read/switching-from-lithium-ion-could-be-harder-than-you-think">Archived</a> from the original on 19 October 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">20 October</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Switching+From+Lithium-Ion+Could+Be+Harder+Than+You+Think&amp;rft.date=2017-10-19&amp;rft_id=https%3A%2F%2Fwww.greentechmedia.com%2Farticles%2Fread%2Fswitching-from-lithium-ion-could-be-harder-than-you-think&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMurray2022" class="citation news cs1">Murray, Cameron (8 March 2022). <a rel="nofollow" class="external text" href="https://www.energy-storage.news/europe-and-us-will-shave-c-10-off-chinas-li-ion-production-capacity-market-share-by-2030/">"Europe and US will shave c.10% off China's Li-ion production capacity market share by 2030"</a>. <i>Energy Storage News</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220308214949/https://www.energy-storage.news/europe-and-us-will-shave-c-10-off-chinas-li-ion-production-capacity-market-share-by-2030/">Archived</a> from the original on 8 March 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">8 March</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Energy+Storage+News&amp;rft.atitle=Europe+and+US+will+shave+c.10%25+off+China%27s+Li-ion+production+capacity+market+share+by+2030&amp;rft.date=2022-03-08&amp;rft.aulast=Murray&amp;rft.aufirst=Cameron&amp;rft_id=https%3A%2F%2Fwww.energy-storage.news%2Feurope-and-us-will-shave-c-10-off-chinas-li-ion-production-capacity-market-share-by-2030%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation report cs1"><a rel="nofollow" class="external text" href="https://www.energy.gov/sites/default/files/2021-06/FCAB%20National%20Blueprint%20Lithium%20Batteries%200621_0.pdf">National Blueprint for Lithium Batteries</a> <span class="cs1-format">(PDF)</span> (Report). U.S. Department of Energy. October 2020. p.&#160;12. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210728161024/https://www.energy.gov/sites/default/files/2021-06/FCAB%20National%20Blueprint%20Lithium%20Batteries%200621_0.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 28 July 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">1 August</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=report&amp;rft.btitle=National+Blueprint+for+Lithium+Batteries&amp;rft.pages=12&amp;rft.pub=U.S.+Department+of+Energy&amp;rft.date=2020-10&amp;rft_id=https%3A%2F%2Fwww.energy.gov%2Fsites%2Fdefault%2Ffiles%2F2021-06%2FFCAB%2520National%2520Blueprint%2520Lithium%2520Batteries%25200621_0.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.nobelprize.org/prizes/chemistry/2019/press-release/">"The Nobel Prize in Chemistry 2019"</a>. Nobel Foundation. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20191208071439/https://www.nobelprize.org/prizes/chemistry/2019/press-release/">Archived</a> from the original on 8 December 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">4 June</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=The+Nobel+Prize+in+Chemistry+2019&amp;rft.pub=Nobel+Foundation&amp;rft_id=https%3A%2F%2Fwww.nobelprize.org%2Fprizes%2Fchemistry%2F2019%2Fpress-release%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Hanley-2023-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hanley-2023_35-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHanley2023" class="citation news cs1">Hanley, Steve (21 April 2023). <a rel="nofollow" class="external text" href="https://cleantechnica.com/2023/04/21/condensed-matter-battery-from-catl-targets-electric-airplanes/">"Condensed Matter Battery From CATL Targets Electric Airplanes"</a>. CleanTechnica. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230430144004/https://cleantechnica.com/2023/04/21/condensed-matter-battery-from-catl-targets-electric-airplanes/">Archived</a> from the original on 30 April 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">30 April</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Condensed+Matter+Battery+From+CATL+Targets+Electric+Airplanes&amp;rft.date=2023-04-21&amp;rft.aulast=Hanley&amp;rft.aufirst=Steve&amp;rft_id=https%3A%2F%2Fcleantechnica.com%2F2023%2F04%2F21%2Fcondensed-matter-battery-from-catl-targets-electric-airplanes%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-China-2023-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-China-2023_36-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.reuters.com/technology/chinas-catl-unveils-condensed-matter-battery-power-civil-aircraft-2023-04-19/">"China's CATL unveils condensed matter battery to power civil aircraft"</a>. Reuters. 19 April 2023. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230430143954/https://www.reuters.com/technology/chinas-catl-unveils-condensed-matter-battery-power-civil-aircraft-2023-04-19/">Archived</a> from the original on 30 April 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">30 April</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=China%27s+CATL+unveils+condensed+matter+battery+to+power+civil+aircraft&amp;rft.date=2023-04-19&amp;rft_id=https%3A%2F%2Fwww.reuters.com%2Ftechnology%2Fchinas-catl-unveils-condensed-matter-battery-power-civil-aircraft-2023-04-19%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Warwick-2023-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-Warwick-2023_37-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWarwick2023" class="citation news cs1">Warwick, Graham (19 April 2023). <a rel="nofollow" class="external text" href="https://aviationweek.com/aerospace/emerging-technologies/chinas-catl-targets-energy-dense-battery-electric-aircraft">"China's CATL Targets Energy-Dense Battery At Electric Aircraft"</a>. Informa Markets. Aviation Week. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230430143954/https://aviationweek.com/aerospace/emerging-technologies/chinas-catl-targets-energy-dense-battery-electric-aircraft">Archived</a> from the original on 30 April 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">30 April</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=China%27s+CATL+Targets+Energy-Dense+Battery+At+Electric+Aircraft&amp;rft.date=2023-04-19&amp;rft.aulast=Warwick&amp;rft.aufirst=Graham&amp;rft_id=https%3A%2F%2Faviationweek.com%2Faerospace%2Femerging-technologies%2Fchinas-catl-targets-energy-dense-battery-electric-aircraft&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text">Flow batteries with solid energy boosters. 2022. J Electrochem Sci Eng. 12/4, 731–66. Y.V. Tolmachev, S.V. Starodubceva. doi: 10.5599/jese.1363.</span> </li> <li id="cite_note-Silberberg-2006-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-Silberberg-2006_39-0">^</a></b></span> <span class="reference-text">Silberberg, M. (2006). <i>Chemistry: The Molecular Nature of Matter and Change</i>, 4th Ed. New York (NY): McGraw-Hill Education. p. 935, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0077216504" title="Special:BookSources/0077216504">0077216504</a>.</span> </li> <li id="cite_note-Li-2021-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-Li-2021_40-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiYuenWangDe_Cachinho_Cordeiro2021" class="citation journal cs1">Li, Ao; Yuen, Anthony Chun Yin; Wang, Wei; De Cachinho Cordeiro, Ivan Miguel; Wang, Cheng; Chen, Timothy Bo Yuan; Zhang, Jin; Chan, Qing Nian; Yeoh, Guan Heng (January 2021). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7831081">"A Review on Lithium-Ion Battery Separators towards Enhanced Safety Performances and Modelling Approaches"</a>. <i>Molecules</i>. <b>26</b> (2): 478. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fmolecules26020478">10.3390/molecules26020478</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1420-3049">1420-3049</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7831081">7831081</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33477513">33477513</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Molecules&amp;rft.atitle=A+Review+on+Lithium-Ion+Battery+Separators+towards+Enhanced+Safety+Performances+and+Modelling+Approaches&amp;rft.volume=26&amp;rft.issue=2&amp;rft.pages=478&amp;rft.date=2021-01&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7831081%23id-name%3DPMC&amp;rft.issn=1420-3049&amp;rft_id=info%3Apmid%2F33477513&amp;rft_id=info%3Adoi%2F10.3390%2Fmolecules26020478&amp;rft.aulast=Li&amp;rft.aufirst=Ao&amp;rft.au=Yuen%2C+Anthony+Chun+Yin&amp;rft.au=Wang%2C+Wei&amp;rft.au=De+Cachinho+Cordeiro%2C+Ivan+Miguel&amp;rft.au=Wang%2C+Cheng&amp;rft.au=Chen%2C+Timothy+Bo+Yuan&amp;rft.au=Zhang%2C+Jin&amp;rft.au=Chan%2C+Qing+Nian&amp;rft.au=Yeoh%2C+Guan+Heng&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7831081&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Zhu-2020-41"><span class="mw-cite-backlink">^ <a href="#cite_ref-Zhu-2020_41-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Zhu-2020_41-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/346987573">"A review of current collectors for lithium-ion batteries"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=A+review+of+current+collectors+for+lithium-ion+batteries&amp;rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F346987573&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Shao-2020-42"><span class="mw-cite-backlink">^ <a href="#cite_ref-Shao-2020_42-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Shao-2020_42-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Shao-2020_42-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://pubs.acs.org/doi/full/10.1021/acsami.0c12376">G. Shao et al.: Polymer-Derived SiOC Integrated with a Graphene Aerogel As a Highly Stable Li-Ion Battery Anode</a> ACS Appl. Mater. Interfaces 2020, 12, 41, 46045–46056</span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThackerayThomasWhittingham2011" class="citation journal cs1">Thackeray, M. M.; Thomas, J. O.; Whittingham, M. S. (2011). "Science and Applications of Mixed Conductors for Lithium Batteries". <i>MRS Bulletin</i>. <b>25</b> (3): <span class="nowrap">39–</span>46. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1557%2Fmrs2000.17">10.1557/mrs2000.17</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:98644365">98644365</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=MRS+Bulletin&amp;rft.atitle=Science+and+Applications+of+Mixed+Conductors+for+Lithium+Batteries&amp;rft.volume=25&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E39-%3C%2Fspan%3E46&amp;rft.date=2011&amp;rft_id=info%3Adoi%2F10.1557%2Fmrs2000.17&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A98644365%23id-name%3DS2CID&amp;rft.aulast=Thackeray&amp;rft.aufirst=M.+M.&amp;rft.au=Thomas%2C+J.+O.&amp;rft.au=Whittingham%2C+M.+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEl-KadyShaoKaner2016" class="citation journal cs1">El-Kady, Maher F.; Shao, Yuanlong; Kaner, Richard B. (July 2016). "Graphene for batteries, supercapacitors and beyond". <i>Nature Reviews Materials</i>. <b>1</b> (7): 16033. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016NatRM...116033E">2016NatRM...116033E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnatrevmats.2016.33">10.1038/natrevmats.2016.33</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Reviews+Materials&amp;rft.atitle=Graphene+for+batteries%2C+supercapacitors+and+beyond&amp;rft.volume=1&amp;rft.issue=7&amp;rft.pages=16033&amp;rft.date=2016-07&amp;rft_id=info%3Adoi%2F10.1038%2Fnatrevmats.2016.33&amp;rft_id=info%3Abibcode%2F2016NatRM...116033E&amp;rft.aulast=El-Kady&amp;rft.aufirst=Maher+F.&amp;rft.au=Shao%2C+Yuanlong&amp;rft.au=Kaner%2C+Richard+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.tek.com/Measurement/Service/msds/01914600.pdf">MSDS: National Power Corp Lithium Ion Batteries</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110626215943/http://www.tek.com/Measurement/Service/msds/01914600.pdf">Archived</a> 26 June 2011 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> (PDF). tek.com; Tektronix Inc., 7 May 2004. Retrieved 11 June 2010.</span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text">Revisiting the Ethylene Carbonate-Propylene Carbonate Mystery with Operando Characterization. 2022. Adv Mater Interfaces. 9/8, 7. T. Melin, R. Lundstrom, E.J. Berg. doi: 10.1002/admi.202101258.</span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFXu2004" class="citation journal cs1">Xu, Kang (1 October 2004). "Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries". <i>Chemical Reviews</i>. <b>104</b> (10): <span class="nowrap">4303–</span>4418. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fcr030203g">10.1021/cr030203g</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15669157">15669157</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chemical+Reviews&amp;rft.atitle=Nonaqueous+Liquid+Electrolytes+for+Lithium-Based+Rechargeable+Batteries&amp;rft.volume=104&amp;rft.issue=10&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E4303-%3C%2Fspan%3E4418&amp;rft.date=2004-10-01&amp;rft_id=info%3Adoi%2F10.1021%2Fcr030203g&amp;rft_id=info%3Apmid%2F15669157&amp;rft.aulast=Xu&amp;rft.aufirst=Kang&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJoyceTrahyBauerDogan2012" class="citation journal cs1">Joyce, C.; Trahy, L.; Bauer, S.; Dogan, F.; Vaughey, J. (2012). <a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F2.107206jes">"Metallic Copper Binders for Lithium-Ion Battery Silicon Electrodes"</a>. <i>Journal of the Electrochemical Society</i>. <b>159</b> (6): <span class="nowrap">909–</span>914. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F2.107206jes">10.1149/2.107206jes</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Electrochemical+Society&amp;rft.atitle=Metallic+Copper+Binders+for+Lithium-Ion+Battery+Silicon+Electrodes&amp;rft.volume=159&amp;rft.issue=6&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E909-%3C%2Fspan%3E914&amp;rft.date=2012&amp;rft_id=info%3Adoi%2F10.1149%2F2.107206jes&amp;rft.aulast=Joyce&amp;rft.aufirst=C.&amp;rft.au=Trahy%2C+L.&amp;rft.au=Bauer%2C+S.&amp;rft.au=Dogan%2C+F.&amp;rft.au=Vaughey%2C+J.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1149%252F2.107206jes&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.biologic.net/topics/anode-cathode-positive-and-negative-battery-basics/">"Anode vs Cathode: What's the difference?"</a>. BioLogic. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230525123331/https://www.biologic.net/topics/anode-cathode-positive-and-negative-battery-basics/">Archived</a> from the original on 25 May 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">25 May</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Anode+vs+Cathode%3A+What%27s+the+difference%3F&amp;rft.pub=BioLogic&amp;rft_id=https%3A%2F%2Fwww.biologic.net%2Ftopics%2Fanode-cathode-positive-and-negative-battery-basics%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuyomardTarascon1994" class="citation journal cs1">Guyomard, Dominique; Tarascon, Jean-Marie (1994). "Rocking-chair or lithium-ion rechargeable lithium batteries". <i>Advanced Materials</i>. <b>6</b> (5): <span class="nowrap">408–</span>412. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1994AdM.....6..408G">1994AdM.....6..408G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadma.19940060516">10.1002/adma.19940060516</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1521-4095">1521-4095</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Materials&amp;rft.atitle=Rocking-chair+or+lithium-ion+rechargeable+lithium+batteries&amp;rft.volume=6&amp;rft.issue=5&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E408-%3C%2Fspan%3E412&amp;rft.date=1994&amp;rft.issn=1521-4095&amp;rft_id=info%3Adoi%2F10.1002%2Fadma.19940060516&amp;rft_id=info%3Abibcode%2F1994AdM.....6..408G&amp;rft.aulast=Guyomard&amp;rft.aufirst=Dominique&amp;rft.au=Tarascon%2C+Jean-Marie&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMegahedScrosati1994" class="citation journal cs1">Megahed, Sid; Scrosati, Bruno (1994). "Lithium-ion rechargeable batteries". <i>Journal of Power Sources</i>. <b>51</b> (<span class="nowrap">1–</span>2): <span class="nowrap">79–</span>104. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1994JPS....51...79M">1994JPS....51...79M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0378-7753%2894%2901956-8">10.1016/0378-7753(94)01956-8</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Power+Sources&amp;rft.atitle=Lithium-ion+rechargeable+batteries&amp;rft.volume=51&amp;rft.issue=%3Cspan+class%3D%22nowrap%22%3E1%E2%80%93%3C%2Fspan%3E2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E79-%3C%2Fspan%3E104&amp;rft.date=1994&amp;rft_id=info%3Adoi%2F10.1016%2F0378-7753%2894%2901956-8&amp;rft_id=info%3Abibcode%2F1994JPS....51...79M&amp;rft.aulast=Megahed&amp;rft.aufirst=Sid&amp;rft.au=Scrosati%2C+Bruno&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Bergveld-2002-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bergveld-2002_52-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBergveldKruijtNotten2002" class="citation book cs1">Bergveld, H. J.; Kruijt, W. S.; Notten, P. H. L. (2002). <i>Battery Management Systems: Design by Modelling</i>. <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer</a>. pp.&#160;<span class="nowrap">107–</span>108, 113. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-94-017-0843-2" title="Special:BookSources/978-94-017-0843-2"><bdi>978-94-017-0843-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Battery+Management+Systems%3A+Design+by+Modelling&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E107-%3C%2Fspan%3E108%2C+113&amp;rft.pub=Springer&amp;rft.date=2002&amp;rft.isbn=978-94-017-0843-2&amp;rft.aulast=Bergveld&amp;rft.aufirst=H.+J.&amp;rft.au=Kruijt%2C+W.+S.&amp;rft.au=Notten%2C+P.+H.+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Dhameja-2001-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-Dhameja-2001_53-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDhameja2001" class="citation book cs1">Dhameja, S (2001). <i>Electric Vehicle Battery Systems</i>. <a href="/wiki/Newnes_Press" class="mw-redirect" title="Newnes Press">Newnes Press</a>. p.&#160;12. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-075-06991-67" title="Special:BookSources/978-075-06991-67"><bdi>978-075-06991-67</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Electric+Vehicle+Battery+Systems&amp;rft.pages=12&amp;rft.pub=Newnes+Press&amp;rft.date=2001&amp;rft.isbn=978-075-06991-67&amp;rft.aulast=Dhameja&amp;rft.aufirst=S&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChoiJungNodaKim2003" class="citation journal cs1">Choi, H. C.; Jung, Y. M.; Noda, I.; Kim, S. B. (2003). "A Study of the Mechanism of the Electrochemical Reaction of Lithium with CoO by Two-Dimensional Soft X-ray Absorption Spectroscopy (2D XAS), 2D Raman, and 2D Heterospectral XAS−Raman Correlation Analysis". <i>The Journal of Physical Chemistry B</i>. <b>107</b> (24): <span class="nowrap">5806–</span>5811. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fjp030438w">10.1021/jp030438w</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physical+Chemistry+B&amp;rft.atitle=A+Study+of+the+Mechanism+of+the+Electrochemical+Reaction+of+Lithium+with+CoO+by+Two-Dimensional+Soft+X-ray+Absorption+Spectroscopy+%282D+XAS%29%2C+2D+Raman%2C+and+2D+Heterospectral+XAS%E2%88%92Raman+Correlation+Analysis&amp;rft.volume=107&amp;rft.issue=24&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E5806-%3C%2Fspan%3E5811&amp;rft.date=2003&amp;rft_id=info%3Adoi%2F10.1021%2Fjp030438w&amp;rft.aulast=Choi&amp;rft.aufirst=H.+C.&amp;rft.au=Jung%2C+Y.+M.&amp;rft.au=Noda%2C+I.&amp;rft.au=Kim%2C+S.+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAmatucci1996" class="citation journal cs1">Amatucci, G. G. (1996). "<span class="chemf nowrap">CoO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span>, the End Member of the <span class="chemf nowrap">Li<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">x</sub></span></span>CoO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></span> Solid Solution". <i>Journal of the Electrochemical Society</i>. <b>143</b> (3): <span class="nowrap">1114–</span>1123. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F1.1836594">10.1149/1.1836594</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Electrochemical+Society&amp;rft.atitle=%3Cspan+class%3D%22chemf+nowrap%22%3ECoO%3Cspan+class%3D%22nowrap%22%3E%3Cspan+style%3D%22display%3Ainline-block%3Bmargin-bottom%3A-0.3em%3Bvertical-align%3A-0.4em%3Bline-height%3A1em%3Bfont-size%3A80%25%3Btext-align%3Aleft%22%3E%3Csup+style%3D%22font-size%3Ainherit%3Bline-height%3Ainherit%3Bvertical-align%3Abaseline%22%3E%3C%2Fsup%3E%3Cbr+%2F%3E%3Csub+style%3D%22font-size%3Ainherit%3Bline-height%3Ainherit%3Bvertical-align%3Abaseline%22%3E2%3C%2Fsub%3E%3C%2Fspan%3E%3C%2Fspan%3E%3C%2Fspan%3E%2C+the+End+Member+of+the+%3Cspan+class%3D%22chemf+nowrap%22%3ELi%3Cspan+class%3D%22nowrap%22%3E%3Cspan+style%3D%22display%3Ainline-block%3Bmargin-bottom%3A-0.3em%3Bvertical-align%3A-0.4em%3Bline-height%3A1em%3Bfont-size%3A80%25%3Btext-align%3Aleft%22%3E%3Csup+style%3D%22font-size%3Ainherit%3Bline-height%3Ainherit%3Bvertical-align%3Abaseline%22%3E%3C%2Fsup%3E%3Cbr+%2F%3E%3Csub+style%3D%22font-size%3Ainherit%3Bline-height%3Ainherit%3Bvertical-align%3Abaseline%22%3Ex%3C%2Fsub%3E%3C%2Fspan%3E%3C%2Fspan%3ECoO%3Cspan+class%3D%22nowrap%22%3E%3Cspan+style%3D%22display%3Ainline-block%3Bmargin-bottom%3A-0.3em%3Bvertical-align%3A-0.4em%3Bline-height%3A1em%3Bfont-size%3A80%25%3Btext-align%3Aleft%22%3E%3Csup+style%3D%22font-size%3Ainherit%3Bline-height%3Ainherit%3Bvertical-align%3Abaseline%22%3E%3C%2Fsup%3E%3Cbr+%2F%3E%3Csub+style%3D%22font-size%3Ainherit%3Bline-height%3Ainherit%3Bvertical-align%3Abaseline%22%3E2%3C%2Fsub%3E%3C%2Fspan%3E%3C%2Fspan%3E%3C%2Fspan%3E+Solid+Solution&amp;rft.volume=143&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1114-%3C%2Fspan%3E1123&amp;rft.date=1996&amp;rft_id=info%3Adoi%2F10.1149%2F1.1836594&amp;rft.aulast=Amatucci&amp;rft.aufirst=G.+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Linden-2002-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-Linden-2002_56-0">^</a></b></span> <span class="reference-text">Linden, David and Reddy, Thomas B. (eds.) (2002). <i>Handbook of Batteries 3rd Edition</i>. McGraw-Hill, New York. chapter 35. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-07-135978-8" title="Special:BookSources/0-07-135978-8">0-07-135978-8</a>.</span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhai2016" class="citation journal cs1">Zhai, C; et&#160;al. (2016). <a rel="nofollow" class="external text" href="https://hal.archives-ouvertes.fr/hal-02307660/file/Interfacial%20electromechanical%20EML%20authors%20version.pdf">"Interfacial electro-mechanical behaviour at rough surfaces"</a> <span class="cs1-format">(PDF)</span>. <i>Extreme Mechanics Letters</i>. <b>9</b>: <span class="nowrap">422–</span>429. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016ExML....9..422Z">2016ExML....9..422Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.eml.2016.03.021">10.1016/j.eml.2016.03.021</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/1959.4%2Funsworks_60452">1959.4/unsworks_60452</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210419021929/https://hal.archives-ouvertes.fr/hal-02307660/file/Interfacial%20electromechanical%20EML%20authors%20version.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 19 April 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">31 August</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Extreme+Mechanics+Letters&amp;rft.atitle=Interfacial+electro-mechanical+behaviour+at+rough+surfaces&amp;rft.volume=9&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E422-%3C%2Fspan%3E429&amp;rft.date=2016&amp;rft_id=info%3Ahdl%2F1959.4%2Funsworks_60452&amp;rft_id=info%3Adoi%2F10.1016%2Fj.eml.2016.03.021&amp;rft_id=info%3Abibcode%2F2016ExML....9..422Z&amp;rft.aulast=Zhai&amp;rft.aufirst=C&amp;rft_id=https%3A%2F%2Fhal.archives-ouvertes.fr%2Fhal-02307660%2Ffile%2FInterfacial%2520electromechanical%2520EML%2520authors%2520version.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChung2021" class="citation journal cs1">Chung, H. C. (2021). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8253776">"Charge and discharge profiles of repurposed LiFePO<sub>4</sub> batteries based on the UL 1974 standard"</a>. <i>Scientific Data</i>. <b>8</b> (1): 165. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021NatSD...8..165C">2021NatSD...8..165C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41597-021-00954-3">10.1038/s41597-021-00954-3</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8253776">8253776</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34215731">34215731</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scientific+Data&amp;rft.atitle=Charge+and+discharge+profiles+of+repurposed+LiFePO%3Csub%3E4%3C%2Fsub%3E+batteries+based+on+the+UL+1974+standard&amp;rft.volume=8&amp;rft.issue=1&amp;rft.pages=165&amp;rft.date=2021&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8253776%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F34215731&amp;rft_id=info%3Adoi%2F10.1038%2Fs41597-021-00954-3&amp;rft_id=info%3Abibcode%2F2021NatSD...8..165C&amp;rft.aulast=Chung&amp;rft.aufirst=H.+C.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8253776&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWuHuDuSun2015" class="citation journal cs1">Wu, Xiaogang; Hu, Chen; Du, Jiuyu; Sun, Jinlei (2015). <a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2015%2F294793">"Multistage CC-CV Charge Method for Li-Ion Battery"</a>. <i>Mathematical Problems in Engineering</i>. <b>2015</b>: <span class="nowrap">1–</span>10. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2015%2F294793">10.1155/2015/294793</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1024-123X">1024-123X</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematical+Problems+in+Engineering&amp;rft.atitle=Multistage+CC-CV+Charge+Method+for+Li-Ion+Battery&amp;rft.volume=2015&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E10&amp;rft.date=2015&amp;rft_id=info%3Adoi%2F10.1155%2F2015%2F294793&amp;rft.issn=1024-123X&amp;rft.aulast=Wu&amp;rft.aufirst=Xiaogang&amp;rft.au=Hu%2C+Chen&amp;rft.au=Du%2C+Jiuyu&amp;rft.au=Sun%2C+Jinlei&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1155%252F2015%252F294793&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Schweber-2015-60"><span class="mw-cite-backlink">^ <a href="#cite_ref-Schweber-2015_60-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Schweber-2015_60-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchweber2015" class="citation web cs1">Schweber, Bill (4 August 2015). <a rel="nofollow" class="external text" href="http://electronics360.globalspec.com/article/5555/lithium-batteries-the-pros-and-cons">"Lithium Batteries: The Pros and Cons"</a>. <i>GlobalSpec</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170316024534/http://electronics360.globalspec.com/article/5555/lithium-batteries-the-pros-and-cons">Archived</a> from the original on 16 March 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">15 March</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=GlobalSpec&amp;rft.atitle=Lithium+Batteries%3A+The+Pros+and+Cons&amp;rft.date=2015-08-04&amp;rft.aulast=Schweber&amp;rft.aufirst=Bill&amp;rft_id=http%3A%2F%2Felectronics360.globalspec.com%2Farticle%2F5555%2Flithium-batteries-the-pros-and-cons&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-illinois.edu-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-illinois.edu_61-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20130504121516/http://courses.ece.illinois.edu/ece445/projects/fall2007/project10_design_review.doc">"Design Review For: Advanced Electric Vehicle Battery Charger, ECE 445 Senior Design Project"</a>. <i>090521 courses.ece.illinois.edu</i>. Archived from <a rel="nofollow" class="external text" href="http://courses.ece.illinois.edu/ece445/projects/fall2007/project10_design_review.doc">the original</a> on 4 May 2013.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=090521+courses.ece.illinois.edu&amp;rft.atitle=Design+Review+For%3A+Advanced+Electric+Vehicle+Battery+Charger%2C+ECE+445+Senior+Design+Project&amp;rft_id=http%3A%2F%2Fcourses.ece.illinois.edu%2Fece445%2Fprojects%2Ffall2007%2Fproject10_design_review.doc&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Lithium_Ion_Rechargeable_Batteries-62"><span class="mw-cite-backlink">^ <a href="#cite_ref-Lithium_Ion_Rechargeable_Batteries_62-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Lithium_Ion_Rechargeable_Batteries_62-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20090411024100/http://www.sony.com.cn/products/ed/battery/download.pdf">"Lithium Ion Rechargeable Batteries. Technical Handbook"</a> <span class="cs1-format">(PDF)</span>. Archived from <a rel="nofollow" class="external text" href="http://www.sony.com.cn/products/ed/battery/download.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 11 April 2009.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Lithium+Ion+Rechargeable+Batteries.+Technical+Handbook&amp;rft_id=http%3A%2F%2Fwww.sony.com.cn%2Fproducts%2Fed%2Fbattery%2Fdownload.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.rathboneenergy.com/articles/sanyo_lionT_E.pdf">Sanyo: Overview of Lithium Ion Batteries</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160303212922/http://www.rathboneenergy.com/articles/sanyo_lionT_E.pdf">Archived</a> 3 March 2016 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>, listing self-discharge rate of 2%/mo.</span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.hardingenergy.com/pdfs/5%20Lithium%20Ion.pdf">Sanyo: Harding energy specification</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20151227093854/http://www.hardingenergy.com/pdfs/5%20Lithium%20Ion.pdf">Archived</a> 27 December 2015 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>, listing self-discharge rate of 0.3%/mo.</span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZimmerman2004" class="citation journal cs1">Zimmerman, A. H. (2004). "Self-discharge losses in lithium-ion cells". <i>IEEE Aerospace and Electronic Systems Magazine</i>. <b>19</b> (2): <span class="nowrap">19–</span>24. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FMAES.2004.1269687">10.1109/MAES.2004.1269687</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:27324676">27324676</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Aerospace+and+Electronic+Systems+Magazine&amp;rft.atitle=Self-discharge+losses+in+lithium-ion+cells&amp;rft.volume=19&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E19-%3C%2Fspan%3E24&amp;rft.date=2004&amp;rft_id=info%3Adoi%2F10.1109%2FMAES.2004.1269687&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A27324676%23id-name%3DS2CID&amp;rft.aulast=Zimmerman&amp;rft.aufirst=A.+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Weicker-2013-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-Weicker-2013_66-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeicker,_Phil2013" class="citation book cs1">Weicker, Phil (1 November 2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=pXIiAgAAQBAJ&amp;pg=PA214"><i>A Systems Approach to Lithium-Ion Battery Management</i></a>. Artech House. p.&#160;214. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-60807-659-8" title="Special:BookSources/978-1-60807-659-8"><bdi>978-1-60807-659-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Systems+Approach+to+Lithium-Ion+Battery+Management&amp;rft.pages=214&amp;rft.pub=Artech+House&amp;rft.date=2013-11-01&amp;rft.isbn=978-1-60807-659-8&amp;rft.au=Weicker%2C+Phil&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DpXIiAgAAQBAJ%26pg%3DPA214&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbeMuraiZaghib1999" class="citation journal cs1">Abe, H.; Murai, T.; Zaghib, K. (1999). "Vapor-grown carbon fiber anode for cylindrical lithium ion rechargeable batteries". <i>Journal of Power Sources</i>. <b>77</b> (2): <span class="nowrap">110–</span>115. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1999JPS....77..110A">1999JPS....77..110A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0378-7753%2898%2900158-X">10.1016/S0378-7753(98)00158-X</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:98171072">98171072</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Power+Sources&amp;rft.atitle=Vapor-grown+carbon+fiber+anode+for+cylindrical+lithium+ion+rechargeable+batteries&amp;rft.volume=77&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E110-%3C%2Fspan%3E115&amp;rft.date=1999&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A98171072%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2FS0378-7753%2898%2900158-X&amp;rft_id=info%3Abibcode%2F1999JPS....77..110A&amp;rft.aulast=Abe&amp;rft.aufirst=H.&amp;rft.au=Murai%2C+T.&amp;rft.au=Zaghib%2C+K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVetterLux2016" class="citation book cs1">Vetter, Matthias; Lux, Stephan (2016). <a rel="nofollow" class="external text" href="http://scitechconnect.elsevier.com/wp-content/uploads/2017/01/3-s2.0-B9780128034408000117-main.pdf">"Rechargeable Batteries with Special Reference to Lithium-Ion Batteries"</a> <span class="cs1-format">(PDF)</span>. <i>Storing Energy</i>. Fraunhofer Institute for Solar Energy Systems ISE. p.&#160;205. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FB978-0-12-803440-8.00011-7">10.1016/B978-0-12-803440-8.00011-7</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780128034408" title="Special:BookSources/9780128034408"><bdi>9780128034408</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20171021060517/http://scitechconnect.elsevier.com/wp-content/uploads/2017/01/3-s2.0-B9780128034408000117-main.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 21 October 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">20 October</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Rechargeable+Batteries+with+Special+Reference+to+Lithium-Ion+Batteries&amp;rft.btitle=Storing+Energy&amp;rft.pages=205&amp;rft.date=2016&amp;rft_id=info%3Adoi%2F10.1016%2FB978-0-12-803440-8.00011-7&amp;rft.isbn=9780128034408&amp;rft.aulast=Vetter&amp;rft.aufirst=Matthias&amp;rft.au=Lux%2C+Stephan&amp;rft_id=http%3A%2F%2Fscitechconnect.elsevier.com%2Fwp-content%2Fuploads%2F2017%2F01%2F3-s2.0-B9780128034408000117-main.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Winter-2004a-69"><span class="mw-cite-backlink">^ <a href="#cite_ref-Winter-2004a_69-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Winter-2004a_69-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Winter-2004a_69-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFWinterBrodd2004">Winter &amp; Brodd 2004</a>, p.&#160;4259</span> </li> <li id="cite_note-Manthiram-2020-70"><span class="mw-cite-backlink">^ <a href="#cite_ref-Manthiram-2020_70-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Manthiram-2020_70-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Manthiram-2020_70-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Manthiram-2020_70-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Manthiram-2020_70-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFManthiram2020" class="citation journal cs1">Manthiram, Arumugam (25 March 2020). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096394">"A reflection on lithium-ion battery cathode chemistry"</a>. <i>Nature Communications</i>. <b>11</b> (1): 1550. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020NatCo..11.1550M">2020NatCo..11.1550M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41467-020-15355-0">10.1038/s41467-020-15355-0</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2041-1723">2041-1723</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096394">7096394</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32214093">32214093</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Communications&amp;rft.atitle=A+reflection+on+lithium-ion+battery+cathode+chemistry&amp;rft.volume=11&amp;rft.issue=1&amp;rft.pages=1550&amp;rft.date=2020-03-25&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7096394%23id-name%3DPMC&amp;rft_id=info%3Abibcode%2F2020NatCo..11.1550M&amp;rft_id=info%3Apmid%2F32214093&amp;rft_id=info%3Adoi%2F10.1038%2Fs41467-020-15355-0&amp;rft.issn=2041-1723&amp;rft.aulast=Manthiram&amp;rft.aufirst=Arumugam&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7096394&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text">Okada, S. and Yamaki, J.-I. (2009). Iron-Based Rare-Metal-Free Cathodes. In Lithium Ion Rechargeable Batteries, K. Ozawa (Ed.). <a rel="nofollow" class="external free" href="https://onlinelibrary.wiley.com/doi/10.1002/9783527629022.ch4">https://onlinelibrary.wiley.com/doi/10.1002/9783527629022.ch4</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20231005154711/https://onlinelibrary.wiley.com/doi/10.1002/9783527629022.ch4">Archived</a> 5 October 2023 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text">Electrochemical performance of CrOx cathode material for high energy density lithium batteries. 2023. Int J Electrochem Sci. 18/2, 44. D. Liu, X. Mu, R. Guo, J. Xie, G. Yin, P. Zuo. doi: 10.1016/j.ijoes.2023.01.020.</span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text">Industrialization of Layered Oxide Cathodes for Lithium-Ion and Sodium-Ion Batteries: A Comparative Perspective. 2020. Energy Technol. 8/12, 13. J. Darga, J. Lamb, A. Manthiram. doi: 10.1002/ente.202000723.</span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text">K. Kubota, S. Kumakura, Y. Yoda, K. Kuroki, S. Komaba, Adv. Energy Mater. 2018, 8, 1703415</span> </li> <li id="cite_note-Nitta-2015-75"><span class="mw-cite-backlink">^ <a href="#cite_ref-Nitta-2015_75-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Nitta-2015_75-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNittaWuLeeYushin2015" class="citation journal cs1">Nitta, Naoki; Wu, Feixiang; Lee, Jung Tae; <a href="/w/index.php?title=Gleb_Yushin&amp;action=edit&amp;redlink=1" class="new" title="Gleb Yushin (page does not exist)">Yushin, Gleb</a> (2015). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.mattod.2014.10.040">"Li-ion battery materials: present and future"</a>. <i>Materials Today</i>. <b>18</b> (5): <span class="nowrap">252–</span>264. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.mattod.2014.10.040">10.1016/j.mattod.2014.10.040</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Materials+Today&amp;rft.atitle=Li-ion+battery+materials%3A+present+and+future&amp;rft.volume=18&amp;rft.issue=5&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E252-%3C%2Fspan%3E264&amp;rft.date=2015&amp;rft_id=info%3Adoi%2F10.1016%2Fj.mattod.2014.10.040&amp;rft.aulast=Nitta&amp;rft.aufirst=Naoki&amp;rft.au=Wu%2C+Feixiang&amp;rft.au=Lee%2C+Jung+Tae&amp;rft.au=Yushin%2C+Gleb&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.mattod.2014.10.040&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFergus2010" class="citation journal cs1">Fergus, Jeffrey (2010). "Recent developments in cathode materials for lithium ion batteries". <i>Journal of Power Sources</i>. <b>195</b> (4): <span class="nowrap">939–</span>954. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010JPS...195..939F">2010JPS...195..939F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2009.08.089">10.1016/j.jpowsour.2009.08.089</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Power+Sources&amp;rft.atitle=Recent+developments+in+cathode+materials+for+lithium+ion+batteries&amp;rft.volume=195&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E939-%3C%2Fspan%3E954&amp;rft.date=2010&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jpowsour.2009.08.089&amp;rft_id=info%3Abibcode%2F2010JPS...195..939F&amp;rft.aulast=Fergus&amp;rft.aufirst=Jeffrey&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text">Ohzuku, T., Ueda, A. &amp; Nagayama, M. Electrochemistry and structural chemistry of <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1123817410"><span class="chemf nowrap">LiNiO<sub class="template-chem2-sub">2</sub></span> (R3m) for 4 volt secondary lithium cells. J. Electrochem. Soc. 140, 1862–1870 (1993).</span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-78">^</a></b></span> <span class="reference-text">W. Li, E.M. Erickson, A. Manthiram, Nat. Energy 5 (2020) 26–34</span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-79">^</a></b></span> <span class="reference-text">Nickel-rich layered oxide cathodes for lithium-ion batteries: Failure mechanisms and modification strategies. 2023. J Energy Storage. 58/. X. Zheng, Z. Cai, J. Sun, J. He, W. Rao, J. Wang, et al. doi: 10.1016/j.est.2022.106405&#160;; W. Li, E.M. Erickson, A. Manthiram, Nat. Energy 5 (2020) 26–34</span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-80">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFXies2022" class="citation journal cs1">Xies, Ying (2022). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.partic.2021.05.011">"Li-rich layered oxides: Structure, capacity and voltage fading mechanisms and solving strategies"</a>. <i>Particuology</i>. <b>61</b> (4): <span class="nowrap">1–</span>10. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.partic.2021.05.011">10.1016/j.partic.2021.05.011</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:237933219">237933219</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Particuology&amp;rft.atitle=Li-rich+layered+oxides%3A+Structure%2C+capacity+and+voltage+fading+mechanisms+and+solving+strategies&amp;rft.volume=61&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E10&amp;rft.date=2022&amp;rft_id=info%3Adoi%2F10.1016%2Fj.partic.2021.05.011&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A237933219%23id-name%3DS2CID&amp;rft.aulast=Xies&amp;rft.aufirst=Ying&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.partic.2021.05.011&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-SigmaAldrich-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-SigmaAldrich_81-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.sigmaaldrich.com/materials-science/material-science-products.html?TablePage=106039040">"Lithium-Ion Batteries"</a>. <i>Sigma Aldrich</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160105023031/http://www.sigmaaldrich.com/materials-science/material-science-products.html?TablePage=106039040">Archived</a> from the original on 5 January 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">5 November</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Sigma+Aldrich&amp;rft.atitle=Lithium-Ion+Batteries&amp;rft_id=http%3A%2F%2Fwww.sigmaaldrich.com%2Fmaterials-science%2Fmaterial-science-products.html%3FTablePage%3D106039040&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Nature-2020-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-Nature-2020_82-0">^</a></b></span> <span class="reference-text">A reflection on lithium-ion battery cathode chemistry. 2020. Nature Communications. 11/1, 9. A. Manthiram. doi: 10.1038/s41467-020-15355-0</span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text">Nickel-rich layered oxide cathodes for lithium-ion batteries: Failure mechanisms and modification strategies. 2023. J Energy Storage. 58/. X. Zheng, Z. Cai, J. Sun, J. He, W. Rao, J. Wang, et al. doi: 10.1016/j.est.2022.106405.</span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text">de Picciotto, L. A. &amp; Thackeray, M. M. Insertion/extraction reactions of lithium with LiV2O4. Mater. Res. Bull. 20, 1409–1420 (1985)</span> </li> <li id="cite_note-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-85">^</a></b></span> <span class="reference-text">Gopalakrishnan, J. &amp; Manthiram, A. Topochemically controlled hydrogen reduction of scheelite-related rare-earth metal molybdates. Dalton Trans. 3, 668–672 (1981) due to the <a href="/wiki/Inductive_effect" title="Inductive effect">inductive effect</a></span> </li> <li id="cite_note-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-86">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEftekhari2017" class="citation journal cs1">Eftekhari, Ali (2017). "LiFePO<sub>4</sub>/C Nanocomposites for Lithium-Ion Batteries". <i>Journal of Power Sources</i>. <b>343</b>: <span class="nowrap">395–</span>411. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017JPS...343..395E">2017JPS...343..395E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2017.01.080">10.1016/j.jpowsour.2017.01.080</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Power+Sources&amp;rft.atitle=LiFePO%3Csub%3E4%3C%2Fsub%3E%2FC+Nanocomposites+for+Lithium-Ion+Batteries&amp;rft.volume=343&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E395-%3C%2Fspan%3E411&amp;rft.date=2017&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jpowsour.2017.01.080&amp;rft_id=info%3Abibcode%2F2017JPS...343..395E&amp;rft.aulast=Eftekhari&amp;rft.aufirst=Ali&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Olivetti-2017-87"><span class="mw-cite-backlink">^ <a href="#cite_ref-Olivetti-2017_87-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Olivetti-2017_87-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOlivettiCederGaustadFu2017" class="citation journal cs1">Olivetti, Elsa A.; Ceder, Gerbrand; Gaustad, Gabrielle G.; Fu, Xinkai (October 2017). <a rel="nofollow" class="external text" href="https://linkinghub.elsevier.com/retrieve/pii/S2542435117300442">"Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals"</a>. <i>Joule</i>. <b>1</b> (2): <span class="nowrap">229–</span>243. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017Joule...1..229O">2017Joule...1..229O</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.joule.2017.08.019">10.1016/j.joule.2017.08.019</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Joule&amp;rft.atitle=Lithium-Ion+Battery+Supply+Chain+Considerations%3A+Analysis+of+Potential+Bottlenecks+in+Critical+Metals&amp;rft.volume=1&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E229-%3C%2Fspan%3E243&amp;rft.date=2017-10&amp;rft_id=info%3Adoi%2F10.1016%2Fj.joule.2017.08.019&amp;rft_id=info%3Abibcode%2F2017Joule...1..229O&amp;rft.aulast=Olivetti&amp;rft.aufirst=Elsa+A.&amp;rft.au=Ceder%2C+Gerbrand&amp;rft.au=Gaustad%2C+Gabrielle+G.&amp;rft.au=Fu%2C+Xinkai&amp;rft_id=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2542435117300442&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Lienert-2023-88"><span class="mw-cite-backlink">^ <a href="#cite_ref-Lienert-2023_88-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Lienert-2023_88-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLienert2023" class="citation news cs1">Lienert, Paul (23 June 2023). <a rel="nofollow" class="external text" href="https://www.reuters.com/business/autos-transportation/ev-batteries-lithium-iron-phosphate-narrows-gap-with-nickel-cobalt-2023-06-22/">"For EV batteries, lithium iron phosphate narrows the gap with nickel, cobalt"</a>. <i>Reuters</i><span class="reference-accessdate">. Retrieved <span class="nowrap">10 November</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Reuters&amp;rft.atitle=For+EV+batteries%2C+lithium+iron+phosphate+narrows+the+gap+with+nickel%2C+cobalt&amp;rft.date=2023-06-23&amp;rft.aulast=Lienert&amp;rft.aufirst=Paul&amp;rft_id=https%3A%2F%2Fwww.reuters.com%2Fbusiness%2Fautos-transportation%2Fev-batteries-lithium-iron-phosphate-narrows-gap-with-nickel-cobalt-2023-06-22%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Hettesheimer-2023-89"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hettesheimer-2023_89-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hettesheimer-2023_89-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Hettesheimer-2023_89-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Hettesheimer-2023_89-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Hettesheimer-2023_89-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Hettesheimer-2023_89-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHettesheimerNeefRosellón_InclánLink2023" class="citation report cs1">Hettesheimer, Tim; Neef, Christoph; Rosellón Inclán, Inés; Link, Steffen; Schmaltz, Thomas; Schuckert, Felix; Stephan, Annegret; Stephan, Maximilian; Thielmann, Axel (2023). <a rel="nofollow" class="external text" href="https://publica.fraunhofer.de/handle/publica/456809">Lithium-Ion Battery Roadmap - Industrialization Perspectives toward 2030</a> (Report). <a href="/wiki/Fraunhofer_Institute_for_Systems_and_Innovation_Research" title="Fraunhofer Institute for Systems and Innovation Research">Fraunhofer Institute for Systems and Innovation Research</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.24406%2Fpublica-2153">10.24406/publica-2153</a><span class="reference-accessdate">. Retrieved <span class="nowrap">10 November</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=report&amp;rft.btitle=Lithium-Ion+Battery+Roadmap+-+Industrialization+Perspectives+toward+2030&amp;rft.pub=Fraunhofer+Institute+for+Systems+and+Innovation+Research&amp;rft.date=2023&amp;rft_id=info%3Adoi%2F10.24406%2Fpublica-2153&amp;rft.aulast=Hettesheimer&amp;rft.aufirst=Tim&amp;rft.au=Neef%2C+Christoph&amp;rft.au=Rosell%C3%B3n+Incl%C3%A1n%2C+In%C3%A9s&amp;rft.au=Link%2C+Steffen&amp;rft.au=Schmaltz%2C+Thomas&amp;rft.au=Schuckert%2C+Felix&amp;rft.au=Stephan%2C+Annegret&amp;rft.au=Stephan%2C+Maximilian&amp;rft.au=Thielmann%2C+Axel&amp;rft_id=https%3A%2F%2Fpublica.fraunhofer.de%2Fhandle%2Fpublica%2F456809&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYang,_Heekyong2022" class="citation news cs1">Yang, Heekyong (22 November 2022). <a rel="nofollow" class="external text" href="https://www.reuters.com/business/lg-chem-invest-more-than-3-bln-build-battery-cathode-plant-us-2022-11-21/">"LG Chem to invest over $3 billion to build U.S. battery cathode plant"</a>. <i>Reuters</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230725153039/https://www.reuters.com/business/lg-chem-invest-more-than-3-bln-build-battery-cathode-plant-us-2022-11-21/">Archived</a> from the original on 25 July 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">25 July</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Reuters&amp;rft.atitle=LG+Chem+to+invest+over+%243+billion+to+build+U.S.+battery+cathode+plant&amp;rft.date=2022-11-22&amp;rft.au=Yang%2C+Heekyong&amp;rft_id=https%3A%2F%2Fwww.reuters.com%2Fbusiness%2Flg-chem-invest-more-than-3-bln-build-battery-cathode-plant-us-2022-11-21%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKim,_Un-HyuckKuo,_Liang-YinKaghazchi,_PayamYoon,_Chong_S.2019" class="citation journal cs1">Kim, Un-Hyuck; Kuo, Liang-Yin; Kaghazchi, Payam; Yoon, Chong S.; Sun, Yang-Kook (25 January 2019). <a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facsenergylett.8b02499">"Quaternary Layered Ni-Rich NCMA Cathode for Lithium-Ion Batteries"</a>. <i>ACS Energy Lett</i>. <b>4</b> (2). American Chemical Society: <span class="nowrap">576–</span>582. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facsenergylett.8b02499">10.1021/acsenergylett.8b02499</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:139505460">139505460</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ACS+Energy+Lett.&amp;rft.atitle=Quaternary+Layered+Ni-Rich+NCMA+Cathode+for+Lithium-Ion+Batteries&amp;rft.volume=4&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E576-%3C%2Fspan%3E582&amp;rft.date=2019-01-25&amp;rft_id=info%3Adoi%2F10.1021%2Facsenergylett.8b02499&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A139505460%23id-name%3DS2CID&amp;rft.au=Kim%2C+Un-Hyuck&amp;rft.au=Kuo%2C+Liang-Yin&amp;rft.au=Kaghazchi%2C+Payam&amp;rft.au=Yoon%2C+Chong+S.&amp;rft.au=Sun%2C+Yang-Kook&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1021%252Facsenergylett.8b02499&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFElgendy2024" class="citation web cs1">Elgendy, Mohamed (7 February 2024). <a rel="nofollow" class="external text" href="https://www.azom.com/article.aspx?ArticleID=23388">"Exploring The Role of Manganese in Lithium-Ion Battery Technology"</a>. <i>AZoM</i><span class="reference-accessdate">. Retrieved <span class="nowrap">10 November</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=AZoM&amp;rft.atitle=Exploring+The+Role+of+Manganese+in+Lithium-Ion+Battery+Technology&amp;rft.date=2024-02-07&amp;rft.aulast=Elgendy&amp;rft.aufirst=Mohamed&amp;rft_id=https%3A%2F%2Fwww.azom.com%2Farticle.aspx%3FArticleID%3D23388&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLinsenmannPritzlGasteiger2021" class="citation journal cs1">Linsenmann, Fabian; Pritzl, Daniel; Gasteiger, Hubert A. (1 January 2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F1945-7111%2Fabd64e">"Comparing the Lithiation and Sodiation of a Hard Carbon Anode Using In Situ Impedance Spectroscopy"</a>. <i>Journal of the Electrochemical Society</i>. <b>168</b> (1): 010506. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021JElS..168a0506L">2021JElS..168a0506L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F1945-7111%2Fabd64e">10.1149/1945-7111/abd64e</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0013-4651">0013-4651</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:234306808">234306808</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Electrochemical+Society&amp;rft.atitle=Comparing+the+Lithiation+and+Sodiation+of+a+Hard+Carbon+Anode+Using+In+Situ+Impedance+Spectroscopy&amp;rft.volume=168&amp;rft.issue=1&amp;rft.pages=010506&amp;rft.date=2021-01-01&amp;rft_id=info%3Adoi%2F10.1149%2F1945-7111%2Fabd64e&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A234306808%23id-name%3DS2CID&amp;rft.issn=0013-4651&amp;rft_id=info%3Abibcode%2F2021JElS..168a0506L&amp;rft.aulast=Linsenmann&amp;rft.aufirst=Fabian&amp;rft.au=Pritzl%2C+Daniel&amp;rft.au=Gasteiger%2C+Hubert+A.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1149%252F1945-7111%252Fabd64e&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Hayner-2012-94"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hayner-2012_94-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hayner-2012_94-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHaynerZhaoKung2012" class="citation journal cs1">Hayner, CM; Zhao, X; Kung, HH (1 January 2012). "Materials for Rechargeable Lithium-Ion Batteries". <i>Annual Review of Chemical and Biomolecular Engineering</i>. <b>3</b> (1): <span class="nowrap">445–</span>471. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1146%2Fannurev-chembioeng-062011-081024">10.1146/annurev-chembioeng-062011-081024</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22524506">22524506</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annual+Review+of+Chemical+and+Biomolecular+Engineering&amp;rft.atitle=Materials+for+Rechargeable+Lithium-Ion+Batteries&amp;rft.volume=3&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E445-%3C%2Fspan%3E471&amp;rft.date=2012-01-01&amp;rft_id=info%3Adoi%2F10.1146%2Fannurev-chembioeng-062011-081024&amp;rft_id=info%3Apmid%2F22524506&amp;rft.aulast=Hayner&amp;rft.aufirst=CM&amp;rft.au=Zhao%2C+X&amp;rft.au=Kung%2C+HH&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEftekhari2017" class="citation journal cs1">Eftekhari, Ali (2017). "Low Voltage Anode Materials for Lithium-Ion Batteries". <i>Energy Storage Materials</i>. <b>7</b>: <span class="nowrap">157–</span>180. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017EneSM...7..157E">2017EneSM...7..157E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ensm.2017.01.009">10.1016/j.ensm.2017.01.009</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Energy+Storage+Materials&amp;rft.atitle=Low+Voltage+Anode+Materials+for+Lithium-Ion+Batteries&amp;rft.volume=7&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E157-%3C%2Fspan%3E180&amp;rft.date=2017&amp;rft_id=info%3Adoi%2F10.1016%2Fj.ensm.2017.01.009&amp;rft_id=info%3Abibcode%2F2017EneSM...7..157E&amp;rft.aulast=Eftekhari&amp;rft.aufirst=Ali&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Electroiq.com-2018-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-Electroiq.com-2018_96-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20180315064945/http://electroiq.com/blog/2011/11/northwestern-researchers-advance-li-ion-battery-with-graphene-silicon-sandwich/">"Northwestern researchers advance Li-ion batteries with graphene-silicon sandwich &#124; Solid State Technology"</a>. Electroiq.com. November 2011. Archived from <a rel="nofollow" class="external text" href="https://electroiq.com/blog/2011/11/northwestern-researchers-advance-li-ion-battery-with-graphene-silicon-sandwich/">the original</a> on 15 March 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">3 January</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Northwestern+researchers+advance+Li-ion+batteries+with+graphene-silicon+sandwich+%26%23124%3B+Solid+State+Technology&amp;rft.pub=Electroiq.com&amp;rft.date=2011-11&amp;rft_id=http%3A%2F%2Felectroiq.com%2Fblog%2F2011%2F11%2Fnorthwestern-researchers-advance-li-ion-battery-with-graphene-silicon-sandwich%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span><br /><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhaoHaynerKungKung2011" class="citation journal cs1">Zhao, X.; Hayner, C. M.; Kung, M. C.; Kung, H. H. (2011). <a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Faenm.201100426">"In-Plane Vacancy-Enabled High-Power Si-Graphene Composite Electrode for Lithium-Ion Batteries"</a>. <i>Advanced Energy Materials</i>. <b>1</b> (6): <span class="nowrap">1079–</span>1084. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011AdEnM...1.1079Z">2011AdEnM...1.1079Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Faenm.201100426">10.1002/aenm.201100426</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:98312522">98312522</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Energy+Materials&amp;rft.atitle=In-Plane+Vacancy-Enabled+High-Power+Si-Graphene+Composite+Electrode+for+Lithium-Ion+Batteries&amp;rft.volume=1&amp;rft.issue=6&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1079-%3C%2Fspan%3E1084&amp;rft.date=2011&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A98312522%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2Faenm.201100426&amp;rft_id=info%3Abibcode%2F2011AdEnM...1.1079Z&amp;rft.aulast=Zhao&amp;rft.aufirst=X.&amp;rft.au=Hayner%2C+C.+M.&amp;rft.au=Kung%2C+M.+C.&amp;rft.au=Kung%2C+H.+H.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1002%252Faenm.201100426&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation pressrelease cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20200803203141/http://www.b2i.us/profiles/investor/ResLibraryView.asp?ResLibraryID=27574&amp;GoTopage=1&amp;BzID=546&amp;Category=1183&amp;a=">"... Acceptance of the First Grid-Scale, Battery Energy Storage System"</a> (Press release). Altair Nanotechnologies. 21 November 2008. Archived from <a rel="nofollow" class="external text" href="http://www.b2i.us/profiles/investor/ResLibraryView.asp?ResLibraryID=27574&amp;GoTopage=1&amp;BzID=546&amp;Category=1183&amp;a=">the original</a> on 3 August 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">8 October</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=...+Acceptance+of+the+First+Grid-Scale%2C+Battery+Energy+Storage+System&amp;rft.pub=Altair+Nanotechnologies&amp;rft.date=2008-11-21&amp;rft_id=http%3A%2F%2Fwww.b2i.us%2Fprofiles%2Finvestor%2FResLibraryView.asp%3FResLibraryID%3D27574%26GoTopage%3D1%26BzID%3D546%26Category%3D1183%26a%3D&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-98">^</a></b></span> <span class="reference-text">Ozols, Marty (11 November 2009). <a rel="nofollow" class="external text" href="http://systemagicmotives.com/Altairnative%20Site/Power/Power%20Partners/The%20DOD.htm">Altair Nanotechnologies Power Partner – The Military</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110716181133/http://systemagicmotives.com/Altairnative%20Site/Power/Power%20Partners/The%20DOD.htm">Archived</a> 16 July 2011 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. Systemagicmotives (personal webpage)<sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Accuracy_dispute#Disputed_statement" title="Wikipedia:Accuracy dispute"><span title="The material near this tag is possibly inaccurate or nonfactual. (June 2010)">dubious</span></a>&#32;&#8211; <a href="/wiki/Talk:Lithium-ion_battery#Dubious" title="Talk:Lithium-ion battery">discuss</a></i>&#93;</sup>. Retrieved 11 June 2010.</span> </li> <li id="cite_note-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-99">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGotcher,_Alan_J.2006" class="citation web cs1">Gotcher, Alan J. (29 November 2006). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20070616083647/http://www.altairnano.com/documents/AltairnanoEDTAPresentation.pdf">"Altair EDTA Presentation"</a> <span class="cs1-format">(PDF)</span>. Altairnano.com. Archived from <a rel="nofollow" class="external text" href="http://www.altairnano.com/documents/AltairnanoEDTAPresentation.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 16 June 2007.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Altair+EDTA+Presentation&amp;rft.pub=Altairnano.com&amp;rft.date=2006-11-29&amp;rft.au=Gotcher%2C+Alan+J.&amp;rft_id=http%3A%2F%2Fwww.altairnano.com%2Fdocuments%2FAltairnanoEDTAPresentation.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-100">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.technologyreview.com/news/512961/designer-carbon-provides-longer-battery-life/">Synthetic Carbon Negative electrode Boosts Battery Capacity 30 Percent | MIT Technology Review</a>. Technologyreview.com (2 April 2013). Retrieved 16 April 2013. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130404000033/http://www.technologyreview.com/news/512961/designer-carbon-provides-longer-battery-life/">Archived</a> 4 April 2013 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></span> </li> <li id="cite_note-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-101">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlain2022" class="citation web cs1">Blain, Loz (14 February 2022). <a rel="nofollow" class="external text" href="https://newatlas.com/energy/amprius-450-wh-kg-battery/">"Amprius ships first batch of "world's highest density" batteries"</a>. <i>New Atlas</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220214194713/https://newatlas.com/energy/amprius-450-wh-kg-battery/">Archived</a> from the original on 14 February 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">14 February</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=New+Atlas&amp;rft.atitle=Amprius+ships+first+batch+of+%22world%27s+highest+density%22+batteries&amp;rft.date=2022-02-14&amp;rft.aulast=Blain&amp;rft.aufirst=Loz&amp;rft_id=https%3A%2F%2Fnewatlas.com%2Fenergy%2Famprius-450-wh-kg-battery%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-102">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCoxworth2017" class="citation web cs1">Coxworth, Ben (22 February 2017). <a rel="nofollow" class="external text" href="http://newatlas.com/silicon-sawdust-battery-anodes/48060">"Silicon sawdust – coming soon to a battery near you?"</a>. <i>newatlas.com</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170225183747/http://newatlas.com/silicon-sawdust-battery-anodes/48060/?">Archived</a> from the original on 25 February 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">26 February</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=newatlas.com&amp;rft.atitle=Silicon+sawdust+%E2%80%93+coming+soon+to+a+battery+near+you%3F&amp;rft.date=2017-02-22&amp;rft.aulast=Coxworth&amp;rft.aufirst=Ben&amp;rft_id=http%3A%2F%2Fnewatlas.com%2Fsilicon-sawdust-battery-anodes%2F48060&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Kasavajjula-2007-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kasavajjula-2007_103-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKasavajjulaWangAppleby2007" class="citation journal cs1">Kasavajjula, U.; Wang, C.; Appleby, A.J. C.. (2007). "Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells". <i>Journal of Power Sources</i>. <b>163</b> (2): <span class="nowrap">1003–</span>1039. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007JPS...163.1003K">2007JPS...163.1003K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2006.09.084">10.1016/j.jpowsour.2006.09.084</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Power+Sources&amp;rft.atitle=Nano-+and+bulk-silicon-based+insertion+anodes+for+lithium-ion+secondary+cells&amp;rft.volume=163&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1003-%3C%2Fspan%3E1039&amp;rft.date=2007&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jpowsour.2006.09.084&amp;rft_id=info%3Abibcode%2F2007JPS...163.1003K&amp;rft.aulast=Kasavajjula&amp;rft.aufirst=U.&amp;rft.au=Wang%2C+C.&amp;rft.au=Appleby%2C+A.J.+C..&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Li-2000-104"><span class="mw-cite-backlink"><b><a href="#cite_ref-Li-2000_104-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiHuangChenzZhou2000" class="citation journal cs1">Li, H.; Huang, X.; Chenz, L. C.; Zhou, G.; Zhang, Z. (2000). "The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature". <i>Solid State Ionics</i>. <b>135</b> (<span class="nowrap">1–</span>4): <span class="nowrap">181–</span>191. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0167-2738%2800%2900362-3">10.1016/S0167-2738(00)00362-3</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Solid+State+Ionics&amp;rft.atitle=The+crystal+structural+evolution+of+nano-Si+anode+caused+by+lithium+insertion+and+extraction+at+room+temperature&amp;rft.volume=135&amp;rft.issue=%3Cspan+class%3D%22nowrap%22%3E1%E2%80%93%3C%2Fspan%3E4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E181-%3C%2Fspan%3E191&amp;rft.date=2000&amp;rft_id=info%3Adoi%2F10.1016%2FS0167-2738%2800%2900362-3&amp;rft.aulast=Li&amp;rft.aufirst=H.&amp;rft.au=Huang%2C+X.&amp;rft.au=Chenz%2C+L.+C.&amp;rft.au=Zhou%2C+G.&amp;rft.au=Zhang%2C+Z.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-105">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGaoSinhaFlemingZhou2001" class="citation journal cs1">Gao, B.; Sinha, S.; Fleming, L.; Zhou, O. (2001). "Alloy Formation in Nanostructured Silicon". <i>Advanced Materials</i>. <b>13</b> (11): <span class="nowrap">816–</span>819. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001AdM....13..816G">2001AdM....13..816G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F1521-4095%28200106%2913%3A11%3C816%3A%3AAID-ADMA816%3E3.0.CO%3B2-P">10.1002/1521-4095(200106)13:11&#60;816::AID-ADMA816&#62;3.0.CO&#59;2-P</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Materials&amp;rft.atitle=Alloy+Formation+in+Nanostructured+Silicon&amp;rft.volume=13&amp;rft.issue=11&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E816-%3C%2Fspan%3E819&amp;rft.date=2001&amp;rft_id=info%3Adoi%2F10.1002%2F1521-4095%28200106%2913%3A11%3C816%3A%3AAID-ADMA816%3E3.0.CO%3B2-P&amp;rft_id=info%3Abibcode%2F2001AdM....13..816G&amp;rft.aulast=Gao&amp;rft.aufirst=B.&amp;rft.au=Sinha%2C+S.&amp;rft.au=Fleming%2C+L.&amp;rft.au=Zhou%2C+O.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-106"><span class="mw-cite-backlink"><b><a href="#cite_ref-106">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZiaHussainRasulBae2023" class="citation journal cs1">Zia, Abdul Wasy; Hussain, Syed Asad; Rasul, Shahid; Bae, Dowon; Pitchaimuthu, Sudhagar (November 2023). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.est.2023.108803">"Progress in diamond-like carbon coatings for lithium-based batteries"</a>. <i>Journal of Energy Storage</i>. <b>72</b>: 108803. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2023JEnSt..7208803Z">2023JEnSt..7208803Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.est.2023.108803">10.1016/j.est.2023.108803</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:261197954">261197954</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Energy+Storage&amp;rft.atitle=Progress+in+diamond-like+carbon+coatings+for+lithium-based+batteries&amp;rft.volume=72&amp;rft.pages=108803&amp;rft.date=2023-11&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A261197954%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.est.2023.108803&amp;rft_id=info%3Abibcode%2F2023JEnSt..7208803Z&amp;rft.aulast=Zia&amp;rft.aufirst=Abdul+Wasy&amp;rft.au=Hussain%2C+Syed+Asad&amp;rft.au=Rasul%2C+Shahid&amp;rft.au=Bae%2C+Dowon&amp;rft.au=Pitchaimuthu%2C+Sudhagar&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.est.2023.108803&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Girishkumar-2010-107"><span class="mw-cite-backlink">^ <a href="#cite_ref-Girishkumar-2010_107-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Girishkumar-2010_107-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGirishkumarMcCloskeyLuntzSwanson2010" class="citation journal cs1">Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. (2 July 2010). "Lithium−Air Battery: Promise and Challenges". <i>The Journal of Physical Chemistry Letters</i>. <b>1</b> (14): <span class="nowrap">2193–</span>2203. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fjz1005384">10.1021/jz1005384</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1948-7185">1948-7185</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physical+Chemistry+Letters&amp;rft.atitle=Lithium%E2%88%92Air+Battery%3A+Promise+and+Challenges&amp;rft.volume=1&amp;rft.issue=14&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E2193-%3C%2Fspan%3E2203&amp;rft.date=2010-07-02&amp;rft_id=info%3Adoi%2F10.1021%2Fjz1005384&amp;rft.issn=1948-7185&amp;rft.aulast=Girishkumar&amp;rft.aufirst=G.&amp;rft.au=McCloskey%2C+B.&amp;rft.au=Luntz%2C+A.+C.&amp;rft.au=Swanson%2C+S.&amp;rft.au=Wilcke%2C+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-108">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20160304072942/https://www-als.lbl.gov/index.php/holding/650-a-better-anode-design-to-improve-lithium-ion-batteries-.html">"A Better Anode Design to Improve Lithium-Ion Batteries"</a>. <i>Berkeley Lab: Lawrence Berkeley National Laboratory</i>. Archived from <a rel="nofollow" class="external text" href="https://www-als.lbl.gov/index.php/holding/650-a-better-anode-design-to-improve-lithium-ion-batteries-.html">the original</a> on 4 March 2016.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Berkeley+Lab%3A+Lawrence+Berkeley+National+Laboratory&amp;rft.atitle=A+Better+Anode+Design+to+Improve+Lithium-Ion+Batteries&amp;rft_id=https%3A%2F%2Fwww-als.lbl.gov%2Findex.php%2Fholding%2F650-a-better-anode-design-to-improve-lithium-ion-batteries-.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-109">^</a></b></span> <span class="reference-text">O. Marques, M. Walter, E. Timofeeva, and C. Segre, Batteries, 9 115 (2023). 10.3390/batteries9020115.</span> </li> <li id="cite_note-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-110">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYounesiVeithJohanssonEdström2015" class="citation journal cs1">Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik; <a href="/wiki/Kristina_Edstr%C3%B6m" title="Kristina Edström">Edström, Kristina</a>; Vegge, Tejs (2015). <a rel="nofollow" class="external text" href="http://publications.lib.chalmers.se/publication/220019-lithium-salts-for-advanced-lithium-batteries-li-metal-li-o2-and-li-s">"Lithium salts for advanced lithium batteries: Li–metal, Li–O<sub>2</sub>, and Li–S"</a>. <i>Energy Environ. Sci</i>. <b>8</b> (7): <span class="nowrap">1905–</span>1922. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1039%2Fc5ee01215e">10.1039/c5ee01215e</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Energy+Environ.+Sci.&amp;rft.atitle=Lithium+salts+for+advanced+lithium+batteries%3A+Li%E2%80%93metal%2C+Li%E2%80%93O%3Csub%3E2%3C%2Fsub%3E%2C+and+Li%E2%80%93S&amp;rft.volume=8&amp;rft.issue=7&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1905-%3C%2Fspan%3E1922&amp;rft.date=2015&amp;rft_id=info%3Adoi%2F10.1039%2Fc5ee01215e&amp;rft.aulast=Younesi&amp;rft.aufirst=Reza&amp;rft.au=Veith%2C+Gabriel+M.&amp;rft.au=Johansson%2C+Patrik&amp;rft.au=Edstr%C3%B6m%2C+Kristina&amp;rft.au=Vegge%2C+Tejs&amp;rft_id=http%3A%2F%2Fpublications.lib.chalmers.se%2Fpublication%2F220019-lithium-salts-for-advanced-lithium-batteries-li-metal-li-o2-and-li-s&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-111">^</a></b></span> <span class="reference-text">Wenige, Niemann, et al. (30 May 1998). <a rel="nofollow" class="external text" href="http://www.cheric.org/PDF/Symposium/S-J2-0063.pdf">Liquid Electrolyte Systems for Advanced Lithium Batteries</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090320113501/http://www.cheric.org/PDF/Symposium/S-J2-0063.pdf">Archived</a> 20 March 2009 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> (PDF). cheric.org; Chemical Engineering Research Information Center(KR). Retrieved 11 June 2010.</span> </li> <li id="cite_note-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-112">^</a></b></span> <span class="reference-text">Balbuena, P.&#160;B., Wang, Y.&#160;X. (eds) (2004). <i>Lithium Ion Batteries: Solid Electrolyte Interphase</i>, Imperial College Press, London. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/1860943624" title="Special:BookSources/1860943624">1860943624</a>.</span> </li> <li id="cite_note-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-113">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFong1990" class="citation journal cs1">Fong, R. A. (1990). "Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells". <i>Journal of the Electrochemical Society</i>. <b>137</b> (7): <span class="nowrap">2009–</span>2010. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1990JElS..137.2009F">1990JElS..137.2009F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F1.2086855">10.1149/1.2086855</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Electrochemical+Society&amp;rft.atitle=Studies+of+Lithium+Intercalation+into+Carbons+Using+Nonaqueous+Electrochemical+Cells&amp;rft.volume=137&amp;rft.issue=7&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E2009-%3C%2Fspan%3E2010&amp;rft.date=1990&amp;rft_id=info%3Adoi%2F10.1149%2F1.2086855&amp;rft_id=info%3Abibcode%2F1990JElS..137.2009F&amp;rft.aulast=Fong&amp;rft.aufirst=R.+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-114"><span class="mw-cite-backlink"><b><a href="#cite_ref-114">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSyzdekBorkowskaPerzynaTarascon2007" class="citation journal cs1">Syzdek, J. A.; Borkowska, R.; Perzyna, K.; <a href="/wiki/Jean-Marie_Tarascon" title="Jean-Marie Tarascon">Tarascon, J. M.</a>; Wieczorek, W. A. A. (2007). "Novel composite polymeric electrolytes with surface-modified inorganic fillers". <i>Journal of Power Sources</i>. <b>173</b> (2): <span class="nowrap">712–</span>720. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007JPS...173..712S">2007JPS...173..712S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2007.05.061">10.1016/j.jpowsour.2007.05.061</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Power+Sources&amp;rft.atitle=Novel+composite+polymeric+electrolytes+with+surface-modified+inorganic+fillers&amp;rft.volume=173&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E712-%3C%2Fspan%3E720&amp;rft.date=2007&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jpowsour.2007.05.061&amp;rft_id=info%3Abibcode%2F2007JPS...173..712S&amp;rft.aulast=Syzdek&amp;rft.aufirst=J.+A.&amp;rft.au=Borkowska%2C+R.&amp;rft.au=Perzyna%2C+K.&amp;rft.au=Tarascon%2C+J.+M.&amp;rft.au=Wieczorek%2C+W.+A.+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-115"><span class="mw-cite-backlink"><b><a href="#cite_ref-115">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSyzdekArmandMarcinekZalewska2010" class="citation journal cs1">Syzdek, J. A.; Armand, M.; Marcinek, M.; Zalewska, A.; Żukowska, G. Y.; Wieczorek, W. A. A. (2010). "Detailed studies on the fillers modification and their influence on composite, poly(oxyethylene)-based polymeric electrolytes". <i>Electrochimica Acta</i>. <b>55</b> (4): <span class="nowrap">1314–</span>1322. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.electacta.2009.04.025">10.1016/j.electacta.2009.04.025</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Electrochimica+Acta&amp;rft.atitle=Detailed+studies+on+the+fillers+modification+and+their+influence+on+composite%2C+poly%28oxyethylene%29-based+polymeric+electrolytes&amp;rft.volume=55&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1314-%3C%2Fspan%3E1322&amp;rft.date=2010&amp;rft_id=info%3Adoi%2F10.1016%2Fj.electacta.2009.04.025&amp;rft.aulast=Syzdek&amp;rft.aufirst=J.+A.&amp;rft.au=Armand%2C+M.&amp;rft.au=Marcinek%2C+M.&amp;rft.au=Zalewska%2C+A.&amp;rft.au=%C5%BBukowska%2C+G.+Y.&amp;rft.au=Wieczorek%2C+W.+A.+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-116"><span class="mw-cite-backlink"><b><a href="#cite_ref-116">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReiterNádhernáDominko2012" class="citation journal cs1">Reiter, J.; Nádherná, M.; Dominko, R. (2012). "Graphite and LiCo<sub>1/3</sub>Mn<sub>1/3</sub>Ni<sub>1/3</sub>O<sub>2</sub> electrodes with piperidinium ionic liquid and lithium bis(fluorosulfonyl)imide for Li-ion batteries". <i>Journal of Power Sources</i>. <b>205</b>: <span class="nowrap">402–</span>407. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2012.01.003">10.1016/j.jpowsour.2012.01.003</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Power+Sources&amp;rft.atitle=Graphite+and+LiCo%3Csub%3E1%2F3%3C%2Fsub%3EMn%3Csub%3E1%2F3%3C%2Fsub%3ENi%3Csub%3E1%2F3%3C%2Fsub%3EO%3Csub%3E2%3C%2Fsub%3E+electrodes+with+piperidinium+ionic+liquid+and+lithium+bis%28fluorosulfonyl%29imide+for+Li-ion+batteries&amp;rft.volume=205&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E402-%3C%2Fspan%3E407&amp;rft.date=2012&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jpowsour.2012.01.003&amp;rft.aulast=Reiter&amp;rft.aufirst=J.&amp;rft.au=N%C3%A1dhern%C3%A1%2C+M.&amp;rft.au=Dominko%2C+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-117"><span class="mw-cite-backlink"><b><a href="#cite_ref-117">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCanZhuo-BinXiao-Liang2014" class="citation journal cs1">Can, Cao; Zhuo-Bin, Li; Xiao-Liang, Wang (2014). <a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffenrg.2014.00025">"Recent Advances in Inorganic Solid Electrolytes for Lithium Batteries"</a>. <i>Frontiers in Energy Research</i>. <b>2</b>: <span class="nowrap">1–</span>10. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffenrg.2014.00025">10.3389/fenrg.2014.00025</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Frontiers+in+Energy+Research&amp;rft.atitle=Recent+Advances+in+Inorganic+Solid+Electrolytes+for+Lithium+Batteries&amp;rft.volume=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E10&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.3389%2Ffenrg.2014.00025&amp;rft.aulast=Can&amp;rft.aufirst=Cao&amp;rft.au=Zhuo-Bin%2C+Li&amp;rft.au=Xiao-Liang%2C+Wang&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3389%252Ffenrg.2014.00025&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-118"><span class="mw-cite-backlink"><b><a href="#cite_ref-118">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZogg2017" class="citation web cs1">Zogg, Cornelia (14 June 2017). <a rel="nofollow" class="external text" href="https://phys.org/news/2017-06-solid-state-electrolyte-liquid-electrolytes-rechargeable.html">"A solid-state electrolyte that is able to compete with liquid electrolytes for rechargeable batteries"</a>. <i>Phys.org</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180313201839/https://phys.org/news/2017-06-solid-state-electrolyte-liquid-electrolytes-rechargeable.html">Archived</a> from the original on 13 March 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">24 February</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Phys.org&amp;rft.atitle=A+solid-state+electrolyte+that+is+able+to+compete+with+liquid+electrolytes+for+rechargeable+batteries&amp;rft.date=2017-06-14&amp;rft.aulast=Zogg&amp;rft.aufirst=Cornelia&amp;rft_id=https%3A%2F%2Fphys.org%2Fnews%2F2017-06-solid-state-electrolyte-liquid-electrolytes-rechargeable.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-119"><span class="mw-cite-backlink"><b><a href="#cite_ref-119">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCanZhuo-BinXiao-Liang2014" class="citation journal cs1">Can, Cao; Zhuo-Bin, Li; Xiao-Liang, Wang (2014). <a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffenrg.2014.00025">"Recent Advances in Inorganic Solid Electrolytes for Lithium Batteries"</a>. <i>Frontiers in Energy Research</i>. <b>2</b>: <span class="nowrap">2–</span>4. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffenrg.2014.00025">10.3389/fenrg.2014.00025</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Frontiers+in+Energy+Research&amp;rft.atitle=Recent+Advances+in+Inorganic+Solid+Electrolytes+for+Lithium+Batteries&amp;rft.volume=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E2-%3C%2Fspan%3E4&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.3389%2Ffenrg.2014.00025&amp;rft.aulast=Can&amp;rft.aufirst=Cao&amp;rft.au=Zhuo-Bin%2C+Li&amp;rft.au=Xiao-Liang%2C+Wang&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3389%252Ffenrg.2014.00025&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-120"><span class="mw-cite-backlink"><b><a href="#cite_ref-120">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCanZhuo-BinXiao-Liang2014" class="citation journal cs1">Can, Cao; Zhuo-Bin, Li; Xiao-Liang, Wang (2014). <a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffenrg.2014.00025">"Recent Advances in Inorganic Solid Electrolytes for Lithium Batteries"</a>. <i>Frontiers in Energy Research</i>. <b>2</b>: <span class="nowrap">6–</span>8. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffenrg.2014.00025">10.3389/fenrg.2014.00025</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Frontiers+in+Energy+Research&amp;rft.atitle=Recent+Advances+in+Inorganic+Solid+Electrolytes+for+Lithium+Batteries&amp;rft.volume=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E6-%3C%2Fspan%3E8&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.3389%2Ffenrg.2014.00025&amp;rft.aulast=Can&amp;rft.aufirst=Cao&amp;rft.au=Zhuo-Bin%2C+Li&amp;rft.au=Xiao-Liang%2C+Wang&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3389%252Ffenrg.2014.00025&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-121"><span class="mw-cite-backlink"><b><a href="#cite_ref-121">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTatsumisagoNagaoHayashi2013" class="citation journal cs1">Tatsumisago, Masahiro; Nagao, Motohiro; Hayashi, Akitoshi (2013). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jascer.2013.03.005">"Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries"</a>. <i>Journal of Asian Ceramic Societies</i>. <b>1</b> (1): 17. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jascer.2013.03.005">10.1016/j.jascer.2013.03.005</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Asian+Ceramic+Societies&amp;rft.atitle=Recent+development+of+sulfide+solid+electrolytes+and+interfacial+modification+for+all-solid-state+rechargeable+lithium+batteries&amp;rft.volume=1&amp;rft.issue=1&amp;rft.pages=17&amp;rft.date=2013&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jascer.2013.03.005&amp;rft.aulast=Tatsumisago&amp;rft.aufirst=Masahiro&amp;rft.au=Nagao%2C+Motohiro&amp;rft.au=Hayashi%2C+Akitoshi&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.jascer.2013.03.005&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-122"><span class="mw-cite-backlink"><b><a href="#cite_ref-122">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHaregewoinWotangoHwang2016" class="citation journal cs1">Haregewoin, Atetegeb Meazah; Wotango, Aselefech Sorsa; Hwang, Bing-Joe (8 June 2016). <a rel="nofollow" class="external text" href="https://pubs.rsc.org/en/content/articlelanding/2016/ee/c6ee00123h">"Electrolyte additives for lithium ion battery electrodes: progress and perspectives"</a>. <i>Energy &amp; Environmental Science</i>. <b>9</b> (6): <span class="nowrap">1955–</span>1988. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FC6EE00123H">10.1039/C6EE00123H</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1754-5706">1754-5706</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20201020060833/https://pubs.rsc.org/en/content/articlelanding/2016/ee/c6ee00123h">Archived</a> from the original on 20 October 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">19 October</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Energy+%26+Environmental+Science&amp;rft.atitle=Electrolyte+additives+for+lithium+ion+battery+electrodes%3A+progress+and+perspectives&amp;rft.volume=9&amp;rft.issue=6&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1955-%3C%2Fspan%3E1988&amp;rft.date=2016-06-08&amp;rft_id=info%3Adoi%2F10.1039%2FC6EE00123H&amp;rft.issn=1754-5706&amp;rft.aulast=Haregewoin&amp;rft.aufirst=Atetegeb+Meazah&amp;rft.au=Wotango%2C+Aselefech+Sorsa&amp;rft.au=Hwang%2C+Bing-Joe&amp;rft_id=https%3A%2F%2Fpubs.rsc.org%2Fen%2Fcontent%2Farticlelanding%2F2016%2Fee%2Fc6ee00123h&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-123"><span class="mw-cite-backlink"><b><a href="#cite_ref-123">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSummerfield2013" class="citation journal cs1">Summerfield, J. (2013). "Modeling the Lithium Ion Battery". <i>Journal of Chemical Education</i>. <b>90</b> (4): <span class="nowrap">453–</span>455. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013JChEd..90..453S">2013JChEd..90..453S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fed300533f">10.1021/ed300533f</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Chemical+Education&amp;rft.atitle=Modeling+the+Lithium+Ion+Battery&amp;rft.volume=90&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E453-%3C%2Fspan%3E455&amp;rft.date=2013&amp;rft_id=info%3Adoi%2F10.1021%2Fed300533f&amp;rft_id=info%3Abibcode%2F2013JChEd..90..453S&amp;rft.aulast=Summerfield&amp;rft.aufirst=J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-124"><span class="mw-cite-backlink"><b><a href="#cite_ref-124">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeeLeeChoiKang2018" class="citation journal cs1">Lee, Sang-Won; Lee, Kyung-Min; Choi, Yoon-Geol; Kang, Bongkoo (November 2018). <a rel="nofollow" class="external text" href="https://ieeexplore.ieee.org/document/8310611">"Modularized Design of Active Charge Equalizer for Li-Ion Battery Pack"</a>. <i>IEEE Transactions on Industrial Electronics</i>. <b>65</b> (11): <span class="nowrap">8697–</span>8706. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTIE.2018.2813997">10.1109/TIE.2018.2813997</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0278-0046">0278-0046</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:49536272">49536272</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230521050133/https://ieeexplore.ieee.org/document/8310611/">Archived</a> from the original on 21 May 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">5 July</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Industrial+Electronics&amp;rft.atitle=Modularized+Design+of+Active+Charge+Equalizer+for+Li-Ion+Battery+Pack&amp;rft.volume=65&amp;rft.issue=11&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E8697-%3C%2Fspan%3E8706&amp;rft.date=2018-11&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A49536272%23id-name%3DS2CID&amp;rft.issn=0278-0046&amp;rft_id=info%3Adoi%2F10.1109%2FTIE.2018.2813997&amp;rft.aulast=Lee&amp;rft.aufirst=Sang-Won&amp;rft.au=Lee%2C+Kyung-Min&amp;rft.au=Choi%2C+Yoon-Geol&amp;rft.au=Kang%2C+Bongkoo&amp;rft_id=https%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F8310611&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEAndrea20102-125"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEAndrea20102_125-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFAndrea2010">Andrea 2010</a>, p.&#160;2.</span> </li> <li id="cite_note-126"><span class="mw-cite-backlink"><b><a href="#cite_ref-126">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=f_OoK_yPVLo">"How is a Lithium Ion Pouch Cell Manufactured in the Lab?"</a>. KIT Zentrum für Mediales Lernen. 6 June 2018. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200218085854/https://www.youtube.com/watch?v=f_OoK_yPVLo&amp;gl=US&amp;hl=en">Archived</a> from the original on 18 February 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">1 February</span> 2020</span>. <q>Creative Commons Attribution license</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=How+is+a+Lithium+Ion+Pouch+Cell+Manufactured+in+the+Lab%3F&amp;rft.pub=KIT+Zentrum+f%C3%BCr+Mediales+Lernen&amp;rft.date=2018-06-06&amp;rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3Df_OoK_yPVLo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEAndrea2010234-127"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEAndrea2010234_127-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFAndrea2010">Andrea 2010</a>, p.&#160;234.</span> </li> <li id="cite_note-128"><span class="mw-cite-backlink"><b><a href="#cite_ref-128">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=Zzx6LbcRidg">"Prismatic cell winder"</a>. <a href="/wiki/University_of_Michigan" title="University of Michigan">University of Michigan</a>. 25 June 2015. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200517093341/https://www.youtube.com/watch?v=Zzx6LbcRidg&amp;gl=US&amp;hl=en">Archived</a> from the original on 17 May 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">1 February</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Prismatic+cell+winder&amp;rft.pub=University+of+Michigan&amp;rft.date=2015-06-25&amp;rft_id=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DZzx6LbcRidg&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-129"><span class="mw-cite-backlink"><b><a href="#cite_ref-129">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWangHeZhou2012" class="citation journal cs1">Wang, Y.; He, P.; Zhou, H. (2012). "Li-Redox Flow Batteries Based on Hybrid Electrolytes: At the Cross Road between Li-ion and Redox Flow Batteries". <i>Advanced Energy Materials</i>. <b>2</b> (7): <span class="nowrap">770–</span>779. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012AdEnM...2..770W">2012AdEnM...2..770W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Faenm.201200100">10.1002/aenm.201200100</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:96707630">96707630</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Energy+Materials&amp;rft.atitle=Li-Redox+Flow+Batteries+Based+on+Hybrid+Electrolytes%3A+At+the+Cross+Road+between+Li-ion+and+Redox+Flow+Batteries&amp;rft.volume=2&amp;rft.issue=7&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E770-%3C%2Fspan%3E779&amp;rft.date=2012&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A96707630%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2Faenm.201200100&amp;rft_id=info%3Abibcode%2F2012AdEnM...2..770W&amp;rft.aulast=Wang&amp;rft.aufirst=Y.&amp;rft.au=He%2C+P.&amp;rft.au=Zhou%2C+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-130"><span class="mw-cite-backlink"><b><a href="#cite_ref-130">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFQiKoenig2016" class="citation journal cs1">Qi, Zhaoxiang; Koenig, Gary M. (15 August 2016). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2016.05.033">"A carbon-free lithium-ion solid dispersion redox couple with low viscosity for redox flow batteries"</a>. <i>Journal of Power Sources</i>. <b>323</b>: <span class="nowrap">97–</span>106. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016JPS...323...97Q">2016JPS...323...97Q</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2016.05.033">10.1016/j.jpowsour.2016.05.033</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Power+Sources&amp;rft.atitle=A+carbon-free+lithium-ion+solid+dispersion+redox+couple+with+low+viscosity+for+redox+flow+batteries&amp;rft.volume=323&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E97-%3C%2Fspan%3E106&amp;rft.date=2016-08-15&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jpowsour.2016.05.033&amp;rft_id=info%3Abibcode%2F2016JPS...323...97Q&amp;rft.aulast=Qi&amp;rft.aufirst=Zhaoxiang&amp;rft.au=Koenig%2C+Gary+M.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.jpowsour.2016.05.033&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-131"><span class="mw-cite-backlink"><b><a href="#cite_ref-131">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.telecompaper.com/news/panasonic-unveils-smallest-pin-shaped-lithium-ion-battery--1041159">Panasonic unveils "smallest" pin-shaped lithium ion battery</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150906081634/http://www.telecompaper.com/news/panasonic-unveils-smallest-pin-shaped-lithium-ion-battery--1041159">Archived</a> 6 September 2015 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>, Telecompaper, 6 October 2014</span> </li> <li id="cite_note-132"><span class="mw-cite-backlink"><b><a href="#cite_ref-132">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFErol2015" class="citation thesis cs1">Erol, Salim (5 January 2015). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/270589441"><i>Electrochemical Impedance Spectroscopy Analysis and Modeling of Lithium Cobalt Oxide/Carbon Batteries</i></a> (PhD)<span class="reference-accessdate">. Retrieved <span class="nowrap">10 September</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&amp;rft.title=Electrochemical+Impedance+Spectroscopy+Analysis+and+Modeling+of+Lithium+Cobalt+Oxide%2FCarbon+Batteries&amp;rft.date=2015-01-05&amp;rft.aulast=Erol&amp;rft.aufirst=Salim&amp;rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F270589441&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-AA-2018-133"><span class="mw-cite-backlink"><b><a href="#cite_ref-AA-2018_133-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.batteryspace.com/productimages/aa/20060224/LIR2032_new1.pdf">"Rechargeable Li-Ion Button Battery: Serial LIR2032"</a> <span class="cs1-format">(PDF)</span>. AA Portable Power Corp. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180509064356/http://www.batteryspace.com/productimages/aa/20060224/LIR2032_new1.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 9 May 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">10 September</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Rechargeable+Li-Ion+Button+Battery%3A+Serial+LIR2032&amp;rft.pub=AA+Portable+Power+Corp&amp;rft_id=http%3A%2F%2Fwww.batteryspace.com%2Fproductimages%2Faa%2F20060224%2FLIR2032_new1.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Goodwins2006-2006-134"><span class="mw-cite-backlink"><b><a href="#cite_ref-Goodwins2006-2006_134-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoodwins,_Rupert2006" class="citation news cs1">Goodwins, Rupert (17 August 2006). <a rel="nofollow" class="external text" href="https://www.zdnet.com/article/inside-a-notebook-battery-pack/">"Inside a notebook battery pack"</a>. <i>ZDNet</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130724093725/http://www.zdnet.com/inside-a-notebook-battery-pack-3039281143/">Archived</a> from the original on 24 July 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">6 June</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ZDNet&amp;rft.atitle=Inside+a+notebook+battery+pack&amp;rft.date=2006-08-17&amp;rft.au=Goodwins%2C+Rupert&amp;rft_id=https%3A%2F%2Fwww.zdnet.com%2Farticle%2Finside-a-notebook-battery-pack%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-135"><span class="mw-cite-backlink"><b><a href="#cite_ref-135">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPistoia2013" class="citation book cs1">Pistoia, Gianfranco (16 December 2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=wWciAQAAQBAJ&amp;pg=PA25"><i>Lithium-Ion Batteries: Advances and Applications</i></a>. Newnes. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-444-59516-4" title="Special:BookSources/978-0-444-59516-4"><bdi>978-0-444-59516-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Lithium-Ion+Batteries%3A+Advances+and+Applications&amp;rft.pub=Newnes&amp;rft.date=2013-12-16&amp;rft.isbn=978-0-444-59516-4&amp;rft.aulast=Pistoia&amp;rft.aufirst=Gianfranco&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DwWciAQAAQBAJ%26pg%3DPA25&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-136"><span class="mw-cite-backlink"><b><a href="#cite_ref-136">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOECDOffice2022" class="citation book cs1">OECD; Office, European Union Intellectual Property (17 March 2022). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=xNdkEAAAQBAJ&amp;pg=PA29"><i>Illicit Trade Dangerous Fakes Trade in Counterfeit Goods that Pose Health, Safety and Environmental Risks: Trade in Counterfeit Goods that Pose Health, Safety and Environmental Risks</i></a>. OECD Publishing. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-92-64-59470-8" title="Special:BookSources/978-92-64-59470-8"><bdi>978-92-64-59470-8</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230828175659/https://books.google.com/books?id=xNdkEAAAQBAJ&amp;pg=PA29">Archived</a> from the original on 28 August 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">10 July</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Illicit+Trade+Dangerous+Fakes+Trade+in+Counterfeit+Goods+that+Pose+Health%2C+Safety+and+Environmental+Risks%3A+Trade+in+Counterfeit+Goods+that+Pose+Health%2C+Safety+and+Environmental+Risks&amp;rft.pub=OECD+Publishing&amp;rft.date=2022-03-17&amp;rft.isbn=978-92-64-59470-8&amp;rft.au=OECD&amp;rft.au=Office%2C+European+Union+Intellectual+Property&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DxNdkEAAAQBAJ%26pg%3DPA29&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-137"><span class="mw-cite-backlink"><b><a href="#cite_ref-137">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHesseSchimpeKucevicJossen2017" class="citation journal cs1">Hesse, Holger; Schimpe, Michael; Kucevic, Daniel; Jossen, Andreas (11 December 2017). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fen10122107">"Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids"</a>. <i>Energies</i>. <b>10</b> (12): 2107. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fen10122107">10.3390/en10122107</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1996-1073">1996-1073</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Energies&amp;rft.atitle=Lithium-Ion+Battery+Storage+for+the+Grid%E2%80%94A+Review+of+Stationary+Battery+Storage+System+Design+Tailored+for+Applications+in+Modern+Power+Grids&amp;rft.volume=10&amp;rft.issue=12&amp;rft.pages=2107&amp;rft.date=2017-12-11&amp;rft_id=info%3Adoi%2F10.3390%2Fen10122107&amp;rft.issn=1996-1073&amp;rft.aulast=Hesse&amp;rft.aufirst=Holger&amp;rft.au=Schimpe%2C+Michael&amp;rft.au=Kucevic%2C+Daniel&amp;rft.au=Jossen%2C+Andreas&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Fen10122107&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-138"><span class="mw-cite-backlink"><b><a href="#cite_ref-138">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGreyHall2020" class="citation journal cs1">Grey, Clare P.; Hall, David S. (December 2020). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7722877">"Prospects for lithium-ion batteries and beyond—a 2030 vision"</a>. <i>Nature Communications</i>. <b>11</b> (1): 6279. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020NatCo..11.6279G">2020NatCo..11.6279G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41467-020-19991-4">10.1038/s41467-020-19991-4</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2041-1723">2041-1723</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7722877">7722877</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/33293543">33293543</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Communications&amp;rft.atitle=Prospects+for+lithium-ion+batteries+and+beyond%E2%80%94a+2030+vision&amp;rft.volume=11&amp;rft.issue=1&amp;rft.pages=6279&amp;rft.date=2020-12&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7722877%23id-name%3DPMC&amp;rft_id=info%3Abibcode%2F2020NatCo..11.6279G&amp;rft_id=info%3Apmid%2F33293543&amp;rft_id=info%3Adoi%2F10.1038%2Fs41467-020-19991-4&amp;rft.issn=2041-1723&amp;rft.aulast=Grey&amp;rft.aufirst=Clare+P.&amp;rft.au=Hall%2C+David+S.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7722877&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-139"><span class="mw-cite-backlink"><b><a href="#cite_ref-139">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20111107060525/http://www.panasonic.com/industrial/includes/pdf/Panasonic_LiIon_Overview.pdf">"Overview of lithium ion batteries"</a> <span class="cs1-format">(PDF)</span>. Panasonic. January 2007. Archived from <a rel="nofollow" class="external text" href="http://www.panasonic.com/industrial/includes/pdf/Panasonic_LiIon_Overview.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 7 November 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">13 November</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Overview+of+lithium+ion+batteries&amp;rft.pub=Panasonic&amp;rft.date=2007-01&amp;rft_id=http%3A%2F%2Fwww.panasonic.com%2Findustrial%2Fincludes%2Fpdf%2FPanasonic_LiIon_Overview.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-greencarcongress-140"><span class="mw-cite-backlink"><b><a href="#cite_ref-greencarcongress_140-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.greencarcongress.com/2009/12/panasonic-20091225.html">"Panasonic Develops New Higher-Capacity 18650 Li-Ion Cells; Application of Silicon-based Alloy in Anode"</a>. greencarcongress.com. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140712052649/http://www.greencarcongress.com/2009/12/panasonic-20091225.html">Archived</a> from the original on 12 July 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">31 January</span> 2011</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Panasonic+Develops+New+Higher-Capacity+18650+Li-Ion+Cells%3B+Application+of+Silicon-based+Alloy+in+Anode&amp;rft.pub=greencarcongress.com&amp;rft_id=http%3A%2F%2Fwww.greencarcongress.com%2F2009%2F12%2Fpanasonic-20091225.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Quinn-2018-141"><span class="mw-cite-backlink">^ <a href="#cite_ref-Quinn-2018_141-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Quinn-2018_141-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFQuinnWaldmannRichterKasper2018" class="citation journal cs1">Quinn, Jason B.; Waldmann, Thomas; Richter, Karsten; Kasper, Michael; Wohlfahrt-Mehrens, Margret (19 October 2018). <a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F2.0281814jes">"Energy Density of Cylindrical Li-Ion Cells: A Comparison of Commercial 18650 to the 21700 Cells"</a>. <i>Journal of the Electrochemical Society</i>. <b>165</b> (14): <span class="nowrap">A3284 –</span> <span class="nowrap">A3291</span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F2.0281814jes">10.1149/2.0281814jes</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:105193083">105193083</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Electrochemical+Society&amp;rft.atitle=Energy+Density+of+Cylindrical+Li-Ion+Cells%3A+A+Comparison+of+Commercial+18650+to+the+21700+Cells&amp;rft.volume=165&amp;rft.issue=14&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3EA3284+-%3C%2Fspan%3E+%3Cspan+class%3D%22nowrap%22%3EA3291%3C%2Fspan%3E&amp;rft.date=2018-10-19&amp;rft_id=info%3Adoi%2F10.1149%2F2.0281814jes&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A105193083%23id-name%3DS2CID&amp;rft.aulast=Quinn&amp;rft.aufirst=Jason+B.&amp;rft.au=Waldmann%2C+Thomas&amp;rft.au=Richter%2C+Karsten&amp;rft.au=Kasper%2C+Michael&amp;rft.au=Wohlfahrt-Mehrens%2C+Margret&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1149%252F2.0281814jes&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Winter-2004-142"><span class="mw-cite-backlink"><b><a href="#cite_ref-Winter-2004_142-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFWinterBrodd2004">Winter &amp; Brodd 2004</a>, p.&#160;4258</span> </li> <li id="cite_note-FOOTNOTEAndrea201012-143"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEAndrea201012_143-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFAndrea2010">Andrea 2010</a>, p.&#160;12.</span> </li> <li id="cite_note-144"><span class="mw-cite-backlink"><b><a href="#cite_ref-144">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStroeSwierczynskiKarTeodorescu2017" class="citation journal cs1">Stroe, Daniel-Ioan; Swierczynski, Maciej; Kar, Soren Knudsen; Teodorescu, Remus (22 September 2017). <a rel="nofollow" class="external text" href="https://ieeexplore.ieee.org/document/8048537">"Degradation Behavior of Lithium-Ion Batteries During Calendar Ageing—The Case of the Internal Resistance Increase"</a>. <i>IEEE Transactions on Industry Applications</i>. <b>54</b> (1): <span class="nowrap">517–</span>525. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTIA.2017.2756026">10.1109/TIA.2017.2756026</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0093-9994">0093-9994</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:34944228">34944228</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220126210620/https://ieeexplore.ieee.org/document/8048537/">Archived</a> from the original on 26 January 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">10 February</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Industry+Applications&amp;rft.atitle=Degradation+Behavior+of+Lithium-Ion+Batteries+During+Calendar+Ageing%E2%80%94The+Case+of+the+Internal+Resistance+Increase&amp;rft.volume=54&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E517-%3C%2Fspan%3E525&amp;rft.date=2017-09-22&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A34944228%23id-name%3DS2CID&amp;rft.issn=0093-9994&amp;rft_id=info%3Adoi%2F10.1109%2FTIA.2017.2756026&amp;rft.aulast=Stroe&amp;rft.aufirst=Daniel-Ioan&amp;rft.au=Swierczynski%2C+Maciej&amp;rft.au=Kar%2C+Soren+Knudsen&amp;rft.au=Teodorescu%2C+Remus&amp;rft_id=https%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F8048537&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-145"><span class="mw-cite-backlink"><b><a href="#cite_ref-145">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTurpen2015" class="citation web cs1">Turpen, Aaron (16 November 2015). <a rel="nofollow" class="external text" href="http://www.gizmag.com/huawei-fast-charging-li-ion-batteries/40421">"New battery tech gives 10 hours of talk time after only 5 minutes on charge"</a>. <i>www.gizmag.com</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20151208232306/http://www.gizmag.com/huawei-fast-charging-li-ion-batteries/40421/">Archived</a> from the original on 8 December 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">3 December</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.gizmag.com&amp;rft.atitle=New+battery+tech+gives+10+hours+of+talk+time+after+only+5+minutes+on+charge&amp;rft.date=2015-11-16&amp;rft.aulast=Turpen&amp;rft.aufirst=Aaron&amp;rft_id=http%3A%2F%2Fwww.gizmag.com%2Fhuawei-fast-charging-li-ion-batteries%2F40421&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-146"><span class="mw-cite-backlink"><b><a href="#cite_ref-146">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmith2015" class="citation news cs1">Smith, Noah (16 January 2015). <a rel="nofollow" class="external text" href="http://www.bloombergview.com/articles/2015-01-16/get-ready-for-life-without-oil">"Get Ready For Life Without Oil"</a>. <i>bloombergview.com</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150711154951/http://www.bloombergview.com/articles/2015-01-16/get-ready-for-life-without-oil">Archived</a> from the original on 11 July 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">31 July</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=bloombergview.com&amp;rft.atitle=Get+Ready+For+Life+Without+Oil&amp;rft.date=2015-01-16&amp;rft.aulast=Smith&amp;rft.aufirst=Noah&amp;rft_id=http%3A%2F%2Fwww.bloombergview.com%2Farticles%2F2015-01-16%2Fget-ready-for-life-without-oil&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-147"><span class="mw-cite-backlink"><b><a href="#cite_ref-147">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRandallLippert2017" class="citation news cs1">Randall, Tom; Lippert, John (24 November 2017). <a rel="nofollow" class="external text" href="https://www.bloomberg.com/news/articles/2017-11-24/tesla-s-newest-promises-break-the-laws-of-batteries">"Tesla's Newest Promises Break the Laws of Batteries"</a>. <i>Bloomberg.com</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180612162559/https://www.bloomberg.com/news/articles/2017-11-24/tesla-s-newest-promises-break-the-laws-of-batteries">Archived</a> from the original on 12 June 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">13 February</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bloomberg.com&amp;rft.atitle=Tesla%27s+Newest+Promises+Break+the+Laws+of+Batteries&amp;rft.date=2017-11-24&amp;rft.aulast=Randall&amp;rft.aufirst=Tom&amp;rft.au=Lippert%2C+John&amp;rft_id=https%3A%2F%2Fwww.bloomberg.com%2Fnews%2Farticles%2F2017-11-24%2Ftesla-s-newest-promises-break-the-laws-of-batteries&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Ziegler-2021-148"><span class="mw-cite-backlink">^ <a href="#cite_ref-Ziegler-2021_148-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Ziegler-2021_148-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZieglerTrancik2021" class="citation journal cs1">Ziegler, Micah S.; Trancik, Jessika E. (21 April 2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FD0EE02681F">"Re-examining rates of lithium-ion battery technology improvement and cost decline"</a>. <i>Energy &amp; Environmental Science</i>. <b>14</b> (4): <span class="nowrap">1635–</span>1651. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2007.13920">2007.13920</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FD0EE02681F">10.1039/D0EE02681F</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1754-5706">1754-5706</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:220830992">220830992</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Energy+%26+Environmental+Science&amp;rft.atitle=Re-examining+rates+of+lithium-ion+battery+technology+improvement+and+cost+decline&amp;rft.volume=14&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1635-%3C%2Fspan%3E1651&amp;rft.date=2021-04-21&amp;rft_id=info%3Aarxiv%2F2007.13920&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A220830992%23id-name%3DS2CID&amp;rft.issn=1754-5706&amp;rft_id=info%3Adoi%2F10.1039%2FD0EE02681F&amp;rft.aulast=Ziegler&amp;rft.aufirst=Micah+S.&amp;rft.au=Trancik%2C+Jessika+E.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1039%252FD0EE02681F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-149"><span class="mw-cite-backlink"><b><a href="#cite_ref-149">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZieglerSongTrancik2021" class="citation journal cs1">Ziegler, Micah S.; Song, Juhyun; Trancik, Jessika E. (9 December 2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FD1EE01313K">"Determinants of lithium-ion battery technology cost decline"</a>. <i>Energy &amp; Environmental Science</i>. <b>14</b> (12): <span class="nowrap">6074–</span>6098. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FD1EE01313K">10.1039/D1EE01313K</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/1721.1%2F145588">1721.1/145588</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1754-5706">1754-5706</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:244514877">244514877</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Energy+%26+Environmental+Science&amp;rft.atitle=Determinants+of+lithium-ion+battery+technology+cost+decline&amp;rft.volume=14&amp;rft.issue=12&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E6074-%3C%2Fspan%3E6098&amp;rft.date=2021-12-09&amp;rft_id=info%3Ahdl%2F1721.1%2F145588&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A244514877%23id-name%3DS2CID&amp;rft.issn=1754-5706&amp;rft_id=info%3Adoi%2F10.1039%2FD1EE01313K&amp;rft.aulast=Ziegler&amp;rft.aufirst=Micah+S.&amp;rft.au=Song%2C+Juhyun&amp;rft.au=Trancik%2C+Jessika+E.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1039%252FD1EE01313K&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-150"><span class="mw-cite-backlink"><b><a href="#cite_ref-150">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPredtechenskiyKhasinSmirnovBezrodny2022" class="citation journal cs1">Predtechenskiy, Mikhail R.; Khasin, Alexander A.; Smirnov, Sergei N.; Bezrodny, Alexander E.; Bobrenok, Oleg F.; Dubov, Dmitry Yu.; Kosolapov, Andrei G.; Lyamysheva, Ekaterina G.; Muradyan, Vyacheslav E.; Saik, Vladimir O.; Shinkarev, Vasiliy V.; Chebochakov, Dmitriy S.; Galkov, Mikhail S.; Karpunin, Ruslan V.; Verkhovod, Timofey D. (1 July 2022). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cartre.2022.100176">"New Perspectives in SWCNT Applications: Tuball SWCNTs. Part 2. New Composite Materials through Augmentation with Tuball"</a>. <i>Carbon Trends</i>. <b>8</b>: 100176. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022CarbT...800176P">2022CarbT...800176P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cartre.2022.100176">10.1016/j.cartre.2022.100176</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2667-0569">2667-0569</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Carbon+Trends&amp;rft.atitle=New+Perspectives+in+SWCNT+Applications%3A+Tuball+SWCNTs.+Part+2.+New+Composite+Materials+through+Augmentation+with+Tuball.&amp;rft.volume=8&amp;rft.pages=100176&amp;rft.date=2022-07-01&amp;rft.issn=2667-0569&amp;rft_id=info%3Adoi%2F10.1016%2Fj.cartre.2022.100176&amp;rft_id=info%3Abibcode%2F2022CarbT...800176P&amp;rft.aulast=Predtechenskiy&amp;rft.aufirst=Mikhail+R.&amp;rft.au=Khasin%2C+Alexander+A.&amp;rft.au=Smirnov%2C+Sergei+N.&amp;rft.au=Bezrodny%2C+Alexander+E.&amp;rft.au=Bobrenok%2C+Oleg+F.&amp;rft.au=Dubov%2C+Dmitry+Yu.&amp;rft.au=Kosolapov%2C+Andrei+G.&amp;rft.au=Lyamysheva%2C+Ekaterina+G.&amp;rft.au=Muradyan%2C+Vyacheslav+E.&amp;rft.au=Saik%2C+Vladimir+O.&amp;rft.au=Shinkarev%2C+Vasiliy+V.&amp;rft.au=Chebochakov%2C+Dmitriy+S.&amp;rft.au=Galkov%2C+Mikhail+S.&amp;rft.au=Karpunin%2C+Ruslan+V.&amp;rft.au=Verkhovod%2C+Timofey+D.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.cartre.2022.100176&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-151"><span class="mw-cite-backlink"><b><a href="#cite_ref-151">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBobanacBasicPandzic2021" class="citation book cs1">Bobanac, Vedran; Basic, Hrvoje; Pandzic, Hrvoje (6 July 2021). <a rel="nofollow" class="external text" href="https://animation.fer.hr/images/50036152/EUROCON%202021_Determining_Lithium-ion_Battery_One-way_Energy_Efficiencies_Influence_of_C-rate_and_Coulombic_Losses.pdf">"Determining Lithium-ion Battery One-way Energy Efficiencies: Influence of C-rate and Coulombic Losses"</a> <span class="cs1-format">(PDF)</span>. <i>IEEE EUROCON 2021 – 19th International Conference on Smart Technologies</i>. IEEE. pp.&#160;<span class="nowrap">385–</span>389. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FEUROCON52738.2021.9535542">10.1109/EUROCON52738.2021.9535542</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-6654-3299-3" title="Special:BookSources/978-1-6654-3299-3"><bdi>978-1-6654-3299-3</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:237520703">237520703</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230622012159/https://animation.fer.hr/images/50036152/EUROCON%202021_Determining_Lithium-ion_Battery_One-way_Energy_Efficiencies_Influence_of_C-rate_and_Coulombic_Losses.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 22 June 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">22 June</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Determining+Lithium-ion+Battery+One-way+Energy+Efficiencies%3A+Influence+of+C-rate+and+Coulombic+Losses&amp;rft.btitle=IEEE+EUROCON+2021+%E2%80%93+19th+International+Conference+on+Smart+Technologies&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E385-%3C%2Fspan%3E389&amp;rft.pub=IEEE&amp;rft.date=2021-07-06&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A237520703%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FEUROCON52738.2021.9535542&amp;rft.isbn=978-1-6654-3299-3&amp;rft.aulast=Bobanac&amp;rft.aufirst=Vedran&amp;rft.au=Basic%2C+Hrvoje&amp;rft.au=Pandzic%2C+Hrvoje&amp;rft_id=https%3A%2F%2Fanimation.fer.hr%2Fimages%2F50036152%2FEUROCON%25202021_Determining_Lithium-ion_Battery_One-way_Energy_Efficiencies_Influence_of_C-rate_and_Coulombic_Losses.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-152"><span class="mw-cite-backlink"><b><a href="#cite_ref-152">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchimpeNaumannTruongHesse2017" class="citation journal cs1">Schimpe, Michael; Naumann, Maik; Truong, Nam; Hesse, Holger C.; Santhanagopalan, Shriram; Saxon, Aron; Jossen, Andreas (8 November 2017). <a rel="nofollow" class="external text" href="https://www.osti.gov/servlets/purl/1409737">"Energy efficiency evaluation of a stationary lithium-ion battery container storage system via electro-thermal modeling and detailed component analysis"</a>. <i>Applied Energy</i>. <b>210</b> (C): <span class="nowrap">211–</span>229. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.apenergy.2017.10.129">10.1016/j.apenergy.2017.10.129</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0306-2619">0306-2619</a>. <a href="/wiki/OSTI_(identifier)" class="mw-redirect" title="OSTI (identifier)">OSTI</a>&#160;<a rel="nofollow" class="external text" href="https://www.osti.gov/biblio/1409737">1409737</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Applied+Energy&amp;rft.atitle=Energy+efficiency+evaluation+of+a+stationary+lithium-ion+battery+container+storage+system+via+electro-thermal+modeling+and+detailed+component+analysis&amp;rft.volume=210&amp;rft.issue=C&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E211-%3C%2Fspan%3E229&amp;rft.date=2017-11-08&amp;rft.issn=0306-2619&amp;rft_id=https%3A%2F%2Fwww.osti.gov%2Fbiblio%2F1409737%23id-name%3DOSTI&amp;rft_id=info%3Adoi%2F10.1016%2Fj.apenergy.2017.10.129&amp;rft.aulast=Schimpe&amp;rft.aufirst=Michael&amp;rft.au=Naumann%2C+Maik&amp;rft.au=Truong%2C+Nam&amp;rft.au=Hesse%2C+Holger+C.&amp;rft.au=Santhanagopalan%2C+Shriram&amp;rft.au=Saxon%2C+Aron&amp;rft.au=Jossen%2C+Andreas&amp;rft_id=https%3A%2F%2Fwww.osti.gov%2Fservlets%2Fpurl%2F1409737&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-153"><span class="mw-cite-backlink"><b><a href="#cite_ref-153">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.ineltro.ch/media/downloads/SAAItem/45/45958/36e3e7f3-2049-4adb-a2a7-79c654d92915.pdf">"Lithium-ion Battery DATA SHEET Battery Model&#160;: LIR18650 2600&#160;mAh"</a> <span class="cs1-format">(PDF)</span>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190503022927/https://www.ineltro.ch/media/downloads/SAAItem/45/45958/36e3e7f3-2049-4adb-a2a7-79c654d92915.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 3 May 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">3 May</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Lithium-ion+Battery+DATA+SHEET+Battery+Model+%3A+LIR18650+2600+mAh&amp;rft_id=https%3A%2F%2Fwww.ineltro.ch%2Fmedia%2Fdownloads%2FSAAItem%2F45%2F45958%2F36e3e7f3-2049-4adb-a2a7-79c654d92915.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Wang-2011-154"><span class="mw-cite-backlink">^ <a href="#cite_ref-Wang-2011_154-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Wang-2011_154-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWangLiuHicks-GarnerSherman2011" class="citation journal cs1">Wang, J.; Liu, P.; Hicks-Garner, J.; Sherman, E.; Soukiazian, S.; Verbrugge, M.; Tataria, H.; Musser, J.; Finamore, P. (2011). "Cycle-life model for graphite-LiFePO4 cells". <i>Journal of Power Sources</i>. <b>196</b> (8): <span class="nowrap">3942–</span>3948. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011JPS...196.3942W">2011JPS...196.3942W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2010.11.134">10.1016/j.jpowsour.2010.11.134</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Power+Sources&amp;rft.atitle=Cycle-life+model+for+graphite-LiFePO4+cells&amp;rft.volume=196&amp;rft.issue=8&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E3942-%3C%2Fspan%3E3948&amp;rft.date=2011&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jpowsour.2010.11.134&amp;rft_id=info%3Abibcode%2F2011JPS...196.3942W&amp;rft.aulast=Wang&amp;rft.aufirst=J.&amp;rft.au=Liu%2C+P.&amp;rft.au=Hicks-Garner%2C+J.&amp;rft.au=Sherman%2C+E.&amp;rft.au=Soukiazian%2C+S.&amp;rft.au=Verbrugge%2C+M.&amp;rft.au=Tataria%2C+H.&amp;rft.au=Musser%2C+J.&amp;rft.au=Finamore%2C+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Saxena-2016-155"><span class="mw-cite-backlink">^ <a href="#cite_ref-Saxena-2016_155-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Saxena-2016_155-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSaxenaHendricksPecht2016" class="citation journal cs1">Saxena, S.; Hendricks, C.; Pecht, M. (2016). "Cycle life testing and modeling of graphite/LiCoO2 cells under different state of charge ranges". <i>Journal of Power Sources</i>. <b>327</b>: <span class="nowrap">394–</span>400. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016JPS...327..394S">2016JPS...327..394S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2016.07.057">10.1016/j.jpowsour.2016.07.057</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Power+Sources&amp;rft.atitle=Cycle+life+testing+and+modeling+of+graphite%2FLiCoO2+cells+under+different+state+of+charge+ranges&amp;rft.volume=327&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E394-%3C%2Fspan%3E400&amp;rft.date=2016&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jpowsour.2016.07.057&amp;rft_id=info%3Abibcode%2F2016JPS...327..394S&amp;rft.aulast=Saxena&amp;rft.aufirst=S.&amp;rft.au=Hendricks%2C+C.&amp;rft.au=Pecht%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-156"><span class="mw-cite-backlink"><b><a href="#cite_ref-156">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSunSaxenaPecht2018" class="citation journal cs1">Sun, Y.; Saxena, S.; Pecht, M. (2018). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fen11123295">"Derating Guidelines for Lithium-Ion Batteries"</a>. <i>Energies</i>. <b>11</b> (12): 3295. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fen11123295">10.3390/en11123295</a></span>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/1903%2F31442">1903/31442</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Energies&amp;rft.atitle=Derating+Guidelines+for+Lithium-Ion+Batteries&amp;rft.volume=11&amp;rft.issue=12&amp;rft.pages=3295&amp;rft.date=2018&amp;rft_id=info%3Ahdl%2F1903%2F31442&amp;rft_id=info%3Adoi%2F10.3390%2Fen11123295&amp;rft.aulast=Sun&amp;rft.aufirst=Y.&amp;rft.au=Saxena%2C+S.&amp;rft.au=Pecht%2C+M.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Fen11123295&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Hendricks-2016-157"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hendricks-2016_157-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hendricks-2016_157-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Hendricks-2016_157-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHendricksWilliardMathewPecht2016" class="citation journal cs1">Hendricks, C.; Williard, N.; Mathew, S.; Pecht, M. (2016). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2015.07.100">"A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries"</a>. <i>Journal of Power Sources</i>. <b>327</b>: <span class="nowrap">113–</span>120. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2015.07.100">10.1016/j.jpowsour.2015.07.100</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Power+Sources&amp;rft.atitle=A+failure+modes%2C+mechanisms%2C+and+effects+analysis+%28FMMEA%29+of+lithium-ion+batteries&amp;rft.volume=327&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E113-%3C%2Fspan%3E120&amp;rft.date=2016&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jpowsour.2015.07.100&amp;rft.aulast=Hendricks&amp;rft.aufirst=C.&amp;rft.au=Williard%2C+N.&amp;rft.au=Mathew%2C+S.&amp;rft.au=Pecht%2C+M.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.jpowsour.2015.07.100&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span>.</span> </li> <li id="cite_note-Voelker-2014-158"><span class="mw-cite-backlink">^ <a href="#cite_ref-Voelker-2014_158-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Voelker-2014_158-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Voelker-2014_158-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Voelker-2014_158-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Voelker-2014_158-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Voelker-2014_158-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Voelker-2014_158-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Voelker-2014_158-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Voelker-2014_158-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-Voelker-2014_158-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-Voelker-2014_158-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-Voelker-2014_158-11"><sup><i><b>l</b></i></sup></a> <a href="#cite_ref-Voelker-2014_158-12"><sup><i><b>m</b></i></sup></a> <a href="#cite_ref-Voelker-2014_158-13"><sup><i><b>n</b></i></sup></a> <a href="#cite_ref-Voelker-2014_158-14"><sup><i><b>o</b></i></sup></a> <a href="#cite_ref-Voelker-2014_158-15"><sup><i><b>p</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVoelker2014" class="citation news cs1">Voelker, Paul (22 April 2014). <a rel="nofollow" class="external text" href="http://www.rdmag.com/articles/2014/04/trace-degradation-analysis-lithium-ion-battery-components">"Trace Degradation Analysis of Lithium-Ion Battery Components"</a>. <i>R&amp;D</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150428160314/http://www.rdmag.com/articles/2014/04/trace-degradation-analysis-lithium-ion-battery-components">Archived</a> from the original on 28 April 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">4 April</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=R%26D&amp;rft.atitle=Trace+Degradation+Analysis+of+Lithium-Ion+Battery+Components&amp;rft.date=2014-04-22&amp;rft.aulast=Voelker&amp;rft.aufirst=Paul&amp;rft_id=http%3A%2F%2Fwww.rdmag.com%2Farticles%2F2014%2F04%2Ftrace-degradation-analysis-lithium-ion-battery-components&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Vermeer-2022-159"><span class="mw-cite-backlink">^ <a href="#cite_ref-Vermeer-2022_159-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Vermeer-2022_159-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Vermeer-2022_159-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Vermeer-2022_159-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVermeer2022" class="citation journal cs1">Vermeer, Wiljan (2022). <a rel="nofollow" class="external text" href="https://doi.org/10.1109%2Ftte.2021.3138357">"A Comprehensive Review on the Characteristics and Modeling of Lithium-Ion Battery Aging"</a>. <i>IEEE Transactions on Transportation Electrification</i>. <b>8</b> (2): 2205. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1109%2Ftte.2021.3138357">10.1109/tte.2021.3138357</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:245463637">245463637</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Transactions+on+Transportation+Electrification&amp;rft.atitle=A+Comprehensive+Review+on+the+Characteristics+and+Modeling+of+Lithium-Ion+Battery+Aging&amp;rft.volume=8&amp;rft.issue=2&amp;rft.pages=2205&amp;rft.date=2022&amp;rft_id=info%3Adoi%2F10.1109%2Ftte.2021.3138357&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A245463637%23id-name%3DS2CID&amp;rft.aulast=Vermeer&amp;rft.aufirst=Wiljan&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1109%252Ftte.2021.3138357&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span>.</span> </li> <li id="cite_note-Waldmann-2014-160"><span class="mw-cite-backlink">^ <a href="#cite_ref-Waldmann-2014_160-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Waldmann-2014_160-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Waldmann-2014_160-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Waldmann-2014_160-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWaldmannWilkaKasperFleischhammer2014" class="citation journal cs1">Waldmann, T.; Wilka, M.; Kasper, M.; Fleischhammer, M.; Wohlfahrt-Mehrens, M. (2014). "Temperature dependent ageing mechanisms in Lithium-ion batteries – A Post-Mortem study". <i>Journal of Power Sources</i>. <b>262</b>: <span class="nowrap">129–</span>135. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014JPS...262..129W">2014JPS...262..129W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2014.03.112">10.1016/j.jpowsour.2014.03.112</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Power+Sources&amp;rft.atitle=Temperature+dependent+ageing+mechanisms+in+Lithium-ion+batteries+%E2%80%93+A+Post-Mortem+study&amp;rft.volume=262&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E129-%3C%2Fspan%3E135&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jpowsour.2014.03.112&amp;rft_id=info%3Abibcode%2F2014JPS...262..129W&amp;rft.aulast=Waldmann&amp;rft.aufirst=T.&amp;rft.au=Wilka%2C+M.&amp;rft.au=Kasper%2C+M.&amp;rft.au=Fleischhammer%2C+M.&amp;rft.au=Wohlfahrt-Mehrens%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-161"><span class="mw-cite-backlink"><b><a href="#cite_ref-161">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLengTanPecht2015" class="citation journal cs1">Leng, Feng; Tan, Cher Ming; Pecht, Michael (6 August 2015). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4526891">"Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature"</a>. <i>Scientific Reports</i>. <b>5</b> (1): 12967. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015NatSR...512967L">2015NatSR...512967L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fsrep12967">10.1038/srep12967</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4526891">4526891</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26245922">26245922</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scientific+Reports&amp;rft.atitle=Effect+of+Temperature+on+the+Aging+rate+of+Li+Ion+Battery+Operating+above+Room+Temperature&amp;rft.volume=5&amp;rft.issue=1&amp;rft.pages=12967&amp;rft.date=2015-08-06&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4526891%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F26245922&amp;rft_id=info%3Adoi%2F10.1038%2Fsrep12967&amp;rft_id=info%3Abibcode%2F2015NatSR...512967L&amp;rft.aulast=Leng&amp;rft.aufirst=Feng&amp;rft.au=Tan%2C+Cher+Ming&amp;rft.au=Pecht%2C+Michael&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4526891&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-162"><span class="mw-cite-backlink"><b><a href="#cite_ref-162">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external free" href="https://www.drrusa.com/post/optimizing-lithium-ion-battery-performance-80-20-charging-rule-and-cold-weather">https://www.drrusa.com/post/optimizing-lithium-ion-battery-performance-80-20-charging-rule-and-cold-weather</a></span> </li> <li id="cite_note-163"><span class="mw-cite-backlink"><b><a href="#cite_ref-163">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external free" href="https://forum-en.msi.com/index.php?attachments/1621510321833-png.148786/">https://forum-en.msi.com/index.php?attachments/1621510321833-png.148786/</a></span> </li> <li id="cite_note-164"><span class="mw-cite-backlink"><b><a href="#cite_ref-164">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilliams" class="citation news cs1">Williams, Sarah C. P. <a rel="nofollow" class="external text" href="https://techxplore.com/news/2022-12-battery.html">"Researchers zoom in on battery wear and tear"</a>. <i><a href="/wiki/University_of_Chicago" title="University of Chicago">University of Chicago</a> via techxplore.com</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230202170609/https://techxplore.com/news/2022-12-battery.html">Archived</a> from the original on 2 February 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">18 January</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=University+of+Chicago+via+techxplore.com&amp;rft.atitle=Researchers+zoom+in+on+battery+wear+and+tear&amp;rft.aulast=Williams&amp;rft.aufirst=Sarah+C.+P.&amp;rft_id=https%3A%2F%2Ftechxplore.com%2Fnews%2F2022-12-battery.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-165"><span class="mw-cite-backlink"><b><a href="#cite_ref-165">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhangChouchaneShojaeeWiniarski2022" class="citation journal cs1">Zhang, Minghao; Chouchane, Mehdi; Shojaee, S. Ali; Winiarski, Bartlomiej; Liu, Zhao; Li, Letian; Pelapur, Rengarajan; Shodiev, Abbos; Yao, Weiliang; Doux, Jean-Marie; Wang, Shen; Li, Yixuan; Liu, Chaoyue; Lemmens, Herman; Franco, Alejandro A.; Meng, Ying Shirley (22 December 2022). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.joule.2022.12.001">"Coupling of multiscale imaging analysis and computational modeling for understanding thick cathode degradation mechanisms"</a>. <i>Joule</i>. <b>7</b>: <span class="nowrap">201–</span>220. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.joule.2022.12.001">10.1016/j.joule.2022.12.001</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2542-4785">2542-4785</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Joule&amp;rft.atitle=Coupling+of+multiscale+imaging+analysis+and+computational+modeling+for+understanding+thick+cathode+degradation+mechanisms&amp;rft.volume=7&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E201-%3C%2Fspan%3E220&amp;rft.date=2022-12-22&amp;rft_id=info%3Adoi%2F10.1016%2Fj.joule.2022.12.001&amp;rft.issn=2542-4785&amp;rft.aulast=Zhang&amp;rft.aufirst=Minghao&amp;rft.au=Chouchane%2C+Mehdi&amp;rft.au=Shojaee%2C+S.+Ali&amp;rft.au=Winiarski%2C+Bartlomiej&amp;rft.au=Liu%2C+Zhao&amp;rft.au=Li%2C+Letian&amp;rft.au=Pelapur%2C+Rengarajan&amp;rft.au=Shodiev%2C+Abbos&amp;rft.au=Yao%2C+Weiliang&amp;rft.au=Doux%2C+Jean-Marie&amp;rft.au=Wang%2C+Shen&amp;rft.au=Li%2C+Yixuan&amp;rft.au=Liu%2C+Chaoyue&amp;rft.au=Lemmens%2C+Herman&amp;rft.au=Franco%2C+Alejandro+A.&amp;rft.au=Meng%2C+Ying+Shirley&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.joule.2022.12.001&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Attia-2022-166"><span class="mw-cite-backlink">^ <a href="#cite_ref-Attia-2022_166-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Attia-2022_166-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Attia-2022_166-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAttiaBillsPlanellaDechent2022" class="citation journal cs1">Attia PM, Bills A, Planella FB, Dechent P, dos Reis G, Dubarry M, Gasper P, Gilchrist R, Greenbank S, Howey D, Liu O, Khoo E, Preger Y, Soni A, Sripad S, Stefanopoulou AG, Sulzer V (10 June 2022). "Review-"Knees" in Lithium-Ion Battery Aging Trajectories". <i>Journal of the Electrochemical Society</i>. <b>169</b> (6): 28. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2201.02891">2201.02891</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022JElS..169f0517A">2022JElS..169f0517A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F1945-7111%2Fac6d13">10.1149/1945-7111/ac6d13</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:245836782">245836782</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Electrochemical+Society&amp;rft.atitle=Review-%22Knees%22+in+Lithium-Ion+Battery+Aging+Trajectories&amp;rft.volume=169&amp;rft.issue=6&amp;rft.pages=28&amp;rft.date=2022-06-10&amp;rft_id=info%3Aarxiv%2F2201.02891&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A245836782%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1149%2F1945-7111%2Fac6d13&amp;rft_id=info%3Abibcode%2F2022JElS..169f0517A&amp;rft.aulast=Attia&amp;rft.aufirst=PM&amp;rft.au=Bills%2C+A&amp;rft.au=Planella%2C+FB&amp;rft.au=Dechent%2C+P&amp;rft.au=dos+Reis%2C+G&amp;rft.au=Dubarry%2C+M&amp;rft.au=Gasper%2C+P&amp;rft.au=Gilchrist%2C+R&amp;rft.au=Greenbank%2C+S&amp;rft.au=Howey%2C+D&amp;rft.au=Liu%2C+O&amp;rft.au=Khoo%2C+E&amp;rft.au=Preger%2C+Y&amp;rft.au=Soni%2C+A&amp;rft.au=Sripad%2C+S&amp;rft.au=Stefanopoulou%2C+AG&amp;rft.au=Sulzer%2C+V&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span>.</span> </li> <li id="cite_note-167"><span class="mw-cite-backlink"><b><a href="#cite_ref-167">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.phonedog.com/2011/8/7/how-to-prolong-your-cell-phone-battery-s-life-span">"How to prolong your cell phone battery's life span"</a>. <i>phonedog.com</i>. 7 August 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">25 July</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=phonedog.com&amp;rft.atitle=How+to+prolong+your+cell+phone+battery%27s+life+span&amp;rft.date=2011-08-07&amp;rft_id=http%3A%2F%2Fwww.phonedog.com%2F2011%2F8%2F7%2Fhow-to-prolong-your-cell-phone-battery-s-life-span&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-168"><span class="mw-cite-backlink"><b><a href="#cite_ref-168">^</a></b></span> <span class="reference-text">Alexander K Suttman.(2011).Lithium Ion Battery Aging Experiments and Algorithm Development for Life Estimation. Published by The Ohio State University and OhioLINK</span> </li> <li id="cite_note-169"><span class="mw-cite-backlink"><b><a href="#cite_ref-169">^</a></b></span> <span class="reference-text">Matthew B. Pinson1 and Martin Z. Bazant. Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction. Massachusetts Institute of Technology, Cambridge, MA 02139</span> </li> <li id="cite_note-170"><span class="mw-cite-backlink"><b><a href="#cite_ref-170">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://cleantechnica.com/2019/12/16/new-data-shows-heat-fast-charging-responsible-for-more-battery-degradation-than-age-or-mileage/">"New Data Shows Heat &amp; Fast-Charging Responsible For More Battery Degradation Than Age Or Mileage"</a>. <i>CleanTechnica</i>. 16 December 2019. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210427105747/https://cleantechnica.com/2019/12/16/new-data-shows-heat-fast-charging-responsible-for-more-battery-degradation-than-age-or-mileage/">Archived</a> from the original on 27 April 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">20 December</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=CleanTechnica&amp;rft.atitle=New+Data+Shows+Heat+%26+Fast-Charging+Responsible+For+More+Battery+Degradation+Than+Age+Or+Mileage&amp;rft.date=2019-12-16&amp;rft_id=https%3A%2F%2Fcleantechnica.com%2F2019%2F12%2F16%2Fnew-data-shows-heat-fast-charging-responsible-for-more-battery-degradation-than-age-or-mileage%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-171"><span class="mw-cite-backlink"><b><a href="#cite_ref-171">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.howtogeek.com/423451/how-ios-13-will-protect-your-iphones-battery-by-charging-to-80/amp/">"How iOS 13 Will Save Your iPhone's Battery (by Not Fully Charging It)"</a>. <i>www.howtogeek.com</i>. 4 June 2019. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200407151116/https://www.howtogeek.com/423451/how-ios-13-will-protect-your-iphones-battery-by-charging-to-80/amp/">Archived</a> from the original on 7 April 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">12 January</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.howtogeek.com&amp;rft.atitle=How+iOS+13+Will+Save+Your+iPhone%27s+Battery+%28by+Not+Fully+Charging+It%29&amp;rft.date=2019-06-04&amp;rft_id=https%3A%2F%2Fwww.howtogeek.com%2F423451%2Fhow-ios-13-will-protect-your-iphones-battery-by-charging-to-80%2Famp%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-172"><span class="mw-cite-backlink"><b><a href="#cite_ref-172">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJary" class="citation web cs1">Jary, Simon. <a rel="nofollow" class="external text" href="https://www.techadvisor.co.uk/how-to/mobile-phone/charge-phone-properly-3619623/">"Battery charging tips and tricks for prolonged life"</a>. <i>Tech Advisor</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200112202751/https://www.techadvisor.co.uk/how-to/mobile-phone/charge-phone-properly-3619623/">Archived</a> from the original on 12 January 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">12 January</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Tech+Advisor&amp;rft.atitle=Battery+charging+tips+and+tricks+for+prolonged+life&amp;rft.aulast=Jary&amp;rft.aufirst=Simon&amp;rft_id=https%3A%2F%2Fwww.techadvisor.co.uk%2Fhow-to%2Fmobile-phone%2Fcharge-phone-properly-3619623%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-173"><span class="mw-cite-backlink"><b><a href="#cite_ref-173">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReynolds2018" class="citation magazine cs1">Reynolds, Matt (4 August 2018). <a rel="nofollow" class="external text" href="https://www.wired.co.uk/article/how-to-improve-battery-life-tips-myths-smartphones">"Here's the truth behind the biggest (and dumbest) battery myths"</a>. <i>Wired UK</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200112202732/https://www.wired.co.uk/article/how-to-improve-battery-life-tips-myths-smartphones">Archived</a> from the original on 12 January 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">12 January</span> 2020</span> &#8211; via www.wired.co.uk.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Wired+UK&amp;rft.atitle=Here%27s+the+truth+behind+the+biggest+%28and+dumbest%29+battery+myths&amp;rft.date=2018-08-04&amp;rft.aulast=Reynolds&amp;rft.aufirst=Matt&amp;rft_id=https%3A%2F%2Fwww.wired.co.uk%2Farticle%2Fhow-to-improve-battery-life-tips-myths-smartphones&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-174"><span class="mw-cite-backlink"><b><a href="#cite_ref-174">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.eeworldonline.com/why-you-should-stop-fully-charging-your-smartphone-now/">"Why You Should Stop Fully Charging Your Smartphone Now"</a>. <i>Electrical Engineering News and Products</i>. 9 November 2015. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200112202748/https://www.eeworldonline.com/why-you-should-stop-fully-charging-your-smartphone-now/">Archived</a> from the original on 12 January 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">12 January</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Electrical+Engineering+News+and+Products&amp;rft.atitle=Why+You+Should+Stop+Fully+Charging+Your+Smartphone+Now&amp;rft.date=2015-11-09&amp;rft_id=https%3A%2F%2Fwww.eeworldonline.com%2Fwhy-you-should-stop-fully-charging-your-smartphone-now%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-175"><span class="mw-cite-backlink"><b><a href="#cite_ref-175">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSongHarlowLoganHebecker2021" class="citation journal cs1">Song, Wentao; Harlow, J.; Logan, E.; Hebecker, H.; Coon, M; Molino, L.; Johnson, M.; Dahn, J.; Metzger, M. (2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F1945-7111%2Fac1e55">"A Systematic Study of Electrolyte Additives in Single Crystal and Bimodal LiNi0.8Mn0.1 Co0.1O2/Graphite Pouch Cells"</a>. <i>Journal of the Electrochemical Society</i>. <b>168</b> (9): 090503. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021JElS..168i0503S">2021JElS..168i0503S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F1945-7111%2Fac1e55">10.1149/1945-7111/ac1e55</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Electrochemical+Society&amp;rft.atitle=A+Systematic+Study+of+Electrolyte+Additives+in+Single+Crystal+and+Bimodal+LiNi0.8Mn0.1+Co0.1O2%2FGraphite+Pouch+Cells&amp;rft.volume=168&amp;rft.issue=9&amp;rft.pages=090503&amp;rft.date=2021&amp;rft_id=info%3Adoi%2F10.1149%2F1945-7111%2Fac1e55&amp;rft_id=info%3Abibcode%2F2021JElS..168i0503S&amp;rft.aulast=Song&amp;rft.aufirst=Wentao&amp;rft.au=Harlow%2C+J.&amp;rft.au=Logan%2C+E.&amp;rft.au=Hebecker%2C+H.&amp;rft.au=Coon%2C+M&amp;rft.au=Molino%2C+L.&amp;rft.au=Johnson%2C+M.&amp;rft.au=Dahn%2C+J.&amp;rft.au=Metzger%2C+M.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1149%252F1945-7111%252Fac1e55&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span>.</span> </li> <li id="cite_note-176"><span class="mw-cite-backlink"><b><a href="#cite_ref-176">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJaguemontVan_Mierlo2020" class="citation journal cs1">Jaguemont, Joris; Van Mierlo, Joeri (October 2020). <a rel="nofollow" class="external text" href="https://linkinghub.elsevier.com/retrieve/pii/S2352152X20301754">"A comprehensive review of future thermal management systems for battery-electrified vehicles"</a>. <i>Journal of Energy Storage</i>. <b>31</b>: 101551. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020JEnSt..3101551J">2020JEnSt..3101551J</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.est.2020.101551">10.1016/j.est.2020.101551</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:219934100">219934100</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220224221518/https://linkinghub.elsevier.com/retrieve/pii/S2352152X20301754">Archived</a> from the original on 24 February 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">28 November</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Energy+Storage&amp;rft.atitle=A+comprehensive+review+of+future+thermal+management+systems+for+battery-electrified+vehicles&amp;rft.volume=31&amp;rft.pages=101551&amp;rft.date=2020-10&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A219934100%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.est.2020.101551&amp;rft_id=info%3Abibcode%2F2020JEnSt..3101551J&amp;rft.aulast=Jaguemont&amp;rft.aufirst=Joris&amp;rft.au=Van+Mierlo%2C+Joeri&amp;rft_id=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2352152X20301754&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-177"><span class="mw-cite-backlink"><b><a href="#cite_ref-177">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWaldmannBisleHoggStumpp2015" class="citation journal cs1">Waldmann, T.; Bisle, G.; Hogg, B.-I.; Stumpp, S.; Danzer, M. A.; Kasper, M.; Axmann, P.; Wohlfahrt-Mehrens, M. (2015). <a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F2.0561506jes">"Influence of Cell Design on Temperatures and Temperature Gradients in Lithium-Ion Cells: An in Operando Study"</a>. <i>Journal of the Electrochemical Society</i>. <b>162</b> (6): A921. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F2.0561506jes">10.1149/2.0561506jes</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Electrochemical+Society&amp;rft.atitle=Influence+of+Cell+Design+on+Temperatures+and+Temperature+Gradients+in+Lithium-Ion+Cells%3A+An+in+Operando+Study&amp;rft.volume=162&amp;rft.issue=6&amp;rft.pages=A921&amp;rft.date=2015&amp;rft_id=info%3Adoi%2F10.1149%2F2.0561506jes&amp;rft.aulast=Waldmann&amp;rft.aufirst=T.&amp;rft.au=Bisle%2C+G.&amp;rft.au=Hogg%2C+B.-I.&amp;rft.au=Stumpp%2C+S.&amp;rft.au=Danzer%2C+M.+A.&amp;rft.au=Kasper%2C+M.&amp;rft.au=Axmann%2C+P.&amp;rft.au=Wohlfahrt-Mehrens%2C+M.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1149%252F2.0561506jes&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span>.</span> </li> <li id="cite_note-178"><span class="mw-cite-backlink"><b><a href="#cite_ref-178">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMalabet2021" class="citation journal cs1">Malabet, Hernando (2021). <a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F1945-7111%2Fac2a7c">"Electrochemical and Post-Mortem Degradation Analysis of Parallel-Connected Lithium-Ion Cells with Non-Uniform Temperature Distribution"</a>. <i>Journal of the Electrochemical Society</i>. <b>168</b> (10): 100507. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021JElS..168j0507G">2021JElS..168j0507G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F1945-7111%2Fac2a7c">10.1149/1945-7111/ac2a7c</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:244186025">244186025</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Electrochemical+Society&amp;rft.atitle=Electrochemical+and+Post-Mortem+Degradation+Analysis+of+Parallel-Connected+Lithium-Ion+Cells+with+Non-Uniform+Temperature+Distribution&amp;rft.volume=168&amp;rft.issue=10&amp;rft.pages=100507&amp;rft.date=2021&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A244186025%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1149%2F1945-7111%2Fac2a7c&amp;rft_id=info%3Abibcode%2F2021JElS..168j0507G&amp;rft.aulast=Malabet&amp;rft.aufirst=Hernando&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1149%252F1945-7111%252Fac2a7c&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEAndrea20109-179"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEAndrea20109_179-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFAndrea2010">Andrea 2010</a>, p.&#160;9.</span> </li> <li id="cite_note-180"><span class="mw-cite-backlink"><b><a href="#cite_ref-180">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiawJungstNagasubramanianCase2005" class="citation journal cs1">Liaw, B. Y.; Jungst, R. G.; Nagasubramanian, G.; Case, H. L.; Doughty, D. H. (2005). "Modeling capacity fade in lithium-ion cells". <i>Journal of Power Sources</i>. <b>140</b> (1): <span class="nowrap">157–</span>161. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005JPS...140..157L">2005JPS...140..157L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2004.08.017">10.1016/j.jpowsour.2004.08.017</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Power+Sources&amp;rft.atitle=Modeling+capacity+fade+in+lithium-ion+cells&amp;rft.volume=140&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E157-%3C%2Fspan%3E161&amp;rft.date=2005&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jpowsour.2004.08.017&amp;rft_id=info%3Abibcode%2F2005JPS...140..157L&amp;rft.aulast=Liaw&amp;rft.aufirst=B.+Y.&amp;rft.au=Jungst%2C+R.+G.&amp;rft.au=Nagasubramanian%2C+G.&amp;rft.au=Case%2C+H.+L.&amp;rft.au=Doughty%2C+D.+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-181"><span class="mw-cite-backlink"><b><a href="#cite_ref-181">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChengZhangZhaoZhang2017" class="citation journal cs1">Cheng, Xin-Bing; Zhang, Rui; Zhao, Chen-Zi; Zhang, Qiang (9 August 2017). <a rel="nofollow" class="external text" href="https://pubs.acs.org/doi/10.1021/acs.chemrev.7b00115">"Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review"</a>. <i>Chemical Reviews</i>. <b>117</b> (15): <span class="nowrap">10403–</span>10473. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facs.chemrev.7b00115">10.1021/acs.chemrev.7b00115</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0009-2665">0009-2665</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28753298">28753298</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20231105034149/https://pubs.acs.org/doi/10.1021/acs.chemrev.7b00115">Archived</a> from the original on 5 November 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">5 November</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chemical+Reviews&amp;rft.atitle=Toward+Safe+Lithium+Metal+Anode+in+Rechargeable+Batteries%3A+A+Review&amp;rft.volume=117&amp;rft.issue=15&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E10403-%3C%2Fspan%3E10473&amp;rft.date=2017-08-09&amp;rft.issn=0009-2665&amp;rft_id=info%3Apmid%2F28753298&amp;rft_id=info%3Adoi%2F10.1021%2Facs.chemrev.7b00115&amp;rft.aulast=Cheng&amp;rft.aufirst=Xin-Bing&amp;rft.au=Zhang%2C+Rui&amp;rft.au=Zhao%2C+Chen-Zi&amp;rft.au=Zhang%2C+Qiang&amp;rft_id=https%3A%2F%2Fpubs.acs.org%2Fdoi%2F10.1021%2Facs.chemrev.7b00115&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-182"><span class="mw-cite-backlink"><b><a href="#cite_ref-182">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFXuWangDingChen2014" class="citation journal cs1">Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard; Zhang, Yaohui; Zhang, Ji-Guang (23 January 2014). <a rel="nofollow" class="external text" href="https://pubs.rsc.org/en/content/articlelanding/2014/ee/c3ee40795k">"Lithium metal anodes for rechargeable batteries"</a>. <i>Energy &amp; Environmental Science</i>. <b>7</b> (2): <span class="nowrap">513–</span>537. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FC3EE40795K">10.1039/C3EE40795K</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1754-5706">1754-5706</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20231105034150/https://pubs.rsc.org/en/content/articlelanding/2014/ee/c3ee40795k">Archived</a> from the original on 5 November 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">5 November</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Energy+%26+Environmental+Science&amp;rft.atitle=Lithium+metal+anodes+for+rechargeable+batteries&amp;rft.volume=7&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E513-%3C%2Fspan%3E537&amp;rft.date=2014-01-23&amp;rft_id=info%3Adoi%2F10.1039%2FC3EE40795K&amp;rft.issn=1754-5706&amp;rft.aulast=Xu&amp;rft.aufirst=Wu&amp;rft.au=Wang%2C+Jiulin&amp;rft.au=Ding%2C+Fei&amp;rft.au=Chen%2C+Xilin&amp;rft.au=Nasybulin%2C+Eduard&amp;rft.au=Zhang%2C+Yaohui&amp;rft.au=Zhang%2C+Ji-Guang&amp;rft_id=https%3A%2F%2Fpubs.rsc.org%2Fen%2Fcontent%2Farticlelanding%2F2014%2Fee%2Fc3ee40795k&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-183"><span class="mw-cite-backlink"><b><a href="#cite_ref-183">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLyuLiuQuZhao2020" class="citation journal cs1">Lyu, Peizhao; Liu, Xinjian; Qu, Jie; Zhao, Jiateng; Huo, Yutao; Qu, Zhiguo; Rao, Zhonghao (1 October 2020). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S2405829720302646">"Recent advances of thermal safety of lithium ion battery for energy storage"</a>. <i>Energy Storage Materials</i>. <b>31</b>: <span class="nowrap">195–</span>220. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020EneSM..31..195L">2020EneSM..31..195L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ensm.2020.06.042">10.1016/j.ensm.2020.06.042</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2405-8297">2405-8297</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:225545635">225545635</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Energy+Storage+Materials&amp;rft.atitle=Recent+advances+of+thermal+safety+of+lithium+ion+battery+for+energy+storage&amp;rft.volume=31&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E195-%3C%2Fspan%3E220&amp;rft.date=2020-10-01&amp;rft_id=info%3Adoi%2F10.1016%2Fj.ensm.2020.06.042&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A225545635%23id-name%3DS2CID&amp;rft.issn=2405-8297&amp;rft_id=info%3Abibcode%2F2020EneSM..31..195L&amp;rft.aulast=Lyu&amp;rft.aufirst=Peizhao&amp;rft.au=Liu%2C+Xinjian&amp;rft.au=Qu%2C+Jie&amp;rft.au=Zhao%2C+Jiateng&amp;rft.au=Huo%2C+Yutao&amp;rft.au=Qu%2C+Zhiguo&amp;rft.au=Rao%2C+Zhonghao&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS2405829720302646&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-184"><span class="mw-cite-backlink"><b><a href="#cite_ref-184">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeiZhangGaoLi2018" class="citation journal cs1">Lei, Yanxiang; Zhang, Caiping; Gao, Yang; Li, Tong (1 October 2018). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.egypro.2018.09.208">"Charging Optimization of Lithium-ion Batteries Based on Capacity Degradation Speed and Energy Loss"</a>. <i>Energy Procedia</i>. Cleaner Energy for Cleaner Cities. <b>152</b>: <span class="nowrap">544–</span>549. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018EnPro.152..544L">2018EnPro.152..544L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.egypro.2018.09.208">10.1016/j.egypro.2018.09.208</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1876-6102">1876-6102</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:115875535">115875535</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Energy+Procedia&amp;rft.atitle=Charging+Optimization+of+Lithium-ion+Batteries+Based+on+Capacity+Degradation+Speed+and+Energy+Loss&amp;rft.volume=152&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E544-%3C%2Fspan%3E549&amp;rft.date=2018-10-01&amp;rft_id=info%3Adoi%2F10.1016%2Fj.egypro.2018.09.208&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A115875535%23id-name%3DS2CID&amp;rft.issn=1876-6102&amp;rft_id=info%3Abibcode%2F2018EnPro.152..544L&amp;rft.aulast=Lei&amp;rft.aufirst=Yanxiang&amp;rft.au=Zhang%2C+Caiping&amp;rft.au=Gao%2C+Yang&amp;rft.au=Li%2C+Tong&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.egypro.2018.09.208&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-185"><span class="mw-cite-backlink"><b><a href="#cite_ref-185">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBandhauerGarimellaFuller2011" class="citation journal cs1">Bandhauer, Todd M.; <a href="/wiki/Srinivas_Garimella" title="Srinivas Garimella">Garimella, Srinivas</a>; Fuller, Thomas F. (25 January 2011). <a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F1.3515880">"A Critical Review of Thermal Issues in Lithium-Ion Batteries"</a>. <i>Journal of the Electrochemical Society</i>. <b>158</b> (3): R1. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F1.3515880">10.1149/1.3515880</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1945-7111">1945-7111</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:97367770">97367770</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Electrochemical+Society&amp;rft.atitle=A+Critical+Review+of+Thermal+Issues+in+Lithium-Ion+Batteries&amp;rft.volume=158&amp;rft.issue=3&amp;rft.pages=R1&amp;rft.date=2011-01-25&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A97367770%23id-name%3DS2CID&amp;rft.issn=1945-7111&amp;rft_id=info%3Adoi%2F10.1149%2F1.3515880&amp;rft.aulast=Bandhauer&amp;rft.aufirst=Todd+M.&amp;rft.au=Garimella%2C+Srinivas&amp;rft.au=Fuller%2C+Thomas+F.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1149%252F1.3515880&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-186"><span class="mw-cite-backlink"><b><a href="#cite_ref-186">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhangChengChenYan2017" class="citation journal cs1">Zhang, Xue-Qiang; Cheng, Xin-Bing; Chen, Xiang; Yan, Chong; Zhang, Qiang (March 2017). <a rel="nofollow" class="external text" href="https://onlinelibrary.wiley.com/doi/10.1002/adfm.201605989">"Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries"</a>. <i>Advanced Functional Materials</i>. <b>27</b> (10). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fadfm.201605989">10.1002/adfm.201605989</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1616-301X">1616-301X</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:99575315">99575315</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20231105034150/https://onlinelibrary.wiley.com/doi/10.1002/adfm.201605989">Archived</a> from the original on 5 November 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">5 November</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Functional+Materials&amp;rft.atitle=Fluoroethylene+Carbonate+Additives+to+Render+Uniform+Li+Deposits+in+Lithium+Metal+Batteries&amp;rft.volume=27&amp;rft.issue=10&amp;rft.date=2017-03&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A99575315%23id-name%3DS2CID&amp;rft.issn=1616-301X&amp;rft_id=info%3Adoi%2F10.1002%2Fadfm.201605989&amp;rft.aulast=Zhang&amp;rft.aufirst=Xue-Qiang&amp;rft.au=Cheng%2C+Xin-Bing&amp;rft.au=Chen%2C+Xiang&amp;rft.au=Yan%2C+Chong&amp;rft.au=Zhang%2C+Qiang&amp;rft_id=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1002%2Fadfm.201605989&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-187"><span class="mw-cite-backlink"><b><a href="#cite_ref-187">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhangFanWang2018" class="citation journal cs1">Zhang, Sheng S.; Fan, Xiulin; Wang, Chunsheng (12 June 2018). <a rel="nofollow" class="external text" href="https://pubs.rsc.org/en/content/articlelanding/2018/ta/c8ta02804d">"Preventing lithium dendrite-related electrical shorting in rechargeable batteries by coating separator with a Li-killing additive"</a>. <i>Journal of Materials Chemistry A</i>. <b>6</b> (23): <span class="nowrap">10755–</span>10760. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FC8TA02804D">10.1039/C8TA02804D</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2050-7496">2050-7496</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20231105034150/https://pubs.rsc.org/en/content/articlelanding/2018/ta/c8ta02804d">Archived</a> from the original on 5 November 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">5 November</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Materials+Chemistry+A&amp;rft.atitle=Preventing+lithium+dendrite-related+electrical+shorting+in+rechargeable+batteries+by+coating+separator+with+a+Li-killing+additive&amp;rft.volume=6&amp;rft.issue=23&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E10755-%3C%2Fspan%3E10760&amp;rft.date=2018-06-12&amp;rft_id=info%3Adoi%2F10.1039%2FC8TA02804D&amp;rft.issn=2050-7496&amp;rft.aulast=Zhang&amp;rft.aufirst=Sheng+S.&amp;rft.au=Fan%2C+Xiulin&amp;rft.au=Wang%2C+Chunsheng&amp;rft_id=https%3A%2F%2Fpubs.rsc.org%2Fen%2Fcontent%2Farticlelanding%2F2018%2Fta%2Fc8ta02804d&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-188"><span class="mw-cite-backlink"><b><a href="#cite_ref-188">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGeldasaKebedeShuraHone2022" class="citation journal cs1">Geldasa FT, Kebede MA, Shura MW, Hone FG (2022). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982025">"Identifying surface degradation, mechanical failure, and thermal instability phenomena of high energy density Ni-rich NCM cathode materials for lithium-ion batteries: a review"</a>. <i>RSC Advances</i>. <b>12</b> (10): <span class="nowrap">5891–</span>5909. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022RSCAd..12.5891G">2022RSCAd..12.5891G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2Fd1ra08401a">10.1039/d1ra08401a</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982025">8982025</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/35424548">35424548</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=RSC+Advances&amp;rft.atitle=Identifying+surface+degradation%2C+mechanical+failure%2C+and+thermal+instability+phenomena+of+high+energy+density+Ni-rich+NCM+cathode+materials+for+lithium-ion+batteries%3A+a+review&amp;rft.volume=12&amp;rft.issue=10&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E5891-%3C%2Fspan%3E5909&amp;rft.date=2022&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8982025%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F35424548&amp;rft_id=info%3Adoi%2F10.1039%2Fd1ra08401a&amp;rft_id=info%3Abibcode%2F2022RSCAd..12.5891G&amp;rft.aulast=Geldasa&amp;rft.aufirst=FT&amp;rft.au=Kebede%2C+MA&amp;rft.au=Shura%2C+MW&amp;rft.au=Hone%2C+FG&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8982025&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-189"><span class="mw-cite-backlink"><b><a href="#cite_ref-189">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPangZhongWangYang2022" class="citation journal cs1">Pang XX, Zhong S, Wang YL, Yang W, Zheng WZ, Sun GZ (2022). "A Review on the Prediction of Health State and Serving Life of Lithium-Ion Batteries". <i>Chemical Record</i>. <b>22</b> (10): e202200131. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Ftcr.202200131">10.1002/tcr.202200131</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/35785467">35785467</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:250282891">250282891</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chemical+Record&amp;rft.atitle=A+Review+on+the+Prediction+of+Health+State+and+Serving+Life+of+Lithium-Ion+Batteries&amp;rft.volume=22&amp;rft.issue=10&amp;rft.pages=e202200131&amp;rft.date=2022&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A250282891%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F35785467&amp;rft_id=info%3Adoi%2F10.1002%2Ftcr.202200131&amp;rft.aulast=Pang&amp;rft.aufirst=XX&amp;rft.au=Zhong%2C+S&amp;rft.au=Wang%2C+YL&amp;rft.au=Yang%2C+W&amp;rft.au=Zheng%2C+WZ&amp;rft.au=Sun%2C+GZ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-190"><span class="mw-cite-backlink"><b><a href="#cite_ref-190">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiWestPreindl2022" class="citation journal cs1">Li AG, West AC, Preindl M (2022). "Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review". <i>Applied Energy</i>. <b>316</b>: 9. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022ApEn..31619030L">2022ApEn..31619030L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.apenergy.2022.119030">10.1016/j.apenergy.2022.119030</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:246554618">246554618</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Applied+Energy&amp;rft.atitle=Towards+unified+machine+learning+characterization+of+lithium-ion+battery+degradation+across+multiple+levels%3A+A+critical+review&amp;rft.volume=316&amp;rft.pages=9&amp;rft.date=2022&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A246554618%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.apenergy.2022.119030&amp;rft_id=info%3Abibcode%2F2022ApEn..31619030L&amp;rft.aulast=Li&amp;rft.aufirst=AG&amp;rft.au=West%2C+AC&amp;rft.au=Preindl%2C+M&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-191"><span class="mw-cite-backlink"><b><a href="#cite_ref-191">^</a></b></span> <span class="reference-text">On the Decomposition of Carbonate-Based Lithium-Ion Battery Electrolytes Studied Using Operando Infrared Spectroscopy. 2018. J Electrochem Soc. 165/16, A4051-A7. N. Saqib, C.M. Ganim, A.E. Shelton, J.M. Porter. doi: 10.1149/2.1051816jes.</span> </li> <li id="cite_note-192"><span class="mw-cite-backlink"><b><a href="#cite_ref-192">^</a></b></span> <span class="reference-text">Safety and Quality Issues of Counterfeit Lithium-Ion Cells. 2023. ACS Energy Lett. 8/6, 2831–9. T. Joshi, S. Azam, D. Juarez-Robles, J.A. Jeevarajan. doi: 10.1021/acsenergylett.3c00724.</span> </li> <li id="cite_note-Hislop-2017-193"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hislop-2017_193-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hislop-2017_193-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHislop2017" class="citation web cs1">Hislop, Martin (1 March 2017). <a rel="nofollow" class="external text" href="http://theamericanenergynews.com/markham-on-energy/solid-state-battery-advance-goodenough">"Solid-state EV battery breakthrough from Li-ion battery inventor John Goodenough"</a>. <i>North American Energy News</i>. The American Energy News. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20201112024323/http://theamericanenergynews.com/markham-on-energy/solid-state-battery-advance-goodenough">Archived</a> from the original on 12 November 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">15 March</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=North+American+Energy+News&amp;rft.atitle=Solid-state+EV+battery+breakthrough+from+Li-ion+battery+inventor+John+Goodenough&amp;rft.date=2017-03-01&amp;rft.aulast=Hislop&amp;rft.aufirst=Martin&amp;rft_id=http%3A%2F%2Ftheamericanenergynews.com%2Fmarkham-on-energy%2Fsolid-state-battery-advance-goodenough&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-194"><span class="mw-cite-backlink"><b><a href="#cite_ref-194">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBisschopWillstrandRosengren2020" class="citation journal cs1">Bisschop, Roeland; Willstrand, Ola; Rosengren, Max (1 November 2020). <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10694-020-01038-1">"Handling Lithium-Ion Batteries in Electric Vehicles: Preventing and Recovering from Hazardous Events"</a>. <i>Fire Technology</i>. <b>56</b> (6): <span class="nowrap">2671–</span>2694. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10694-020-01038-1">10.1007/s10694-020-01038-1</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1572-8099">1572-8099</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:225315970">225315970</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fire+Technology&amp;rft.atitle=Handling+Lithium-Ion+Batteries+in+Electric+Vehicles%3A+Preventing+and+Recovering+from+Hazardous+Events&amp;rft.volume=56&amp;rft.issue=6&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E2671-%3C%2Fspan%3E2694&amp;rft.date=2020-11-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A225315970%23id-name%3DS2CID&amp;rft.issn=1572-8099&amp;rft_id=info%3Adoi%2F10.1007%2Fs10694-020-01038-1&amp;rft.aulast=Bisschop&amp;rft.aufirst=Roeland&amp;rft.au=Willstrand%2C+Ola&amp;rft.au=Rosengren%2C+Max&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252Fs10694-020-01038-1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-195"><span class="mw-cite-backlink"><b><a href="#cite_ref-195">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBisschopWillstrandAmonRosenggren2019" class="citation book cs1">Bisschop, Roeland; Willstrand, Ola; Amon, Francine; Rosenggren, Max (2019). <a rel="nofollow" class="external text" href="http://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-38873"><i>Fire Safety of Lithium-Ion Batteries in Road Vehicles</i></a>. RISE Research Institutes of Sweden. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-91-88907-78-3" title="Special:BookSources/978-91-88907-78-3"><bdi>978-91-88907-78-3</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20240111000253/https://ri.diva-portal.org/smash/record.jsf?pid=diva2%3A1317419&amp;dswid=-6105">Archived</a> from the original on 11 January 2024<span class="reference-accessdate">. Retrieved <span class="nowrap">5 October</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fire+Safety+of+Lithium-Ion+Batteries+in+Road+Vehicles&amp;rft.pub=RISE+Research+Institutes+of+Sweden&amp;rft.date=2019&amp;rft.isbn=978-91-88907-78-3&amp;rft.aulast=Bisschop&amp;rft.aufirst=Roeland&amp;rft.au=Willstrand%2C+Ola&amp;rft.au=Amon%2C+Francine&amp;rft.au=Rosenggren%2C+Max&amp;rft_id=http%3A%2F%2Furn.kb.se%2Fresolve%3Furn%3Durn%3Anbn%3Ase%3Ari%3Adiva-38873&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-196"><span class="mw-cite-backlink"><b><a href="#cite_ref-196">^</a></b></span> <span class="reference-text">Millsaps, C. (10 July 2012). <a rel="nofollow" class="external text" href="http://www.batterypoweronline.com/main/markets/manufacturing-materials/second-edition-of-iec-62133-the-standard-for-secondary-cells-and-batteries-containing-alkaline-or-other-non-acid-electrolytes-is-in-its-final-review-cycle/">Second Edition of IEC 62133: The Standard for Secondary Cells and Batteries Containing Alkaline or Other Non-Acid Electrolytes is in its Final Review Cycle</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140110182139/http://www.batterypoweronline.com/main/markets/manufacturing-materials/second-edition-of-iec-62133-the-standard-for-secondary-cells-and-batteries-containing-alkaline-or-other-non-acid-electrolytes-is-in-its-final-review-cycle/">Archived</a> 10 January 2014 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. Retrieved from Battery Power Online (10 January 2014)</span> </li> <li id="cite_note-IEC-2012-197"><span class="mw-cite-backlink"><b><a href="#cite_ref-IEC-2012_197-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><i>IEC 62133. Secondary cells and batteries containing alkaline or other non-acid electrolytes – Safety requirements for portable sealed secondary cells, and for batteries made from them, for use in portable applications</i> (2.0&#160;ed.). International Electrotechnical Commission. December 2012. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-2-83220-505-1" title="Special:BookSources/978-2-83220-505-1"><bdi>978-2-83220-505-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=IEC+62133.+Secondary+cells+and+batteries+containing+alkaline+or+other+non-acid+electrolytes+%E2%80%93+Safety+requirements+for+portable+sealed+secondary+cells%2C+and+for+batteries+made+from+them%2C+for+use+in+portable+applications&amp;rft.edition=2.0&amp;rft.pub=International+Electrotechnical+Commission&amp;rft.date=2012-12&amp;rft.isbn=978-2-83220-505-1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Kwon-2016-198"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kwon-2016_198-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKwon2016" class="citation web cs1">Kwon, Jethro Mullen and K. J. (2 September 2016). <a rel="nofollow" class="external text" href="https://money.cnn.com/2016/09/02/technology/samsung-galaxy-note-7-recall/index.html">"Samsung is recalling the Galaxy Note 7 worldwide over battery problem"</a>. <i>CNNMoney</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190617140048/https://money.cnn.com/2016/09/02/technology/samsung-galaxy-note-7-recall/index.html">Archived</a> from the original on 17 June 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">13 September</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=CNNMoney&amp;rft.atitle=Samsung+is+recalling+the+Galaxy+Note+7+worldwide+over+battery+problem&amp;rft.date=2016-09-02&amp;rft.aulast=Kwon&amp;rft.aufirst=Jethro+Mullen+and+K.+J.&amp;rft_id=https%3A%2F%2Fmoney.cnn.com%2F2016%2F09%2F02%2Ftechnology%2Fsamsung-galaxy-note-7-recall%2Findex.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-newscomau-2016-199"><span class="mw-cite-backlink"><b><a href="#cite_ref-newscomau-2016_199-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20160902090545/http://www.news.com.au/finance/business/breaking-news/samsung-to-recall-phones-after-explosions/news-story/3ef0b353b48e94477a75e2f08cbb2312">"Samsung recall for Galaxy Note 7"</a>. <i>news.com.au</i>. 2 September 2016. Archived from <a rel="nofollow" class="external text" href="http://www.news.com.au/finance/business/breaking-news/samsung-to-recall-phones-after-explosions/news-story/3ef0b353b48e94477a75e2f08cbb2312">the original</a> on 2 September 2016.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=news.com.au&amp;rft.atitle=Samsung+recall+for+Galaxy+Note+7&amp;rft.date=2016-09-02&amp;rft_id=http%3A%2F%2Fwww.news.com.au%2Ffinance%2Fbusiness%2Fbreaking-news%2Fsamsung-to-recall-phones-after-explosions%2Fnews-story%2F3ef0b353b48e94477a75e2f08cbb2312&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Kanellos-2006-200"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kanellos-2006_200-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKanellos,_Michael2006" class="citation web cs1">Kanellos, Michael (15 August 2006). <a rel="nofollow" class="external text" href="http://news.cnet.com/Can-anything-tame-the-battery-flames/2100-11398_3-6105924.html">"Can anything tame the battery flames?"</a>. CNET. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20131209210515/http://news.cnet.com/Can-anything-tame-the-battery-flames/2100-11398_3-6105924.html">Archived</a> from the original on 9 December 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">14 June</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Can+anything+tame+the+battery+flames%3F&amp;rft.pub=CNET&amp;rft.date=2006-08-15&amp;rft.au=Kanellos%2C+Michael&amp;rft_id=http%3A%2F%2Fnews.cnet.com%2FCan-anything-tame-the-battery-flames%2F2100-11398_3-6105924.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Electrochem-2006-201"><span class="mw-cite-backlink"><b><a href="#cite_ref-Electrochem-2006_201-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFElectrochem_Commercial_Power2006" class="citation web cs1">Electrochem Commercial Power (9 September 2006). <a rel="nofollow" class="external text" href="http://marine.rutgers.edu/~haldeman/Instruments/lithium_safety/Electrochem_Lithium_safety_15-SAF-0043.pdf">"Safety and handling guidelines for Electrochem Lithium Batteries"</a> <span class="cs1-format">(PDF)</span>. Rutgers University. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110720041137/http://marine.rutgers.edu/~haldeman/Instruments/lithium_safety/Electrochem_Lithium_safety_15-SAF-0043.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 20 July 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">21 May</span> 2009</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Safety+and+handling+guidelines+for+Electrochem+Lithium+Batteries&amp;rft.pub=Rutgers+University&amp;rft.date=2006-09-09&amp;rft.au=Electrochem+Commercial+Power&amp;rft_id=http%3A%2F%2Fmarine.rutgers.edu%2F~haldeman%2FInstruments%2Flithium_safety%2FElectrochem_Lithium_safety_15-SAF-0043.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-202"><span class="mw-cite-backlink"><b><a href="#cite_ref-202">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWillstrandBisschopBlomqvistTemple2020" class="citation book cs1">Willstrand, Ola; Bisschop, Roeland; Blomqvist, Per; Temple, Alastair; Anderson, Johan (2020). <a rel="nofollow" class="external text" href="http://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-52000"><i>Toxic Gases from Fire in Electric Vehicles</i></a>. RISE Research Institutes of Sweden. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-91-89167-75-9" title="Special:BookSources/978-91-89167-75-9"><bdi>978-91-89167-75-9</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20240111000252/https://ri.diva-portal.org/smash/record.jsf?pid=diva2%3A1522149&amp;dswid=2413">Archived</a> from the original on 11 January 2024<span class="reference-accessdate">. Retrieved <span class="nowrap">5 October</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Toxic+Gases+from+Fire+in+Electric+Vehicles&amp;rft.pub=RISE+Research+Institutes+of+Sweden&amp;rft.date=2020&amp;rft.isbn=978-91-89167-75-9&amp;rft.aulast=Willstrand&amp;rft.aufirst=Ola&amp;rft.au=Bisschop%2C+Roeland&amp;rft.au=Blomqvist%2C+Per&amp;rft.au=Temple%2C+Alastair&amp;rft.au=Anderson%2C+Johan&amp;rft_id=http%3A%2F%2Furn.kb.se%2Fresolve%3Furn%3Durn%3Anbn%3Ase%3Ari%3Adiva-52000&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Mikolajczak-2011-203"><span class="mw-cite-backlink">^ <a href="#cite_ref-Mikolajczak-2011_203-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Mikolajczak-2011_203-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMikolajczak,_CelinaKahn,_MichaelWhite,_KevinLong,_Richard_Thomas2011" class="citation web cs1"><a href="/wiki/Celina_Mikolajczak" title="Celina Mikolajczak">Mikolajczak, Celina</a>; Kahn, Michael; White, Kevin &amp; Long, Richard Thomas (July 2011). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130513081920/http://www.nfpa.org/assets/files//PDF/Research/RFLithiumIonBatteriesHazard.pdf">"Lithium-Ion Batteries Hazard and Use Assessment"</a> <span class="cs1-format">(PDF)</span>. Fire Protection Research Foundation. pp.&#160;76, 90, 102. Archived from <a rel="nofollow" class="external text" href="http://www.nfpa.org/assets/files//PDF/Research/RFLithiumIonBatteriesHazard.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 13 May 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">27 January</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Lithium-Ion+Batteries+Hazard+and+Use+Assessment&amp;rft.pages=76%2C+90%2C+102&amp;rft.pub=Fire+Protection+Research+Foundation&amp;rft.date=2011-07&amp;rft.au=Mikolajczak%2C+Celina&amp;rft.au=Kahn%2C+Michael&amp;rft.au=White%2C+Kevin&amp;rft.au=Long%2C+Richard+Thomas&amp;rft_id=http%3A%2F%2Fwww.nfpa.org%2Fassets%2Ffiles%2F%2FPDF%2FResearch%2FRFLithiumIonBatteriesHazard.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-204"><span class="mw-cite-backlink"><b><a href="#cite_ref-204">^</a></b></span> <span class="reference-text">Topham, Gwyn (18 July 2013). <a rel="nofollow" class="external text" href="https://www.theguardian.com/world/2013/jul/18/heathrow-fire-boeing-dreamliner-battery">"Heathrow fire on Boeing Dreamliner 'started in battery component'"</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170222140351/https://www.theguardian.com/world/2013/jul/18/heathrow-fire-boeing-dreamliner-battery">Archived</a> 22 February 2017 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. <i>The Guardian</i>.</span> </li> <li id="cite_note-205"><span class="mw-cite-backlink"><b><a href="#cite_ref-205">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.bbc.co.uk/news/business-25737515">"Boeing 787 aircraft grounded after battery problem in Japan"</a>. <i>BBC News</i>. 14 January 2014. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140116062625/http://www.bbc.co.uk/news/business-25737515">Archived</a> from the original on 16 January 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">16 January</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=BBC+News&amp;rft.atitle=Boeing+787+aircraft+grounded+after+battery+problem+in+Japan&amp;rft.date=2014-01-14&amp;rft_id=https%3A%2F%2Fwww.bbc.co.uk%2Fnews%2Fbusiness-25737515&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-206"><span class="mw-cite-backlink"><b><a href="#cite_ref-206">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenLiuHeYuen2017" class="citation journal cs1">Chen, Mingyi; Liu, Jiahao; He, Yaping; Yuen, Richard; Wang, Jian (October 2017). "Study of the fire hazards of lithium-ion batteries at different pressures". <i>Applied Thermal Engineering</i>. <b>125</b>: <span class="nowrap">1061–</span>1074. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017AppTE.125.1061C">2017AppTE.125.1061C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.applthermaleng.2017.06.131">10.1016/j.applthermaleng.2017.06.131</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1359-4311">1359-4311</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Applied+Thermal+Engineering&amp;rft.atitle=Study+of+the+fire+hazards+of+lithium-ion+batteries+at+different+pressures&amp;rft.volume=125&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1061-%3C%2Fspan%3E1074&amp;rft.date=2017-10&amp;rft.issn=1359-4311&amp;rft_id=info%3Adoi%2F10.1016%2Fj.applthermaleng.2017.06.131&amp;rft_id=info%3Abibcode%2F2017AppTE.125.1061C&amp;rft.aulast=Chen&amp;rft.aufirst=Mingyi&amp;rft.au=Liu%2C+Jiahao&amp;rft.au=He%2C+Yaping&amp;rft.au=Yuen%2C+Richard&amp;rft.au=Wang%2C+Jian&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-207"><span class="mw-cite-backlink"><b><a href="#cite_ref-207">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPierre_Cormon2024" class="citation news cs1"><a href="/wiki/Pierre_Cormon" title="Pierre Cormon">Pierre Cormon</a> (20 June 2024). <a rel="nofollow" class="external text" href="https://www.entrepriseromande.ch/web/er/w/batteries-lithium-ion-un-grave-danger-pour-les-recycleurs">"Les batteries lithium-ion, un grave danger pour les recycleurs"</a>. <i>Entreprise romande</i>. <a href="/wiki/F%C3%A9d%C3%A9ration_des_Entreprises_Romandes_Gen%C3%A8ve" title="Fédération des Entreprises Romandes Genève">Fédération des Entreprises Romandes Genève</a><span class="reference-accessdate">. Retrieved <span class="nowrap">30 June</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Entreprise+romande&amp;rft.atitle=Les+batteries+lithium-ion%2C+un+grave+danger+pour+les+recycleurs&amp;rft.date=2024-06-20&amp;rft.au=Pierre+Cormon&amp;rft_id=https%3A%2F%2Fwww.entrepriseromande.ch%2Fweb%2Fer%2Fw%2Fbatteries-lithium-ion-un-grave-danger-pour-les-recycleurs&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Spotnitz-2003-208"><span class="mw-cite-backlink"><b><a href="#cite_ref-Spotnitz-2003_208-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSpotnitzFranklin2003" class="citation journal cs1">Spotnitz, R.; Franklin, J. (2003). "Abuse behavior of high-power, lithium-ion cells". <i>Journal of Power Sources</i>. <b>113</b> (1): <span class="nowrap">81–</span>100. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003JPS...113...81S">2003JPS...113...81S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0378-7753%2802%2900488-3">10.1016/S0378-7753(02)00488-3</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Power+Sources&amp;rft.atitle=Abuse+behavior+of+high-power%2C+lithium-ion+cells&amp;rft.volume=113&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E81-%3C%2Fspan%3E100&amp;rft.date=2003&amp;rft_id=info%3Adoi%2F10.1016%2FS0378-7753%2802%2900488-3&amp;rft_id=info%3Abibcode%2F2003JPS...113...81S&amp;rft.aulast=Spotnitz&amp;rft.aufirst=R.&amp;rft.au=Franklin%2C+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Finegan-2015-209"><span class="mw-cite-backlink"><b><a href="#cite_ref-Finegan-2015_209-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFineganScheelRobinsonTjaden2015" class="citation journal cs1">Finegan, D. P.; Scheel, M.; Robinson, J. B.; Tjaden, B.; Hunt, I.; Mason, T. J.; Millichamp, J.; Di Michiel, M.; Offer, G. J.; Hinds, G.; Brett, D. J. L.; Shearing, P. R. (2015). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423228">"In-operando high-speed tomography of lithium-ion batteries during thermal runaway"</a>. <i>Nature Communications</i>. <b>6</b>: 6924. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015NatCo...6.6924F">2015NatCo...6.6924F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fncomms7924">10.1038/ncomms7924</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423228">4423228</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/25919582">25919582</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Communications&amp;rft.atitle=In-operando+high-speed+tomography+of+lithium-ion+batteries+during+thermal+runaway&amp;rft.volume=6&amp;rft.pages=6924&amp;rft.date=2015&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4423228%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F25919582&amp;rft_id=info%3Adoi%2F10.1038%2Fncomms7924&amp;rft_id=info%3Abibcode%2F2015NatCo...6.6924F&amp;rft.aulast=Finegan&amp;rft.aufirst=D.+P.&amp;rft.au=Scheel%2C+M.&amp;rft.au=Robinson%2C+J.+B.&amp;rft.au=Tjaden%2C+B.&amp;rft.au=Hunt%2C+I.&amp;rft.au=Mason%2C+T.+J.&amp;rft.au=Millichamp%2C+J.&amp;rft.au=Di+Michiel%2C+M.&amp;rft.au=Offer%2C+G.+J.&amp;rft.au=Hinds%2C+G.&amp;rft.au=Brett%2C+D.+J.+L.&amp;rft.au=Shearing%2C+P.+R.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4423228&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-210"><span class="mw-cite-backlink"><b><a href="#cite_ref-210">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLoznenBolintineanuSwart2017" class="citation book cs1">Loznen, Steli; Bolintineanu, Constantin; Swart, Jan (2017). <i>Electrical product compliance and safety engineering</i>. Boston: Artech House. pp.&#160;<span class="nowrap">192–</span>196. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-63081-011-5" title="Special:BookSources/978-1-63081-011-5"><bdi>978-1-63081-011-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Electrical+product+compliance+and+safety+engineering&amp;rft.place=Boston&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E192-%3C%2Fspan%3E196&amp;rft.pub=Artech+House&amp;rft.date=2017&amp;rft.isbn=978-1-63081-011-5&amp;rft.aulast=Loznen&amp;rft.aufirst=Steli&amp;rft.au=Bolintineanu%2C+Constantin&amp;rft.au=Swart%2C+Jan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-GoldPeak-2003-211"><span class="mw-cite-backlink">^ <a href="#cite_ref-GoldPeak-2003_211-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-GoldPeak-2003_211-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20071007175038/http://www.gpbatteries.com/html/pdf/Li-ion_handbook.pdf"><i>Lithium Ion technical handbook</i></a> <span class="cs1-format">(PDF)</span>. Gold Peak Industries Ltd. November 2003. Archived from <a rel="nofollow" class="external text" href="http://www.gpina.com/pdf/Li-ion_Handbook.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 7 October 2007.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Lithium+Ion+technical+handbook&amp;rft.pub=Gold+Peak+Industries+Ltd.&amp;rft.date=2003-11&amp;rft_id=http%3A%2F%2Fwww.gpina.com%2Fpdf%2FLi-ion_Handbook.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Väyrynen-2012-212"><span class="mw-cite-backlink"><b><a href="#cite_ref-Väyrynen-2012_212-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVäyrynenSalminen2012" class="citation journal cs1">Väyrynen, A.; Salminen, J. (2012). "Lithium ion battery production". <i>The Journal of Chemical Thermodynamics</i>. <b>46</b>: <span class="nowrap">80–</span>85. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012JChTh..46...80V">2012JChTh..46...80V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jct.2011.09.005">10.1016/j.jct.2011.09.005</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Chemical+Thermodynamics&amp;rft.atitle=Lithium+ion+battery+production&amp;rft.volume=46&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E80-%3C%2Fspan%3E85&amp;rft.date=2012&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jct.2011.09.005&amp;rft_id=info%3Abibcode%2F2012JChTh..46...80V&amp;rft.aulast=V%C3%A4yrynen&amp;rft.aufirst=A.&amp;rft.au=Salminen%2C+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-213"><span class="mw-cite-backlink"><b><a href="#cite_ref-213">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.powerstream.com/li.htm">"Lithium-ion Battery Charging Basics"</a>. PowerStream Technologies. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210428214636/http://www.powerstream.com/li.htm">Archived</a> from the original on 28 April 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">4 December</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Lithium-ion+Battery+Charging+Basics&amp;rft.pub=PowerStream+Technologies&amp;rft_id=http%3A%2F%2Fwww.powerstream.com%2Fli.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-214"><span class="mw-cite-backlink"><b><a href="#cite_ref-214">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiuKusawakeKuwajima2001" class="citation journal cs1 cs1-prop-long-vol">Liu, Xingjiang; Kusawake, Hiroaki; Kuwajima, Saburo (July 2001). "Preparation of a PVdF-HFP/polyethylene composite gel electrolyte with shutdown function for lithium-ion secondary battery". <i>Journal of Power Sources</i>. <span class="nowrap">97–</span>98: <span class="nowrap">661–</span>663. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001JPS....97..661L">2001JPS....97..661L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0378-7753%2801%2900583-3">10.1016/S0378-7753(01)00583-3</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Power+Sources&amp;rft.atitle=Preparation+of+a+PVdF-HFP%2Fpolyethylene+composite+gel+electrolyte+with+shutdown+function+for+lithium-ion+secondary+battery&amp;rft.volume=97%E2%80%9398&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E661-%3C%2Fspan%3E663&amp;rft.date=2001-07&amp;rft_id=info%3Adoi%2F10.1016%2FS0378-7753%2801%2900583-3&amp;rft_id=info%3Abibcode%2F2001JPS....97..661L&amp;rft.aulast=Liu&amp;rft.aufirst=Xingjiang&amp;rft.au=Kusawake%2C+Hiroaki&amp;rft.au=Kuwajima%2C+Saburo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-215"><span class="mw-cite-backlink"><b><a href="#cite_ref-215">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCringely2006" class="citation news cs1">Cringely, Robert X. (1 September 2006). <a rel="nofollow" class="external text" href="https://www.nytimes.com/2006/09/01/opinion/01cringely.html">"Safety Last"</a>. <i>The New York Times</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120704053530/http://www.nytimes.com/2006/09/01/opinion/01cringely.html?">Archived</a> from the original on 4 July 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">14 April</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+New+York+Times&amp;rft.atitle=Safety+Last&amp;rft.date=2006-09-01&amp;rft.aulast=Cringely&amp;rft.aufirst=Robert+X.&amp;rft_id=https%3A%2F%2Fwww.nytimes.com%2F2006%2F09%2F01%2Fopinion%2F01cringely.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Chung-2024-216"><span class="mw-cite-backlink"><b><a href="#cite_ref-Chung-2024_216-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChung2024" class="citation journal cs1">Chung, Hsien-Ching (13 June 2024). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fbatteries10060202">"The Long-Term Usage of an Off-Grid Photovoltaic System with a Lithium-Ion Battery-Based Energy Storage System on High Mountains: A Case Study in Paiyun Lodge on Mt. Jade in Taiwan"</a>. <i>Batteries</i>. <b>10</b> (6): 202. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2405.04225">2405.04225</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fbatteries10060202">10.3390/batteries10060202</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Batteries&amp;rft.atitle=The+Long-Term+Usage+of+an+Off-Grid+Photovoltaic+System+with+a+Lithium-Ion+Battery-Based+Energy+Storage+System+on+High+Mountains%3A+A+Case+Study+in+Paiyun+Lodge+on+Mt.+Jade+in+Taiwan&amp;rft.volume=10&amp;rft.issue=6&amp;rft.pages=202&amp;rft.date=2024-06-13&amp;rft_id=info%3Aarxiv%2F2405.04225&amp;rft_id=info%3Adoi%2F10.3390%2Fbatteries10060202&amp;rft.aulast=Chung&amp;rft.aufirst=Hsien-Ching&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Fbatteries10060202&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-217"><span class="mw-cite-backlink"><b><a href="#cite_ref-217">^</a></b></span> <span class="reference-text">Hales, Paul (21 June 2006). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20070905234726/http://www.theinquirer.net/default.aspx?article=32550">Dell laptop explodes at Japanese conference</a>. <a href="/wiki/The_Inquirer" title="The Inquirer">The Inquirer</a>. Retrieved 15 June 2010.</span> </li> <li id="cite_note-218"><span class="mw-cite-backlink"><b><a href="#cite_ref-218">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBro,_PerLevy,_Samuel_C.1994" class="citation book cs1">Bro, Per &amp; Levy, Samuel C. (1994). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=i7U-0IB8tjMC&amp;pg=PA15"><i>Battery hazards and accident prevention</i></a>. New York: Plenum Press. pp.&#160;<span class="nowrap">15–</span>16. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-306-44758-7" title="Special:BookSources/978-0-306-44758-7"><bdi>978-0-306-44758-7</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20240111000132/https://books.google.com/books?id=i7U-0IB8tjMC&amp;pg=PA15#v=onepage&amp;q&amp;f=false">Archived</a> from the original on 11 January 2024<span class="reference-accessdate">. Retrieved <span class="nowrap">29 December</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Battery+hazards+and+accident+prevention&amp;rft.place=New+York&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E15-%3C%2Fspan%3E16&amp;rft.pub=Plenum+Press&amp;rft.date=1994&amp;rft.isbn=978-0-306-44758-7&amp;rft.au=Bro%2C+Per&amp;rft.au=Levy%2C+Samuel+C.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Di7U-0IB8tjMC%26pg%3DPA15&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-219"><span class="mw-cite-backlink"><b><a href="#cite_ref-219">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20120104141539/http://www.tsa.gov/travelers/airtravel/assistant/batteries.shtm">"TSA: Safe Travel with Batteries and Devices"</a>. Tsa.gov. 1 January 2008. Archived from <a rel="nofollow" class="external text" href="http://www.tsa.gov/travelers/airtravel/assistant/batteries.shtm">the original</a> on 4 January 2012.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=TSA%3A+Safe+Travel+with+Batteries+and+Devices&amp;rft.pub=Tsa.gov&amp;rft.date=2008-01-01&amp;rft_id=http%3A%2F%2Fwww.tsa.gov%2Ftravelers%2Fairtravel%2Fassistant%2Fbatteries.shtm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-220"><span class="mw-cite-backlink"><b><a href="#cite_ref-220">^</a></b></span> <span class="reference-text">Restrepo N, Uribe JM, Guillen M. Price bubbles in lithium markets around the world. Front Energy Res. 2023;11:11 doi: 10.3389/fenrg.2023.1204179.</span> </li> <li id="cite_note-221"><span class="mw-cite-backlink"><b><a href="#cite_ref-221">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.iea.org/reports/batteries-and-secure-energy-transitions">"Batteries and secure energy transitions"</a>. Paris: IEA. 2024.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Batteries+and+secure+energy+transitions&amp;rft.place=Paris&amp;rft.pub=IEA&amp;rft.date=2024&amp;rft_id=https%3A%2F%2Fwww.iea.org%2Freports%2Fbatteries-and-secure-energy-transitions&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Amui-2020-222"><span class="mw-cite-backlink">^ <a href="#cite_ref-Amui-2020_222-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Amui-2020_222-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Amui-2020_222-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAmui2020" class="citation journal cs1">Amui, Rachid (February 2020). <a rel="nofollow" class="external text" href="https://unctad.org/system/files/official-document/ditccom2019d5_en.pdf">"Commodities At a Glance: Special issue on strategic battery raw materials"</a> <span class="cs1-format">(PDF)</span>. <i>United Nations Conference on Trade and Development</i>. <b>13</b> (UNCTAD/DITC/COM/2019/5). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210203083250/https://unctad.org/system/files/official-document/ditccom2019d5_en.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 3 February 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">10 February</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=United+Nations+Conference+on+Trade+and+Development&amp;rft.atitle=Commodities+At+a+Glance%3A+Special+issue+on+strategic+battery+raw+materials&amp;rft.volume=13&amp;rft.issue=UNCTAD%2FDITC%2FCOM%2F2019%2F5&amp;rft.date=2020-02&amp;rft.aulast=Amui&amp;rft.aufirst=Rachid&amp;rft_id=https%3A%2F%2Functad.org%2Fsystem%2Ffiles%2Fofficial-document%2Fditccom2019d5_en.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-USEPA-2013-223"><span class="mw-cite-backlink"><b><a href="#cite_ref-USEPA-2013_223-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation report cs1"><a rel="nofollow" class="external text" href="https://www.epa.gov/saferchoice/partnership-conduct-life-cycle-assessment-lithium-ion-batteries-and-nanotechnology">Application of Life-Cycle Assessment to Nanoscale Technology: Lithium-ion Batteries for Electric Vehicles</a> (Report). Washington, DC: U.S. Environmental Protection Agency (EPA). 2013. EPA 744-R-12-001. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170711070403/https://www.epa.gov/saferchoice/partnership-conduct-life-cycle-assessment-lithium-ion-batteries-and-nanotechnology">Archived</a> from the original on 11 July 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">9 July</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=report&amp;rft.btitle=Application+of+Life-Cycle+Assessment+to+Nanoscale+Technology%3A+Lithium-ion+Batteries+for+Electric+Vehicles&amp;rft.place=Washington%2C+DC&amp;rft.pub=U.S.+Environmental+Protection+Agency+%28EPA%29&amp;rft.date=2013&amp;rft_id=https%3A%2F%2Fwww.epa.gov%2Fsaferchoice%2Fpartnership-conduct-life-cycle-assessment-lithium-ion-batteries-and-nanotechnology&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Environmental_Leader-2013-224"><span class="mw-cite-backlink"><b><a href="#cite_ref-Environmental_Leader-2013_224-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20160821064806/http://www.environmentalleader.com/2013/05/30/nanotech-can-improve-li-ion-battery-performance/">"Can Nanotech Improve Li-ion Battery Performance"</a>. Environmental Leader. 30 May 2013. Archived from <a rel="nofollow" class="external text" href="http://www.environmentalleader.com/2013/05/30/nanotech-can-improve-li-ion-battery-performance/">the original</a> on 21 August 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">3 June</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Can+Nanotech+Improve+Li-ion+Battery+Performance&amp;rft.pub=Environmental+Leader&amp;rft.date=2013-05-30&amp;rft_id=http%3A%2F%2Fwww.environmentalleader.com%2F2013%2F05%2F30%2Fnanotech-can-improve-li-ion-battery-performance%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Katwala2021-225"><span class="mw-cite-backlink"><b><a href="#cite_ref-Katwala2021_225-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKatwala" class="citation magazine cs1">Katwala, Amit. <a rel="nofollow" class="external text" href="https://www.wired.co.uk/article/lithium-batteries-environment-impact">"The spiralling environmental cost of our lithium battery addiction"</a>. <i>Wired</i>. Condé Nast Publications. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210209172109/https://www.wired.co.uk/article/lithium-batteries-environment-impact">Archived</a> from the original on 9 February 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">10 February</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Wired&amp;rft.atitle=The+spiralling+environmental+cost+of+our+lithium+battery+addiction&amp;rft.aulast=Katwala&amp;rft.aufirst=Amit&amp;rft_id=https%3A%2F%2Fwww.wired.co.uk%2Farticle%2Flithium-batteries-environment-impact&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Draper-2019-226"><span class="mw-cite-backlink"><b><a href="#cite_ref-Draper-2019_226-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDraper" class="citation news cs1">Draper, Robert. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190118232341/https://www.nationalgeographic.com/magazine/2019/02/lithium-is-fueling-technology-today-at-what-cost/">"This metal is powering today's technology—at what price?"</a>. <i>National Geographic</i>. No.&#160;February 2019. National Geographic Partners. Archived from <span class="id-lock-subscription" title="Paid subscription required"><a rel="nofollow" class="external text" href="https://www.nationalgeographic.com/magazine/2019/02/lithium-is-fueling-technology-today-at-what-cost/">the original</a></span> on 18 January 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">10 February</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=National+Geographic&amp;rft.atitle=This+metal+is+powering+today%27s+technology%E2%80%94at+what+price%3F&amp;rft.issue=February+2019&amp;rft.aulast=Draper&amp;rft.aufirst=Robert&amp;rft_id=https%3A%2F%2Fwww.nationalgeographic.com%2Fmagazine%2F2019%2F02%2Flithium-is-fueling-technology-today-at-what-cost%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-227"><span class="mw-cite-backlink"><b><a href="#cite_ref-227">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFranco2015" class="citation book cs1">Franco, Alejandro (7 April 2015). <i>Rechargeable lithium batteries&#160;: from fundamentals to applications</i>. Franco, Alejandro A. Cambridge, UK: Elsevier Science. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781782420989" title="Special:BookSources/9781782420989"><bdi>9781782420989</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/907480930">907480930</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Rechargeable+lithium+batteries+%3A+from+fundamentals+to+applications&amp;rft.place=Cambridge%2C+UK&amp;rft.pub=Elsevier+Science&amp;rft.date=2015-04-07&amp;rft_id=info%3Aoclcnum%2F907480930&amp;rft.isbn=9781782420989&amp;rft.aulast=Franco&amp;rft.aufirst=Alejandro&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-228"><span class="mw-cite-backlink"><b><a href="#cite_ref-228">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.npr.org/sections/goatsandsoda/2023/02/01/1152893248/red-cobalt-congo-drc-mining-siddharth-kara">"How 'modern-day slavery' in the Congo powers the rechargeable battery economy"</a>. <i><a href="/wiki/NPR" title="NPR">NPR</a></i>. 1 February 2023.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=NPR&amp;rft.atitle=How+%27modern-day+slavery%27+in+the+Congo+powers+the+rechargeable+battery+economy&amp;rft.date=2023-02-01&amp;rft_id=https%3A%2F%2Fwww.npr.org%2Fsections%2Fgoatsandsoda%2F2023%2F02%2F01%2F1152893248%2Fred-cobalt-congo-drc-mining-siddharth-kara&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-229"><span class="mw-cite-backlink"><b><a href="#cite_ref-229">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRick2024" class="citation news cs1">Rick, Mills (4 March 2024). <a rel="nofollow" class="external text" href="https://www.mining.com/web/indonesia-and-china-killed-the-nickel-market/">"Indonesia and China killed the nickel market"</a>. <i>MINING.COM</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=MINING.COM&amp;rft.atitle=Indonesia+and+China+killed+the+nickel+market&amp;rft.date=2024-03-04&amp;rft.aulast=Rick&amp;rft.aufirst=Mills&amp;rft_id=https%3A%2F%2Fwww.mining.com%2Fweb%2Findonesia-and-china-killed-the-nickel-market%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-230"><span class="mw-cite-backlink"><b><a href="#cite_ref-230">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.aljazeera.com/news/2024/3/14/land-grabs-and-cleared-forests-why-electric-vehicles-are-getting-a-bad-rep">"Land grabs and vanishing forests: Are 'clean' electric vehicles to blame?"</a>. <i>Al Jazeera</i>. 14 March 2024.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Al+Jazeera&amp;rft.atitle=Land+grabs+and+vanishing+forests%3A+Are+%27clean%27+electric+vehicles+to+blame%3F&amp;rft.date=2024-03-14&amp;rft_id=https%3A%2F%2Fwww.aljazeera.com%2Fnews%2F2024%2F3%2F14%2Fland-grabs-and-cleared-forests-why-electric-vehicles-are-getting-a-bad-rep&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-231"><span class="mw-cite-backlink"><b><a href="#cite_ref-231">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://apnews.com/article/indonesia-nickel-deforestation-rainforest-mining-tesla-ev-184550cddf1df6aad8e883862ab366df">"Indonesia's massive metals build-out is felling the forest for batteries"</a>. <i>AP News</i>. 15 July 2024.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=AP+News&amp;rft.atitle=Indonesia%27s+massive+metals+build-out+is+felling+the+forest+for+batteries&amp;rft.date=2024-07-15&amp;rft_id=https%3A%2F%2Fapnews.com%2Farticle%2Findonesia-nickel-deforestation-rainforest-mining-tesla-ev-184550cddf1df6aad8e883862ab366df&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-232"><span class="mw-cite-backlink"><b><a href="#cite_ref-232">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.dw.com/en/eu-faces-green-dilemma-in-sourcing-nickel-from-indonesia/a-69681557">"EU faces green dilemma in Indonesian nickel"</a>. <i>Deutsche Welle</i>. 16 July 2024.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Deutsche+Welle&amp;rft.atitle=EU+faces+green+dilemma+in+Indonesian+nickel&amp;rft.date=2024-07-16&amp;rft_id=https%3A%2F%2Fwww.dw.com%2Fen%2Feu-faces-green-dilemma-in-sourcing-nickel-from-indonesia%2Fa-69681557&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-233"><span class="mw-cite-backlink"><b><a href="#cite_ref-233">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20160720160201/http://www.kitco.com/ind/Albrecht/2014-12-16-How-Green-is-Lithium.html">"How "Green" is Lithium?"</a>. 16 December 2014. Archived from <a rel="nofollow" class="external text" href="http://www.kitco.com/ind/Albrecht/2014-12-16-How-Green-is-Lithium.html">the original</a> on 20 July 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">25 July</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=How+%22Green%22+is+Lithium%3F&amp;rft.date=2014-12-16&amp;rft_id=http%3A%2F%2Fwww.kitco.com%2Find%2FAlbrecht%2F2014-12-16-How-Green-is-Lithium.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-234"><span class="mw-cite-backlink"><b><a href="#cite_ref-234">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://ec.europa.eu/environment/integration/research/newsalert/pdf/303na1_en.pdf">"European Commission, Science for Environment Policy, News Alert Issue 303"</a> <span class="cs1-format">(PDF)</span>. October 2012. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180916022737/http://ec.europa.eu/environment/integration/research/newsalert/pdf/303na1_en.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 16 September 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">8 February</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=European+Commission%2C+Science+for+Environment+Policy%2C+News+Alert+Issue+303&amp;rft.date=2012-10&amp;rft_id=http%3A%2F%2Fec.europa.eu%2Fenvironment%2Fintegration%2Fresearch%2Fnewsalert%2Fpdf%2F303na1_en.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-235"><span class="mw-cite-backlink"><b><a href="#cite_ref-235">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.transportenvironment.org/wp-content/uploads/2021/07/2019_11_Analysis_CO2_footprint_lithium-ion_batteries.pdf">"Analysis of the climate impact of lithium-ion batteries and how to measure it"</a> <span class="cs1-format">(PDF)</span>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220122130933/https://www.transportenvironment.org/wp-content/uploads/2021/07/2019_11_Analysis_CO2_footprint_lithium-ion_batteries.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 22 January 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">18 December</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Analysis+of+the+climate+impact+of+lithium-ion+batteries+and+how+to+measure+it&amp;rft_id=https%3A%2F%2Fwww.transportenvironment.org%2Fwp-content%2Fuploads%2F2021%2F07%2F2019_11_Analysis_CO2_footprint_lithium-ion_batteries.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-236"><span class="mw-cite-backlink"><b><a href="#cite_ref-236">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBuchert2016" class="citation web cs1">Buchert, Matthias (14 December 2016). <a rel="nofollow" class="external text" href="https://www.erneuerbar-mobil.de/sites/default/files/2017-01/LithoRec%20II-LCA-Update%202016.pdf">"Aktualisierte Ökobilanzen zum Recyclingverfahren LithoRec II für Lithium-Ionen-Batterien"</a> <span class="cs1-format">(PDF)</span>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190420203638/https://www.erneuerbar-mobil.de/sites/default/files/2017-01/LithoRec%20II-LCA-Update%202016.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 20 April 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">14 June</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Aktualisierte+%C3%96kobilanzen+zum+Recyclingverfahren+LithoRec+II+f%C3%BCr+Lithium-Ionen-Batterien&amp;rft.date=2016-12-14&amp;rft.aulast=Buchert&amp;rft.aufirst=Matthias&amp;rft_id=https%3A%2F%2Fwww.erneuerbar-mobil.de%2Fsites%2Fdefault%2Ffiles%2F2017-01%2FLithoRec%2520II-LCA-Update%25202016.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-237"><span class="mw-cite-backlink"><b><a href="#cite_ref-237">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMitchell2006" class="citation web cs1">Mitchell, Robert L. (22 August 2006). <a rel="nofollow" class="external text" href="https://www.computerworld.com/article/2482910/lithium-ion-batteries--high-tech-s-latest-mountain-of-waste.html">"Lithium ion batteries: High-tech's latest mountain of waste"</a>. <i>Computerworld</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220422205547/https://www.computerworld.com/article/2482910/lithium-ion-batteries--high-tech-s-latest-mountain-of-waste.html">Archived</a> from the original on 22 April 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">22 April</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Computerworld&amp;rft.atitle=Lithium+ion+batteries%3A+High-tech%27s+latest+mountain+of+waste&amp;rft.date=2006-08-22&amp;rft.aulast=Mitchell&amp;rft.aufirst=Robert+L.&amp;rft_id=https%3A%2F%2Fwww.computerworld.com%2Farticle%2F2482910%2Flithium-ion-batteries--high-tech-s-latest-mountain-of-waste.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Hanisch-2015-238"><span class="mw-cite-backlink">^ <a href="#cite_ref-Hanisch-2015_238-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Hanisch-2015_238-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHanischDiekmannStiegerHaselrieder2015" class="citation book cs1">Hanisch, Christian; Diekmann, Jan; Stieger, Alexander; Haselrieder, Wolfgang; Kwade, Arno (2015). "27". In Yan, Jinyue; Cabeza, Luisa F.; Sioshansi, Ramteen (eds.). <i>Handbook of Clean Energy Systems – Recycling of Lithium-Ion Batteries</i> (5 Energy Storage&#160;ed.). John Wiley &amp; Sons, Ltd. pp.&#160;<span class="nowrap">2865–</span>2888. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F9781118991978.hces221">10.1002/9781118991978.hces221</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781118991978" title="Special:BookSources/9781118991978"><bdi>9781118991978</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=27&amp;rft.btitle=Handbook+of+Clean+Energy+Systems+%E2%80%93+Recycling+of+Lithium-Ion+Batteries&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E2865-%3C%2Fspan%3E2888&amp;rft.edition=5+Energy+Storage&amp;rft.pub=John+Wiley+%26+Sons%2C+Ltd&amp;rft.date=2015&amp;rft_id=info%3Adoi%2F10.1002%2F9781118991978.hces221&amp;rft.isbn=9781118991978&amp;rft.aulast=Hanisch&amp;rft.aufirst=Christian&amp;rft.au=Diekmann%2C+Jan&amp;rft.au=Stieger%2C+Alexander&amp;rft.au=Haselrieder%2C+Wolfgang&amp;rft.au=Kwade%2C+Arno&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-239"><span class="mw-cite-backlink"><b><a href="#cite_ref-239">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHanisch" class="citation web cs1">Hanisch, Christian. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170226171944/http://www.lion-eng.de/images/pdf/Recycling-of-Lithium-Ion-Batteries-LionEngineering.pdf">"Recycling of Lithium-Ion Batteries"</a> <span class="cs1-format">(PDF)</span>. <i>Presentation on Recycling of Lithium-Ion Batteries</i>. Lion Engineering GmbH. Archived from <a rel="nofollow" class="external text" href="http://www.lion-eng.de/images/pdf/Recycling-of-Lithium-Ion-Batteries-LionEngineering.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 26 February 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">22 July</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Presentation+on+Recycling+of+Lithium-Ion+Batteries&amp;rft.atitle=Recycling+of+Lithium-Ion+Batteries&amp;rft.aulast=Hanisch&amp;rft.aufirst=Christian&amp;rft_id=http%3A%2F%2Fwww.lion-eng.de%2Fimages%2Fpdf%2FRecycling-of-Lithium-Ion-Batteries-LionEngineering.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Morris-2020-240"><span class="mw-cite-backlink">^ <a href="#cite_ref-Morris-2020_240-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Morris-2020_240-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMorris2020" class="citation web cs1">Morris, Charles (27 August 2020). <a rel="nofollow" class="external text" href="https://chargedevs.com/features/li-cycle-recovers-usable-battery-grade-materials-from-shredded-li-ion-batteries/">"Li-Cycle recovers usable battery-grade materials from shredded Li-ion batteries"</a>. <i>chargedevs.com</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200916100246/https://chargedevs.com/features/li-cycle-recovers-usable-battery-grade-materials-from-shredded-li-ion-batteries/">Archived</a> from the original on 16 September 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">31 October</span> 2020</span>. <q>thermally treat them—they're burning off plastic and electrolyte in the batteries and are not really focused on the material recovery. It's mainly the cobalt, the nickel and the copper that they can get via that method. Lithium-ion is quite a bit more complex, than lead–acid</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=chargedevs.com&amp;rft.atitle=Li-Cycle+recovers+usable+battery-grade+materials+from+shredded+Li-ion+batteries&amp;rft.date=2020-08-27&amp;rft.aulast=Morris&amp;rft.aufirst=Charles&amp;rft_id=https%3A%2F%2Fchargedevs.com%2Ffeatures%2Fli-cycle-recovers-usable-battery-grade-materials-from-shredded-li-ion-batteries%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Kamyamkhane-2011-241"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kamyamkhane-2011_241-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKamyamkhane,_Vaishnovi" class="citation web cs1">Kamyamkhane, Vaishnovi. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110917012206/http://www.alternative-energy-resources.net/are-lithium-ion-batteries-sustainable-to-the-environment-i.html">"Are lithium batteries sustainable to the environment?"</a>. Alternative Energy Resources. Archived from <a rel="nofollow" class="external text" href="http://www.alternative-energy-resources.net/are-lithium-ion-batteries-sustainable-to-the-environment-i.html?">the original</a> on 17 September 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">3 June</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Are+lithium+batteries+sustainable+to+the+environment%3F&amp;rft.pub=Alternative+Energy+Resources&amp;rft.au=Kamyamkhane%2C+Vaishnovi&amp;rft_id=http%3A%2F%2Fwww.alternative-energy-resources.net%2Fare-lithium-ion-batteries-sustainable-to-the-environment-i.html%3F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-242"><span class="mw-cite-backlink"><b><a href="#cite_ref-242">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://afdc.energy.gov/files/u/publication/extreme_fast_charging.pdf">"R&amp;D Insights for Extreme Fast Charging of Medium- and Heavy-Duty Vehicles"</a> <span class="cs1-format">(PDF)</span>. <a href="/wiki/NREL" class="mw-redirect" title="NREL">NREL</a>. 27–28 August 2019. p.&#160;6. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20201018040107/https://afdc.energy.gov/files/u/publication/extreme_fast_charging.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 18 October 2020<span class="reference-accessdate">. Retrieved <span class="nowrap">23 October</span> 2020</span>. <q>Some participants paid $3/kg to recycle batteries at end of life</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=R%26D+Insights+for+Extreme+Fast+Charging+of+Medium-+and+Heavy-Duty+Vehicles&amp;rft.pages=6&amp;rft.pub=NREL&amp;rft.date=2019-08-27%2F2019-08-28&amp;rft_id=https%3A%2F%2Fafdc.energy.gov%2Ffiles%2Fu%2Fpublication%2Fextreme_fast_charging.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Jacoby-2019a-243"><span class="mw-cite-backlink">^ <a href="#cite_ref-Jacoby-2019a_243-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Jacoby-2019a_243-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJacoby2019" class="citation news cs1">Jacoby, Mitch (14 July 2019). <a rel="nofollow" class="external text" href="https://cen.acs.org/materials/energy-storage/time-serious-recycling-lithium/97/i28">"It's time to get serious about recycling lithium-ion batteries"</a>. <i>Chemical &amp; Engineering News</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20211029214517/https://cen.acs.org/materials/energy-storage/time-serious-recycling-lithium/97/i28">Archived</a> from the original on 29 October 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">29 October</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chemical+%26+Engineering+News&amp;rft.atitle=It%27s+time+to+get+serious+about+recycling+lithium-ion+batteries&amp;rft.date=2019-07-14&amp;rft.aulast=Jacoby&amp;rft.aufirst=Mitch&amp;rft_id=https%3A%2F%2Fcen.acs.org%2Fmaterials%2Fenergy-storage%2Ftime-serious-recycling-lithium%2F97%2Fi28&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-244"><span class="mw-cite-backlink"><b><a href="#cite_ref-244">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://uacj-automobile.com/ebook/atz_worldwide2018/index.html#p=10">"ATZ WORLDWIDE"</a>. <i>uacj-automobile.com</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190711153343/https://uacj-automobile.com/ebook/atz_worldwide2018/index.html#p=10">Archived</a> from the original on 11 July 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">14 June</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=uacj-automobile.com&amp;rft.atitle=ATZ+WORLDWIDE&amp;rft_id=https%3A%2F%2Fuacj-automobile.com%2Febook%2Fatz_worldwide2018%2Findex.html%23p%3D10&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Jacoby-2019b-245"><span class="mw-cite-backlink"><b><a href="#cite_ref-Jacoby-2019b_245-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJacoby2019" class="citation news cs1">Jacoby, Mitch (14 July 2019). <a rel="nofollow" class="external text" href="https://cen.acs.org/materials/energy-storage/time-serious-recycling-lithium/97/i28">"It's time to get serious about recycling lithium-ion batteries"</a>. <i>Chemical &amp; Engineering News</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20211029214517/https://cen.acs.org/materials/energy-storage/time-serious-recycling-lithium/97/i28">Archived</a> from the original on 29 October 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">29 October</span> 2021</span>. <q>The enormousness of the impending spent-battery situation is driving researchers to search for cost-effective, environmentally sustainable strategies for dealing with the vast stockpile of Li-ion batteries looming on the horizon.; Cobalt, nickel, manganese, and other metals found in batteries can readily leak from the casing of buried batteries and contaminate soil and groundwater, threatening ecosystems and human health...The same is true of the solution of lithium fluoride salts (LiPF6 is common) in organic solvents that are used in a battery's electrolyte</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chemical+%26+Engineering+News&amp;rft.atitle=It%27s+time+to+get+serious+about+recycling+lithium-ion+batteries&amp;rft.date=2019-07-14&amp;rft.aulast=Jacoby&amp;rft.aufirst=Mitch&amp;rft_id=https%3A%2F%2Fcen.acs.org%2Fmaterials%2Fenergy-storage%2Ftime-serious-recycling-lithium%2F97%2Fi28&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-246"><span class="mw-cite-backlink"><b><a href="#cite_ref-246">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDoughtyRoth2012" class="citation journal cs1">Doughty, Daniel H.; Roth, E. Peter (2012). "A General Discussion of Li Ion Battery Safety". <i>Electrochemical Society Interface</i>. <b>21</b> (2): 37. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012ECSIn..21b..37D">2012ECSIn..21b..37D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F2.f03122if">10.1149/2.f03122if</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1944-8783">1944-8783</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Electrochemical+Society+Interface&amp;rft.atitle=A+General+Discussion+of+Li+Ion+Battery+Safety&amp;rft.volume=21&amp;rft.issue=2&amp;rft.pages=37&amp;rft.date=2012&amp;rft.issn=1944-8783&amp;rft_id=info%3Adoi%2F10.1149%2F2.f03122if&amp;rft_id=info%3Abibcode%2F2012ECSIn..21b..37D&amp;rft.aulast=Doughty&amp;rft.aufirst=Daniel+H.&amp;rft.au=Roth%2C+E.+Peter&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-247"><span class="mw-cite-backlink"><b><a href="#cite_ref-247">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGeorgi-MaschlerFriedrichWeyheHeegn2012" class="citation journal cs1">Georgi-Maschler, T.; Friedrich, B.; Weyhe, R.; Heegn, H.; Rutz, M. (1 June 2012). "Development of a recycling process for Li-ion batteries". <i>Journal of Power Sources</i>. <b>207</b>: <span class="nowrap">173–</span>182. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2012.01.152">10.1016/j.jpowsour.2012.01.152</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0378-7753">0378-7753</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Power+Sources&amp;rft.atitle=Development+of+a+recycling+process+for+Li-ion+batteries&amp;rft.volume=207&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E173-%3C%2Fspan%3E182&amp;rft.date=2012-06-01&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jpowsour.2012.01.152&amp;rft.issn=0378-7753&amp;rft.aulast=Georgi-Maschler&amp;rft.aufirst=T.&amp;rft.au=Friedrich%2C+B.&amp;rft.au=Weyhe%2C+R.&amp;rft.au=Heegn%2C+H.&amp;rft.au=Rutz%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-248"><span class="mw-cite-backlink"><b><a href="#cite_ref-248">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLvWangCaoSun2018" class="citation journal cs1">Lv, Weiguang; Wang, Zhonghang; Cao, Hongbin; Sun, Yong; Zhang, Yi; Sun, Zhi (11 January 2018). "A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries". <i>ACS Sustainable Chemistry &amp; Engineering</i>. <b>6</b> (2): <span class="nowrap">1504–</span>1521. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facssuschemeng.7b03811">10.1021/acssuschemeng.7b03811</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2168-0485">2168-0485</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ACS+Sustainable+Chemistry+%26+Engineering&amp;rft.atitle=A+Critical+Review+and+Analysis+on+the+Recycling+of+Spent+Lithium-Ion+Batteries&amp;rft.volume=6&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1504-%3C%2Fspan%3E1521&amp;rft.date=2018-01-11&amp;rft_id=info%3Adoi%2F10.1021%2Facssuschemeng.7b03811&amp;rft.issn=2168-0485&amp;rft.aulast=Lv&amp;rft.aufirst=Weiguang&amp;rft.au=Wang%2C+Zhonghang&amp;rft.au=Cao%2C+Hongbin&amp;rft.au=Sun%2C+Yong&amp;rft.au=Zhang%2C+Yi&amp;rft.au=Sun%2C+Zhi&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-249"><span class="mw-cite-backlink"><b><a href="#cite_ref-249">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFerreiraPradosMajusteMansur2009" class="citation journal cs1">Ferreira, Daniel Alvarenga; Prados, Luisa Martins Zimmer; Majuste, Daniel; Mansur, Marcelo Borges (1 February 2009). "Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries". <i>Journal of Power Sources</i>. <b>187</b> (1): <span class="nowrap">238–</span>246. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009JPS...187..238F">2009JPS...187..238F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2008.10.077">10.1016/j.jpowsour.2008.10.077</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0378-7753">0378-7753</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Power+Sources&amp;rft.atitle=Hydrometallurgical+separation+of+aluminium%2C+cobalt%2C+copper+and+lithium+from+spent+Li-ion+batteries&amp;rft.volume=187&amp;rft.issue=1&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E238-%3C%2Fspan%3E246&amp;rft.date=2009-02-01&amp;rft.issn=0378-7753&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jpowsour.2008.10.077&amp;rft_id=info%3Abibcode%2F2009JPS...187..238F&amp;rft.aulast=Ferreira&amp;rft.aufirst=Daniel+Alvarenga&amp;rft.au=Prados%2C+Luisa+Martins+Zimmer&amp;rft.au=Majuste%2C+Daniel&amp;rft.au=Mansur%2C+Marcelo+Borges&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-250"><span class="mw-cite-backlink"><b><a href="#cite_ref-250">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeSunSongYu2017" class="citation journal cs1">He, Li-Po; Sun, Shu-Ying; Song, Xing-Fu; Yu, Jian-Guo (June 2017). "Leaching process for recovering valuable metals from the LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode of lithium-ion batteries". <i>Waste Management</i>. <b>64</b>: <span class="nowrap">171–</span>181. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017WaMan..64..171H">2017WaMan..64..171H</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.wasman.2017.02.011">10.1016/j.wasman.2017.02.011</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0956-053X">0956-053X</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28325707">28325707</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Waste+Management&amp;rft.atitle=Leaching+process+for+recovering+valuable+metals+from+the+LiNi+1%2F3+Co+1%2F3+Mn+1%2F3+O+2+cathode+of+lithium-ion+batteries&amp;rft.volume=64&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E171-%3C%2Fspan%3E181&amp;rft.date=2017-06&amp;rft_id=info%3Adoi%2F10.1016%2Fj.wasman.2017.02.011&amp;rft.issn=0956-053X&amp;rft_id=info%3Apmid%2F28325707&amp;rft_id=info%3Abibcode%2F2017WaMan..64..171H&amp;rft.aulast=He&amp;rft.aufirst=Li-Po&amp;rft.au=Sun%2C+Shu-Ying&amp;rft.au=Song%2C+Xing-Fu&amp;rft.au=Yu%2C+Jian-Guo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-251"><span class="mw-cite-backlink"><b><a href="#cite_ref-251">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSaGratzHeelanMa2016" class="citation journal cs1">Sa, Qina; Gratz, Eric; Heelan, Joseph A.; Ma, Sijia; Apelian, Diran; Wang, Yan (4 April 2016). <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs40831-016-0052-x">"Synthesis of Diverse LiNixMnyCozO2 Cathode Materials from Lithium Ion Battery Recovery Stream"</a>. <i>Journal of Sustainable Metallurgy</i>. <b>2</b> (3): <span class="nowrap">248–</span>256. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016JSusM...2..248S">2016JSusM...2..248S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs40831-016-0052-x">10.1007/s40831-016-0052-x</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2199-3823">2199-3823</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:99466764">99466764</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Sustainable+Metallurgy&amp;rft.atitle=Synthesis+of+Diverse+LiNixMnyCozO2+Cathode+Materials+from+Lithium+Ion+Battery+Recovery+Stream&amp;rft.volume=2&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E248-%3C%2Fspan%3E256&amp;rft.date=2016-04-04&amp;rft_id=info%3Adoi%2F10.1007%2Fs40831-016-0052-x&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A99466764%23id-name%3DS2CID&amp;rft.issn=2199-3823&amp;rft_id=info%3Abibcode%2F2016JSusM...2..248S&amp;rft.aulast=Sa&amp;rft.aufirst=Qina&amp;rft.au=Gratz%2C+Eric&amp;rft.au=Heelan%2C+Joseph+A.&amp;rft.au=Ma%2C+Sijia&amp;rft.au=Apelian%2C+Diran&amp;rft.au=Wang%2C+Yan&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252Fs40831-016-0052-x&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-252"><span class="mw-cite-backlink"><b><a href="#cite_ref-252">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.greencarcongress.com/2020/11/20201119-licycle.html">"Li-ion battery recycling company Li-Cycle closes Series C round"</a>. <i>Green Car Congress</i>. 29 November 2020. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20201129011325/https://www.greencarcongress.com/2020/11/20201119-licycle.html">Archived</a> from the original on 29 November 2020.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Green+Car+Congress&amp;rft.atitle=Li-ion+battery+recycling+company+Li-Cycle+closes+Series+C+round&amp;rft.date=2020-11-29&amp;rft_id=https%3A%2F%2Fwww.greencarcongress.com%2F2020%2F11%2F20201119-licycle.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-253"><span class="mw-cite-backlink"><b><a href="#cite_ref-253">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShiChenLiuYue2018" class="citation journal cs1">Shi, Yang; Chen, Gen; Liu, Fang; Yue, Xiujun; Chen, Zheng (26 June 2018). "Resolving the Compositional and Structural Defects of Degraded LiNixCoyMnzO2 Particles to Directly Regenerate High-Performance Lithium-Ion Battery Cathodes". <i>ACS Energy Letters</i>. <b>3</b> (7): <span class="nowrap">1683–</span>1692. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facsenergylett.8b00833">10.1021/acsenergylett.8b00833</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2380-8195">2380-8195</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:139435709">139435709</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ACS+Energy+Letters&amp;rft.atitle=Resolving+the+Compositional+and+Structural+Defects+of+Degraded+LiNixCoyMnzO2+Particles+to+Directly+Regenerate+High-Performance+Lithium-Ion+Battery+Cathodes&amp;rft.volume=3&amp;rft.issue=7&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1683-%3C%2Fspan%3E1692&amp;rft.date=2018-06-26&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A139435709%23id-name%3DS2CID&amp;rft.issn=2380-8195&amp;rft_id=info%3Adoi%2F10.1021%2Facsenergylett.8b00833&amp;rft.aulast=Shi&amp;rft.aufirst=Yang&amp;rft.au=Chen%2C+Gen&amp;rft.au=Liu%2C+Fang&amp;rft.au=Yue%2C+Xiujun&amp;rft.au=Chen%2C+Zheng&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-254"><span class="mw-cite-backlink"><b><a href="#cite_ref-254">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDunnGainesSullivanWang2012" class="citation journal cs1">Dunn, Jennifer B.; Gaines, Linda; Sullivan, John; Wang, Michael Q. (30 October 2012). "Impact of Recycling on Cradle-to-Gate Energy Consumption and Greenhouse Gas Emissions of Automotive Lithium-Ion Batteries". <i>Environmental Science &amp; Technology</i>. <b>46</b> (22): <span class="nowrap">12704–</span>12710. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012EnST...4612704D">2012EnST...4612704D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fes302420z">10.1021/es302420z</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0013-936X">0013-936X</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23075406">23075406</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Environmental+Science+%26+Technology&amp;rft.atitle=Impact+of+Recycling+on+Cradle-to-Gate+Energy+Consumption+and+Greenhouse+Gas+Emissions+of+Automotive+Lithium-Ion+Batteries&amp;rft.volume=46&amp;rft.issue=22&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E12704-%3C%2Fspan%3E12710&amp;rft.date=2012-10-30&amp;rft_id=info%3Adoi%2F10.1021%2Fes302420z&amp;rft.issn=0013-936X&amp;rft_id=info%3Apmid%2F23075406&amp;rft_id=info%3Abibcode%2F2012EnST...4612704D&amp;rft.aulast=Dunn&amp;rft.aufirst=Jennifer+B.&amp;rft.au=Gaines%2C+Linda&amp;rft.au=Sullivan%2C+John&amp;rft.au=Wang%2C+Michael+Q.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-255"><span class="mw-cite-backlink"><b><a href="#cite_ref-255">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation journal cs1"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41560-019-0376-4">"Recycle spent batteries"</a>. <i>Nature Energy</i>. <b>4</b> (4): 253. April 2019. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019NatEn...4..253.">2019NatEn...4..253.</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41560-019-0376-4">10.1038/s41560-019-0376-4</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2058-7546">2058-7546</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:189929222">189929222</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Energy&amp;rft.atitle=Recycle+spent+batteries&amp;rft.volume=4&amp;rft.issue=4&amp;rft.pages=253&amp;rft.date=2019-04&amp;rft_id=info%3Adoi%2F10.1038%2Fs41560-019-0376-4&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A189929222%23id-name%3DS2CID&amp;rft.issn=2058-7546&amp;rft_id=info%3Abibcode%2F2019NatEn...4..253.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1038%252Fs41560-019-0376-4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-Ciez-2019-256"><span class="mw-cite-backlink">^ <a href="#cite_ref-Ciez-2019_256-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Ciez-2019_256-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCiezWhitacre2019" class="citation journal cs1">Ciez, Rebecca E.; Whitacre, J. F. (February 2019). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1038/s41893-019-0222-5">"Examining different recycling processes for lithium-ion batteries"</a>. <i>Nature Sustainability</i>. <b>2</b> (2): <span class="nowrap">148–</span>156. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019NatSu...2..148C">2019NatSu...2..148C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41893-019-0222-5">10.1038/s41893-019-0222-5</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2398-9629">2398-9629</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:188116440">188116440</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Sustainability&amp;rft.atitle=Examining+different+recycling+processes+for+lithium-ion+batteries&amp;rft.volume=2&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E148-%3C%2Fspan%3E156&amp;rft.date=2019-02&amp;rft_id=info%3Adoi%2F10.1038%2Fs41893-019-0222-5&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A188116440%23id-name%3DS2CID&amp;rft.issn=2398-9629&amp;rft_id=info%3Abibcode%2F2019NatSu...2..148C&amp;rft.aulast=Ciez&amp;rft.aufirst=Rebecca+E.&amp;rft.au=Whitacre%2C+J.+F.&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1038%2Fs41893-019-0222-5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-257"><span class="mw-cite-backlink"><b><a href="#cite_ref-257">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNiuXuXiaoQin2023" class="citation journal cs1">Niu, Bo; Xu, Zhenming; Xiao, Jiefeng; Qin, Yufei (12 July 2023). <a rel="nofollow" class="external text" href="https://pubs.acs.org/doi/10.1021/acs.chemrev.3c00174">"Recycling Hazardous and Valuable Electrolyte in Spent Lithium-Ion Batteries: Urgency, Progress, Challenge, and Viable Approach"</a>. <i>Chemical Reviews</i>. <b>123</b> (13): <span class="nowrap">8718–</span>8735. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facs.chemrev.3c00174">10.1021/acs.chemrev.3c00174</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0009-2665">0009-2665</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/37339582">37339582</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chemical+Reviews&amp;rft.atitle=Recycling+Hazardous+and+Valuable+Electrolyte+in+Spent+Lithium-Ion+Batteries%3A+Urgency%2C+Progress%2C+Challenge%2C+and+Viable+Approach&amp;rft.volume=123&amp;rft.issue=13&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E8718-%3C%2Fspan%3E8735&amp;rft.date=2023-07-12&amp;rft.issn=0009-2665&amp;rft_id=info%3Apmid%2F37339582&amp;rft_id=info%3Adoi%2F10.1021%2Facs.chemrev.3c00174&amp;rft.aulast=Niu&amp;rft.aufirst=Bo&amp;rft.au=Xu%2C+Zhenming&amp;rft.au=Xiao%2C+Jiefeng&amp;rft.au=Qin%2C+Yufei&amp;rft_id=https%3A%2F%2Fpubs.acs.org%2Fdoi%2F10.1021%2Facs.chemrev.3c00174&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-258"><span class="mw-cite-backlink"><b><a href="#cite_ref-258">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhangShiEsanAn2022" class="citation journal cs1">Zhang, Ruihan; Shi, Xingyi; Esan, Oladapo Christopher; An, Liang (11 June 2022). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9749074">"Organic Electrolytes Recycling From Spent Lithium-Ion Batteries"</a>. <i>Global Challenges</i>. <b>6</b> (12). <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022GloCh...600050Z">2022GloCh...600050Z</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fgch2.202200050">10.1002/gch2.202200050</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2056-6646">2056-6646</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9749074">9749074</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/36532239">36532239</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Global+Challenges&amp;rft.atitle=Organic+Electrolytes+Recycling+From+Spent+Lithium-Ion+Batteries&amp;rft.volume=6&amp;rft.issue=12&amp;rft.date=2022-06-11&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC9749074%23id-name%3DPMC&amp;rft_id=info%3Abibcode%2F2022GloCh...600050Z&amp;rft_id=info%3Apmid%2F36532239&amp;rft_id=info%3Adoi%2F10.1002%2Fgch2.202200050&amp;rft.issn=2056-6646&amp;rft.aulast=Zhang&amp;rft.aufirst=Ruihan&amp;rft.au=Shi%2C+Xingyi&amp;rft.au=Esan%2C+Oladapo+Christopher&amp;rft.au=An%2C+Liang&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC9749074&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-259"><span class="mw-cite-backlink"><b><a href="#cite_ref-259">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWangJiangYuSun2019" class="citation journal cs1">Wang, Qingsong; Jiang, Lihua; Yu, Yan; Sun, Jinhua (1 January 2019). <a rel="nofollow" class="external text" href="https://linkinghub.elsevier.com/retrieve/pii/S2211285518307614">"Progress of enhancing the safety of lithium ion battery from the electrolyte aspect"</a>. <i>Nano Energy</i>. <b>55</b>: <span class="nowrap">93–</span>114. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019NEne...55...93W">2019NEne...55...93W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.nanoen.2018.10.035">10.1016/j.nanoen.2018.10.035</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2211-2855">2211-2855</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nano+Energy&amp;rft.atitle=Progress+of+enhancing+the+safety+of+lithium+ion+battery+from+the+electrolyte+aspect&amp;rft.volume=55&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E93-%3C%2Fspan%3E114&amp;rft.date=2019-01-01&amp;rft.issn=2211-2855&amp;rft_id=info%3Adoi%2F10.1016%2Fj.nanoen.2018.10.035&amp;rft_id=info%3Abibcode%2F2019NEne...55...93W&amp;rft.aulast=Wang&amp;rft.aufirst=Qingsong&amp;rft.au=Jiang%2C+Lihua&amp;rft.au=Yu%2C+Yan&amp;rft.au=Sun%2C+Jinhua&amp;rft_id=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2211285518307614&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-260"><span class="mw-cite-backlink"><b><a href="#cite_ref-260">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMönnighoffFriesenKonersmannHorsthemke2017" class="citation journal cs1">Mönnighoff, Xaver; Friesen, Alex; Konersmann, Benedikt; Horsthemke, Fabian; Grützke, Martin; Winter, Martin; Nowak, Sascha (1 June 2017). <a rel="nofollow" class="external text" href="https://linkinghub.elsevier.com/retrieve/pii/S0378775317304202">"Supercritical carbon dioxide extraction of electrolyte from spent lithium ion batteries and its characterization by gas chromatography with chemical ionization"</a>. <i>Journal of Power Sources</i>. <b>352</b>: <span class="nowrap">56–</span>63. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017JPS...352...56M">2017JPS...352...56M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2017.03.114">10.1016/j.jpowsour.2017.03.114</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0378-7753">0378-7753</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Power+Sources&amp;rft.atitle=Supercritical+carbon+dioxide+extraction+of+electrolyte+from+spent+lithium+ion+batteries+and+its+characterization+by+gas+chromatography+with+chemical+ionization&amp;rft.volume=352&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E56-%3C%2Fspan%3E63&amp;rft.date=2017-06-01&amp;rft.issn=0378-7753&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jpowsour.2017.03.114&amp;rft_id=info%3Abibcode%2F2017JPS...352...56M&amp;rft.aulast=M%C3%B6nnighoff&amp;rft.aufirst=Xaver&amp;rft.au=Friesen%2C+Alex&amp;rft.au=Konersmann%2C+Benedikt&amp;rft.au=Horsthemke%2C+Fabian&amp;rft.au=Gr%C3%BCtzke%2C+Martin&amp;rft.au=Winter%2C+Martin&amp;rft.au=Nowak%2C+Sascha&amp;rft_id=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0378775317304202&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-261"><span class="mw-cite-backlink"><b><a href="#cite_ref-261">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhangLiFanXue2018" class="citation journal cs1">Zhang, Xiaoxiao; Li, Li; Fan, Ersha; Xue, Qing; Bian, Yifan; Wu, Feng; Chen, Renjie (2018). <a rel="nofollow" class="external text" href="https://xlink.rsc.org/?DOI=C8CS00297E">"Toward sustainable and systematic recycling of spent rechargeable batteries"</a>. <i>Chemical Society Reviews</i>. <b>47</b> (19): <span class="nowrap">7239–</span>7302. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1039%2FC8CS00297E">10.1039/C8CS00297E</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0306-0012">0306-0012</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/30124695">30124695</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chemical+Society+Reviews&amp;rft.atitle=Toward+sustainable+and+systematic+recycling+of+spent+rechargeable+batteries&amp;rft.volume=47&amp;rft.issue=19&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E7239-%3C%2Fspan%3E7302&amp;rft.date=2018&amp;rft.issn=0306-0012&amp;rft_id=info%3Apmid%2F30124695&amp;rft_id=info%3Adoi%2F10.1039%2FC8CS00297E&amp;rft.aulast=Zhang&amp;rft.aufirst=Xiaoxiao&amp;rft.au=Li%2C+Li&amp;rft.au=Fan%2C+Ersha&amp;rft.au=Xue%2C+Qing&amp;rft.au=Bian%2C+Yifan&amp;rft.au=Wu%2C+Feng&amp;rft.au=Chen%2C+Renjie&amp;rft_id=https%3A%2F%2Fxlink.rsc.org%2F%3FDOI%3DC8CS00297E&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-262"><span class="mw-cite-backlink"><b><a href="#cite_ref-262">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArshadLiAminFan2020" class="citation journal cs1">Arshad, Faiza; Li, Li; Amin, Kamran; Fan, Ersha; Manurkar, Nagesh; Ahmad, Ali; Yang, Jingbo; Wu, Feng; Chen, Renjie (14 September 2020). <a rel="nofollow" class="external text" href="https://pubs.acs.org/doi/10.1021/acssuschemeng.0c04940">"A Comprehensive Review of the Advancement in Recycling the Anode and Electrolyte from Spent Lithium Ion Batteries"</a>. <i>ACS Sustainable Chemistry &amp; Engineering</i>. <b>8</b> (36): <span class="nowrap">13527–</span>13554. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facssuschemeng.0c04940">10.1021/acssuschemeng.0c04940</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2168-0485">2168-0485</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ACS+Sustainable+Chemistry+%26+Engineering&amp;rft.atitle=A+Comprehensive+Review+of+the+Advancement+in+Recycling+the+Anode+and+Electrolyte+from+Spent+Lithium+Ion+Batteries&amp;rft.volume=8&amp;rft.issue=36&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E13527-%3C%2Fspan%3E13554&amp;rft.date=2020-09-14&amp;rft_id=info%3Adoi%2F10.1021%2Facssuschemeng.0c04940&amp;rft.issn=2168-0485&amp;rft.aulast=Arshad&amp;rft.aufirst=Faiza&amp;rft.au=Li%2C+Li&amp;rft.au=Amin%2C+Kamran&amp;rft.au=Fan%2C+Ersha&amp;rft.au=Manurkar%2C+Nagesh&amp;rft.au=Ahmad%2C+Ali&amp;rft.au=Yang%2C+Jingbo&amp;rft.au=Wu%2C+Feng&amp;rft.au=Chen%2C+Renjie&amp;rft_id=https%3A%2F%2Fpubs.acs.org%2Fdoi%2F10.1021%2Facssuschemeng.0c04940&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-263"><span class="mw-cite-backlink"><b><a href="#cite_ref-263">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAgusdinataLiuEakinRomero2018" class="citation journal cs1">Agusdinata, Datu Buyung; Liu, Wenjuan; Eakin, Hallie; Romero, Hugo (27 November 2018). <a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1748-9326%2Faae9b1">"Socio-environmental impacts of lithium mineral extraction: towards a research agenda"</a>. <i>Environmental Research Letters</i>. <b>13</b> (12): 123001. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018ERL....13l3001B">2018ERL....13l3001B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1748-9326%2Faae9b1">10.1088/1748-9326/aae9b1</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1748-9326">1748-9326</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:159013281">159013281</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Environmental+Research+Letters&amp;rft.atitle=Socio-environmental+impacts+of+lithium+mineral+extraction%3A+towards+a+research+agenda&amp;rft.volume=13&amp;rft.issue=12&amp;rft.pages=123001&amp;rft.date=2018-11-27&amp;rft_id=info%3Adoi%2F10.1088%2F1748-9326%2Faae9b1&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A159013281%23id-name%3DS2CID&amp;rft.issn=1748-9326&amp;rft_id=info%3Abibcode%2F2018ERL....13l3001B&amp;rft.aulast=Agusdinata&amp;rft.aufirst=Datu+Buyung&amp;rft.au=Liu%2C+Wenjuan&amp;rft.au=Eakin%2C+Hallie&amp;rft.au=Romero%2C+Hugo&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1088%252F1748-9326%252Faae9b1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-264"><span class="mw-cite-backlink"><b><a href="#cite_ref-264">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMuchaSadofFrankel2018" class="citation news cs1">Mucha, Lena; Sadof, Karly Domb; Frankel, Todd C. (28 February 2018). <a rel="nofollow" class="external text" href="https://www.washingtonpost.com/news/in-sight/wp/2018/02/28/the-cost-of-cobalt/">"Perspective – The hidden costs of cobalt mining"</a>. <i>The Washington Post</i>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0190-8286">0190-8286</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190410171546/https://www.washingtonpost.com/news/in-sight/wp/2018/02/28/the-cost-of-cobalt/">Archived</a> from the original on 10 April 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">7 March</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Washington+Post&amp;rft.atitle=Perspective+%E2%80%93+The+hidden+costs+of+cobalt+mining&amp;rft.date=2018-02-28&amp;rft.issn=0190-8286&amp;rft.aulast=Mucha&amp;rft.aufirst=Lena&amp;rft.au=Sadof%2C+Karly+Domb&amp;rft.au=Frankel%2C+Todd+C.&amp;rft_id=https%3A%2F%2Fwww.washingtonpost.com%2Fnews%2Fin-sight%2Fwp%2F2018%2F02%2F28%2Fthe-cost-of-cobalt%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-265"><span class="mw-cite-backlink"><b><a href="#cite_ref-265">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTodd_C._Frankel2016" class="citation news cs1">Todd C. Frankel (30 September 2016). <a rel="nofollow" class="external text" href="https://www.washingtonpost.com/graphics/business/batteries/congo-cobalt-mining-for-lithium-ion-battery/">"THE COBALT PIPELINE: Tracing the path from deadly hand-dug mines in Congo to consumers' phones and laptops"</a>. <i>The Washington Post</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190417134443/https://www.washingtonpost.com/graphics/business/batteries/congo-cobalt-mining-for-lithium-ion-battery/">Archived</a> from the original on 17 April 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">29 October</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Washington+Post&amp;rft.atitle=THE+COBALT+PIPELINE%3A+Tracing+the+path+from+deadly+hand-dug+mines+in+Congo+to+consumers%27+phones+and+laptops&amp;rft.date=2016-09-30&amp;rft.au=Todd+C.+Frankel&amp;rft_id=https%3A%2F%2Fwww.washingtonpost.com%2Fgraphics%2Fbusiness%2Fbatteries%2Fcongo-cobalt-mining-for-lithium-ion-battery%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-266"><span class="mw-cite-backlink"><b><a href="#cite_ref-266">^</a></b></span> <span class="reference-text">Crawford, Alex. <a rel="nofollow" class="external text" href="http://news.sky.com/story/meet-dorsen-8-who-mines-cobalt-to-make-your-smartphone-work-10784120">Meet Dorsen, 8, who mines cobalt to make your smartphone work</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180907130830/https://news.sky.com/story/meet-dorsen-8-who-mines-cobalt-to-make-your-smartphone-work-10784120">Archived</a> 7 September 2018 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. <i>Sky News UK</i>. Retrieved on 2018-01-07.</span> </li> <li id="cite_note-267"><span class="mw-cite-backlink"><b><a href="#cite_ref-267">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://news.sky.com/video/are-you-holding-a-product-of-child-labour-right-now-10785338">Are you holding a product of child labour right now? (Video)</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180701194026/https://news.sky.com/video/are-you-holding-a-product-of-child-labour-right-now-10785338">Archived</a> 1 July 2018 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. <i>Sky News UK</i> (2017-02-28). Retrieved on 2018-01-07.</span> </li> <li id="cite_note-Frankel-2016-268"><span class="mw-cite-backlink"><b><a href="#cite_ref-Frankel-2016_268-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrankel2016" class="citation news cs1">Frankel, Todd C. (30 September 2016). <a rel="nofollow" class="external text" href="https://www.washingtonpost.com/graphics/business/batteries/congo-cobalt-mining-for-lithium-ion-battery/">"Cobalt mining for lithium ion batteries has a high human cost"</a>. <i><a href="/wiki/The_Washington_Post" title="The Washington Post">The Washington Post</a></i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190417134443/https://www.washingtonpost.com/graphics/business/batteries/congo-cobalt-mining-for-lithium-ion-battery/">Archived</a> from the original on 17 April 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">18 October</span> 2016</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Washington+Post&amp;rft.atitle=Cobalt+mining+for+lithium+ion+batteries+has+a+high+human+cost&amp;rft.date=2016-09-30&amp;rft.aulast=Frankel&amp;rft.aufirst=Todd+C.&amp;rft_id=https%3A%2F%2Fwww.washingtonpost.com%2Fgraphics%2Fbusiness%2Fbatteries%2Fcongo-cobalt-mining-for-lithium-ion-battery%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-269"><span class="mw-cite-backlink"><b><a href="#cite_ref-269">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarchegianiMorgeraParks2019" class="citation journal cs1">Marchegiani, Pia; Morgera, Elisa; Parks, Louisa (21 November 2019). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/337431438">"Indigenous peoples' rights to natural resources in Argentina: the challenges of impact assessment, consent and fair andequitable benefit-sharing in cases of lithium mining"</a>. <i>The International Journal of Human Rights</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+International+Journal+of+Human+Rights&amp;rft.atitle=Indigenous+peoples%27+rights+to+natural+resources+in+Argentina%3A+the+challenges+of+impact+assessment%2C+consent+and+fair+andequitable+benefit-sharing+in+cases+of+lithium+mining&amp;rft.date=2019-11-21&amp;rft.aulast=Marchegiani&amp;rft.aufirst=Pia&amp;rft.au=Morgera%2C+Elisa&amp;rft.au=Parks%2C+Louisa&amp;rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F337431438&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-270"><span class="mw-cite-backlink"><b><a href="#cite_ref-270">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPrice2021" class="citation journal cs1">Price, Austin (Summer 2021). <a rel="nofollow" class="external text" href="https://www.earthisland.org/journal/index.php/magazine/entry/the-rush-for-white-gold/">"The Rush for White Gold"</a>. <i>Earth Island Journal</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20211029004245/https://www.earthisland.org/journal/index.php/magazine/entry/the-rush-for-white-gold/">Archived</a> from the original on 29 October 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">29 October</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Earth+Island+Journal&amp;rft.atitle=The+Rush+for+White+Gold&amp;rft.ssn=summer&amp;rft.date=2021&amp;rft.aulast=Price&amp;rft.aufirst=Austin&amp;rft_id=https%3A%2F%2Fwww.earthisland.org%2Fjournal%2Findex.php%2Fmagazine%2Fentry%2Fthe-rush-for-white-gold%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-271"><span class="mw-cite-backlink"><b><a href="#cite_ref-271">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChadwell2021" class="citation news cs1">Chadwell, Jeri (21 July 2021). <a rel="nofollow" class="external text" href="https://thisisreno.com/2021/07/judge-to-decide-on-injunction-request-to-halt-work-on-thacker-pass-lithium-mine/">"Judge to decide on injunction request to halt work on Thacker Pass lithium mine"</a>. <i>This is Reno</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20211029101346/https://thisisreno.com/2021/07/judge-to-decide-on-injunction-request-to-halt-work-on-thacker-pass-lithium-mine/">Archived</a> from the original on 29 October 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">12 October</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=This+is+Reno&amp;rft.atitle=Judge+to+decide+on+injunction+request+to+halt+work+on+Thacker+Pass+lithium+mine&amp;rft.date=2021-07-21&amp;rft.aulast=Chadwell&amp;rft.aufirst=Jeri&amp;rft_id=https%3A%2F%2Fthisisreno.com%2F2021%2F07%2Fjudge-to-decide-on-injunction-request-to-halt-work-on-thacker-pass-lithium-mine%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-NWT-2021-272"><span class="mw-cite-backlink"><b><a href="#cite_ref-NWT-2021_272-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.nytimes.com/2021/05/06/business/lithium-mining-race.html">"The Lithium Gold Rush: Inside the Race to Power Electric Vehicles"</a>. <i>The New York Times</i>. 6 May 2021. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210506143008/https://www.nytimes.com/2021/05/06/business/lithium-mining-race.html">Archived</a> from the original on 6 May 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">6 May</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+New+York+Times&amp;rft.atitle=The+Lithium+Gold+Rush%3A+Inside+the+Race+to+Power+Electric+Vehicles&amp;rft.date=2021-05-06&amp;rft_id=https%3A%2F%2Fwww.nytimes.com%2F2021%2F05%2F06%2Fbusiness%2Flithium-mining-race.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-273"><span class="mw-cite-backlink"><b><a href="#cite_ref-273">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://sierranevadaally.org/2021/01/19/thacker-pass-lithium-mine-approval-draws-around-the-clock-protest/">"Thacker Pass Lithium mine approval draws around-the-clock protest"</a>. <i>Sierra Nevada Ally</i>. 19 January 2021. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20211029145314/https://www.sierranevadaally.org/2021/01/19/thacker-pass-lithium-mine-approval-draws-around-the-clock-protest/">Archived</a> from the original on 29 October 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">16 March</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Sierra+Nevada+Ally&amp;rft.atitle=Thacker+Pass+Lithium+mine+approval+draws+around-the-clock+protest&amp;rft.date=2021-01-19&amp;rft_id=https%3A%2F%2Fsierranevadaally.org%2F2021%2F01%2F19%2Fthacker-pass-lithium-mine-approval-draws-around-the-clock-protest%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-274"><span class="mw-cite-backlink"><b><a href="#cite_ref-274">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEftekhari2017" class="citation journal cs1">Eftekhari, Ali (2017). "Lithium-Ion Batteries with High Rate Capabilities". <i>ACS Sustainable Chemistry &amp; Engineering</i>. <b>5</b> (3): <span class="nowrap">2799–</span>2816. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facssuschemeng.7b00046">10.1021/acssuschemeng.7b00046</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ACS+Sustainable+Chemistry+%26+Engineering&amp;rft.atitle=Lithium-Ion+Batteries+with+High+Rate+Capabilities&amp;rft.volume=5&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E2799-%3C%2Fspan%3E2816&amp;rft.date=2017&amp;rft_id=info%3Adoi%2F10.1021%2Facssuschemeng.7b00046&amp;rft.aulast=Eftekhari&amp;rft.aufirst=Ali&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-275"><span class="mw-cite-backlink"><b><a href="#cite_ref-275">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://eepower.com/news/rising-lithium-costs-threaten-grid-scale-energy-storage/">"Rising Lithium Costs Threaten Grid-Scale Energy Storage – News"</a>. <i>eepower.com</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220609180453/https://eepower.com/news/rising-lithium-costs-threaten-grid-scale-energy-storage/">Archived</a> from the original on 9 June 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">2 November</span> 2022</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=eepower.com&amp;rft.atitle=Rising+Lithium+Costs+Threaten+Grid-Scale+Energy+Storage+%E2%80%93+News&amp;rft_id=https%3A%2F%2Feepower.com%2Fnews%2Frising-lithium-costs-threaten-grid-scale-energy-storage%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-276"><span class="mw-cite-backlink"><b><a href="#cite_ref-276">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHopkins2017" class="citation news cs1">Hopkins, Gina (16 November 2017). <a rel="nofollow" class="external text" href="https://www.futurity.org/lithium-ion-batteries-1606992-2/">"Watch: Cuts and dunks don't stop new lithium-ion battery – Futurity"</a>. <i>Futurity</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180710195029/https://www.futurity.org/lithium-ion-batteries-1606992-2/">Archived</a> from the original on 10 July 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">10 July</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Futurity&amp;rft.atitle=Watch%3A+Cuts+and+dunks+don%27t+stop+new+lithium-ion+battery+%E2%80%93+Futurity&amp;rft.date=2017-11-16&amp;rft.aulast=Hopkins&amp;rft.aufirst=Gina&amp;rft_id=https%3A%2F%2Fwww.futurity.org%2Flithium-ion-batteries-1606992-2%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-277"><span class="mw-cite-backlink"><b><a href="#cite_ref-277">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChawlaBhartiSingh2019" class="citation journal cs1">Chawla, N.; Bharti, N.; Singh, S. (2019). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fbatteries5010019">"Recent Advances in Non-Flammable Electrolytes for Safer Lithium-Ion Batteries"</a>. <i>Batteries</i>. <b>5</b>: 19. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fbatteries5010019">10.3390/batteries5010019</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Batteries&amp;rft.atitle=Recent+Advances+in+Non-Flammable+Electrolytes+for+Safer+Lithium-Ion+Batteries&amp;rft.volume=5&amp;rft.pages=19&amp;rft.date=2019&amp;rft_id=info%3Adoi%2F10.3390%2Fbatteries5010019&amp;rft.aulast=Chawla&amp;rft.aufirst=N.&amp;rft.au=Bharti%2C+N.&amp;rft.au=Singh%2C+S.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Fbatteries5010019&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-278"><span class="mw-cite-backlink"><b><a href="#cite_ref-278">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYaoXieChenWang2004" class="citation journal cs1">Yao, X.L.; Xie, S.; Chen, C.; Wang, Q.S.; Sun, J.; Wang, Q.S.; Sun, J. (2004). "Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries". <i>Journal of Power Sources</i>. <b>144</b>: <span class="nowrap">170–</span>175. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2004.11.042">10.1016/j.jpowsour.2004.11.042</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Power+Sources&amp;rft.atitle=Comparative+study+of+trimethyl+phosphite+and+trimethyl+phosphate+as+electrolyte+additives+in+lithium+ion+batteries&amp;rft.volume=144&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E170-%3C%2Fspan%3E175&amp;rft.date=2004&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jpowsour.2004.11.042&amp;rft.aulast=Yao&amp;rft.aufirst=X.L.&amp;rft.au=Xie%2C+S.&amp;rft.au=Chen%2C+C.&amp;rft.au=Wang%2C+Q.S.&amp;rft.au=Sun%2C+J.&amp;rft.au=Wang%2C+Q.S.&amp;rft.au=Sun%2C+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-279"><span class="mw-cite-backlink"><b><a href="#cite_ref-279">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFergus2010" class="citation journal cs1">Fergus, J.W. (2010). "Ceramic and polymeric solid electrolytes for lithium-ion batteries". <i>Journal of Power Sources</i>. <b>195</b> (15): <span class="nowrap">4554–</span>4569. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010JPS...195.4554F">2010JPS...195.4554F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2010.01.076">10.1016/j.jpowsour.2010.01.076</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Power+Sources&amp;rft.atitle=Ceramic+and+polymeric+solid+electrolytes+for+lithium-ion+batteries&amp;rft.volume=195&amp;rft.issue=15&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E4554-%3C%2Fspan%3E4569&amp;rft.date=2010&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jpowsour.2010.01.076&amp;rft_id=info%3Abibcode%2F2010JPS...195.4554F&amp;rft.aulast=Fergus&amp;rft.aufirst=J.W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-280"><span class="mw-cite-backlink"><b><a href="#cite_ref-280">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVersaciColomboMontinaroBuga2024" class="citation journal cs1">Versaci, Daniele; Colombo, Roberto; Montinaro, Giorgio; Buga, Mihaela; Cortes Felix, Noelia; Evans, Gary; Bella, Federico; Amici, Julia; Francia, Carlotta; Bodoardo, Silvia (1 September 2024). <a rel="nofollow" class="external text" href="https://linkinghub.elsevier.com/retrieve/pii/S0378775324009078">"Tailoring cathode materials: A comprehensive study on LNMO/LFP blending for next generation lithium-ion batteries"</a>. <i>Journal of Power Sources</i>. <b>613</b>: 234955. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2024JPS...61334955V">2024JPS...61334955V</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jpowsour.2024.234955">10.1016/j.jpowsour.2024.234955</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0378-7753">0378-7753</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Power+Sources&amp;rft.atitle=Tailoring+cathode+materials%3A+A+comprehensive+study+on+LNMO%2FLFP+blending+for+next+generation+lithium-ion+batteries&amp;rft.volume=613&amp;rft.pages=234955&amp;rft.date=2024-09-01&amp;rft.issn=0378-7753&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jpowsour.2024.234955&amp;rft_id=info%3Abibcode%2F2024JPS...61334955V&amp;rft.aulast=Versaci&amp;rft.aufirst=Daniele&amp;rft.au=Colombo%2C+Roberto&amp;rft.au=Montinaro%2C+Giorgio&amp;rft.au=Buga%2C+Mihaela&amp;rft.au=Cortes+Felix%2C+Noelia&amp;rft.au=Evans%2C+Gary&amp;rft.au=Bella%2C+Federico&amp;rft.au=Amici%2C+Julia&amp;rft.au=Francia%2C+Carlotta&amp;rft.au=Bodoardo%2C+Silvia&amp;rft_id=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0378775324009078&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> <li id="cite_note-281"><span class="mw-cite-backlink"><b><a href="#cite_ref-281">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYiLiLiPan2017" class="citation journal cs1">Yi, Ting-Feng; Li, Yan-Mei; Li, Xiao-Ya; Pan, Jing-Jing; Zhang, Qianyu; Zhu, Yan-Rong (30 July 2017). <a rel="nofollow" class="external text" href="https://linkinghub.elsevier.com/retrieve/pii/S2095927317303481">"Enhanced electrochemical property of FePO4-coated LiNi0.5Mn1.5O4 as cathode materials for Li-ion battery"</a>. <i>Science Bulletin</i>. <b>62</b> (14): <span class="nowrap">1004–</span>1010. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.scib.2017.07.003">10.1016/j.scib.2017.07.003</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2095-9273">2095-9273</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/36659491">36659491</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science+Bulletin&amp;rft.atitle=Enhanced+electrochemical+property+of+FePO4-coated+LiNi0.5Mn1.5O4+as+cathode+materials+for+Li-ion+battery&amp;rft.volume=62&amp;rft.issue=14&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1004-%3C%2Fspan%3E1010&amp;rft.date=2017-07-30&amp;rft.issn=2095-9273&amp;rft_id=info%3Apmid%2F36659491&amp;rft_id=info%3Adoi%2F10.1016%2Fj.scib.2017.07.003&amp;rft.aulast=Yi&amp;rft.aufirst=Ting-Feng&amp;rft.au=Li%2C+Yan-Mei&amp;rft.au=Li%2C+Xiao-Ya&amp;rft.au=Pan%2C+Jing-Jing&amp;rft.au=Zhang%2C+Qianyu&amp;rft.au=Zhu%2C+Yan-Rong&amp;rft_id=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2095927317303481&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Sources">Sources</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=41" title="Edit section: Sources"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAndrea2010" class="citation book cs1">Andrea, Davide (2010). <a rel="nofollow" class="external text" href="http://book.liionbms.com/"><i>Battery Management Systems for Large Lithium-Ion Battery Packs</i></a>. Artech House. p.&#160;234. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1608071043" title="Special:BookSources/978-1608071043"><bdi>978-1608071043</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130821183632/http://book.liionbms.com/">Archived</a> from the original on 21 August 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">3 June</span> 2013</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Battery+Management+Systems+for+Large+Lithium-Ion+Battery+Packs&amp;rft.pages=234&amp;rft.pub=Artech+House&amp;rft.date=2010&amp;rft.isbn=978-1608071043&amp;rft.aulast=Andrea&amp;rft.aufirst=Davide&amp;rft_id=http%3A%2F%2Fbook.liionbms.com%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWinterBrodd2004" class="citation journal cs1">Winter, M; Brodd, RJ (2004). <a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fcr020730k">"What Are Batteries, Fuel Cells, and Supercapacitors?"</a>. <i>Chemical Reviews</i>. <b>104</b> (10): <span class="nowrap">4245–</span>4269. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Fcr020730k">10.1021/cr020730k</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/15669155">15669155</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Chemical+Reviews&amp;rft.atitle=What+Are+Batteries%2C+Fuel+Cells%2C+and+Supercapacitors%3F&amp;rft.volume=104&amp;rft.issue=10&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E4245-%3C%2Fspan%3E4269&amp;rft.date=2004&amp;rft_id=info%3Adoi%2F10.1021%2Fcr020730k&amp;rft_id=info%3Apmid%2F15669155&amp;rft.aulast=Winter&amp;rft.aufirst=M&amp;rft.au=Brodd%2C+RJ&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1021%252Fcr020730k&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALithium-ion+battery" class="Z3988"></span></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Lithium-ion_battery&amp;action=edit&amp;section=42" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Commons-logo.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Lithium-ion_batteries" class="extiw" title="commons:Category:Lithium-ion batteries">Lithium-ion batteries</a></span>.</div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><div class="side-box metadata side-box-right"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/32/Scholia_logo.svg/40px-Scholia_logo.svg.png" decoding="async" width="40" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/32/Scholia_logo.svg/60px-Scholia_logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/32/Scholia_logo.svg/80px-Scholia_logo.svg.png 2x" data-file-width="107" data-file-height="104" /></span></span></div> <div class="side-box-text plainlist"><a href="https://www.wikidata.org/wiki/Wikidata:Scholia" class="extiw" title="d:Wikidata:Scholia">Scholia</a> has a <i>topic</i> profile for <i><b><a href="https://iw.toolforge.org/scholia/topic/Q2822895" class="extiw" title="toolforge:scholia/topic/Q2822895">Lithium-ion battery</a></b></i>.</div></div> </div> <ul><li><a rel="nofollow" class="external text" href="https://www.britannica.com/EBchecked/topic/1085580">Lithium-ion Battery</a> at the <i><a href="/wiki/Encyclop%C3%A6dia_Britannica" title="Encyclopædia Britannica">Encyclopædia Britannica</a></i>.</li> <li><a rel="nofollow" class="external text" href="https://www.statista.com/statistics/1246713/largest-lithium-ion-battery-factories-worldwide/">List of World's Largest Lithium-ion Battery Factories (2020)</a>.</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20170207004939/http://www.nrel.gov/transportation/energystorage/safety.html">Energy Storage Safety at National Renewable Energy Laboratory (NREL)</a>.</li> <li><a rel="nofollow" class="external text" href="https://www.nytimes.com/2021/09/08/technology/batteries-new-technology.html">New More Efficient Lithium-ion Batteries</a> <i><a href="/wiki/The_New_York_Times" title="The New York Times">The New York Times</a></i>. September 2021.</li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20160301144207/http://www.nrel.gov/news/features/2015/21589">NREL Innovation Improves Safety of Electric Vehicle Batteries</a>, <a href="/wiki/National_Renewable_Energy_Laboratory" title="National Renewable Energy Laboratory">NREL</a>, October 2015.</li> <li><a rel="nofollow" class="external text" href="http://www.nrel.gov/docs/fy15osti/64171.pdf">Degradation Mechanisms and Lifetime Prediction for Lithium-Ion Batteries</a>, <a href="/wiki/National_Renewable_Energy_Laboratory" title="National Renewable Energy Laboratory">NREL</a>, July 2015.</li> <li><a rel="nofollow" class="external text" href="https://purl.fdlp.gov/GPO/gpo41672">Impact of Temperature Extremes on Large Format Li-ion Batteries for Vehicle Applications</a>, <a href="/wiki/National_Renewable_Energy_Laboratory" title="National Renewable Energy Laboratory">NREL</a>, March 2013.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r886047488">.mw-parser-output .nobold{font-weight:normal}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"></div><div role="navigation" class="navbox" aria-labelledby="Electrochemical_cells543" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Galvanic_cells" title="Template:Galvanic cells"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Galvanic_cells" title="Template talk:Galvanic cells"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Galvanic_cells" title="Special:EditPage/Template:Galvanic cells"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Electrochemical_cells543" style="font-size:114%;margin:0 4em"><a href="/wiki/Electrochemical_cell" title="Electrochemical cell">Electrochemical cells</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Galvanic_cell" title="Galvanic cell">Galvanic cell</a></li> <li><a href="/wiki/Concentration_cell" title="Concentration cell">Concentration cell</a></li> <li><a href="/wiki/Electric_battery" title="Electric battery">Electric battery</a> <ul><li><a href="/wiki/Flow_battery" title="Flow battery">Flow battery</a></li> <li><a href="/wiki/Trough_battery" title="Trough battery">Trough battery</a></li></ul></li> <li><a href="/wiki/Fuel_cell" title="Fuel cell">Fuel cell</a></li> <li><a href="/wiki/Thermogalvanic_cell" title="Thermogalvanic cell">Thermogalvanic cell</a></li> <li><a href="/wiki/Voltaic_pile" title="Voltaic pile">Voltaic pile</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="5" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/File:Galvanic_Cell.svg" class="mw-file-description" title="Galvanic cell"><img alt="Galvanic cell" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8e/Galvanic_Cell.svg/150px-Galvanic_Cell.svg.png" decoding="async" width="150" height="159" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8e/Galvanic_Cell.svg/225px-Galvanic_Cell.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8e/Galvanic_Cell.svg/300px-Galvanic_Cell.svg.png 2x" data-file-width="376" data-file-height="399" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Primary_battery" title="Primary battery">Primary cell</a><br /><span class="nobold">(non-rechargeable)</span></div></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Alkaline_battery" title="Alkaline battery">Alkaline</a></li> <li><a href="/wiki/Aluminium%E2%80%93air_battery" title="Aluminium–air battery">Aluminium–air</a></li> <li><a href="/wiki/Bunsen_cell" title="Bunsen cell">Bunsen</a></li> <li><a href="/wiki/Chromic_acid_cell" title="Chromic acid cell">Chromic acid</a></li> <li><a href="/wiki/Clark_cell" title="Clark cell">Clark</a></li> <li><a href="/wiki/Daniell_cell" title="Daniell cell">Daniell</a></li> <li><a href="/wiki/Dry_cell" title="Dry cell">Dry</a></li> <li><a href="/wiki/Edison%E2%80%93Lalande_cell" title="Edison–Lalande cell">Edison–Lalande</a></li> <li><a href="/wiki/Grove_cell" title="Grove cell">Grove</a></li> <li><a href="/wiki/Leclanch%C3%A9_cell" title="Leclanché cell">Leclanché</a></li> <li><a href="/wiki/Lithium_metal_battery" title="Lithium metal battery">Lithium metal</a></li> <li><a href="/wiki/Lithium_hybrid_organic_battery" title="Lithium hybrid organic battery">Lithium organic</a></li> <li><a href="/wiki/Lithium%E2%80%93air_battery" title="Lithium–air battery">Lithium–air</a></li> <li><a href="/wiki/Mercury_battery" title="Mercury battery">Mercury</a></li> <li><a href="/wiki/Metal%E2%80%93air_electrochemical_cell" title="Metal–air electrochemical cell">Metal–air electrochemical</a></li> <li><a href="/wiki/Nickel_oxyhydroxide_battery" title="Nickel oxyhydroxide battery">Nickel oxyhydroxide</a></li> <li><a href="/wiki/Silicon%E2%80%93air_battery" title="Silicon–air battery">Silicon–air</a></li> <li><a href="/wiki/Silver_oxide_battery" title="Silver oxide battery">Silver oxide</a></li> <li><a href="/wiki/Weston_cell" title="Weston cell">Weston</a></li> <li><a href="/wiki/Zamboni_pile" title="Zamboni pile">Zamboni</a></li> <li><a href="/wiki/Zinc%E2%80%93air_battery" title="Zinc–air battery">Zinc–air</a></li> <li><a href="/wiki/Zinc%E2%80%93carbon_battery" title="Zinc–carbon battery">Zinc–carbon</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Rechargeable_battery" title="Rechargeable battery">Secondary cell</a><br /><span class="nobold">(rechargeable)</span></div></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Automotive_battery" title="Automotive battery">Automotive</a></li> <li><a href="/wiki/Lead%E2%80%93acid_battery" title="Lead–acid battery">Lead–acid</a> <ul><li><a href="/wiki/VRLA_battery" title="VRLA battery">gel–VRLA</a></li></ul></li> <li><a href="/wiki/Lithium%E2%80%93air_battery" title="Lithium–air battery">Lithium–air</a></li> <li><a class="mw-selflink selflink">Lithium ion</a> <ul><li><a href="/wiki/Dual_carbon_battery" title="Dual carbon battery">Dual carbon</a></li> <li><a href="/wiki/Lithium_iron_phosphate_battery" title="Lithium iron phosphate battery">Lithium–iron–phosphate</a></li> <li><a href="/wiki/Lithium_polymer_battery" title="Lithium polymer battery">Lithium–polymer</a></li> <li><a href="/wiki/Lithium%E2%80%93sulfur_battery" title="Lithium–sulfur battery">Lithium–sulfur</a></li> <li><a href="/wiki/Lithium-titanate_battery" title="Lithium-titanate battery">Lithium–titanate</a></li></ul></li> <li><a href="/wiki/Metal%E2%80%93air_electrochemical_cell" title="Metal–air electrochemical cell">Metal–air</a></li> <li><a href="/wiki/Molten-salt_battery" title="Molten-salt battery">Molten salt</a></li> <li><a href="/wiki/Nanopore_battery" title="Nanopore battery">Nanopore</a></li> <li><a href="/wiki/Nanowire_battery" title="Nanowire battery">Nanowire</a></li> <li><a href="/wiki/Nickel%E2%80%93cadmium_battery" title="Nickel–cadmium battery">Nickel–cadmium</a></li> <li><a href="/wiki/Nickel%E2%80%93hydrogen_battery" title="Nickel–hydrogen battery">Nickel–hydrogen</a></li> <li><a href="/wiki/Nickel%E2%80%93iron_battery" title="Nickel–iron battery">Nickel–iron</a></li> <li><a href="/wiki/Nickel%E2%80%93lithium_battery" title="Nickel–lithium battery">Nickel–lithium</a></li> <li><a href="/wiki/Nickel%E2%80%93metal_hydride_battery" title="Nickel–metal hydride battery">Nickel–metal hydride</a></li> <li><a href="/wiki/Nickel%E2%80%93zinc_battery" title="Nickel–zinc battery">Nickel–zinc</a></li> <li><a href="/wiki/Polysulfide%E2%80%93bromide_battery" title="Polysulfide–bromide battery">Polysulfide–bromide</a></li> <li><a href="/wiki/Potassium-ion_battery" title="Potassium-ion battery">Potassium ion</a></li> <li><a href="/wiki/Rechargeable_alkaline_battery" title="Rechargeable alkaline battery">Rechargeable alkaline</a></li> <li><a href="/wiki/Silver%E2%80%93cadmium_battery" title="Silver–cadmium battery">Silver–cadmium</a></li> <li><a href="/wiki/Silver_zinc_battery" title="Silver zinc battery">Silver–zinc</a></li> <li><a href="/wiki/Sodium-ion_battery" title="Sodium-ion battery">Sodium ion</a></li> <li><a href="/wiki/Sodium%E2%80%93sulfur_battery" title="Sodium–sulfur battery">Sodium–sulfur</a></li> <li><a href="/wiki/Solid-state_battery" title="Solid-state battery">Solid state</a></li> <li><a href="/wiki/Vanadium_redox_battery" title="Vanadium redox battery">Vanadium redox</a></li> <li><a href="/wiki/Zinc%E2%80%93bromine_battery" title="Zinc–bromine battery">Zinc–bromine</a></li> <li><a href="/wiki/Zinc%E2%80%93cerium_battery" title="Zinc–cerium battery">Zinc–cerium</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><div style="display: inline-block; line-height: 1.2em; padding: .1em 0;">Other cell</div></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Atomic_battery" title="Atomic battery">Atomic battery</a></li> <li><a href="/wiki/Fuel_cell" title="Fuel cell">Fuel cell</a></li> <li><a href="/wiki/Solar_cell" title="Solar cell">Solar cell</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Cell parts</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Anode" title="Anode">Anode</a></li> <li><a href="/wiki/Binder_(material)" title="Binder (material)">Binder</a></li> <li><a href="/wiki/Catalysis" title="Catalysis">Catalyst</a></li> <li><a href="/wiki/Cathode" title="Cathode">Cathode</a></li> <li><a href="/wiki/Electrode" title="Electrode">Electrode</a></li> <li><a href="/wiki/Electrolyte" title="Electrolyte">Electrolyte</a></li> <li><a href="/wiki/Half-cell" title="Half-cell">Half-cell</a></li> <li><a href="/wiki/Ion" title="Ion">Ions</a></li> <li><a href="/wiki/Salt_bridge" title="Salt bridge">Salt bridge</a></li> <li><a href="/wiki/Semipermeable_membrane" title="Semipermeable membrane">Semipermeable membrane</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Alternative_fuel_vehicles272" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Alternative_propulsion" title="Template:Alternative propulsion"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Alternative_propulsion" title="Template talk:Alternative propulsion"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Alternative_propulsion" title="Special:EditPage/Template:Alternative propulsion"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Alternative_fuel_vehicles272" style="font-size:114%;margin:0 4em"><a href="/wiki/Alternative_fuel_vehicle" title="Alternative fuel vehicle">Alternative fuel vehicles</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Fuel_cell" title="Fuel cell">Fuel cell</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Fuel_cell_vehicle" title="Fuel cell vehicle">Fuel cell vehicle</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Human_power" title="Human power">Human power</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Electric_bicycle" title="Electric bicycle">Electric bicycle</a></li> <li><a href="/wiki/Pedelec" title="Pedelec">Pedelec</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Solar_power" title="Solar power">Solar power</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Solar_vehicle" title="Solar vehicle">Solar vehicle</a> <ul><li><a href="/wiki/Solar-powered_aircraft" title="Solar-powered aircraft">Solar-powered aircraft</a></li> <li><a href="/wiki/List_of_solar-powered_boats" title="List of solar-powered boats">boats</a></li> <li><a href="/wiki/Solar_bus" title="Solar bus">Solar bus</a></li> <li><a href="/wiki/Solar_car" title="Solar car">Solar car</a> <ul><li><a href="/wiki/List_of_prototype_solar-powered_cars" title="List of prototype solar-powered cars">List of prototypes</a></li></ul></li></ul></li> <li><a href="/wiki/Electric_aircraft" title="Electric aircraft">Electric aircraft</a></li> <li><a href="/wiki/Electric_boat" title="Electric boat">Electric boat</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Pneumatic_motor" title="Pneumatic motor">Compressed-air <br />engine</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Compressed-air_car" title="Compressed-air car">Compressed-air car</a></li> <li><a href="/wiki/Compressed-air_vehicle" title="Compressed-air vehicle">Compressed-air vehicle</a></li> <li><a href="/wiki/Tesla_turbine" title="Tesla turbine">Tesla turbine</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Electric_battery" title="Electric battery">Electric battery</a> <br />and <a href="/wiki/Electric_motor" title="Electric motor">motor</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Electric_locomotive#Battery_locomotive" title="Electric locomotive">Battery-electric locomotive</a></li> <li><a href="/wiki/Battery_electric_multiple_unit" title="Battery electric multiple unit">Battery electric multiple unit</a></li> <li><a href="/wiki/Electric_aircraft" title="Electric aircraft">Electric aircraft</a></li> <li><a href="/wiki/Electric_bicycle" title="Electric bicycle">Electric bicycle</a></li> <li><a href="/wiki/Pedelec" title="Pedelec">Pedelec</a></li> <li><a href="/wiki/Electric_boat" title="Electric boat">Electric boat</a></li> <li><a href="/wiki/Electric_bus" title="Electric bus">Electric bus</a> <ul><li><a href="/wiki/Battery_electric_bus" title="Battery electric bus">Battery electric bus</a></li></ul></li> <li><a href="/wiki/Electric_car" title="Electric car">Electric car</a> <ul><li><a href="/wiki/List_of_battery_electric_vehicles" title="List of battery electric vehicles">List</a></li></ul></li> <li><a href="/wiki/Electric_truck" title="Electric truck">Electric truck</a></li> <li><a href="/wiki/Electric_platform_truck" title="Electric platform truck">Electric platform truck</a></li> <li><a href="/wiki/Electric_vehicle" title="Electric vehicle">Electric vehicle</a> <ul><li><a href="/wiki/Battery_electric_vehicle" title="Battery electric vehicle">Battery electric vehicle</a></li></ul></li> <li><a href="/wiki/Electric_motorcycles_and_scooters" title="Electric motorcycles and scooters">Electric motorcycles and scooters</a></li> <li><a href="/wiki/Electric_kick_scooter" class="mw-redirect" title="Electric kick scooter">Electric kick scooter</a></li> <li><a href="/wiki/Fuel_cell_vehicle" title="Fuel cell vehicle">Fuel cell vehicle</a></li> <li><a href="/wiki/Sentinel_Waggon_Works#The_Gyro_locomotive" title="Sentinel Waggon Works">Gyro flywheel locomotive</a></li> <li><a href="/wiki/Hybrid_electric_vehicle" title="Hybrid electric vehicle">Hybrid electric vehicle</a></li> <li><a href="/wiki/Hybrid_train" title="Hybrid train">Hybrid train</a></li> <li><a href="/wiki/Neighborhood_Electric_Vehicle" title="Neighborhood Electric Vehicle">Neighborhood Electric Vehicle</a></li> <li><a href="/wiki/Plug-in_electric_vehicle" title="Plug-in electric vehicle">Plug-in electric vehicle</a> <ul><li><a href="/wiki/List_of_battery_electric_vehicles" title="List of battery electric vehicles">List</a></li></ul></li> <li><a href="/wiki/Plug-in_hybrid" title="Plug-in hybrid">Plug-in hybrid electric vehicle</a></li> <li><a href="/wiki/Solar_vehicle" title="Solar vehicle">Solar vehicle</a> <ul><li><a href="/wiki/Solar-powered_aircraft" title="Solar-powered aircraft">aircraft</a></li> <li><a href="/wiki/Solar_car" title="Solar car">Solar car</a></li> <li><a href="/wiki/Solar_bus" title="Solar bus">Solar bus</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Biofuel" title="Biofuel">Biofuel</a> <a href="/wiki/Internal_combustion_engine" title="Internal combustion engine">ICE</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Alcohol_fuel" title="Alcohol fuel">Alcohol fuel</a></li> <li><a href="/wiki/Biodiesel" title="Biodiesel">Biodiesel</a></li> <li><a href="/wiki/Biogas" title="Biogas">Biogas</a></li> <li><a href="/wiki/Butanol_fuel" title="Butanol fuel">Butanol fuel</a></li> <li><a href="/wiki/Biogasoline" title="Biogasoline">Biogasoline</a></li> <li><a href="/wiki/Common_ethanol_fuel_mixtures" title="Common ethanol fuel mixtures">Common ethanol fuel mixtures</a></li> <li><a href="/wiki/E85" title="E85">E85</a></li> <li><a href="/wiki/Ethanol_fuel" title="Ethanol fuel">Ethanol fuel</a></li> <li><a href="/wiki/Flexible-fuel_vehicle" title="Flexible-fuel vehicle">Flexible-fuel vehicle</a></li> <li><a href="/wiki/Methanol_economy" title="Methanol economy">Methanol economy</a></li> <li><a href="/wiki/Methanol_fuel" title="Methanol fuel">Methanol fuel</a></li> <li><a href="/wiki/Wood_gas" title="Wood gas">Wood gas</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Hydrogen" title="Hydrogen">Hydrogen</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Fuel_cell_vehicle" title="Fuel cell vehicle">Fuel cell vehicle</a></li> <li><a href="/wiki/Hydrogen_economy" title="Hydrogen economy">Hydrogen economy</a></li> <li><a href="/wiki/Hydrogen-powered_aircraft" title="Hydrogen-powered aircraft">Hydrogen-powered aircraft</a></li> <li><a href="/wiki/Hydrogen-powered_ship" title="Hydrogen-powered ship">Hydrogen-powered ship</a></li> <li><a href="/wiki/Hydrogen_train" title="Hydrogen train">Hydrogen train</a></li> <li><a href="/wiki/Hydrogen_vehicle" title="Hydrogen vehicle">Hydrogen vehicle</a></li> <li><a href="/wiki/Hydrogen_internal_combustion_engine_vehicle" title="Hydrogen internal combustion engine vehicle">Hydrogen internal combustion engine vehicle</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Others</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Autogas" title="Autogas">Autogas</a></li> <li><a href="/wiki/Hybrid_electric_vehicle" title="Hybrid electric vehicle">Hybrid electric vehicle</a></li> <li><a href="/wiki/Liquid_nitrogen_engine" title="Liquid nitrogen engine">Liquid nitrogen vehicle</a></li> <li><a href="/wiki/Natural_gas_vehicle" title="Natural gas vehicle">Natural gas vehicle</a></li> <li><a href="/wiki/Propane" title="Propane">Propane</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Multiple-fuel</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bi-fuel_vehicle" title="Bi-fuel vehicle">Bi-fuel vehicle</a></li> <li><a href="/wiki/Flexible-fuel_vehicle" title="Flexible-fuel vehicle">Flexible-fuel vehicle</a></li> <li><a href="/wiki/Hybrid_electric_vehicle" title="Hybrid electric vehicle">Hybrid electric vehicle</a></li> <li><a href="/wiki/Hybrid_train" title="Hybrid train">Hybrid train</a></li> <li><a href="/wiki/Hybrid_vehicle" title="Hybrid vehicle">Hybrid vehicle</a></li> <li><a href="/wiki/Multifuel" title="Multifuel">Multifuel</a></li> <li><a href="/wiki/Plug-in_hybrid" title="Plug-in hybrid">Plug-in hybrid</a></li> <li><a href="/wiki/Solar_vehicle" title="Solar vehicle">Solar vehicle</a> <ul><li><a href="/wiki/Solar_car" title="Solar car">Solar car</a></li> <li><a href="/wiki/Solar_bus" title="Solar bus">Solar bus</a></li></ul></li> <li><a href="/wiki/Electric_aircraft" title="Electric aircraft">Electric aircraft</a></li> <li><a href="/wiki/Electric_boat" title="Electric boat">Electric boat</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Documentaries</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><i><a href="/wiki/Who_Killed_the_Electric_Car%3F" title="Who Killed the Electric Car?">Who Killed the Electric Car?</a></i></li> <li><i><a href="/wiki/What_Is_the_Electric_Car%3F" title="What Is the Electric Car?">What Is the Electric Car?</a></i></li> <li><i><a href="/wiki/Revenge_of_the_Electric_Car" title="Revenge of the Electric Car">Revenge of the Electric Car</a></i></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">See also</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Maglev" title="Maglev">Maglev</a></li> <li><a href="/wiki/Ram_air_turbine" title="Ram air turbine">Ram air turbine</a></li> <li><a href="/wiki/Vactrain" title="Vactrain">Vactrain</a></li> <li><a href="/wiki/Wave_power_ship" title="Wave power ship">Wave power ship</a></li> <li><a href="/wiki/Windmill_ship" title="Windmill ship">Windmill ship</a></li> <li><a href="/wiki/Wind-powered_vehicle" title="Wind-powered vehicle">Wind-powered vehicle</a></li> <li><a href="/wiki/Zero-emissions_vehicle" title="Zero-emissions vehicle">Zero-emissions vehicle</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style></div><div role="navigation" class="navbox authority-control" aria-label="Navbox757" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q2822895#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/7681721-0">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/01090550">Japan</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="lithium-iontové baterie"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph891858&amp;CON_LNG=ENG">Czech Republic</a></span></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.canary‐6cdd778d46‐rt2nc Cached time: 20250217042645 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 4.489 seconds Real time usage: 4.889 seconds Preprocessor visited node count: 27216/1000000 Post‐expand include size: 906274/2097152 bytes Template argument size: 36236/2097152 bytes Highest expansion depth: 23/100 Expensive parser function count: 34/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 999001/5000000 bytes Lua time usage: 2.971/10.000 seconds Lua memory usage: 13536167/52428800 bytes Lua Profile: ? 640 ms 19.8% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 360 ms 11.1% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::gsub 260 ms 8.0% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::find 240 ms 7.4% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::sub 160 ms 4.9% dataWrapper <mw.lua:672> 140 ms 4.3% <mw.lua:694> 140 ms 4.3% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::match 120 ms 3.7% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::preprocess 120 ms 3.7% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::plain 120 ms 3.7% [others] 940 ms 29.0% Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 4288.470 1 -total 60.55% 2596.701 1 Template:Reflist 29.49% 1264.498 121 Template:Cite_journal 12.25% 525.286 59 Template:Cite_web 5.82% 249.418 4 Template:Sfn 4.78% 204.775 17 Template:Fix 4.74% 203.313 29 Template:Cite_news 3.45% 148.155 39 Template:Chem 3.26% 139.794 17 Template:Cite_book 3.25% 139.303 39 Template:Chem/link --> <!-- Saved in parser cache with key enwiki:pcache:201485:|#|:idhash:canonical and timestamp 20250217042645 and revision id 1276147824. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Lithium-ion_battery&amp;oldid=1276147824">https://en.wikipedia.org/w/index.php?title=Lithium-ion_battery&amp;oldid=1276147824</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Japanese_inventions" title="Category:Japanese inventions">Japanese inventions</a></li><li><a href="/wiki/Category:Lithium-ion_batteries" title="Category:Lithium-ion batteries">Lithium-ion batteries</a></li><li><a href="/wiki/Category:20th-century_inventions" title="Category:20th-century inventions">20th-century inventions</a></li><li><a href="/wiki/Category:Metal-ion_batteries" title="Category:Metal-ion batteries">Metal-ion batteries</a></li><li><a href="/wiki/Category:American_inventions" title="Category:American inventions">American inventions</a></li><li><a href="/wiki/Category:English_inventions" title="Category:English inventions">English inventions</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:Webarchive_template_warnings" title="Category:Webarchive template warnings">Webarchive template warnings</a></li><li><a href="/wiki/Category:All_accuracy_disputes" title="Category:All accuracy disputes">All accuracy disputes</a></li><li><a href="/wiki/Category:Articles_with_disputed_statements_from_June_2010" title="Category:Articles with disputed statements from June 2010">Articles with disputed statements from June 2010</a></li><li><a href="/wiki/Category:CS1:_long_volume_value" title="Category:CS1: long volume value">CS1: long volume value</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_October_2019" title="Category:Use dmy dates from October 2019">Use dmy dates from October 2019</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_April_2024" title="Category:Articles with unsourced statements from April 2024">Articles with unsourced statements from April 2024</a></li><li><a href="/wiki/Category:Articles_with_disputed_statements_from_February_2022" title="Category:Articles with disputed statements from February 2022">Articles with disputed statements from February 2022</a></li><li><a href="/wiki/Category:All_articles_lacking_reliable_references" title="Category:All articles lacking reliable references">All articles lacking reliable references</a></li><li><a href="/wiki/Category:Articles_lacking_reliable_references_from_August_2014" title="Category:Articles lacking reliable references from August 2014">Articles lacking reliable references from August 2014</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_October_2017" title="Category:Articles with unsourced statements from October 2017">Articles with unsourced statements from October 2017</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_January_2024" title="Category:Articles with unsourced statements from January 2024">Articles with unsourced statements from January 2024</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_September_2021" title="Category:Articles with unsourced statements from September 2021">Articles with unsourced statements from September 2021</a></li><li><a href="/wiki/Category:All_articles_with_failed_verification" title="Category:All articles with failed verification">All articles with failed verification</a></li><li><a href="/wiki/Category:Articles_with_failed_verification_from_February_2018" title="Category:Articles with failed verification from February 2018">Articles with failed verification from February 2018</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_February_2023" title="Category:Articles needing additional references from February 2023">Articles needing additional references from February 2023</a></li><li><a href="/wiki/Category:Articles_lacking_reliable_references_from_November_2016" title="Category:Articles lacking reliable references from November 2016">Articles lacking reliable references from November 2016</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_January_2014" title="Category:Articles containing potentially dated statements from January 2014">Articles containing potentially dated statements from January 2014</a></li><li><a href="/wiki/Category:All_articles_containing_potentially_dated_statements" title="Category:All articles containing potentially dated statements">All articles containing potentially dated statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_July_2024" title="Category:Articles with unsourced statements from July 2024">Articles with unsourced statements from July 2024</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_July_2020" title="Category:Articles with unsourced statements from July 2020">Articles with unsourced statements from July 2020</a></li><li><a href="/wiki/Category:Articles_with_specifically_marked_weasel-worded_phrases_from_July_2020" title="Category:Articles with specifically marked weasel-worded phrases from July 2020">Articles with specifically marked weasel-worded phrases from July 2020</a></li><li><a href="/wiki/Category:Articles_with_excerpts" title="Category:Articles with excerpts">Articles with excerpts</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_October_2021" title="Category:Articles with unsourced statements from October 2021">Articles with unsourced statements from October 2021</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_June_2021" title="Category:Articles with unsourced statements from June 2021">Articles with unsourced statements from June 2021</a></li><li><a href="/wiki/Category:Commons_category_link_is_on_Wikidata" title="Category:Commons category link is on Wikidata">Commons category link is on Wikidata</a></li><li><a href="/wiki/Category:Articles_with_Encyclop%C3%A6dia_Britannica_links" title="Category:Articles with Encyclopædia Britannica links">Articles with Encyclopædia Britannica links</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 17 February 2025, at 04:26<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Lithium-ion_battery&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Lithium-ion battery</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>53 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-b766959bd-89cpd","wgBackendResponseTime":147,"wgPageParseReport":{"limitreport":{"cputime":"4.489","walltime":"4.889","ppvisitednodes":{"value":27216,"limit":1000000},"postexpandincludesize":{"value":906274,"limit":2097152},"templateargumentsize":{"value":36236,"limit":2097152},"expansiondepth":{"value":23,"limit":100},"expensivefunctioncount":{"value":34,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":999001,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 4288.470 1 -total"," 60.55% 2596.701 1 Template:Reflist"," 29.49% 1264.498 121 Template:Cite_journal"," 12.25% 525.286 59 Template:Cite_web"," 5.82% 249.418 4 Template:Sfn"," 4.78% 204.775 17 Template:Fix"," 4.74% 203.313 29 Template:Cite_news"," 3.45% 148.155 39 Template:Chem"," 3.26% 139.794 17 Template:Cite_book"," 3.25% 139.303 39 Template:Chem/link"]},"scribunto":{"limitreport-timeusage":{"value":"2.971","limit":"10.000"},"limitreport-memusage":{"value":13536167,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAbeMuraiZaghib1999\"] = 1,\n [\"CITEREFAgusdinataLiuEakinRomero2018\"] = 1,\n [\"CITEREFAmatucci1996\"] = 1,\n [\"CITEREFAmui2020\"] = 1,\n [\"CITEREFAndrea2010\"] = 1,\n [\"CITEREFArshadLiAminFan2020\"] = 1,\n [\"CITEREFAttiaBillsPlanellaDechent2022\"] = 1,\n [\"CITEREFBandhauerGarimellaFuller2011\"] = 1,\n [\"CITEREFBergveldKruijtNotten2002\"] = 1,\n [\"CITEREFBesenhardFritz1974\"] = 1,\n [\"CITEREFBisschopWillstrandAmonRosenggren2019\"] = 1,\n [\"CITEREFBisschopWillstrandRosengren2020\"] = 1,\n [\"CITEREFBlain2022\"] = 1,\n [\"CITEREFBobanacBasicPandzic2021\"] = 1,\n [\"CITEREFBro,_PerLevy,_Samuel_C.1994\"] = 1,\n [\"CITEREFBuchert2016\"] = 1,\n [\"CITEREFCanZhuo-BinXiao-Liang2014\"] = 3,\n [\"CITEREFChadwell2021\"] = 1,\n [\"CITEREFChagasJeongHasaPasserini2019\"] = 1,\n [\"CITEREFChawlaBhartiSingh2019\"] = 1,\n [\"CITEREFChenKangZhaoWang2021\"] = 1,\n [\"CITEREFChenLiuHeYuen2017\"] = 1,\n [\"CITEREFChengZhangZhaoZhang2017\"] = 1,\n [\"CITEREFChoiJungNodaKim2003\"] = 1,\n [\"CITEREFChung2021\"] = 1,\n [\"CITEREFChung2024\"] = 1,\n [\"CITEREFCiezWhitacre2019\"] = 1,\n [\"CITEREFCoxworth2017\"] = 1,\n [\"CITEREFCringely2006\"] = 1,\n [\"CITEREFDhameja2001\"] = 1,\n [\"CITEREFDoughtyRoth2012\"] = 1,\n [\"CITEREFDraper\"] = 1,\n [\"CITEREFDunnGainesSullivanWang2012\"] = 1,\n [\"CITEREFEftekhari2017\"] = 3,\n [\"CITEREFEl-KadyShaoKaner2016\"] = 1,\n [\"CITEREFElectrochem_Commercial_Power2006\"] = 1,\n [\"CITEREFElgendy2024\"] = 1,\n [\"CITEREFErol2015\"] = 1,\n [\"CITEREFFergus2010\"] = 2,\n [\"CITEREFFerreiraPradosMajusteMansur2009\"] = 1,\n [\"CITEREFFineganScheelRobinsonTjaden2015\"] = 1,\n [\"CITEREFFong1990\"] = 1,\n [\"CITEREFFongvon_SackenDahn1990\"] = 1,\n [\"CITEREFFranco2015\"] = 1,\n [\"CITEREFFrankel2016\"] = 1,\n [\"CITEREFGaoSinhaFlemingZhou2001\"] = 1,\n [\"CITEREFGeldasaKebedeShuraHone2022\"] = 1,\n [\"CITEREFGeorgi-MaschlerFriedrichWeyheHeegn2012\"] = 1,\n [\"CITEREFGirishkumarMcCloskeyLuntzSwanson2010\"] = 1,\n [\"CITEREFGodshallRaistrickHuggins1980\"] = 1,\n [\"CITEREFGoodwins,_Rupert2006\"] = 1,\n [\"CITEREFGotcher,_Alan_J.2006\"] = 1,\n [\"CITEREFGreyHall2020\"] = 1,\n [\"CITEREFGuyomardTarascon1994\"] = 1,\n [\"CITEREFHanisch\"] = 1,\n [\"CITEREFHanischDiekmannStiegerHaselrieder2015\"] = 1,\n [\"CITEREFHanley2023\"] = 1,\n [\"CITEREFHaregewoinWotangoHwang2016\"] = 1,\n [\"CITEREFHaynerZhaoKung2012\"] = 1,\n [\"CITEREFHeSunSongYu2017\"] = 1,\n [\"CITEREFHendricksWilliardMathewPecht2016\"] = 1,\n [\"CITEREFHesseSchimpeKucevicJossen2017\"] = 1,\n [\"CITEREFHettesheimerNeefRosellón_InclánLink2023\"] = 1,\n [\"CITEREFHislop2017\"] = 1,\n [\"CITEREFHopkins2017\"] = 1,\n [\"CITEREFJacoby2019\"] = 2,\n [\"CITEREFJaguemontVan_Mierlo2020\"] = 1,\n [\"CITEREFJary\"] = 1,\n [\"CITEREFJoyceTrahyBauerDogan2012\"] = 1,\n [\"CITEREFKamyamkhane,_Vaishnovi\"] = 1,\n [\"CITEREFKanellos,_Michael2006\"] = 1,\n [\"CITEREFKasavajjulaWangAppleby2007\"] = 1,\n [\"CITEREFKatwala\"] = 1,\n [\"CITEREFKim,_Un-HyuckKuo,_Liang-YinKaghazchi,_PayamYoon,_Chong_S.2019\"] = 1,\n [\"CITEREFKwon2016\"] = 1,\n [\"CITEREFLainBrandonKendrick2019\"] = 1,\n [\"CITEREFLeeLeeChoiKang2018\"] = 1,\n [\"CITEREFLeiZhangGaoLi2018\"] = 1,\n [\"CITEREFLengTanPecht2015\"] = 1,\n [\"CITEREFLiHuangChenzZhou2000\"] = 1,\n [\"CITEREFLiLuChenAmine2018\"] = 2,\n [\"CITEREFLiWestPreindl2022\"] = 1,\n [\"CITEREFLiYuenWangDe_Cachinho_Cordeiro2021\"] = 1,\n [\"CITEREFLiawJungstNagasubramanianCase2005\"] = 1,\n [\"CITEREFLienert2023\"] = 1,\n [\"CITEREFLinsenmannPritzlGasteiger2021\"] = 1,\n [\"CITEREFLiuKusawakeKuwajima2001\"] = 1,\n [\"CITEREFLoznenBolintineanuSwart2017\"] = 1,\n [\"CITEREFLvWangCaoSun2018\"] = 1,\n [\"CITEREFLyuLiuQuZhao2020\"] = 1,\n [\"CITEREFMaisch2024\"] = 1,\n [\"CITEREFMalabet2021\"] = 1,\n [\"CITEREFManthiram2020\"] = 1,\n [\"CITEREFMarchegianiMorgeraParks2019\"] = 1,\n [\"CITEREFMaugerJulien2017\"] = 1,\n [\"CITEREFMegahedScrosati1994\"] = 1,\n [\"CITEREFMikolajczak,_CelinaKahn,_MichaelWhite,_KevinLong,_Richard_Thomas2011\"] = 1,\n [\"CITEREFMitchell2006\"] = 1,\n [\"CITEREFMorris2020\"] = 1,\n [\"CITEREFMuchaSadofFrankel2018\"] = 1,\n [\"CITEREFMurray2022\"] = 1,\n [\"CITEREFMönnighoffFriesenKonersmannHorsthemke2017\"] = 1,\n [\"CITEREFNittaWuLeeYushin2015\"] = 1,\n [\"CITEREFNiuXuXiaoQin2023\"] = 1,\n [\"CITEREFOECDOffice2022\"] = 1,\n [\"CITEREFOlivettiCederGaustadFu2017\"] = 1,\n [\"CITEREFPangZhongWangYang2022\"] = 1,\n [\"CITEREFPierre_Cormon2024\"] = 1,\n [\"CITEREFPistoia2013\"] = 1,\n [\"CITEREFPredtechenskiyKhasinSmirnovBezrodny2022\"] = 1,\n [\"CITEREFPrice2021\"] = 1,\n [\"CITEREFQiKoenig2016\"] = 1,\n [\"CITEREFQuinnWaldmannRichterKasper2018\"] = 1,\n [\"CITEREFRandallLippert2017\"] = 1,\n [\"CITEREFRayner2025\"] = 1,\n [\"CITEREFRedondo-IglesiasVenetPelissier2016\"] = 1,\n [\"CITEREFReiterNádhernáDominko2012\"] = 1,\n [\"CITEREFReynolds2018\"] = 1,\n [\"CITEREFRick2024\"] = 1,\n [\"CITEREFSaGratzHeelanMa2016\"] = 1,\n [\"CITEREFSaxenaHendricksPecht2016\"] = 1,\n [\"CITEREFSchimpeNaumannTruongHesse2017\"] = 1,\n [\"CITEREFSchweber2015\"] = 1,\n [\"CITEREFShiChenLiuYue2018\"] = 1,\n [\"CITEREFSmith2015\"] = 1,\n [\"CITEREFSongHarlowLoganHebecker2021\"] = 1,\n [\"CITEREFSpotnitzFranklin2003\"] = 1,\n [\"CITEREFStroeSwierczynskiKarTeodorescu2017\"] = 1,\n [\"CITEREFSummerfield2013\"] = 1,\n [\"CITEREFSunSaxenaPecht2018\"] = 1,\n [\"CITEREFSyzdekArmandMarcinekZalewska2010\"] = 1,\n [\"CITEREFSyzdekBorkowskaPerzynaTarascon2007\"] = 1,\n [\"CITEREFTatsumisagoNagaoHayashi2013\"] = 1,\n [\"CITEREFThackerayThomasWhittingham2011\"] = 1,\n [\"CITEREFTodd_C._Frankel2016\"] = 1,\n [\"CITEREFTurpen2015\"] = 1,\n [\"CITEREFValøenShoesmith2007\"] = 1,\n [\"CITEREFVermeer2022\"] = 1,\n [\"CITEREFVersaciColomboMontinaroBuga2024\"] = 1,\n [\"CITEREFVetterLux2016\"] = 1,\n [\"CITEREFVoelker2014\"] = 1,\n [\"CITEREFVäyrynenSalminen2012\"] = 1,\n [\"CITEREFWaldmannBisleHoggStumpp2015\"] = 1,\n [\"CITEREFWaldmannWilkaKasperFleischhammer2014\"] = 1,\n [\"CITEREFWangHeZhou2012\"] = 1,\n [\"CITEREFWangJiangYuSun2019\"] = 1,\n [\"CITEREFWangLiuHicks-GarnerSherman2011\"] = 1,\n [\"CITEREFWarwick2023\"] = 1,\n [\"CITEREFWeicker,_Phil2013\"] = 1,\n [\"CITEREFWilliams\"] = 1,\n [\"CITEREFWillstrandBisschopBlomqvistTemple2020\"] = 1,\n [\"CITEREFWinterBrodd2004\"] = 1,\n [\"CITEREFWuHuDuSun2015\"] = 1,\n [\"CITEREFXies2022\"] = 1,\n [\"CITEREFXu2004\"] = 1,\n [\"CITEREFXuWangDingChen2014\"] = 1,\n [\"CITEREFYang,_Heekyong2022\"] = 1,\n [\"CITEREFYaoXieChenWang2004\"] = 1,\n [\"CITEREFYazamiTouzain1983\"] = 1,\n [\"CITEREFYiLiLiPan2017\"] = 1,\n [\"CITEREFYounesiVeithJohanssonEdström2015\"] = 1,\n [\"CITEREFZhai2016\"] = 1,\n [\"CITEREFZhangChengChenYan2017\"] = 1,\n [\"CITEREFZhangChouchaneShojaeeWiniarski2022\"] = 1,\n [\"CITEREFZhangFanWang2018\"] = 1,\n [\"CITEREFZhangFujimori2020\"] = 1,\n [\"CITEREFZhangLiFanXue2018\"] = 1,\n [\"CITEREFZhangShiEsanAn2022\"] = 1,\n [\"CITEREFZhaoHaynerKungKung2011\"] = 1,\n [\"CITEREFZiaHussainRasulBae2023\"] = 1,\n [\"CITEREFZieglerSongTrancik2021\"] = 1,\n [\"CITEREFZieglerTrancik2021\"] = 1,\n [\"CITEREFZimmerman2004\"] = 1,\n [\"CITEREFZogg2017\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 1,\n [\"Additional citation needed\"] = 1,\n [\"Alternative propulsion\"] = 1,\n [\"As of\"] = 1,\n [\"Authority control\"] = 1,\n [\"Better source needed\"] = 2,\n [\"Britannica\"] = 1,\n [\"By whom\"] = 1,\n [\"Chem\"] = 39,\n [\"Chem2\"] = 11,\n [\"Citation needed\"] = 8,\n [\"Cite AV media\"] = 1,\n [\"Cite book\"] = 17,\n [\"Cite conference\"] = 1,\n [\"Cite journal\"] = 121,\n [\"Cite magazine\"] = 2,\n [\"Cite news\"] = 29,\n [\"Cite press release\"] = 1,\n [\"Cite report\"] = 3,\n [\"Cite thesis\"] = 1,\n [\"Cite web\"] = 59,\n [\"Commons category\"] = 1,\n [\"Convert\"] = 8,\n [\"Cvt\"] = 2,\n [\"Dubious\"] = 2,\n [\"Excerpt\"] = 1,\n [\"Failed verification\"] = 1,\n [\"Further\"] = 1,\n [\"Galvanic cells\"] = 1,\n [\"Google books\"] = 1,\n [\"Harvnb\"] = 2,\n [\"ISBN\"] = 3,\n [\"Infobox\"] = 1,\n [\"Infobox battery\"] = 1,\n [\"Main\"] = 4,\n [\"Not verified in body\"] = 1,\n [\"Nowrap\"] = 7,\n [\"Olist\"] = 1,\n [\"Pipe\"] = 1,\n [\"Portal\"] = 1,\n [\"Redirect\"] = 1,\n [\"Redirect-distinguish\"] = 1,\n [\"Refbegin\"] = 1,\n [\"Refend\"] = 1,\n [\"Reflist\"] = 1,\n [\"Rp\"] = 2,\n [\"Scholia\"] = 1,\n [\"See also\"] = 3,\n [\"Sfn\"] = 4,\n [\"Short description\"] = 1,\n [\"Sub\"] = 12,\n [\"Unreliable source?\"] = 1,\n [\"Use dmy dates\"] = 1,\n [\"Val\"] = 2,\n [\"Webarchive\"] = 13,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\n","limitreport-profile":[["?","640","19.8"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","360","11.1"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::gsub","260","8.0"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::find","240","7.4"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::sub","160","4.9"],["dataWrapper \u003Cmw.lua:672\u003E","140","4.3"],["\u003Cmw.lua:694\u003E","140","4.3"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::match","120","3.7"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::preprocess","120","3.7"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::plain","120","3.7"],["[others]","940","29.0"]]},"cachereport":{"origin":"mw-api-int.codfw.canary-6cdd778d46-rt2nc","timestamp":"20250217042645","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Lithium-ion battery","url":"https:\/\/en.wikipedia.org\/wiki\/Lithium-ion_battery","sameAs":"http:\/\/www.wikidata.org\/entity\/Q2822895","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q2822895","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-03-26T01:21:03Z","dateModified":"2025-02-17T04:26:24Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/b\/b2\/Nokia_Battery.jpg","headline":"rechargeable battery type"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10