CINXE.COM

Search results for: Aleksander Drinic

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Aleksander Drinic</title> <meta name="description" content="Search results for: Aleksander Drinic"> <meta name="keywords" content="Aleksander Drinic"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Aleksander Drinic" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Aleksander Drinic"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 20</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Aleksander Drinic</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Characterization of Natural Polymers for Guided Bone Regeneration Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benedetta%20Isella">Benedetta Isella</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Drinic"> Aleksander Drinic</a>, <a href="https://publications.waset.org/abstracts/search?q=Alissa%20Heim"> Alissa Heim</a>, <a href="https://publications.waset.org/abstracts/search?q=Phillip%20Czichowski"> Phillip Czichowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Lisa%20Lauts"> Lisa Lauts</a>, <a href="https://publications.waset.org/abstracts/search?q=Hans%20Leemhuis"> Hans Leemhuis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Membranes for guided bone regeneration are essential to perform a barrier function between the soft and the regenerating bone tissue. Bioabsorbable membranes are desirable in this field as they do not require a secondary surgery for removal, decreasing patient surgical risk. Collagen was the first bioabsorbable alternative introduced on the market, but its degradation time may be too fast to guarantee bone regeneration, and optimisation is needed. Silk fibroin, being biocompatible, slowly bioabsorbable, and processable into different scaffold types, could be a promising alternative. Objectives: The objective is to compare the general performance of a silk fibroin membrane for guided bone regeneration to current collagen alternatives developing suitable standardized tests for the mechanical and morphological characterization. Methods: Silk fibroin and collagen-based membranes were compared from the morphological and chemical perspective, with techniques such as SEM imaging and from the mechanical point of view with techniques such as tensile and suture retention strength (SRS) tests. Results: Silk fibroin revealed a high degree of reproducibility in surface density. The SRS of silk fibroin (0.76 ± 0.04 N), although lower than collagen, was still comparable to native tissues such as the internal mammary artery (0.56 N), and the same can be extended to general mechanical behaviour in tensile tests. The SRS could be increased by an increase in thickness. Conclusion: Silk fibroin is a promising material in the field of guided bone regeneration, covering the interesting position of not being considered a product containing cells or tissues of animal origin from the regulatory perspective and having longer degradation times with respect to collagen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=guided%20bone%20regeneration" title="guided bone regeneration">guided bone regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20characterization" title=" mechanical characterization"> mechanical characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=silk%20fibroin" title=" silk fibroin"> silk fibroin</a> </p> <a href="https://publications.waset.org/abstracts/187400/characterization-of-natural-polymers-for-guided-bone-regeneration-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">42</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> On the Theory of Persecution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20V.%20Zakharov">Aleksander V. Zakharov</a>, <a href="https://publications.waset.org/abstracts/search?q=Marat%20R.%20Bogdanov"> Marat R. Bogdanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramil%20F.%20Malikov"> Ramil F. Malikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Irina%20N.%20Dumchikova"> Irina N. Dumchikova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Classification of persecution movement laws is proposed. Modes of persecution in number of specific cases were researched. Modes of movement control using GLONASS/GPS are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UAV%20Management" title="UAV Management">UAV Management</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20algorithms%20of%20targeting%20and%20persecution" title=" mathematical algorithms of targeting and persecution"> mathematical algorithms of targeting and persecution</a>, <a href="https://publications.waset.org/abstracts/search?q=GLONASS" title=" GLONASS"> GLONASS</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS" title=" GPS"> GPS</a> </p> <a href="https://publications.waset.org/abstracts/4758/on-the-theory-of-persecution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> System Detecting Border Gateway Protocol Anomalies Using Local and Remote Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alicja%20Starczewska">Alicja Starczewska</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Nawrat"> Aleksander Nawrat</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Daniec"> Krzysztof Daniec</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaros%C5%82aw%20Homa"> Jarosław Homa</a>, <a href="https://publications.waset.org/abstracts/search?q=Kacper%20Ho%C5%82da"> Kacper Hołda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Border Gateway Protocol is the main routing protocol that enables routing establishment between all autonomous systems, which are the basic administrative units of the internet. Due to the poor protection of BGP, it is important to use additional BGP security systems. Many solutions to this problem have been proposed over the years, but none of them have been implemented on a global scale. This article describes a system capable of building images of real-time BGP network topology in order to detect BGP anomalies. Our proposal performs a detailed analysis of BGP messages that come into local network cards supplemented by information collected by remote collectors in different localizations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BGP" title="BGP">BGP</a>, <a href="https://publications.waset.org/abstracts/search?q=BGP%20hijacking" title=" BGP hijacking"> BGP hijacking</a>, <a href="https://publications.waset.org/abstracts/search?q=cybersecurity" title=" cybersecurity"> cybersecurity</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a> </p> <a href="https://publications.waset.org/abstracts/174286/system-detecting-border-gateway-protocol-anomalies-using-local-and-remote-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Glushkov&#039;s Construction for Functional Subsequential Transducers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Mendoza">Aleksander Mendoza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glushkov's construction has many interesting properties, and they become even more evident when applied to transducers. This article strives to show the vast range of possible extensions and optimisations for this algorithm. Special flavour of regular expressions is introduced, which can be efficiently converted to e-free functional subsequential weighted finite state transducers. Produced automata are very compact, as they contain only one state for each symbol (from input alphabet) of original expression and only one transition for each range of symbols, no matter how large. Such compactified ranges of transitions allow for efficient binary search lookup during automaton evaluation. All the methods and algorithms presented here were used to implement open-source compiler of regular expressions for multitape transducers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=weighted%20automata" title="weighted automata">weighted automata</a>, <a href="https://publications.waset.org/abstracts/search?q=transducers" title=" transducers"> transducers</a>, <a href="https://publications.waset.org/abstracts/search?q=Glushkov" title=" Glushkov"> Glushkov</a>, <a href="https://publications.waset.org/abstracts/search?q=follow%20automata" title=" follow automata"> follow automata</a>, <a href="https://publications.waset.org/abstracts/search?q=regular%20expressions" title=" regular expressions"> regular expressions</a> </p> <a href="https://publications.waset.org/abstracts/129609/glushkovs-construction-for-functional-subsequential-transducers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> 2D Point Clouds Features from Radar for Helicopter Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danilo%20Habermann">Danilo Habermann</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Medella"> Aleksander Medella</a>, <a href="https://publications.waset.org/abstracts/search?q=Carla%20Cremon"> Carla Cremon</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusef%20Caceres"> Yusef Caceres</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to analyze the ability of 2d point clouds features to classify different models of helicopters using radars. This method does not need to estimate the blade length, the number of blades of helicopters, and the period of their micro-Doppler signatures. It is also not necessary to generate spectrograms (or any other image based on time and frequency domain). This work transforms a radar return signal into a 2D point cloud and extracts features of it. Three classifiers are used to distinguish 9 different helicopter models in order to analyze the performance of the features used in this work. The high accuracy obtained with each of the classifiers demonstrates that the 2D point clouds features are very useful for classifying helicopters from radar signal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helicopter%20classification" title="helicopter classification">helicopter classification</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20clouds%20features" title=" point clouds features"> point clouds features</a>, <a href="https://publications.waset.org/abstracts/search?q=radar" title=" radar"> radar</a>, <a href="https://publications.waset.org/abstracts/search?q=supervised%20classifiers" title=" supervised classifiers"> supervised classifiers</a> </p> <a href="https://publications.waset.org/abstracts/85676/2d-point-clouds-features-from-radar-for-helicopter-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Formation and Characterization of the Epoxy Resin-Porous Glass Interphases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Ostrowski">Aleksander Ostrowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Hugh%20J.%20Byrne"> Hugh J. Byrne</a>, <a href="https://publications.waset.org/abstracts/search?q=Roland%20Sanctuary"> Roland Sanctuary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investigation of the polymer interphases is an emerging field nowadays. In many cases interphases determine the functionality of a system. There is a great demand for exploration of fundamental understanding of the interphases and elucidation of their formation, dimensions dependent on various influencing factors, change of functional properties, etc. The epoxy applied on porous glass penetrates its pores with an extent dependent on the pore size, temperature and epoxy components mixing ratio. Developed over the recent time challenging sample preparation procedure allowed to produce very smooth epoxy-porous glass cross-sections. In this study, Raman spectroscopy was used to investigate the epoxy-porous glass interphases. It allowed for chemical differentiation between different regions at the cross-section and determination of the degree of cure of epoxy system in the porous glass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interphases" title="interphases">interphases</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy"> Raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20glass" title=" porous glass"> porous glass</a> </p> <a href="https://publications.waset.org/abstracts/9393/formation-and-characterization-of-the-epoxy-resin-porous-glass-interphases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Associations Between Executive Function and Physical Fitness in Preschool Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Veraksa">Aleksander Veraksa</a>, <a href="https://publications.waset.org/abstracts/search?q=Alla%20Tvardovskaya"> Alla Tvardovskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Margarita%20Gavrilova"> Margarita Gavrilova</a>, <a href="https://publications.waset.org/abstracts/search?q=Vera%20Yakupova"> Vera Yakupova</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Mus%C3%A1lek"> Martin Musálek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considering the current agreement on the significance of executive functions, there is growing interest in determining factors that contribute to the development of these skills, especially during the preschool period. Although multiple studies have been focusing on links between physical activity, physical fitness and executive functions, this topic was more investigated in schoolchildren and adults than in preschoolers. The aim of the current study was to identify different levels of physical fitness among pre-schoolers, followed by an analysis of differences in their executive functions. Participants were 261 5-6-years old children. Inhibitory control and working memory were positively linked with physical fitness. Cognitive flexibility was not associated with physical fitness. The research findings are considered from neuropsychological grounds, Jean Piaget's theory of cognitive development, and the cultural-historical approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20flexibility" title="cognitive flexibility">cognitive flexibility</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitory%20control" title=" inhibitory control"> inhibitory control</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20activity" title=" physical activity"> physical activity</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20fitness" title=" physical fitness"> physical fitness</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20memory." title=" working memory."> working memory.</a> </p> <a href="https://publications.waset.org/abstracts/143584/associations-between-executive-function-and-physical-fitness-in-preschool-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Computational Fluid Dynamics-Coupled Optimisation Strategy for Aerodynamic Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anvar%20Atayev">Anvar Atayev</a>, <a href="https://publications.waset.org/abstracts/search?q=Karl%20Steinborn"> Karl Steinborn</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Lovric"> Aleksander Lovric</a>, <a href="https://publications.waset.org/abstracts/search?q=Saif%20Al-Ibadi"> Saif Al-Ibadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorg%20Fliege"> Jorg Fliege</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present results obtained from optimising the aerodynamic performance of aerostructures in external ow. The optimisation method used was developed to efficiently handle multi-variable problems with numerous black-box objective functions and constraints. To demonstrate these capabilities, a series of CFD problems were considered; (1) a two-dimensional NACA aerofoil with three variables, (2) a two-dimensional morphing aerofoil with 17 variables, and (3) a three-dimensional morphing aeroplane tail with 33 variables. The objective functions considered were related to combinations of the mean aerodynamic coefficients, as well as their relative variations/oscillations. It was observed that for each CFD problem, an improved objective value was found. Notably, the scale-up in variables for the latter problems did not greatly hinder optimisation performance. This makes the method promising for scaled-up CFD problems, which require considerable computational resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation%20algorithms" title=" optimisation algorithms"> optimisation algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20design" title=" aerodynamic design"> aerodynamic design</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20design" title=" engineering design"> engineering design</a> </p> <a href="https://publications.waset.org/abstracts/152822/computational-fluid-dynamics-coupled-optimisation-strategy-for-aerodynamic-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> The Effect of Soil Contamination on Chemical Composition and Quality of Aronia (Aronia melanocarpa) Fruits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Violina%20R.%20Angelova">Violina R. Angelova</a>, <a href="https://publications.waset.org/abstracts/search?q=Sava%20G.%20Tabakov"> Sava G. Tabakov</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20B.%20Peltekov"> Aleksander B. Peltekov</a>, <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20I.%20Ivanov"> Krasimir I. Ivanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field study was conducted to evaluate the chemical composition and quality of the Aronia fruits, as well as the possibilities of Aronia cultivation on soils contaminated with heavy metals. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works (NFMW) near Plovdiv, Bulgaria. The study included four varieties of Aronia; Aron variety, Hugin variety, Viking variety and Nero variety. The Aronia was cultivated according to the conventional technology on areas at a different distance from the source of pollution NFMW- Plovdiv (1 km, 3.5 km, and 15 km). The concentrations of macroelements, microelements, and heavy metals in Aronia fruits were determined. The dry matter content, ash, sugars, proteins, and fats were also determined. Aronia is a crop that is tolerant to heavy metals and can successfully be grown on soils contaminated with heavy metals. The increased content of heavy metals in the soil leads to less absorption of the nutrients (Ca, Mg and P) in the fruit of the Aronia. Soil pollution with heavy metals does not affect the quality of the Aronia fruit varieties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aronia" title="aronia">aronia</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20composition" title=" chemical composition"> chemical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=fruits" title=" fruits"> fruits</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a> </p> <a href="https://publications.waset.org/abstracts/79867/the-effect-of-soil-contamination-on-chemical-composition-and-quality-of-aronia-aronia-melanocarpa-fruits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Multimedia Firearms Training System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Nawrat">Aleksander Nawrat</a>, <a href="https://publications.waset.org/abstracts/search?q=Karol%20J%C4%99drasiak"> Karol Jędrasiak</a>, <a href="https://publications.waset.org/abstracts/search?q=Artur%20Ryt"> Artur Ryt</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawid%20Sobel"> Dawid Sobel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of the article is to present a novel Multimedia Firearms Training System. The system was developed in order to compensate for major problems of existing shooting training systems. The designed and implemented solution can be characterized by five major advantages: algorithm for automatic geometric calibration, algorithm of photometric recalibration, firearms hit point detection using thermal imaging camera, IR laser spot tracking algorithm for after action review analysis, and implementation of ballistics equations. The combination of the abovementioned advantages in a single multimedia firearms training system creates a comprehensive solution for detecting and tracking of the target point usable for shooting training systems and improving intervention tactics of uniformed services. The introduced algorithms of geometric and photometric recalibration allow the use of economically viable commercially available projectors for systems that require long and intensive use without most of the negative impacts on color mapping of existing multi-projector multimedia shooting range systems. The article presents the results of the developed algorithms and their application in real training systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=firearms%20shot%20detection" title="firearms shot detection">firearms shot detection</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20recalibration" title=" geometric recalibration"> geometric recalibration</a>, <a href="https://publications.waset.org/abstracts/search?q=photometric%20recalibration" title=" photometric recalibration"> photometric recalibration</a>, <a href="https://publications.waset.org/abstracts/search?q=IR%20tracking%20algorithm" title=" IR tracking algorithm"> IR tracking algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=thermography" title=" thermography"> thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=ballistics" title=" ballistics"> ballistics</a> </p> <a href="https://publications.waset.org/abstracts/54247/multimedia-firearms-training-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Transformation of Positron Emission Tomography Raw Data into Images for Classification Using Convolutional Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawe%C5%82%20Konieczka">Paweł Konieczka</a>, <a href="https://publications.waset.org/abstracts/search?q=Lech%20Raczy%C5%84ski"> Lech Raczyński</a>, <a href="https://publications.waset.org/abstracts/search?q=Wojciech%20Wi%C5%9Blicki"> Wojciech Wiślicki</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleksandr%20Fedoruk"> Oleksandr Fedoruk</a>, <a href="https://publications.waset.org/abstracts/search?q=Konrad%20Klimaszewski"> Konrad Klimaszewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Przemys%C5%82aw%20Kopka"> Przemysław Kopka</a>, <a href="https://publications.waset.org/abstracts/search?q=Wojciech%20Krzemie%C5%84"> Wojciech Krzemień</a>, <a href="https://publications.waset.org/abstracts/search?q=Roman%20Shopa"> Roman Shopa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Baran"> Jakub Baran</a>, <a href="https://publications.waset.org/abstracts/search?q=Aur%C3%A9lien%20Coussat"> Aurélien Coussat</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Chug"> Neha Chug</a>, <a href="https://publications.waset.org/abstracts/search?q=Catalina%20Curceanu"> Catalina Curceanu</a>, <a href="https://publications.waset.org/abstracts/search?q=Eryk%20Czerwi%C5%84ski"> Eryk Czerwiński</a>, <a href="https://publications.waset.org/abstracts/search?q=Meysam%20Dadgar"> Meysam Dadgar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamil%20Dulski"> Kamil Dulski</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Gajos"> Aleksander Gajos</a>, <a href="https://publications.waset.org/abstracts/search?q=Beatrix%20C.%20Hiesmayr"> Beatrix C. Hiesmayr</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Kacprzak"> Krzysztof Kacprzak</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%82ukasz%20Kap%C5%82on"> łukasz Kapłon</a>, <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Korcyl"> Grzegorz Korcyl</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Kozik"> Tomasz Kozik</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Kumar"> Deepak Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Szymon%20Nied%C5%BAwiecki"> Szymon Niedźwiecki</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominik%20Panek"> Dominik Panek</a>, <a href="https://publications.waset.org/abstracts/search?q=Szymon%20Parzych"> Szymon Parzych</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20P%C3%A9rez%20Del%20R%C3%ADo"> Elena Pérez Del Río</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushil%20Sharma"> Sushil Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivani%20Shivani"> Shivani Shivani</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Skurzok"> Magdalena Skurzok</a>, <a href="https://publications.waset.org/abstracts/search?q=Ewa%20%C5%82ucja%20St%C4%99pie%C5%84"> Ewa łucja Stępień</a>, <a href="https://publications.waset.org/abstracts/search?q=Faranak%20Tayefi"> Faranak Tayefi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawe%C5%82%20Moskal"> Paweł Moskal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper develops the transformation of non-image data into 2-dimensional matrices, as a preparation stage for classification based on convolutional neural networks (CNNs). In positron emission tomography (PET) studies, CNN may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, much PET data still exists in non-image format and this fact opens a question on whether they can be used for training CNN. In this contribution, the main focus of this paper is the problem of processing vectors with a small number of features in comparison to the number of pixels in the output images. The proposed methodology was applied to the classification of PET coincidence events. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title="convolutional neural network">convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=kernel%20principal%20component%20analysis" title=" kernel principal component analysis"> kernel principal component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20imaging" title=" medical imaging"> medical imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=positron%20emission%20tomography" title=" positron emission tomography"> positron emission tomography</a> </p> <a href="https://publications.waset.org/abstracts/150734/transformation-of-positron-emission-tomography-raw-data-into-images-for-classification-using-convolutional-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Small Scale Waste to Energy Systems: Optimization of Feedstock Composition for Improved Control of Ash Sintering and Quality of Generated Syngas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mateusz%20Szul">Mateusz Szul</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Iluk"> Tomasz Iluk</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Sobolewski"> Aleksander Sobolewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Small-scale, distributed energy systems enabling cogeneration of heat and power based on gasification of sewage sludge, are considered as the most efficient and environmentally friendly ways of their treatment. However, economic aspects of such an investment are very demanding; therefore, for such a small scale sewage sludge gasification installation to be profitable, it needs to be efficient and simple at the same time. The article presents results of research on air gasification of sewage sludge in fixed bed GazEla reactor. Two of the most important aspects of the research considered the influence of the composition of sewage sludge blends with other feedstocks on properties of generated syngas and ash sintering problems occurring at the fixed bed. Different means of the fuel pretreatment and blending were proposed as a way of dealing with the above mentioned undesired characteristics. Influence of RDF (Refuse Derived Fuel) and biomasses in the fuel blends were evaluated. Ash properties were assessed based on proximate, ultimate, and ash composition analysis of the feedstock. The blends were specified based on complementary characteristics of such criteria as C content, moisture, volatile matter, Si, Al, Mg, and content of basic metals in the ash were analyzed, Obtained results were assessed with use of experimental gasification tests and laboratory ISO-procedure for analysis of ash characteristic melting temperatures. Optimal gasification process conditions were determined by energetic parameters of the generated syngas, its content of tars and lack of ash sinters within the reactor bed. Optimal results were obtained for co-gasification of herbaceous biomasses with sewage sludge where LHV (Lower Heating Value) of the obtained syngas reached a stable value of 4.0 MJ/Nm3 for air/steam gasification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ash%20fusibility" title="ash fusibility">ash fusibility</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=piston%20engine" title=" piston engine"> piston engine</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a> </p> <a href="https://publications.waset.org/abstracts/91124/small-scale-waste-to-energy-systems-optimization-of-feedstock-composition-for-improved-control-of-ash-sintering-and-quality-of-generated-syngas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Long-Term Results of Surgical Treatment of Atrial Fibrillation in Patients with Coronary Heart Disease: One Center Experience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emil%20Sakharov">Emil Sakharov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Zotov"> Alex Zotov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilkin%20Osmanov"> Ilkin Osmanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleg%20Shelest"> Oleg Shelest</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Troitskiy"> Aleksander Troitskiy</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Khabazov"> Robert Khabazov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Since 2015, our center has been actively implementing methods of surgical correction of atrial fibrillation, in particular, in patients with coronary heart disease. The study presents a comparative analysis of the late postoperative period in patients with coronary artery bypass grafting and atrial fibrillation. Methods: The study included 150 patients with ischemic heart disease and atrial fibrillation for the period from 2015 to 2021. Patients were divided into 2 groups. The first group is represented by patients with ischemic heart disease and atrial fibrillation who underwent coronary bypass surgery and surgical correction of atrial fibrillation (N=50). The second group is represented by patients with ischemic heart disease and atrial fibrillation who underwent only myocardial revascularization (N=100). Patients were comparable in age, gender, and initial severity of the condition. Among the patients in group 1 there were 82% were men, while in the second group, their number was 75%. Among the patients of the first group, there were 36% with persistent atrial fibrillation, 20% with long-term persistent atrial fibrillation. In the second group, 10% with persistent atrial fibrillation and 17% with long-term persistent atrial fibrillation. Results: Average follow-up for groups 1 and 2 amounted to 47 months. There were no complications in group 1, such as bleeding and stroke. There was only 1 patient in group 1, who had died from cardiovascular disease. Freedom of atrial fibrillation was in 82% without AADs therapy. In group 2 there were 8 patients who had died from cardiovascular diseases and total freedom of atrial fibrillation was in 35% of patients, among which 42.8% had additional AADs therapy. Follow-up data are presented in Table 2. Progression of heart failure was observed in 3% in group 1 and 7% in group 2. Combined endpoints (recurrence of AF, stroke, progression of heart failure, myocardial infarction) were achieved in 16% in group 1 and 34% in group 2, respectively. Freedom from atrial fibrillation without antiarrhythmic therapy was 82% for group 1 and 35% for group 2. In the first group, there is a more pronounced decrease in heart failure rates. Deaths from cardiovascular causes were recorded in 2% for group 1 and 7% for group 2. Conclusion: Surgical treatment of atrial fibrillation helps to reduce adverse complications in the late postoperative period and contributes to the regression of heart failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atrial%20fibrillation" title="atrial fibrillation">atrial fibrillation</a>, <a href="https://publications.waset.org/abstracts/search?q=coronary%20artery%20bypass%20grafting" title=" coronary artery bypass grafting"> coronary artery bypass grafting</a>, <a href="https://publications.waset.org/abstracts/search?q=ischaemic%20heart%20disease" title=" ischaemic heart disease"> ischaemic heart disease</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20failure" title=" heart failure"> heart failure</a> </p> <a href="https://publications.waset.org/abstracts/152606/long-term-results-of-surgical-treatment-of-atrial-fibrillation-in-patients-with-coronary-heart-disease-one-center-experience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Comparison of Two Strategies in Thoracoscopic Ablation of Atrial Fibrillation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Zotov">Alexander Zotov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilkin%20Osmanov"> Ilkin Osmanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Emil%20Sakharov"> Emil Sakharov</a>, <a href="https://publications.waset.org/abstracts/search?q=Oleg%20Shelest"> Oleg Shelest</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Troitskiy"> Aleksander Troitskiy</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Khabazov"> Robert Khabazov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Thoracoscopic surgical ablation of atrial fibrillation (AF) includes two technologies in performing of operation. 1st strategy used is the AtriCure device (bipolar, nonirrigated, non clamping), 2nd strategy is- the Medtronic device (bipolar, irrigated, clamping). The study presents a comparative analysis of clinical outcomes of two strategies in thoracoscopic ablation of AF using AtriCure vs. Medtronic devices. Methods: In 2 center study, 123 patients underwent thoracoscopic ablation of AF for the period from 2016 to 2020. Patients were divided into two groups. The first group is represented by patients who applied the AtriCure device (N=63), and the second group is - the Medtronic device (N=60), respectively. Patients were comparable in age, gender, and initial severity of the condition. Among the patients, in group 1 were 65% males with a median age of 57 years, while in group 2 – 75% and 60 years, respectively. Group 1 included patients with paroxysmal form -14,3%, persistent form - 68,3%, long-standing persistent form – 17,5%, group 2 – 13,3%, 13,3% and 73,3% respectively. Median ejection fraction and indexed left atrial volume amounted in group 1 – 63% and 40,6 ml/m2, in group 2 - 56% and 40,5 ml/m2. In addition, group 1 consisted of 39,7% patients with chronic heart failure (NYHA Class II) and 4,8% with chronic heart failure (NYHA Class III), when in group 2 – 45% and 6,7%, respectively. Follow-up consisted of laboratory tests, chest Х-ray, ECG, 24-hour Holter monitor, and cardiopulmonary exercise test. Duration of freedom from AF, distant mortality rate, and prevalence of cerebrovascular events were compared between the two groups. Results: Exit block was achieved in all patients. According to the Clavien-Dindo classification of surgical complications fraction of adverse events was 14,3% and 16,7% (1st group and 2nd group, respectively). Mean follow-up period in the 1st group was 50,4 (31,8; 64,8) months, in 2nd group - 30,5 (14,1; 37,5) months (P=0,0001). In group 1 - total freedom of AF was in 73,3% of patients, among which 25% had additional antiarrhythmic drugs (AADs) therapy or catheter ablation (CA), in group 2 – 90% and 18,3%, respectively (for total freedom of AF P<0,02). At follow-up, the distant mortality rate in the 1st group was – 4,8%, and in the 2nd – no fatal events. Prevalence of cerebrovascular events was higher in the 1st group than in the 2nd (6,7% vs. 1,7% respectively). Conclusions: Despite the relatively shorter follow-up of the 2nd group in the study, applying the strategy using the Medtronic device showed quite encouraging results. Further research is needed to evaluate the effectiveness of this strategy in the long-term period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atrial%20fibrillation" title="atrial fibrillation">atrial fibrillation</a>, <a href="https://publications.waset.org/abstracts/search?q=clamping" title=" clamping"> clamping</a>, <a href="https://publications.waset.org/abstracts/search?q=ablation" title=" ablation"> ablation</a>, <a href="https://publications.waset.org/abstracts/search?q=thoracoscopic%20surgery" title=" thoracoscopic surgery"> thoracoscopic surgery</a> </p> <a href="https://publications.waset.org/abstracts/152961/comparison-of-two-strategies-in-thoracoscopic-ablation-of-atrial-fibrillation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Optimization of Cobalt Oxide Conversion to Co-Based Metal-Organic Frameworks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Ejsmont">Aleksander Ejsmont</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Wuttke"> Stefan Wuttke</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Goscianska"> Joanna Goscianska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gaining control over particle shape, size and crystallinity is an ongoing challenge for many materials. Especially metalorganic frameworks (MOFs) are recently widely studied. Besides their remarkable porosity and interesting topologies, morphology has proven to be a significant feature. It can affect the further material application. Thus seeking new approaches that enable MOF morphology modulation is important. MOFs are reticular structures, where building blocks are made up of organic linkers and metallic nodes. The most common strategy of ensuring metal source is using salts, which usually exhibit high solubility and hinder morphology control. However, there has been a growing interest in using metal oxides as structure-directing agents towards MOFs due to their very low solubility and shape preservation. Metal oxides can be treated as a metal reservoir during MOF synthesis. Up to now, reports in which receiving MOFs from metal oxides mostly present ZnO conversion to ZIF-8. However, there are other oxides, for instance, Co₃O₄, which often is overlooked due to their structural stability and insolubility in aqueous solutions. Cobalt-based materials are famed for catalytic activity. Therefore the development of their efficient synthesis is worth attention. In the presented work, an optimized Co₃O₄transition to Co-MOFviaa solvothermal approach was proposed. The starting point of the research was the synthesis of Co₃O₄ flower petals and needles under hydrothermal conditions using different cobalt salts (e.g., cobalt(II) chloride and cobalt(II) nitrate), in the presence of urea, and hexadecyltrimethylammonium bromide (CTAB) surfactant as a capping agent. After receiving cobalt hydroxide, the calcination process was performed at various temperatures (300–500 °C). Then cobalt oxides as a source of cobalt cations were subjected to reaction with trimesic acid in solvothermal environment and temperature of 120 °C leading to Co-MOF fabrication. The solution maintained in the system was a mixture of water, dimethylformamide, and ethanol, with the addition of strong acids (HF and HNO₃). To establish how solvents affect metal oxide conversion, several different solvent ratios were also applied. The materials received were characterized with analytical techniques, including X-ray powder diffraction, energy dispersive spectroscopy,low-temperature nitrogen adsorption/desorption, scanning, and transmission electron microscopy. It was confirmed that the synthetic routes have led to the formation of Co₃O₄ and Co-based MOF varied in shape and size of particles. The diffractograms showed receiving crystalline phase for Co₃O₄, and also for Co-MOF. The Co₃O₄ obtained from nitrates and with using low-temperature calcination resulted in smaller particles. The study indicated that cobalt oxide particles of different size influence the efficiency of conversion and morphology of Co-MOF. The highest conversion was achieved using metal oxides with small crystallites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Co-MOF" title="Co-MOF">Co-MOF</a>, <a href="https://publications.waset.org/abstracts/search?q=solvothermal%20synthesis" title=" solvothermal synthesis"> solvothermal synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology%20control" title=" morphology control"> morphology control</a>, <a href="https://publications.waset.org/abstracts/search?q=core-shell" title=" core-shell"> core-shell</a> </p> <a href="https://publications.waset.org/abstracts/138028/optimization-of-cobalt-oxide-conversion-to-co-based-metal-organic-frameworks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Ordered Mesoporous Carbons of Different Morphology for Loading and Controlled Release of Active Pharmaceutical Ingredients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Ejsmont">Aleksander Ejsmont</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandra%20Galarda"> Aleksandra Galarda</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Goscianska"> Joanna Goscianska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Smart porous carriers with defined structure and physicochemical properties are required for releasing the therapeutic drug with precise control of delivery time and location in the body. Due to their non-toxicity, ordered structure, chemical, and thermal stability, mesoporous carbons can be considered as modern carriers for active pharmaceutical ingredients (APIs) whose effectiveness needs frequent dosing algorithms. Such an API-carrier system, if programmed precisely, may stabilize the pharmaceutical and increase its dissolution leading to enhanced bioavailability. The substance conjugated with the material, through its prior adsorption, can later be successfully applied internally to the organism, as well as externally if the API release is feasible under these conditions. In the present study, ordered mesoporous carbons of different morphologies and structures, prepared by hard template method, were applied as carriers in the adsorption and controlled release of active pharmaceutical ingredients. In the first stage, the carbon materials were synthesized and functionalized with carboxylic groups by chemical oxidation using ammonium persulfate solution and then with amine groups. Materials obtained were thoroughly characterized with respect to morphology (scanning electron microscopy), structure (X-ray diffraction, transmission electron microscopy), characteristic functional groups (FT-IR spectroscopy), acid-base nature of surface groups (Boehm titration), parameters of the porous structure (low-temperature nitrogen adsorption) and thermal stability (TG analysis). This was followed by a series of tests of adsorption and release of paracetamol, benzocaine, and losartan potassium. Drug release experiments were performed in the simulated gastric fluid of pH 1.2 and phosphate buffer of pH 7.2 or 6.8 at 37.0 °C. The XRD patterns in the small-angle range and TEM images revealed that functionalization of mesoporous carbons with carboxylic or amine groups leads to the decreased ordering of their structure. Moreover, the modification caused a considerable reduction of the carbon-specific surface area and pore volume, but it simultaneously resulted in changing their acid-base properties. Mesoporous carbon materials exhibit different morphologies, which affect the host-guest interactions during the adsorption process of active pharmaceutical ingredients. All mesoporous carbons show high adsorption capacity towards drugs. The sorption capacity of materials is mainly affected by BET surface area and the structure/size matching between adsorbent and adsorbate. Selected APIs are linked to the surface of carbon materials mainly by hydrogen bonds, van der Waals forces, and electrostatic interactions. The release behavior of API is highly dependent on the physicochemical properties of mesoporous carbons. The release rate of APIs could be regulated by the introduction of functional groups and by changing the pH of the receptor medium. Acknowledgments—This research was supported by the National Science Centre, Poland (project SONATA-12 no: 2016/23/D/NZ7/01347). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ordered%20mesoporous%20carbons" title="ordered mesoporous carbons">ordered mesoporous carbons</a>, <a href="https://publications.waset.org/abstracts/search?q=sorption%20capacity" title=" sorption capacity"> sorption capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanocarriers" title=" carbon nanocarriers"> carbon nanocarriers</a> </p> <a href="https://publications.waset.org/abstracts/138027/ordered-mesoporous-carbons-of-different-morphology-for-loading-and-controlled-release-of-active-pharmaceutical-ingredients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Conceptualizing of Priorities in the Dynamics of Public Administration Contemporary Reforms </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Larysa%20Novak-Kalyayeva">Larysa Novak-Kalyayeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Kuczabski"> Aleksander Kuczabski</a>, <a href="https://publications.waset.org/abstracts/search?q=Orystlava%20Sydorchuk"> Orystlava Sydorchuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Nataliia%20Fersman"> Nataliia Fersman</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20Zemlinskaia"> Tatyana Zemlinskaia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article presents the results of the creative analysis and comparison of trends in the development of the theory of public administration during the period from the second half of the 20<sup>th</sup> to the beginning of the 21<sup>st</sup> century. The process of conceptualization of the priorities of public administration in the dynamics of reforming was held under the influence of such factors as globalization, integration, information and technological changes and human rights is examined. The priorities of the social state in the concepts of the second half of the 20<sup>th</sup> century are studied. Peculiar approaches to determining the priorities of public administration in the countries of &quot;Soviet dictatorship&quot; in Central and Eastern Europe in the same period are outlined. Particular attention is paid to the priorities of public administration regarding the interaction between public power and society and the development of conceptual foundations for the modern managerial process. There is a thought that the dynamics of the formation of concepts of the European governance is characterized by the sequence of priorities: from socio-economic and moral-ethical to organizational-procedural and non-hierarchical ones. The priorities of the &quot;welfare state&quot; were focused on the decent level of material wellbeing of population. At the same time, the conception of &quot;minimal state&quot; emphasized priorities of human responsibility for their own fate under the conditions of minimal state protection. Later on, the emphasis was placed on horizontal ties and redistribution of powers and competences of &quot;effective state&quot; with its developed procedures and limits of responsibility at all levels of government and in close cooperation with the civil society. The priorities of the contemporary period are concentrated on human rights in the concepts of &quot;good governance&quot; and all the following ones, which recognize the absolute priority of public administration with compliance, provision and protection of human rights. There is a proved point of view that civilizational changes taking place under the influence of information and technological imperatives also stipulate changes in priorities, redistribution of emphases and update principles of managerial concepts on the basis of publicity, transparency, departure from traditional forms of hierarchy and control in favor of interactivity and inter-sectoral interaction, decentralization and humanization of managerial processes. The necessity to permanently carry out the reorganization, by establishing the interaction between different participants of public power and social relations, to establish a balance between political forces and social interests on the basis of mutual trust and mutual understanding determines changes of social, political, economic and humanitarian paradigms of public administration and their theoretical comprehension. The further studies of theoretical foundations of modern public administration in interdisciplinary discourse in the context of ambiguous consequences of the globalizational and integrational processes of modern European state-building would be advisable. This is especially true during the period of political transformations and economic crises which are the characteristic of the contemporary Europe, especially for democratic transition countries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concepts%20of%20public%20administration" title="concepts of public administration">concepts of public administration</a>, <a href="https://publications.waset.org/abstracts/search?q=democratic%20transition%20countries" title=" democratic transition countries"> democratic transition countries</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20rights" title=" human rights"> human rights</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20priorities%20of%20public%20administration" title=" the priorities of public administration"> the priorities of public administration</a>, <a href="https://publications.waset.org/abstracts/search?q=theory%20of%20public%20administration" title=" theory of public administration"> theory of public administration</a> </p> <a href="https://publications.waset.org/abstracts/82811/conceptualizing-of-priorities-in-the-dynamics-of-public-administration-contemporary-reforms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Fully Autonomous Vertical Farm to Increase Crop Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simone%20Cinquemani">Simone Cinquemani</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorenzo%20Mantovani"> Lorenzo Mantovani</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Dabek"> Aleksander Dabek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New technologies in agriculture are opening new challenges and new opportunities. Among these, certainly, robotics, vision, and artificial intelligence are the ones that will make a significant leap, compared to traditional agricultural techniques, possible. In particular, the indoor farming sector will be the one that will benefit the most from these solutions. Vertical farming is a new field of research where mechanical engineering can bring knowledge and know-how to transform a highly labor-based business into a fully autonomous system. The aim of the research is to develop a multi-purpose, modular, and perfectly integrated platform for crop production in indoor vertical farming. Activities will be based both on hardware development such as automatic tools to perform different activities on soil and plants, as well as research to introduce an extensive use of monitoring techniques based on machine learning algorithms. This paper presents the preliminary results of a research project of a vertical farm living lab designed to (i) develop and test vertical farming cultivation practices, (ii) introduce a very high degree of mechanization and automation that makes all processes replicable, fully measurable, standardized and automated, (iii) develop a coordinated control and management environment for autonomous multiplatform or tele-operated robots in environments with the aim of carrying out complex tasks in the presence of environmental and cultivation constraints, (iv) integrate AI-based algorithms as decision support system to improve quality production. The coordinated management of multiplatform systems still presents innumerable challenges that require a strongly multidisciplinary approach right from the design, development, and implementation phases. The methodology is based on (i) the development of models capable of describing the dynamics of the various platforms and their interactions, (ii) the integrated design of mechatronic systems able to respond to the needs of the context and to exploit the strength characteristics highlighted by the models, (iii) implementation and experimental tests performed to test the real effectiveness of the systems created, evaluate any weaknesses so as to proceed with a targeted development. To these aims, a fully automated laboratory for growing plants in vertical farming has been developed and tested. The living lab makes extensive use of sensors to determine the overall state of the structure, crops, and systems used. The possibility of having specific measurements for each element involved in the cultivation process makes it possible to evaluate the effects of each variable of interest and allows for the creation of a robust model of the system as a whole. The automation of the laboratory is completed with the use of robots to carry out all the necessary operations, from sowing to handling to harvesting. These systems work synergistically thanks to the knowledge of detailed models developed based on the information collected, which allows for deepening the knowledge of these types of crops and guarantees the possibility of tracing every action performed on each single plant. To this end, artificial intelligence algorithms have been developed to allow synergistic operation of all systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation" title="automation">automation</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20farming" title=" vertical farming"> vertical farming</a>, <a href="https://publications.waset.org/abstracts/search?q=robot" title=" robot"> robot</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=vision" title=" vision"> vision</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a> </p> <a href="https://publications.waset.org/abstracts/186539/fully-autonomous-vertical-farm-to-increase-crop-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">39</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Effect of Preoxidation on the Effectiveness of Gd₂O₃ Nanoparticles Applied as a Source of Active Element in the Crofer 22 APU Coated with a Protective-conducting Spinel Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C5%81ukasz%20Mazur">Łukasz Mazur</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamil%20Domaradzki"> Kamil Domaradzki</a>, <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Bik"> Maciej Bik</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Brylewski"> Tomasz Brylewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Gil"> Aleksander Gil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interconnects used in solid oxide fuel and electrolyzer cells (SOFCₛ/SOECs) serve several important functions, and therefore interconnect materials must exhibit certain properties. Their thermal expansion coefficient needs to match that of the ceramic components of these devices – the electrolyte, anode and cathode. Interconnects also provide structural rigidity to the entire device, which is why interconnect materials must exhibit sufficient mechanical strength at high temperatures. Gas-tightness is also a prerequisite since they separate gas reagents, and they also must provide very good electrical contact between neighboring cells over the entire operating time. High-chromium ferritic steels meets these requirements to a high degree but are affected by the formation of a Cr₂O₃ scale, which leads to increased electrical resistance. The final criterion for interconnect materials is chemical inertness in relation to the remaining cell components. In the case of ferritic steels, this has proved difficult due to the formation of volatile and reactive oxyhydroxides observed when Cr₂O3 is exposed to oxygen and water vapor. This process is particularly harmful on the cathode side in SOFCs and the anode side in SOECs. To mitigate this, protective-conducting ceramic coatings can be deposited on an interconnect's surface. The area-specific resistance (ASR) of a single interconnect cannot exceed 0.1 m-2 at any point of the device's operation. The rate at which the CrO₃ scale grows on ferritic steels can be reduced significantly via the so-called reactive element effect (REE). Research has shown that the deposition of Gd₂O₃ nanoparticles on the surface of the Crofer 22 APU, already modified using a protective-conducting spinel layer, further improves the oxidation resistance of this steel. However, the deposition of the manganese-cobalt spinel layer is a rather complex process and is performed at high temperatures in reducing and oxidizing atmospheres. There was thus reason to believe that this process may reduce the effectiveness of Gd₂O₃ nanoparticles added as an active element source. The objective of the present study was, therefore, to determine any potential impact by introducing a preoxidation stage after the nanoparticle deposition and before the steel is coated with the spinel. This should have allowed the nanoparticles to incorporate into the interior of the scale formed on the steel. Different samples were oxidized for 7000 h in air at 1073 K under quasi-isothermal conditions. The phase composition, chemical composition, and microstructure of the oxidation products formed on the samples were determined using X-ray diffraction, Raman spectroscopy, and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. A four-point, two-probe DC method was applied to measure ASR. It was found that coating deposition does indeed reduce the beneficial effect of Gd₂O₃ addition, since the smallest mass gain and the lowest ASR value were determined for the sample for which the additional preoxidation stage had been performed. It can be assumed that during this stage, gadolinium incorporates into and segregates at grain boundaries in the thin Cr₂O₃ that is forming. This allows the Gd₂O₃ nanoparticles to be a more effective source of the active element. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interconnects" title="interconnects">interconnects</a>, <a href="https://publications.waset.org/abstracts/search?q=oxide%20nanoparticles" title=" oxide nanoparticles"> oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20element%20effect" title=" reactive element effect"> reactive element effect</a>, <a href="https://publications.waset.org/abstracts/search?q=SOEC" title=" SOEC"> SOEC</a>, <a href="https://publications.waset.org/abstracts/search?q=SOFC" title=" SOFC"> SOFC</a> </p> <a href="https://publications.waset.org/abstracts/165908/effect-of-preoxidation-on-the-effectiveness-of-gd2o3-nanoparticles-applied-as-a-source-of-active-element-in-the-crofer-22-apu-coated-with-a-protective-conducting-spinel-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Oxidation Behavior of Ferritic Stainless Steel Interconnects Modified Using Nanoparticles of Rare-Earth Elements under Operating Conditions Specific to Solid Oxide Electrolyzer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C5%81ukasz%20Mazur">Łukasz Mazur</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamil%20Domaradzki"> Kamil Domaradzki</a>, <a href="https://publications.waset.org/abstracts/search?q=Bartosz%20Kamecki"> Bartosz Kamecki</a>, <a href="https://publications.waset.org/abstracts/search?q=Justyna%20Ignaczak"> Justyna Ignaczak</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Molin"> Sebastian Molin</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Gil"> Aleksander Gil</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Brylewski"> Tomasz Brylewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rising global power consumption necessitates the development of new energy storage solutions. Prospective technologies include solid oxide electrolyzer cells (SOECs), which convert surplus electrical energy into hydrogen. An electrolyzer cell consists of a porous anode, and cathode, and a dense electrolyte. Power output is increased by connecting cells into stacks using interconnects. Interconnects are currently made from high-chromium ferritic steels – for example, Crofer 22 APU – which exhibit high oxidation resistance and a thermal expansion coefficient that is similar to that of electrode materials. These materials have one disadvantage – their area-specific resistance (ASR) gradually increases due to the formation of a Cr₂O₃ scale on their surface as a result of oxidation. The chromia in the scale also reacts with the water vapor present in the reaction media, forming volatile chromium oxyhydroxides, which in turn react with electrode materials and cause their deterioration. The electrochemical efficiency of SOECs thus decreases. To mitigate this, the interconnect surface can be modified with protective-conducting coatings of spinel or other materials. The high prices of SOEC components -especially the Crofer 22 APU- have prevented their widespread adoption. More inexpensive counterparts, therefore, need to be found, and their properties need to be enhanced to make them viable. Candidates include the Nirosta 4016/1,4016 low-chromium ferritic steel with a chromium content of just 16.3 wt%. This steel's resistance to high-temperature oxidation was improved by depositing Gd₂O₃ nanoparticles on its surface via either dip coating or electrolysis. Modification with CeO₂ or Ce₀.₉Y₀.₁O₂ nanoparticles deposited by means of spray pyrolysis was also tested. These methods were selected because of their low cost and simplicity of application. The aim of this study was to investigate the oxidation kinetics of Nirosta 4016/1,4016 modified using the afore-mentioned methods and to subsequently measure the obtained samples' ASR. The samples were oxidized for 100 h in the air as well as air/H₂O and Ar/H₂/H₂O mixtures at 1073 K. Such conditions reflect those found in the anode and cathode operating space during real-life use of SOECs. Phase and chemical composition and the microstructure of oxidation products were determined using XRD and SEM-EDS. ASR was measured over the range of 623-1073 K using a four-point, two-probe DC technique. The results indicate that the applied nanoparticles improve the oxidation resistance and electrical properties of the studied layered systems. The properties of individual systems varied significantly depending on the applied reaction medium. Gd₂O₃ nanoparticles improved oxidation resistance to a greater degree than either CeO₂ or Ce₀.₉Y₀.₁O₂ nanoparticles. On the other hand, the cerium-containing nanoparticles improved electrical properties regardless of the reaction medium. The ASR values of all surface-modified steel samples were below the 0.1 Ω.cm² threshold set for interconnect materials, which was exceeded in the case of the unmodified reference sample. It can be concluded that the applied modifications increased the oxidation resistance of Nirosta 4016/1.4016 to a level that allows its use as SOEC interconnect material. Acknowledgments: Funding of Research project supported by program "Excellence initiative – research university" for the AGH University of Krakow" is gratefully acknowledged (TB). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cerium%20oxide" title="cerium oxide">cerium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=ferritic%20stainless%20steel" title=" ferritic stainless steel"> ferritic stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=gadolinium%20oxide" title=" gadolinium oxide"> gadolinium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=interconnect" title=" interconnect"> interconnect</a>, <a href="https://publications.waset.org/abstracts/search?q=SOEC" title=" SOEC"> SOEC</a> </p> <a href="https://publications.waset.org/abstracts/165907/oxidation-behavior-of-ferritic-stainless-steel-interconnects-modified-using-nanoparticles-of-rare-earth-elements-under-operating-conditions-specific-to-solid-oxide-electrolyzer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10