CINXE.COM

Search results for: Markov fields

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Markov fields</title> <meta name="description" content="Search results for: Markov fields"> <meta name="keywords" content="Markov fields"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Markov fields" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Markov fields"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2450</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Markov fields</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2450</span> The Realization of a System’s State Space Based on Markov Parameters by Using Flexible Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Isapour">Ali Isapour</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Nateghi"> Ramin Nateghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> — Markov parameters are unique parameters of the system and remain unchanged under similarity transformations. Markov parameters from a power series that is convergent only if the system matrix’s eigenvalues are inside the unity circle. Therefore, Markov parameters of a stable discrete-time system are convergent. In this study, we aim to realize the system based on Markov parameters by using Artificial Neural Networks (ANN), and this end, we use Flexible Neural Networks. Realization means determining the elements of matrices A, B, C, and D. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Markov%20parameters" title="Markov parameters">Markov parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=realization" title=" realization"> realization</a>, <a href="https://publications.waset.org/abstracts/search?q=activation%20function" title=" activation function"> activation function</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20neural%20network" title=" flexible neural network"> flexible neural network</a> </p> <a href="https://publications.waset.org/abstracts/119535/the-realization-of-a-systems-state-space-based-on-markov-parameters-by-using-flexible-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2449</span> Valuation of Caps and Floors in a LIBOR Market Model with Markov Jump Risks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shih-Kuei%20Lin">Shih-Kuei Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The characterization of the arbitrage-free dynamics of interest rates is developed in this study under the presence of Markov jump risks, when the term structure of the interest rates is modeled through simple forward rates. We consider Markov jump risks by allowing randomness in jump sizes, independence between jump sizes and jump times. The Markov jump diffusion model is used to capture empirical phenomena and to accurately describe interest jump risks in a financial market. We derive the arbitrage-free model of simple forward rates under the spot measure. Moreover, the analytical pricing formulas for a cap and a floor are derived under the forward measure when the jump size follows a lognormal distribution. In our empirical analysis, we find that the LIBOR market model with Markov jump risk better accounts for changes from/to different states and different rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arbitrage-free" title="arbitrage-free">arbitrage-free</a>, <a href="https://publications.waset.org/abstracts/search?q=cap%20and%20floor" title=" cap and floor"> cap and floor</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20jump%20diffusion%20model" title=" Markov jump diffusion model"> Markov jump diffusion model</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20forward%20rate%20model" title=" simple forward rate model"> simple forward rate model</a>, <a href="https://publications.waset.org/abstracts/search?q=volatility%20smile" title=" volatility smile"> volatility smile</a>, <a href="https://publications.waset.org/abstracts/search?q=EM%20algorithm" title=" EM algorithm"> EM algorithm</a> </p> <a href="https://publications.waset.org/abstracts/11690/valuation-of-caps-and-floors-in-a-libor-market-model-with-markov-jump-risks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2448</span> Markov-Chain-Based Optimal Filtering and Smoothing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Garry%20A.%20Einicke">Garry A. Einicke</a>, <a href="https://publications.waset.org/abstracts/search?q=Langford%20B.%20White"> Langford B. White</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes an optimum filter and smoother for recovering a Markov process message from noisy measurements. The developments follow from an equivalence between a state space model and a hidden Markov chain. The ensuing filter and smoother employ transition probability matrices and approximate probability distribution vectors. The properties of the optimum solutions are retained, namely, the estimates are unbiased and minimize the variance of the output estimation error, provided that the assumed parameter set are correct. Methods for estimating unknown parameters from noisy measurements are discussed. Signal recovery examples are described in which performance benefits are demonstrated at an increased calculation cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimal%20filtering" title="optimal filtering">optimal filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=smoothing" title=" smoothing"> smoothing</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20chains" title=" Markov chains"> Markov chains</a> </p> <a href="https://publications.waset.org/abstracts/20256/markov-chain-based-optimal-filtering-and-smoothing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2447</span> Speed Breaker/Pothole Detection Using Hidden Markov Models: A Deep Learning Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surajit%20Chakrabarty">Surajit Chakrabarty</a>, <a href="https://publications.waset.org/abstracts/search?q=Piyush%20Chauhan"> Piyush Chauhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhasis%20Panda"> Subhasis Panda</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujoy%20Bhattacharya"> Sujoy Bhattacharya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A large proportion of roads in India are not well maintained as per the laid down public safety guidelines leading to loss of direction control and fatal accidents. We propose a technique to detect speed breakers and potholes using mobile sensor data captured from multiple vehicles and provide a profile of the road. This would, in turn, help in monitoring roads and revolutionize digital maps. Incorporating randomness in the model formulation for detection of speed breakers and potholes is crucial due to substantial heterogeneity observed in data obtained using a mobile application from multiple vehicles driven by different drivers. This is accomplished with Hidden Markov Models, whose hidden state sequence is found for each time step given the observables sequence, and are then fed as input to LSTM network with peephole connections. A precision score of 0.96 and 0.63 is obtained for classifying bumps and potholes, respectively, a significant improvement from the machine learning based models. Further visualization of bumps/potholes is done by converting time series to images using Markov Transition Fields where a significant demarcation among bump/potholes is observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=hidden%20Markov%20model" title=" hidden Markov model"> hidden Markov model</a>, <a href="https://publications.waset.org/abstracts/search?q=pothole" title=" pothole"> pothole</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20breaker" title=" speed breaker"> speed breaker</a> </p> <a href="https://publications.waset.org/abstracts/121459/speed-breakerpothole-detection-using-hidden-markov-models-a-deep-learning-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2446</span> Maintenance Alternatives Related to Costs of Wind Turbines Using Finite State Markov Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boukelkoul%20Lahcen">Boukelkoul Lahcen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cumulative costs for O&amp;M may represent as much as 65%-90% of the turbine&#39;s investment cost. Nowadays the cost effectiveness concept becomes a decision-making and technology evaluation metric. The cost of energy metric accounts for the effect replacement cost and unscheduled maintenance cost parameters. One key of the proposed approach is the idea of maintaining the WTs which can be captured via use of a finite state Markov chain. Such a model can be embedded within a probabilistic operation and maintenance simulation reflecting the action to be done. In this paper, an approach of estimating the cost of O&amp;M is presented. The finite state Markov model is used for decision problems with number of determined periods (life cycle) to predict the cost according to various options of maintenance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cost" title="cost">cost</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20state" title=" finite state"> finite state</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20model" title=" Markov model"> Markov model</a>, <a href="https://publications.waset.org/abstracts/search?q=operation%20and%20maintenance" title=" operation and maintenance"> operation and maintenance</a> </p> <a href="https://publications.waset.org/abstracts/35860/maintenance-alternatives-related-to-costs-of-wind-turbines-using-finite-state-markov-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2445</span> Hidden Markov Model for the Simulation Study of Neural States and Intentionality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20B.%20Mishra">R. B. Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hidden Markov Model (HMM) has been used in prediction and determination of states that generate different neural activations as well as mental working conditions. This paper addresses two applications of HMM; one to determine the optimal sequence of states for two neural states: Active (AC) and Inactive (IA) for the three emission (observations) which are for No Working (NW), Waiting (WT) and Working (W) conditions of human beings. Another is for the determination of optimal sequence of intentionality i.e. Believe (B), Desire (D), and Intention (I) as the states and three observational sequences: NW, WT and W. The computational results are encouraging and useful. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hiden%20markov%20model" title="hiden markov model">hiden markov model</a>, <a href="https://publications.waset.org/abstracts/search?q=believe%20desire%20intention" title=" believe desire intention"> believe desire intention</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20activation" title=" neural activation"> neural activation</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/31030/hidden-markov-model-for-the-simulation-study-of-neural-states-and-intentionality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2444</span> Introduction of Artificial Intelligence for Estimating Fractal Dimension and Its Applications in the Medical Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zerroug%20Abdelhamid">Zerroug Abdelhamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Danielle%20Chassoux"> Danielle Chassoux</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various models are given to simulate homogeneous or heterogeneous cancerous tumors and extract in each case the boundary. The fractal dimension is then estimated by least squares method and compared to some previous methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation" title="simulation">simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=cancerous%20tumor" title=" cancerous tumor"> cancerous tumor</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20fields" title=" Markov fields"> Markov fields</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal%20dimension" title=" fractal dimension"> fractal dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=recovering" title=" recovering "> recovering </a> </p> <a href="https://publications.waset.org/abstracts/18665/introduction-of-artificial-intelligence-for-estimating-fractal-dimension-and-its-applications-in-the-medical-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2443</span> The Combination of the Mel Frequency Cepstral Coefficients (MFCC), Perceptual Linear Prediction (PLP), JITTER and SHIMMER Coefficients for the Improvement of Automatic Recognition System for Dysarthric Speech</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brahim-Fares%20Zaidi">Brahim-Fares Zaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Malika%20Boudraa"> Malika Boudraa</a>, <a href="https://publications.waset.org/abstracts/search?q=Sid-Ahmed%20Selouani"> Sid-Ahmed Selouani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our work aims to improve our Automatic Recognition System for Dysarthria Speech (ARSDS) based on the Hidden Models of Markov (HMM) and the Hidden Markov Model Toolkit (HTK) to help people who are sick. With pronunciation problems, we applied two techniques of speech parameterization based on Mel Frequency Cepstral Coefficients (MFCC's) and Perceptual Linear Prediction (PLP's) and concatenated them with JITTER and SHIMMER coefficients in order to increase the recognition rate of a dysarthria speech. For our tests, we used the NEMOURS database that represents speakers with dysarthria and normal speakers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hidden%20Markov%20model%20toolkit%20%28HTK%29" title="hidden Markov model toolkit (HTK)">hidden Markov model toolkit (HTK)</a>, <a href="https://publications.waset.org/abstracts/search?q=hidden%20models%20of%20Markov%20%28HMM%29" title=" hidden models of Markov (HMM)"> hidden models of Markov (HMM)</a>, <a href="https://publications.waset.org/abstracts/search?q=Mel-frequency%20cepstral%20coefficients%20%28MFCC%29" title=" Mel-frequency cepstral coefficients (MFCC)"> Mel-frequency cepstral coefficients (MFCC)</a>, <a href="https://publications.waset.org/abstracts/search?q=perceptual%20linear%20prediction%20%28PLP%E2%80%99s%29" title=" perceptual linear prediction (PLP’s)"> perceptual linear prediction (PLP’s)</a> </p> <a href="https://publications.waset.org/abstracts/143303/the-combination-of-the-mel-frequency-cepstral-coefficients-mfcc-perceptual-linear-prediction-plp-jitter-and-shimmer-coefficients-for-the-improvement-of-automatic-recognition-system-for-dysarthric-speech" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2442</span> Finite State Markov Chain Model of Pollutants from Service Stations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amina%20Boukelkoul">Amina Boukelkoul</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahil%20Boukelkoul"> Rahil Boukelkoul</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Maachia"> Leila Maachia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cumulative vapors emitted from the service stations may represent a hazard to the environment and the population. Besides fuel spill and their penetration into deep soil layers are the main contributors to soil and ground-water contamination in the vicinity of the petrol stations. The amount of the effluents from the service stations depends on strategy of maintenance and the policy adopted by the management to reduce the pollution. One key of the proposed approach is the idea of managing the effluents from the service stations which can be captured via use of a finite state Markov chain. Such a model can be embedded within a probabilistic operation and maintenance simulation reflecting the action to be done. In this paper, an approach of estimating a probabilistic percentage of the amount of emitted pollutants is presented. The finite state Markov model is used for decision problems with number of determined periods (life cycle) to predict the amount according to various options of operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environment" title="environment">environment</a>, <a href="https://publications.waset.org/abstracts/search?q=markov%20modeling" title=" markov modeling"> markov modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20station" title=" service station"> service station</a> </p> <a href="https://publications.waset.org/abstracts/35961/finite-state-markov-chain-model-of-pollutants-from-service-stations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2441</span> Moral Hazard under the Effect of Bailout and Bailin Events: A Markov Switching Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amira%20Kaddour">Amira Kaddour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To curb the problem of liquidity in times of financial crises, two cases arise; the Bailout or Bailin, two opposite choices that elicit the analysis of their effect on moral hazard. This paper attempts to empirically analyze the effect of these two types of events on the behavior of investors. For this end, we use the Emerging Market Bonds Index (EMBI-JP Morgan), and its excess of return, to detect the change in the risk premia through a Markov switching model. The results showed the transition to two types of regime and an effect on moral hazard; Bailout is an incentive of moral hazard, Bailin effectiveness remains subject of credibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bailout" title="Bailout">Bailout</a>, <a href="https://publications.waset.org/abstracts/search?q=Bailin" title=" Bailin"> Bailin</a>, <a href="https://publications.waset.org/abstracts/search?q=Moral%20hazard" title=" Moral hazard"> Moral hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20crisis" title=" financial crisis"> financial crisis</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20switching" title=" Markov switching"> Markov switching</a> </p> <a href="https://publications.waset.org/abstracts/27085/moral-hazard-under-the-effect-of-bailout-and-bailin-events-a-markov-switching-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2440</span> A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavan%20K.%20Rallabandi">Pavan K. Rallabandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kailash%20C.%20Patidar"> Kailash C. Patidar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20systems" title="hybrid systems">hybrid systems</a>, <a href="https://publications.waset.org/abstracts/search?q=hidden%20markov%20models" title=" hidden markov models"> hidden markov models</a>, <a href="https://publications.waset.org/abstracts/search?q=recurrent%20neural%20networks" title=" recurrent neural networks"> recurrent neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=deterministic%20finite%20state%20automata" title=" deterministic finite state automata"> deterministic finite state automata</a> </p> <a href="https://publications.waset.org/abstracts/37759/a-hybrid-system-of-hidden-markov-models-and-recurrent-neural-networks-for-learning-deterministic-finite-state-automata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2439</span> Volatility Model with Markov Regime Switching to Forecast Baht/USD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nop%20Sopipan">Nop Sopipan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we forecast the volatility of Baht/USDs using Markov Regime Switching GARCH (MRS-GARCH) models. These models allow volatility to have different dynamics according to unobserved regime variables. The main purpose of this paper is to find out whether MRS-GARCH models are an improvement on the GARCH type models in terms of modeling and forecasting Baht/USD volatility. The MRS-GARCH is the best performance model for Baht/USD volatility in short term but the GARCH model is best perform for long term. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=volatility" title="volatility">volatility</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20Regime%20Switching" title=" Markov Regime Switching"> Markov Regime Switching</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=Baht%2FUSD" title=" Baht/USD"> Baht/USD</a> </p> <a href="https://publications.waset.org/abstracts/3942/volatility-model-with-markov-regime-switching-to-forecast-bahtusd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2438</span> Markov Switching of Conditional Variance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josip%20Arneric">Josip Arneric</a>, <a href="https://publications.waset.org/abstracts/search?q=Blanka%20Skrabic%20Peric"> Blanka Skrabic Peric</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forecasting of volatility, i.e. returns fluctuations, has been a topic of interest to portfolio managers, option traders and market makers in order to get higher profits or less risky positions. Based on the fact that volatility is time varying in high frequency data and that periods of high volatility tend to cluster, the most common used models are GARCH type models. As standard GARCH models show high volatility persistence, i.e. integrated behaviour of the conditional variance, it is difficult the predict volatility using standard GARCH models. Due to practical limitations of these models different approaches have been proposed in the literature, based on Markov switching models. In such situations models in which the parameters are allowed to change over time are more appropriate because they allow some part of the model to depend on the state of the economy. The empirical analysis demonstrates that Markov switching GARCH model resolves the problem of excessive persistence and outperforms uni-regime GARCH models in forecasting volatility for selected emerging markets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emerging%20markets" title="emerging markets">emerging markets</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20switching" title=" Markov switching"> Markov switching</a>, <a href="https://publications.waset.org/abstracts/search?q=GARCH%20model" title=" GARCH model"> GARCH model</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20probabilities" title=" transition probabilities"> transition probabilities</a> </p> <a href="https://publications.waset.org/abstracts/23987/markov-switching-of-conditional-variance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2437</span> Recognition of Voice Commands of Mentor Robot in Noisy Environment Using Hidden Markov Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khenfer%20Koummich%20Fatma">Khenfer Koummich Fatma</a>, <a href="https://publications.waset.org/abstracts/search?q=Hendel%20Fatiha"> Hendel Fatiha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mesbahi%20Larbi"> Mesbahi Larbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an approach based on Hidden Markov Models (HMM: Hidden Markov Model) using HTK tools. The goal is to create a human-machine interface with a voice recognition system that allows the operator to teleoperate a mentor robot to execute specific tasks as rotate, raise, close, etc. This system should take into account different levels of environmental noise. This approach has been applied to isolated words representing the robot commands pronounced in two languages: French and Arabic. The obtained recognition rate is the same in both speeches, Arabic and French in the neutral words. However, there is a slight difference in favor of the Arabic speech when Gaussian white noise is added with a Signal to Noise Ratio (SNR) equals 30 dB, in this case; the Arabic speech recognition rate is 69%, and the French speech recognition rate is 80%. This can be explained by the ability of phonetic context of each speech when the noise is added. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arabic%20speech%20recognition" title="Arabic speech recognition">Arabic speech recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=Hidden%20Markov%20Model%20%28HMM%29" title=" Hidden Markov Model (HMM)"> Hidden Markov Model (HMM)</a>, <a href="https://publications.waset.org/abstracts/search?q=HTK" title=" HTK"> HTK</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/abstracts/search?q=TIMIT" title=" TIMIT"> TIMIT</a>, <a href="https://publications.waset.org/abstracts/search?q=voice%20command" title=" voice command"> voice command</a> </p> <a href="https://publications.waset.org/abstracts/67988/recognition-of-voice-commands-of-mentor-robot-in-noisy-environment-using-hidden-markov-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2436</span> Estimating Bridge Deterioration for Small Data Sets Using Regression and Markov Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yina%20F.%20Mu%C3%B1oz">Yina F. Muñoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Paz"> Alexander Paz</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanns%20De%20La%20Fuente-Mella"> Hanns De La Fuente-Mella</a>, <a href="https://publications.waset.org/abstracts/search?q=Joaquin%20V.%20Fari%C3%B1a"> Joaquin V. Fariña</a>, <a href="https://publications.waset.org/abstracts/search?q=Guilherme%20M.%20Sales"> Guilherme M. Sales</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The primary approach for estimating bridge deterioration uses Markov-chain models and regression analysis. Traditional Markov models have problems in estimating the required transition probabilities when a small sample size is used. Often, reliable bridge data have not been taken over large periods, thus large data sets may not be available. This study presents an important change to the traditional approach by using the Small Data Method to estimate transition probabilities. The results illustrate that the Small Data Method and traditional approach both provide similar estimates; however, the former method provides results that are more conservative. That is, Small Data Method provided slightly lower than expected bridge condition ratings compared with the traditional approach. Considering that bridges are critical infrastructures, the Small Data Method, which uses more information and provides more conservative estimates, may be more appropriate when the available sample size is small. In addition, regression analysis was used to calculate bridge deterioration. Condition ratings were determined for bridge groups, and the best regression model was selected for each group. The results obtained were very similar to those obtained when using Markov chains; however, it is desirable to use more data for better results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20bridges" title="concrete bridges">concrete bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=deterioration" title=" deterioration"> deterioration</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20chains" title=" Markov chains"> Markov chains</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20matrix" title=" probability matrix"> probability matrix</a> </p> <a href="https://publications.waset.org/abstracts/43375/estimating-bridge-deterioration-for-small-data-sets-using-regression-and-markov-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2435</span> Markov Characteristics of the Power Line Communication Channels in China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Yue%20Zhai">Ming-Yue Zhai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the multipath and pulse noise nature, power line communications(PLC) channel can be modelled as a memory one with the finite states Markov model(FSMC). As the most important parameter modelling a Markov channel,the memory order in an FSMC is not solved in PLC systems yet. In the paper, the mutual information is used as a measure of the dependence between the different symbols, treated as the received SNA or amplitude of the current channel symbol or that of previous symbols. The joint distribution probabilities of the envelopes in PLC systems are computed based on the multi-path channel model, which is commonly used in PLC. we confirm that given the information of the symbol immediately preceding the current one, any other previous symbol is independent of the current one in PLC systems, which means the PLC channels is a Markov chain with the first-order. The field test is also performed to model the received OFDM signals with the help of AR model. The results show that the first-order AR model is enough to model the fading channel in PLC systems, which means the amount of uncertainty remaining in the current symbol should be negligible, given the information corresponding to the immediately preceding one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20line%20communication" title="power line communication">power line communication</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20model" title=" channel model"> channel model</a>, <a href="https://publications.waset.org/abstracts/search?q=markovian" title=" markovian"> markovian</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20theory" title=" information theory"> information theory</a>, <a href="https://publications.waset.org/abstracts/search?q=first-order" title=" first-order"> first-order</a> </p> <a href="https://publications.waset.org/abstracts/10405/markov-characteristics-of-the-power-line-communication-channels-in-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2434</span> An Optimal Bayesian Maintenance Policy for a Partially Observable System Subject to Two Failure Modes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akram%20Khaleghei%20Ghosheh%20Balagh">Akram Khaleghei Ghosheh Balagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Viliam%20Makis"> Viliam Makis</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Jafari"> Leila Jafari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a new maintenance model for a partially observable system subject to two failure modes, namely a catastrophic failure and a failure due to the system degradation. The system is subject to condition monitoring and the degradation process is described by a hidden Markov model. A cost-optimal Bayesian control policy is developed for maintaining the system. The control problem is formulated in the semi-Markov decision process framework. An effective computational algorithm is developed and illustrated by a numerical example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=partially%20observable%20system" title="partially observable system">partially observable system</a>, <a href="https://publications.waset.org/abstracts/search?q=hidden%20Markov%20model" title=" hidden Markov model"> hidden Markov model</a>, <a href="https://publications.waset.org/abstracts/search?q=competing%20risks" title=" competing risks"> competing risks</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20Bayesian%20control" title=" multivariate Bayesian control"> multivariate Bayesian control</a> </p> <a href="https://publications.waset.org/abstracts/12740/an-optimal-bayesian-maintenance-policy-for-a-partially-observable-system-subject-to-two-failure-modes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2433</span> Recognition of Cursive Arabic Handwritten Text Using Embedded Training Based on Hidden Markov Models (HMMs)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabi%20Mouhcine">Rabi Mouhcine</a>, <a href="https://publications.waset.org/abstracts/search?q=Amrouch%20Mustapha"> Amrouch Mustapha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahani%20Zouhir"> Mahani Zouhir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mammass%20Driss"> Mammass Driss</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a system for offline recognition cursive Arabic handwritten text based on Hidden Markov Models (HMMs). The system is analytical without explicit segmentation used embedded training to perform and enhance the character models. Extraction features preceded by baseline estimation are statistical and geometric to integrate both the peculiarities of the text and the pixel distribution characteristics in the word image. These features are modelled using hidden Markov models and trained by embedded training. The experiments on images of the benchmark IFN/ENIT database show that the proposed system improves recognition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recognition" title="recognition">recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=handwriting" title=" handwriting"> handwriting</a>, <a href="https://publications.waset.org/abstracts/search?q=Arabic%20text" title=" Arabic text"> Arabic text</a>, <a href="https://publications.waset.org/abstracts/search?q=HMMs" title=" HMMs"> HMMs</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20training" title=" embedded training"> embedded training</a> </p> <a href="https://publications.waset.org/abstracts/54405/recognition-of-cursive-arabic-handwritten-text-using-embedded-training-based-on-hidden-markov-models-hmms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2432</span> Bayesian Using Markov Chain Monte Carlo and Lindley&#039;s Approximation Based on Type-I Censored Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al%20Omari%20Moahmmed%20Ahmed">Al Omari Moahmmed Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> These papers describe the Bayesian Estimator using Markov Chain Monte Carlo and Lindley’s approximation and the maximum likelihood estimation of the Weibull distribution with Type-I censored data. The maximum likelihood method can’t estimate the shape parameter in closed forms, although it can be solved by numerical methods. Moreover, the Bayesian estimates of the parameters, the survival and hazard functions cannot be solved analytically. Hence Markov Chain Monte Carlo method and Lindley’s approximation are used, where the full conditional distribution for the parameters of Weibull distribution are obtained via Gibbs sampling and Metropolis-Hastings algorithm (HM) followed by estimate the survival and hazard functions. The methods are compared to Maximum Likelihood counterparts and the comparisons are made with respect to the Mean Square Error (MSE) and absolute bias to determine the better method in scale and shape parameters, the survival and hazard functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=weibull%20distribution" title="weibull distribution">weibull distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=bayesian%20method" title=" bayesian method"> bayesian method</a>, <a href="https://publications.waset.org/abstracts/search?q=markov%20chain%20mote%20carlo" title=" markov chain mote carlo"> markov chain mote carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=survival%20and%20hazard%20functions" title=" survival and hazard functions"> survival and hazard functions</a> </p> <a href="https://publications.waset.org/abstracts/31291/bayesian-using-markov-chain-monte-carlo-and-lindleys-approximation-based-on-type-i-censored-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2431</span> On the Use of Analytical Performance Models to Design a High-Performance Active Queue Management Scheme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahram%20Jamali">Shahram Jamali</a>, <a href="https://publications.waset.org/abstracts/search?q=Samira%20Hamed"> Samira Hamed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the open issues in Random Early Detection (RED) algorithm is how to set its parameters to reach high performance for the dynamic conditions of the network. Although original RED uses fixed values for its parameters, this paper follows a model-based approach to upgrade performance of the RED algorithm. It models the routers queue behavior by using the Markov model and uses this model to predict future conditions of the queue. This prediction helps the proposed algorithm to make some tunings over RED's parameters and provide efficiency and better performance. Widespread packet level simulations confirm that the proposed algorithm, called Markov-RED, outperforms RED and FARED in terms of queue stability, bottleneck utilization and dropped packets count. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20queue%20management" title="active queue management">active queue management</a>, <a href="https://publications.waset.org/abstracts/search?q=RED" title=" RED"> RED</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20model" title=" Markov model"> Markov model</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20early%20detection%20algorithm" title=" random early detection algorithm "> random early detection algorithm </a> </p> <a href="https://publications.waset.org/abstracts/33934/on-the-use-of-analytical-performance-models-to-design-a-high-performance-active-queue-management-scheme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">539</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2430</span> Optimal Maintenance and Improvement Policies in Water Distribution System: Markov Decision Process Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jong%20Woo%20Kim">Jong Woo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Go%20Bong%20Choi"> Go Bong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Hwan%20Son"> Sang Hwan Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae%20Shik%20Kim"> Dae Shik Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung%20Chul%20Suh"> Jung Chul Suh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Min%20Lee"> Jong Min Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Markov Decision Process (MDP) based methodology is implemented in order to establish the optimal schedule which minimizes the cost. Formulation of MDP problem is presented using the information about the current state of pipe, improvement cost, failure cost and pipe deterioration model. The objective function and detailed algorithm of dynamic programming (DP) are modified due to the difficulty of implementing the conventional DP approaches. The optimal schedule derived from suggested model is compared to several policies via Monte Carlo simulation. Validity of the solution and improvement in computational time are proved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Markov%20decision%20processes" title="Markov decision processes">Markov decision processes</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20programming" title=" dynamic programming"> dynamic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20replacement" title=" periodic replacement"> periodic replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=Weibull%20distribution" title=" Weibull distribution"> Weibull distribution</a> </p> <a href="https://publications.waset.org/abstracts/28043/optimal-maintenance-and-improvement-policies-in-water-distribution-system-markov-decision-process-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2429</span> Metamorphic Computer Virus Classification Using Hidden Markov Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babak%20Bashari%20Rad">Babak Bashari Rad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A metamorphic computer virus uses different code transformation techniques to mutate its body in duplicated instances. Characteristics and function of new instances are mostly similar to their parents, but they cannot be easily detected by the majority of antivirus in market, as they depend on string signature-based detection techniques. The purpose of this research is to propose a Hidden Markov Model for classification of metamorphic viruses in executable files. In the proposed solution, portable executable files are inspected to extract the instructions opcodes needed for the examination of code. A Hidden Markov Model trained on portable executable files is employed to classify the metamorphic viruses of the same family. The proposed model is able to generate and recognize common statistical features of mutated code. The model has been evaluated by examining the model on a test data set. The performance of the model has been practically tested and evaluated based on False Positive Rate, Detection Rate and Overall Accuracy. The result showed an acceptable performance with high average of 99.7% Detection Rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malware%20classification" title="malware classification">malware classification</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20virus%20classification" title=" computer virus classification"> computer virus classification</a>, <a href="https://publications.waset.org/abstracts/search?q=metamorphic%20virus" title=" metamorphic virus"> metamorphic virus</a>, <a href="https://publications.waset.org/abstracts/search?q=metamorphic%20malware" title=" metamorphic malware"> metamorphic malware</a>, <a href="https://publications.waset.org/abstracts/search?q=Hidden%20Markov%20Model" title=" Hidden Markov Model"> Hidden Markov Model</a> </p> <a href="https://publications.waset.org/abstracts/62795/metamorphic-computer-virus-classification-using-hidden-markov-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2428</span> Hidden Markov Movement Modelling with Irregular Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victoria%20Goodall">Victoria Goodall</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Fatti"> Paul Fatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Norman%20Owen-Smith"> Norman Owen-Smith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hidden Markov Models have become popular for the analysis of animal tracking data. These models are being used to model the movements of a variety of species in many areas around the world. A common assumption of the model is that the observations need to have regular time steps. In many ecological studies, this will not be the case. The objective of the research is to modify the movement model to allow for irregularly spaced locations and investigate the effect on the inferences which can be made about the latent states. A modification of the likelihood function to allow for these irregular spaced locations is investigated, without using interpolation or averaging the movement rate. The suitability of the modification is investigated using GPS tracking data for lion (Panthera leo) in South Africa, with many observations obtained during the night, and few observations during the day. Many nocturnal predator tracking studies are set up in this way, to obtain many locations at night when the animal is most active and is difficult to observe. Few observations are obtained during the day, when the animal is expected to rest and is potentially easier to observe. Modifying the likelihood function allows the popular Hidden Markov Model framework to be used to model these irregular spaced locations, making use of all the observed data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hidden%20Markov%20Models" title="hidden Markov Models">hidden Markov Models</a>, <a href="https://publications.waset.org/abstracts/search?q=irregular%20observations" title=" irregular observations"> irregular observations</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20movement%20modelling" title=" animal movement modelling"> animal movement modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=nocturnal%20predator" title=" nocturnal predator"> nocturnal predator</a> </p> <a href="https://publications.waset.org/abstracts/56744/hidden-markov-movement-modelling-with-irregular-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2427</span> Exploring the Activity Fabric of an Intelligent Environment with Hierarchical Hidden Markov Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiung-Hui%20Chen">Chiung-Hui Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Internet of Things (IoT) was designed for widespread convenience. With the smart tag and the sensing network, a large quantity of dynamic information is immediately presented in the IoT. Through the internal communication and interaction, meaningful objects provide real-time services for users. Therefore, the service with appropriate decision-making has become an essential issue. Based on the science of human behavior, this study employed the environment model to record the time sequences and locations of different behaviors and adopted the probability module of the hierarchical Hidden Markov Model for the inference. The statistical analysis was conducted to achieve the following objectives: First, define user behaviors and predict the user behavior routes with the environment model to analyze user purposes. Second, construct the hierarchical Hidden Markov Model according to the logic framework, and establish the sequential intensity among behaviors to get acquainted with the use and activity fabric of the intelligent environment. Third, establish the intensity of the relation between the probability of objects’ being used and the objects. The indicator can describe the possible limitations of the mechanism. As the process is recorded in the information of the system created in this study, these data can be reused to adjust the procedure of intelligent design services. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behavior" title="behavior">behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data" title=" big data"> big data</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20hidden%20Markov%20model" title=" hierarchical hidden Markov model"> hierarchical hidden Markov model</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20object" title=" intelligent object"> intelligent object</a> </p> <a href="https://publications.waset.org/abstracts/68970/exploring-the-activity-fabric-of-an-intelligent-environment-with-hierarchical-hidden-markov-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2426</span> SPICE Modeling for Evaluation of Distribution System Reliability Indices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Srinivas">G. N. Srinivas</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Raju"> K. Raju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents Markov processes for determining the reliability indices of distribution system. The continuous Markov modeling is applied to a complex radial distribution system and electrical equivalent circuits are developed for the modeling. In general PSPICE is being used for electrical and electronic circuits and various applications of power system like fault analysis, transient analysis etc. In this paper, the SPICE modeling equivalent circuits which are developed are applied in a novel way to Distribution System reliability analysis. These circuits are simulated using PSPICE software to obtain the state probabilities, the basic and performance indices. Thus the basic indices and the performance indices obtained by this method are compared with those obtained by FMEA technique. The application of the concepts presented in this paper are illustrated and analyzed for IEEE-Roy Billinton Test System (RBTS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distribution%20system" title="distribution system">distribution system</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20Model" title=" Markov Model"> Markov Model</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20indices" title=" reliability indices"> reliability indices</a>, <a href="https://publications.waset.org/abstracts/search?q=spice%20simulation" title=" spice simulation "> spice simulation </a> </p> <a href="https://publications.waset.org/abstracts/2903/spice-modeling-for-evaluation-of-distribution-system-reliability-indices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">539</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2425</span> Copula Markov Switching Multifractal Models for Forecasting Value-at-Risk </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giriraj%20Achari">Giriraj Achari</a>, <a href="https://publications.waset.org/abstracts/search?q=Malay%20Bhattacharyya"> Malay Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effectiveness of Copula Markov Switching Multifractal (MSM) models at forecasting Value-at-Risk of a two-stock portfolio is studied. The innovations are allowed to be drawn from distributions that can capture skewness and leptokurtosis, which are well documented empirical characteristics observed in financial returns. The candidate distributions considered for this purpose are Johnson-SU, Pearson Type-IV and α-Stable distributions. The two univariate marginal distributions are combined using the Student-t copula. The estimation of all parameters is performed by Maximum Likelihood Estimation. Finally, the models are compared in terms of accurate Value-at-Risk (VaR) forecasts using tests of unconditional coverage and independence. It is found that Copula-MSM-models with leptokurtic innovation distributions perform slightly better than Copula-MSM model with Normal innovations. Copula-MSM models, in general, produce better VaR forecasts as compared to traditional methods like Historical Simulation method, Variance-Covariance approach and Copula-Generalized Autoregressive Conditional Heteroscedasticity (Copula-GARCH) models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Copula" title="Copula">Copula</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20Switching" title=" Markov Switching"> Markov Switching</a>, <a href="https://publications.waset.org/abstracts/search?q=multifractal" title=" multifractal"> multifractal</a>, <a href="https://publications.waset.org/abstracts/search?q=value-at-risk" title=" value-at-risk"> value-at-risk</a> </p> <a href="https://publications.waset.org/abstracts/115727/copula-markov-switching-multifractal-models-for-forecasting-value-at-risk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2424</span> A Mathematical Model for Reliability Redundancy Optimization Problem of K-Out-Of-N: G System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gak-Gyu%20Kim">Gak-Gyu Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Won%20Il%20Jung"> Won Il Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to a remarkable development of science and technology, function and role of the system of engineering fields has recently been diversified. The system has become increasingly more complex and precise, and thus, system designers intended to maximize reliability concentrate more effort at the design stage. This study deals with the reliability redundancy optimization problem (RROP) for k-out-of-n: G system configuration with cold standby and warm standby components. This paper further intends to present the optimal mathematical model through which the following three elements of (i) multiple components choices, (ii) redundant components quantity and (iii) the choice of redundancy strategies may be combined in order to maximize the reliability of the system. Therefore, we focus on the following three issues. First, we consider RROP that there exists warm standby state as well as cold standby state of the component. Second, as eliminating an approximation approach of the previous RROP studies, we construct a precise model for system reliability. Third, given transition time when the state of components changes, we present not simply a workable solution but the advanced method. For the wide applicability of RROPs, moreover, we use absorbing continuous time Markov chain and matrix analytic methods in the suggested mathematical model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RROP" title="RROP">RROP</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20analytic%20methods" title=" matrix analytic methods"> matrix analytic methods</a>, <a href="https://publications.waset.org/abstracts/search?q=k-out-of-n%3A%20G%20system" title=" k-out-of-n: G system"> k-out-of-n: G system</a>, <a href="https://publications.waset.org/abstracts/search?q=MTTF" title=" MTTF"> MTTF</a>, <a href="https://publications.waset.org/abstracts/search?q=absorbing%20continuous%20time%20Markov%20Chain" title=" absorbing continuous time Markov Chain"> absorbing continuous time Markov Chain</a> </p> <a href="https://publications.waset.org/abstracts/66196/a-mathematical-model-for-reliability-redundancy-optimization-problem-of-k-out-of-n-g-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2423</span> Mean Field Model Interaction for Computer and Communication Systems: Modeling and Analysis of Wireless Sensor Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irina%20A.%20Gudkova">Irina A. Gudkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousra%20Demigha"> Yousra Demigha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scientific research is moving more and more towards the study of complex systems in several areas of economics, biology physics, and computer science. In this paper, we will work on complex systems in communication networks, Wireless Sensor Networks (WSN) that are considered as stochastic systems composed of interacting entities. The current advancements of the sensing in computing and communication systems is an investment ground for research in several tracks. A detailed presentation was made for the WSN, their use, modeling, different problems that can occur in their application and some solutions. The main goal of this work reintroduces the idea of mean field method since it is a powerful technique to solve this type of models especially systems that evolve according to a Continuous Time Markov Chain (CTMC). Modeling of a CTMC has been focused; we obtained a large system of interacting Continuous Time Markov Chain with population entities. The main idea was to work on one entity and replace the others with an average or effective interaction. In this context to make the solution easier, we consider a wireless sensor network as a multi-body problem and we reduce it to one body problem. The method was applied to a system of WSN modeled as a Markovian queue showing the results of the used technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Continuous-Time%20Markov%20Chain" title="Continuous-Time Markov Chain">Continuous-Time Markov Chain</a>, <a href="https://publications.waset.org/abstracts/search?q=Hidden%20Markov%20Chain" title=" Hidden Markov Chain"> Hidden Markov Chain</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20field%20method" title=" mean field method"> mean field method</a>, <a href="https://publications.waset.org/abstracts/search?q=Wireless%20sensor%20networks" title=" Wireless sensor networks"> Wireless sensor networks</a> </p> <a href="https://publications.waset.org/abstracts/86965/mean-field-model-interaction-for-computer-and-communication-systems-modeling-and-analysis-of-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2422</span> Optimal Maintenance Policy for a Three-Unit System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Abbou">A. Abbou</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Makis"> V. Makis</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Salari"> N. Salari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the condition-based maintenance (CBM) problem of a system subject to stochastic deterioration. The system is composed of three units (or modules): (i) Module 1 deterioration follows a Markov process with two operational states and one failure state. The operational states are partially observable through periodic condition monitoring. (ii) Module 2 deterioration follows a Gamma process with a known failure threshold. The deterioration level of this module is fully observable through periodic inspections. (iii) Only the operating age information is available of Module 3. The lifetime of this module has a general distribution. A CBM policy prescribes when to initiate a maintenance intervention and which modules to repair during intervention. Our objective is to determine the optimal CBM policy minimizing the long-run expected average cost of operating the system. This is achieved by formulating a Markov decision process (MDP) and developing the value iteration algorithm for solving the MDP. We provide numerical examples illustrating the cost-effectiveness of the optimal CBM policy through a comparison with heuristic policies commonly found in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance%20optimization" title=" maintenance optimization"> maintenance optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20decision%20process" title=" Markov decision process"> Markov decision process</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristics" title=" heuristics "> heuristics </a> </p> <a href="https://publications.waset.org/abstracts/84566/optimal-maintenance-policy-for-a-three-unit-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2421</span> Reliability Analysis of a Fuel Supply System in Automobile Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chitaranjan%20Sharma">Chitaranjan Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper deals with the analysis of a fuel supply system in an automobile engine of a four wheeler which is having both the option of fuel i.e. PETROL and CNG. Since CNG is cheaper than petrol so the priority is given to consume CNG as compared to petrol. An automatic switch is used to start petrol supply at the time of failure of CNG supply. Using regenerative point technique with Markov renewal process, the reliability characteristics which are useful to system designers are obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=redundancy" title=" redundancy"> redundancy</a>, <a href="https://publications.waset.org/abstracts/search?q=repair%20time" title=" repair time"> repair time</a>, <a href="https://publications.waset.org/abstracts/search?q=transition" title=" transition"> transition</a>, <a href="https://publications.waset.org/abstracts/search?q=probability" title=" probability"> probability</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerative%20points" title=" regenerative points"> regenerative points</a>, <a href="https://publications.waset.org/abstracts/search?q=markov%20renewal" title=" markov renewal"> markov renewal</a>, <a href="https://publications.waset.org/abstracts/search?q=process" title=" process"> process</a> </p> <a href="https://publications.waset.org/abstracts/16527/reliability-analysis-of-a-fuel-supply-system-in-automobile-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Markov%20fields&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Markov%20fields&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Markov%20fields&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Markov%20fields&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Markov%20fields&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Markov%20fields&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Markov%20fields&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Markov%20fields&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Markov%20fields&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Markov%20fields&amp;page=81">81</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Markov%20fields&amp;page=82">82</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Markov%20fields&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10