CINXE.COM

Search results for: autonomous system

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: autonomous system</title> <meta name="description" content="Search results for: autonomous system"> <meta name="keywords" content="autonomous system"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="autonomous system" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="autonomous system"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18137</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: autonomous system</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18137</span> Autonomous Control of Ultrasonic Transducer Drive System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong-Keun%20Jeong">Dong-Keun Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Hyun%20Kim"> Jong-Hyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Woon-Ha%20Yoon"> Woon-Ha Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee-Je%20Kim"> Hee-Je Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to automatically operate the ultrasonic transducer drive system for sonicating aluminum, this paper proposes the ultrasonic transducer sensorless control algorithm. The resonance frequency shift and electrical impedance change is a common phenomenon in the state of the ultrasonic transducer. The proposed control algorithm make use of the impedance change of ultrasonic transducer according to the environment between air state and aluminum alloy state, it controls the ultrasonic transducer drive system autonomous without a sensor. The proposed sensorless autonomous ultrasonic transducer control algorithm was experimentally verified using a 3kW prototype ultrasonic transducer drive system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20transducer%20drive%20system" title="ultrasonic transducer drive system">ultrasonic transducer drive system</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20change" title=" impedance change"> impedance change</a>, <a href="https://publications.waset.org/abstracts/search?q=sensorless" title=" sensorless"> sensorless</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20control%20algorithm" title=" autonomous control algorithm"> autonomous control algorithm</a> </p> <a href="https://publications.waset.org/abstracts/63698/autonomous-control-of-ultrasonic-transducer-drive-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18136</span> Genetic Algorithms Based ACPS Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emine%20Laarouchi">Emine Laarouchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Cancila"> Daniela Cancila</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurent%20Soulier"> Laurent Soulier</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakima%20Chaouchi"> Hakima Chaouchi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cyber-Physical Systems as drones proved their efficiency for supporting emergency applications. For these particular applications, travel time and autonomous navigation algorithms are of paramount importance, especially when missions are performed in urban environments with high obstacle density. In this context, however, safety properties are not properly addressed. Our ambition is to optimize the system safety level under autonomous navigation systems, by preserving performance of the CPS. At this aim, we introduce genetic algorithms in the autonomous navigation process of the drone to better infer its trajectory considering the possible obstacles. We first model the wished safety requirements through a cost function and then seek to optimize it though genetics algorithms (GA). The main advantage in the use of GA is to consider different parameters together, for example, the level of battery for navigation system selection. Our tests show that the GA introduction in the autonomous navigation systems minimize the risk of safety lossless. Finally, although our simulation has been tested for autonomous drones, our approach and results could be extended for other autonomous navigation systems such as autonomous cars, robots, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=safety" title="safety">safety</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicles" title=" unmanned aerial vehicles "> unmanned aerial vehicles </a>, <a href="https://publications.waset.org/abstracts/search?q=CPS" title=" CPS"> CPS</a>, <a href="https://publications.waset.org/abstracts/search?q=ACPS" title=" ACPS"> ACPS</a>, <a href="https://publications.waset.org/abstracts/search?q=drones" title=" drones"> drones</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20planning" title=" path planning"> path planning</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithms" title=" genetic algorithms"> genetic algorithms</a> </p> <a href="https://publications.waset.org/abstracts/117828/genetic-algorithms-based-acps-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18135</span> The Design and Construction of the PV-Wind Autonomous System for Greenhouse Plantations in Central Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Napat%20Watjanatepin">Napat Watjanatepin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wikorn%20Wong-Satiean"> Wikorn Wong-Satiean</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research is to design and construct the PV-Wind hybrid autonomous system for the greenhouse plantation, and analyze the technical performance of the PV-Wind energy system. This design depends on the water consumption in the greenhouse by using 24 of the fogging mist each with the capability of 24 liter/min. The operating time is 4 times per day, each round for 15 min. The fogging system is being driven by water pump with AC motor rating 0.5 hp. The load energy consumed is around 1.125 kWh/d. The designing results of the PV-Wind hybrid energy system is that sufficient energy could be generated by this system. The results of this study can be applied as a technical data reference for other areas in the central part of Thailand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PV-Wind%20hybrid%20autonomous%20system" title="PV-Wind hybrid autonomous system">PV-Wind hybrid autonomous system</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20plantation" title=" greenhouse plantation"> greenhouse plantation</a>, <a href="https://publications.waset.org/abstracts/search?q=fogging%20system" title=" fogging system"> fogging system</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20part%20of%20Thailand" title=" central part of Thailand"> central part of Thailand</a> </p> <a href="https://publications.waset.org/abstracts/10478/the-design-and-construction-of-the-pv-wind-autonomous-system-for-greenhouse-plantations-in-central-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18134</span> A Simple Autonomous Hovering and Operating Control of Multicopter Using Only Web Camera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazuya%20Sato">Kazuya Sato</a>, <a href="https://publications.waset.org/abstracts/search?q=Toru%20Kasahara"> Toru Kasahara</a>, <a href="https://publications.waset.org/abstracts/search?q=Junji%20Kuroda"> Junji Kuroda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an autonomous hovering control method of multicopter using only Web camera is proposed. Recently, various control method of an autonomous flight for multicopter are proposed. But, in the previously proposed methods, a motion capture system (i.e., OptiTrack) and laser range finder are often used to measure the position and posture of multicopter. To achieve an autonomous flight control of multicopter with simple equipment, we propose an autonomous flight control method using AR marker and Web camera. AR marker can measure the position of multicopter with Cartesian coordinate in three dimensional, then its position connects with aileron, elevator, and accelerator throttle operation. A simple PID control method is applied to the each operation and adjust the controller gains. Experimental result are given to show the effectiveness of our proposed method. Moreover, another simple operation method for autonomous flight control multicopter is also proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20hovering%20control" title="autonomous hovering control">autonomous hovering control</a>, <a href="https://publications.waset.org/abstracts/search?q=multicopter" title=" multicopter"> multicopter</a>, <a href="https://publications.waset.org/abstracts/search?q=Web%20camera" title=" Web camera"> Web camera</a>, <a href="https://publications.waset.org/abstracts/search?q=operation" title=" operation "> operation </a> </p> <a href="https://publications.waset.org/abstracts/20333/a-simple-autonomous-hovering-and-operating-control-of-multicopter-using-only-web-camera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">571</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18133</span> The User Acceptance of Autonomous Shuttles in Pretoria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Onanena%20Adegono">D. Onanena Adegono</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Altinsoy"> P. Altinsoy</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Schuster"> A. Schuster</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Sch%C3%A4fer"> P. Schäfer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autonomous vehicles look set to drastically alter the way we move people and goods, in urban as well as rural areas. However, little has been written about Africa with this regard. Moreover, in order for this new technology to be adopted, user acceptance is vital. The current research examines the user acceptance of autonomous minibus shuttles, as a solution for first/last mile public transport in Pretoria, South Africa. Of the respondents surveyed, only 2.31% perceived them as not useful. Respondents showed more interest in using these shuttles in combination with the bus rapid transit system (75.4%) as opposed to other modes of public transportation (40%). The significance of these findings is that they can help ensure that the implementation of autonomous public transport in South Africa is adapted to the local user. Furthermore, these findings could be adapted for other South African cities and other cities across the continent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20buses%20and%20shuttles" title="autonomous buses and shuttles">autonomous buses and shuttles</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20public%20transport" title=" autonomous public transport"> autonomous public transport</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20mobility" title=" urban mobility"> urban mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20acceptance" title=" user acceptance"> user acceptance</a> </p> <a href="https://publications.waset.org/abstracts/131154/the-user-acceptance-of-autonomous-shuttles-in-pretoria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18132</span> Analysis of Autonomous Orbit Determination for Lagrangian Navigation Constellation with Different Dynamical Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gao%20Youtao">Gao Youtao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Tanran"> Zhao Tanran</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Bingyu"> Jin Bingyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Bo"> Xu Bo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global navigation satellite system(GNSS) can deliver navigation information for spacecraft orbiting on low-Earth orbits and medium Earth orbits. However, the GNSS cannot navigate the spacecraft on high-Earth orbit or deep space probes effectively. With the deep space exploration becoming a hot spot of aerospace, the demand for a deep space satellite navigation system is becoming increasingly prominent. Many researchers discussed the feasibility and performance of a satellite navigation system on periodic orbits around the Earth-Moon libration points which can be called Lagrangian point satellite navigation system. Autonomous orbit determination (AOD) is an important performance for the Lagrangian point satellite navigation system. With this ability, the Lagrangian point satellite navigation system can reduce the dependency on ground stations. AOD also can greatly reduce total system cost and assure mission continuity. As the elliptical restricted three-body problem can describe the Earth-Moon system more accurately than the circular restricted three-body problem, we study the autonomous orbit determination of Lagrangian navigation constellation using only crosslink range based on elliptical restricted three body problem. Extended Kalman filter is used in the autonomous orbit determination. In order to compare the autonomous orbit determination results based on elliptical restricted three-body problem to the results of autonomous orbit determination based on circular restricted three-body problem, we give the autonomous orbit determination position errors of a navigation constellation include four satellites based on the circular restricted three-body problem. The simulation result shows that the Lagrangian navigation constellation can achieve long-term precise autonomous orbit determination using only crosslink range. In addition, the type of the libration point orbit will influence the autonomous orbit determination accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extended%20Kalman%20filter" title="extended Kalman filter">extended Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20orbit%20determination" title=" autonomous orbit determination"> autonomous orbit determination</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-periodic%20orbit" title=" quasi-periodic orbit"> quasi-periodic orbit</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation%20constellation" title=" navigation constellation"> navigation constellation</a> </p> <a href="https://publications.waset.org/abstracts/72040/analysis-of-autonomous-orbit-determination-for-lagrangian-navigation-constellation-with-different-dynamical-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18131</span> Trajectory Planning Algorithms for Autonomous Agricultural Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caner%20Koc">Caner Koc</a>, <a href="https://publications.waset.org/abstracts/search?q=Dilara%20Gerdan%20Koc"> Dilara Gerdan Koc</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Vatandas"> Mustafa Vatandas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fundamental components of autonomous agricultural robot design, such as having a working understanding of coordinates, correctly constructing the desired route, and sensing environmental elements, are the most important. A variety of sensors, hardware, and software are employed by agricultural robots to find these systems.These enable the fully automated driving system of an autonomous vehicle to simulate how a human-driven vehicle would respond to changing environmental conditions. To calculate the vehicle's motion trajectory using data from the sensors, this automation system typically consists of a sophisticated software architecture based on object detection and driving decisions. In this study, the software architecture of an autonomous agricultural vehicle is compared to the trajectory planning techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture%205.0" title="agriculture 5.0">agriculture 5.0</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20intelligence" title=" computational intelligence"> computational intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20planning" title=" motion planning"> motion planning</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20planning" title=" trajectory planning"> trajectory planning</a> </p> <a href="https://publications.waset.org/abstracts/165714/trajectory-planning-algorithms-for-autonomous-agricultural-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18130</span> A Gyro-stabilized Autonomous Multi-terrain Quadrupedal-wheeled Robot: Towards Edge-enabled Self-balancing, Autonomy, and Terramechanical Efficiency of Unmanned Off-road Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mbadiwe%20S.%20Benyeogor">Mbadiwe S. Benyeogor</a>, <a href="https://publications.waset.org/abstracts/search?q=Oladayo%20O.%20Olakanmi"> Oladayo O. Olakanmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kosisochukwu%20P.%20Nnoli"> Kosisochukwu P. Nnoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Olusegun%20I.%20Lawal"> Olusegun I. Lawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20JJ.%20Gratton"> Eric JJ. Gratton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For a robot or any vehicular system to navigate in off-road terrain, its driving mechanisms and the electro-software system must be capable of generating, controlling, and moderating sufficient mechanical power with precision. This paper proposes an autonomous robot with a gyro-stabilized active suspension system in form of a hybrid quadrupedal wheel drive mechanism. This system is to serve as a miniature model for demonstrating how off-road vehicles can be robotized into efficient terramechanical mobile platforms that are capable of self-balanced autonomous navigation and maneuvering on rough and uneven topographies. Results from tests and analysis show that the developed system performs as expected. Therefore, our model and control devices can be adapted to computerizing, automating, and upgrading the operation of unmanned ground vehicles for off-road navigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20suspension" title="active suspension">active suspension</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20robots" title=" autonomous robots"> autonomous robots</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20computing" title=" edge computing"> edge computing</a>, <a href="https://publications.waset.org/abstracts/search?q=navigational%20sensors" title=" navigational sensors"> navigational sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=terramechanics" title=" terramechanics"> terramechanics</a> </p> <a href="https://publications.waset.org/abstracts/144497/a-gyro-stabilized-autonomous-multi-terrain-quadrupedal-wheeled-robot-towards-edge-enabled-self-balancing-autonomy-and-terramechanical-efficiency-of-unmanned-off-road-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18129</span> Research of Control System for Space Intelligent Robot Based on Vision Servo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Changchun%20Liang">Changchun Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaodong%20Zhang"> Xiaodong Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Liu"> Xin Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Pengfei%20Sun"> Pengfei Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space intelligent robotic systems are expected to play an increasingly important role in the future. The robotic on-orbital service, whose key is the tracking and capturing technology, becomes research hot in recent years. In this paper, the authors propose a vision servo control system for target capturing. Robotic manipulator will be an intelligent robotic system with large-scale movement, functional agility, and autonomous ability, and it can be operated by astronauts in the space station or be controlled by the ground operator in the remote operation mode. To realize the autonomous movement and capture mission of SRM, a kind of autonomous programming strategy based on multi-camera vision fusion is designed and the selection principle of object visual position and orientation measurement information is defined for the better precision. Distributed control system hierarchy is designed and reliability is considering to guarantee the abilities of control system. At last, a ground experiment system is set up based on the concept of robotic control system. With that, the autonomous target capturing experiments are conducted. The experiment results validate the proposed algorithm, and demonstrates that the control system can fulfill the needs of function, real-time and reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20system" title="control system">control system</a>, <a href="https://publications.waset.org/abstracts/search?q=on-orbital%20service" title=" on-orbital service"> on-orbital service</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20robot" title=" space robot"> space robot</a>, <a href="https://publications.waset.org/abstracts/search?q=vision%20servo" title=" vision servo"> vision servo</a> </p> <a href="https://publications.waset.org/abstracts/23241/research-of-control-system-for-space-intelligent-robot-based-on-vision-servo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18128</span> Development of Under Water Autonomous Vertical Profiler: Unique Solution to Oceanographic Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20K.%20Sharma">I. K. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the years world over system are being developed by research labs continuously monitor under water parameters in the coastal waters of sea such as conductivity, salinity, pressure, temperature, chlorophyll and biological blooms at different levels of water column. The research institutions have developed profilers which are launched by ship connected through cable, glider type profilers following underwater trajectory, buoy any driven profilers, wire guided profilers etc. In all these years, the effect was to design autonomous profilers with no cable quality connection, simple operation and on line date transfer in terms accuracy, repeatability, reliability and consistency. Hence for the Ministry of Communication and Information Technology, India sponsored research project to National Institute of Oceanography, GOA, India to design and develop autonomous vertical profilers, it has taken system and AVP has been successfully developed and tested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oceanography" title="oceanography">oceanography</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20column" title=" water column"> water column</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20profiler" title=" autonomous profiler"> autonomous profiler</a>, <a href="https://publications.waset.org/abstracts/search?q=buoyancy" title=" buoyancy"> buoyancy</a> </p> <a href="https://publications.waset.org/abstracts/2006/development-of-under-water-autonomous-vertical-profiler-unique-solution-to-oceanographic-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18127</span> Multipurpose Agricultural Robot Platform: Conceptual Design of Control System Software for Autonomous Driving and Agricultural Operations Using Programmable Logic Controller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Abhishesh">P. Abhishesh</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20Ryuh"> B. S. Ryuh</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20S.%20Oh"> Y. S. Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Moon"> H. J. Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Akanksha"> R. Akanksha </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses about the conceptual design and development of the control system software using Programmable logic controller (PLC) for autonomous driving and agricultural operations of Multipurpose Agricultural Robot Platform (MARP). Based on given initial conditions by field analysis and desired agricultural operations, the structural design development of MARP is done using modelling and analysis tool. PLC, being robust and easy to use, has been used to design the autonomous control system of robot platform for desired parameters. The robot is capable of performing autonomous driving and three automatic agricultural operations, viz. hilling, mulching, and sowing of seeds in the respective order. The input received from various sensors on the field is later transmitted to the controller via ZigBee network to make the changes in the control program to get desired field output. The research is conducted to provide assistance to farmers by reducing labor hours for agricultural activities by implementing automation. This study will provide an alternative to the existing systems with machineries attached behind tractors and rigorous manual operations on agricultural field at effective cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20operations" title="agricultural operations">agricultural operations</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20driving" title=" autonomous driving"> autonomous driving</a>, <a href="https://publications.waset.org/abstracts/search?q=MARP" title=" MARP"> MARP</a>, <a href="https://publications.waset.org/abstracts/search?q=PLC" title=" PLC"> PLC</a> </p> <a href="https://publications.waset.org/abstracts/64269/multipurpose-agricultural-robot-platform-conceptual-design-of-control-system-software-for-autonomous-driving-and-agricultural-operations-using-programmable-logic-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18126</span> Analysis of Tandem Detonator Algorithm Optimized by Quantum Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Robert%20Kuczerski">Tomasz Robert Kuczerski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high complexity of the algorithm of the autonomous tandem detonator system creates an optimization problem due to the parallel operation of several machine states of the system. Many years of experience and classic analyses have led to a partially optimized model. Limitations on the energy resources of this class of autonomous systems make it necessary to search for more effective methods of optimisation. The use of the Quantum Approximate Optimization Algorithm (QAOA) in these studies shows the most promising results. With the help of multiple evaluations of several qubit quantum circuits, proper results of variable parameter optimization were obtained. In addition, it was observed that the increase in the number of assessments does not result in further efficient growth due to the increasing complexity of optimising variables. The tests confirmed the effectiveness of the QAOA optimization method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm%20analysis" title="algorithm analysis">algorithm analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20system" title=" autonomous system"> autonomous system</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20optimization" title=" quantum optimization"> quantum optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=tandem%20detonator" title=" tandem detonator"> tandem detonator</a> </p> <a href="https://publications.waset.org/abstracts/161188/analysis-of-tandem-detonator-algorithm-optimized-by-quantum-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18125</span> Real Time Adaptive Obstacle Avoidance in Dynamic Environments with Different D-S</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Javad%20Mollakazemi">Mohammad Javad Mollakazemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Asadi"> Farhad Asadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper a real-time obstacle avoidance approach for both autonomous and non-autonomous dynamical systems (DS) is presented. In this approach the original dynamics of the controller which allow us to determine safety margin can be modulated. Different common types of DS increase the robot’s reactiveness in the face of uncertainty in the localization of the obstacle especially when robot moves very fast in changeable complex environments. The method is validated by simulation and influence of different autonomous and non-autonomous DS such as important characteristics of limit cycles and unstable DS. Furthermore, the position of different obstacles in complex environment is explained. Finally, the verification of avoidance trajectories is described through different parameters such as safety factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=limit%20cycles" title="limit cycles">limit cycles</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20dynamical%20system" title=" nonlinear dynamical system"> nonlinear dynamical system</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time%20obstacle%20avoidance" title=" real time obstacle avoidance"> real time obstacle avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20margin" title=" safety margin"> safety margin</a> </p> <a href="https://publications.waset.org/abstracts/18168/real-time-adaptive-obstacle-avoidance-in-dynamic-environments-with-different-d-s" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18124</span> Study and Calibration of Autonomous UAV Systems with Thermal Sensing Allowing Screening of Environmental Concerns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raahil%20Sheikh">Raahil Sheikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Maurya"> Abhishek Maurya</a>, <a href="https://publications.waset.org/abstracts/search?q=Priya%20Gujjar"> Priya Gujjar</a>, <a href="https://publications.waset.org/abstracts/search?q=Himanshu%20Dwivedi"> Himanshu Dwivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Prathamesh%20Minde"> Prathamesh Minde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> UAVs have been an initial member of our environment since it's the first used by Austrian warfare in Venice. At that stage, they were just pilotless balloons equipped with bombs to be dropped on enemy territory. Over time, technological advancements allowed UAVs to be controlled remotely or autonomously. This study shall mainly focus on the intensification of pre-existing manual drones equipping them with a variety of sensors and making them autonomous, and capable, and purposing them for a variety of roles, including thermal sensing, data collection, tracking creatures, forest fires, volcano detection, hydrothermal studies, urban heat, Island measurement, and other environmental research. The system can also be used for reconnaissance, research, 3D mapping, and search and rescue missions. This study mainly focuses on automating tedious tasks and reducing human errors as much as possible, reducing deployment time, and increasing the overall efficiency, efficacy, and reliability of the UAVs. Creation of a comprehensive Ground Control System UI (GCS) enabling less trained professionals to be able to use the UAV with maximum potency. With the inclusion of such an autonomous system, artificially intelligent paths and environmental gusts and concerns can be avoided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UAV" title="UAV">UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=drone" title=" drone"> drone</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20system" title=" autonomous system"> autonomous system</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20imaging" title=" thermal imaging"> thermal imaging</a> </p> <a href="https://publications.waset.org/abstracts/164386/study-and-calibration-of-autonomous-uav-systems-with-thermal-sensing-allowing-screening-of-environmental-concerns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18123</span> Development of Agricultural Robotic Platform for Inter-Row Plant: An Autonomous Navigation Based on Machine Vision </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaa%20El-Din%20Rezk">Alaa El-Din Rezk </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Egypt, management of crops still away from what is being used today by utilizing the advances of mechanical design capabilities, sensing and electronics technology. These technologies have been introduced in many places and recorm, for Straight Path, Curved Path, Sine Wave ded high accuracy in different field operations. So, an autonomous robotic platform based on machine vision has been developed and constructed to be implemented in Egyptian conditions as self-propelled mobile vehicle for carrying tools for inter/intra-row crop management based on different control modules. The experiments were carried out at plant protection research institute (PPRI) during 2014-2015 to optimize the accuracy of agricultural robotic platform control using machine vision in term of the autonomous navigation and performance of the robot’s guidance system. Results showed that the robotic platform' guidance system with machine vision was able to adequately distinguish the path and resisted image noise and did better than human operators for getting less lateral offset error. The average error of autonomous was 2.75, 19.33, 21.22, 34.18, and 16.69 mm. while the human operator was 32.70, 4.85, 7.85, 38.35 and 14.75 mm Path, Offset Discontinuity and Angle Discontinuity respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20robotic" title="autonomous robotic">autonomous robotic</a>, <a href="https://publications.waset.org/abstracts/search?q=Hough%20transform" title=" Hough transform"> Hough transform</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20vision" title=" machine vision "> machine vision </a> </p> <a href="https://publications.waset.org/abstracts/43565/development-of-agricultural-robotic-platform-for-inter-row-plant-an-autonomous-navigation-based-on-machine-vision" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18122</span> Data Recording for Remote Monitoring of Autonomous Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rong-Terng%20Juang">Rong-Terng Juang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars&nbsp;might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20vehicle" title="autonomous vehicle">autonomous vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20compression" title=" data compression"> data compression</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20monitoring" title=" remote monitoring"> remote monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=controller%20area%20networks%20%28CAN%29" title=" controller area networks (CAN)"> controller area networks (CAN)</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidar" title=" Lidar"> Lidar</a> </p> <a href="https://publications.waset.org/abstracts/99577/data-recording-for-remote-monitoring-of-autonomous-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18121</span> Multimedia Container for Autonomous Car</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Janusz%20Bobulski">Janusz Bobulski</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariusz%20Kubanek"> Mariusz Kubanek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal of the research is to develop a multimedia container structure containing three types of images: RGB, lidar and infrared, properly calibrated to each other. An additional goal is to develop program libraries for creating and saving this type of file and for restoring it. It will also be necessary to develop a method of data synchronization from lidar and RGB cameras as well as infrared. This type of file could be used in autonomous vehicles, which would certainly facilitate data processing by the intelligent autonomous vehicle management system. Autonomous cars are increasingly breaking into our consciousness. No one seems to have any doubts that self-driving cars are the future of motoring. Manufacturers promise that moving the first of them to showrooms is the prospect of the next few years. Many experts believe that creating a network of communicating autonomous cars will be able to completely eliminate accidents. However, to make this possible, it is necessary to develop effective methods of detection of objects around the moving vehicle. In bad weather conditions, this task is difficult on the basis of the RGB(red, green, blue) image. Therefore, in such situations, you should be supported by information from other sources, such as lidar or infrared cameras. The problem is the different data formats that individual types of devices return. In addition to these differences, there is a problem with the synchronization of these data and the formatting of this data. The goal of the project is to develop a file structure that could be containing a different type of data. This type of file is calling a multimedia container. A multimedia container is a container that contains many data streams, which allows you to store complete multimedia material in one file. Among the data streams located in such a container should be indicated streams of images, films, sounds, subtitles, as well as additional information, i.e., metadata. This type of file could be used in autonomous vehicles, which would certainly facilitate data processing by the intelligent autonomous vehicle management system. As shown by preliminary studies, the use of combining RGB and InfraRed images with Lidar data allows for easier data analysis. Thanks to this application, it will be possible to display the distance to the object in a color photo. Such information can be very useful for drivers and for systems in autonomous cars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=an%20autonomous%20car" title="an autonomous car">an autonomous car</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=lidar" title=" lidar"> lidar</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20detection" title=" obstacle detection"> obstacle detection</a> </p> <a href="https://publications.waset.org/abstracts/133088/multimedia-container-for-autonomous-car" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18120</span> Intelligent Adaptive Learning in a Changing Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Valentis">G. Valentis</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20Berthelot"> Q. Berthelot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays the trend to develop ever more intelligent and autonomous systems often takes its inspiration in the living beings on Earth. Some simple isolated systems are able, once brought together, to form a strong and reliable system. When trying to adapt the idea to man-made systems it is not possible to include in their program everything the system may encounter during its life cycle. It is, thus, necessary to make the system able to take decisions based on other criteria such as its past experience, i.e. to make the system learn on its own. However, at some point the acquired knowledge depends also on environment. So the question is: if system environment is modified, how could the system respond to it quickly and appropriately enough? Here, starting from reinforcement learning to rate its decisions, and using adaptive learning algorithms for gain and loss reward, the system is made able to respond to changing environment and to adapt its knowledge as time passes. Application is made to a robot finding an exit in a labyrinth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforcement%20learning" title="reinforcement learning">reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20systems" title=" autonomous systems"> autonomous systems</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20learning" title=" adaptive learning"> adaptive learning</a>, <a href="https://publications.waset.org/abstracts/search?q=changing%20environment" title=" changing environment"> changing environment</a> </p> <a href="https://publications.waset.org/abstracts/13941/intelligent-adaptive-learning-in-a-changing-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18119</span> Study and Calibration of Autonomous UAV Systems With Thermal Sensing With Multi-purpose Roles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raahil%20Sheikh">Raahil Sheikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Prathamesh%20Minde"> Prathamesh Minde</a>, <a href="https://publications.waset.org/abstracts/search?q=Priya%20Gujjar"> Priya Gujjar</a>, <a href="https://publications.waset.org/abstracts/search?q=Himanshu%20Dwivedi"> Himanshu Dwivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Maurya"> Abhishek Maurya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> UAVs have been an initial member of our environment since it's the first used by Austrian warfare in Venice. At that stage, they were just pilotless balloons equipped with bombs to be dropped on enemy territory. Over time, technological advancements allowed UAVs to be controlled remotely or autonomously. This study shall mainly focus on the intensification of pre-existing manual drones equipping them with a variety of sensors and making them autonomous, and capable, and purposing them for a variety of roles, including thermal sensing, data collection, tracking creatures, forest fires, volcano detection, hydrothermal studies, urban heat, Island measurement, and other environmental research. The system can also be used for reconnaissance, research, 3D mapping, and search and rescue missions. This study mainly focuses on automating tedious tasks and reducing human errors as much as possible, reducing deployment time, and increasing the overall efficiency, efficacy, and reliability of the UAVs. Creation of a comprehensive Ground Control System UI (GCS) enabling less trained professionals to be able to use the UAV with maximum potency. With the inclusion of such an autonomous system, artificially intelligent paths and environmental gusts and concerns can be avoided <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UAV" title="UAV">UAV</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20systems" title=" autonomous systems"> autonomous systems</a>, <a href="https://publications.waset.org/abstracts/search?q=drones" title=" drones"> drones</a>, <a href="https://publications.waset.org/abstracts/search?q=geo%20thermal%20imaging" title=" geo thermal imaging"> geo thermal imaging</a> </p> <a href="https://publications.waset.org/abstracts/164384/study-and-calibration-of-autonomous-uav-systems-with-thermal-sensing-with-multi-purpose-roles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18118</span> Sliding Mode Control of Autonomous Underwater Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Forouzantabar">Ahmad Forouzantabar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Azadi"> Mohammad Azadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Alesaadi"> Alireza Alesaadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a sliding mode controller for autonomous underwater vehicles (AUVs). The dynamic of AUV model is highly nonlinear because of many factors, such as hydrodynamic drag, damping, and lift forces, Coriolis and centripetal forces, gravity and buoyancy forces, as well as forces from thruster. To address these difficulties, a nonlinear sliding mode controller is designed to approximate the nonlinear dynamics of AUV and improve trajectory tracking. Moreover, the proposed controller can profoundly attenuate the effects of uncertainties and external disturbances in the closed-loop system. Using the Lyapunov theory the boundedness of AUV tracking errors and the stability of the proposed control system are also guaranteed. Numerical simulation studies of an AUV are included to illustrate the effectiveness of the presented approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lyapunov%20stability" title="lyapunov stability">lyapunov stability</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20underwater%20vehicle" title=" autonomous underwater vehicle"> autonomous underwater vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20controller" title=" sliding mode controller"> sliding mode controller</a>, <a href="https://publications.waset.org/abstracts/search?q=electronics%20engineering" title=" electronics engineering"> electronics engineering</a> </p> <a href="https://publications.waset.org/abstracts/6715/sliding-mode-control-of-autonomous-underwater-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">615</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18117</span> Real-Time Adaptive Obstacle Avoidance with DS Method and the Influence of Dynamic Environments Change on Different DS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Mahjoub%20Moghadas">Saeed Mahjoub Moghadas</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Asadi"> Farhad Asadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahed%20Torkamandi"> Shahed Torkamandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Moradi"> Hassan Moradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20Purgamshidian"> Mahmood Purgamshidian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present real-time obstacle avoidance approach for both autonomous and non-autonomous DS-based controllers and also based on dynamical systems (DS) method. In this approach, we can modulate the original dynamics of the controller and it allows us to determine safety margin and different types of DS to increase the robot’s reactiveness in the face of uncertainty in the localization of the obstacle and especially when robot moves very fast in changeable complex environments. The method is validated in simulation and influence of different autonomous and non-autonomous DS such as limit cycles, and unstable DS on this algorithm and also the position of different obstacles in complex environment is explained. Finally, we describe how the avoidance trajectories can be verified through different parameters such as safety factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=limit%20cycles" title="limit cycles">limit cycles</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20dynamical%20system" title=" nonlinear dynamical system"> nonlinear dynamical system</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time%20obstacle%20avoidance" title=" real time obstacle avoidance"> real time obstacle avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=DS-based%20controllers" title=" DS-based controllers"> DS-based controllers</a> </p> <a href="https://publications.waset.org/abstracts/13882/real-time-adaptive-obstacle-avoidance-with-ds-method-and-the-influence-of-dynamic-environments-change-on-different-ds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18116</span> Fault Diagnosis in Confined Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nesrine%20Berber">Nesrine Berber</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafid%20Haffaf"> Hafid Haffaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdel%20Madjid%20Meghabar"> Abdel Madjid Meghabar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decade, technology has continued to grow and has changed the structure of our society. Today, new technologies including the information and communication (ICT) play a main role which importance continues to grow, now it's become indispensable to the economic, social and cultural. Thus, ICT technology has proven to be as a promising intervention in the area of road transport. The supervision model of class of train of intelligent and autonomous vehicles leads us to give some defintions about IAV and the different technologies used for communication between them. Our aim in this work is to present an hypergraph modeling a class of train of Intelligent and Autonomous Vehicles (IAV). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intelligent%20transportation%20system" title="intelligent transportation system">intelligent transportation system</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20autonomous%20vehicles" title=" intelligent autonomous vehicles"> intelligent autonomous vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=Ad%20Hoc%20network" title=" Ad Hoc network"> Ad Hoc network</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20technologies" title=" wireless technologies"> wireless technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=hypergraph%20modeling" title=" hypergraph modeling"> hypergraph modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=supervision" title=" supervision"> supervision</a> </p> <a href="https://publications.waset.org/abstracts/33207/fault-diagnosis-in-confined-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18115</span> Design and Implementation of Control System in Underwater Glider of Ganeshblue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imam%20Taufiqurrahman">Imam Taufiqurrahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Anugrah%20Adiwilaga"> Anugrah Adiwilaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Egi%20Hidayat"> Egi Hidayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Bambang%20Riyanto%20Trilaksono"> Bambang Riyanto Trilaksono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autonomous Underwater Vehicle glider is one of the renewal of underwater vehicles. This vehicle is one of the autonomous underwater vehicles that are being developed in Indonesia. Glide ability is obtained by controlling the buoyancy and attitude of the vehicle using the movers within the vehicle. The glider motion mechanism is expected to provide energy resistance from autonomous underwater vehicles so as to increase the cruising range of rides while performing missions. The control system on the vehicle consists of three parts: controlling the attitude of the pitch, the buoyancy engine controller and the yaw controller. The buoyancy and pitch controls on the vehicle are sequentially referring to the finite state machine with pitch angle and depth of diving inputs to obtain a gliding cycle. While the yaw control is done through the rudder for the needs of the guide system. This research is focused on design and implementation of control system of Autonomous Underwater Vehicle glider based on PID anti-windup. The control system is implemented on an ARM TS-7250-V2 device along with a mathematical model of the vehicle in MATLAB using the hardware-in-the-loop simulation (HILS) method. The TS-7250-V2 is chosen because it complies industry standards, has high computing capability, minimal power consumption. The results show that the control system in HILS process can form glide cycle with depth and angle of operation as desired. In the implementation using half control and full control mode, from the experiment can be concluded in full control mode more precision when tracking the reference. While half control mode is considered more efficient in carrying out the mission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20system" title="control system">control system</a>, <a href="https://publications.waset.org/abstracts/search?q=PID" title=" PID"> PID</a>, <a href="https://publications.waset.org/abstracts/search?q=underwater%20glider" title=" underwater glider"> underwater glider</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20robotics" title=" marine robotics"> marine robotics</a> </p> <a href="https://publications.waset.org/abstracts/80520/design-and-implementation-of-control-system-in-underwater-glider-of-ganeshblue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18114</span> Simulation of Obstacle Avoidance for Multiple Autonomous Vehicles in a Dynamic Environment Using Q-Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andreas%20D.%20Jansson">Andreas D. Jansson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The availability of inexpensive, yet competent hardware allows for increased level of automation and self-optimization in the context of Industry 4.0. However, such agents require high quality information about their surroundings along with a robust strategy for collision avoidance, as they may cause expensive damage to equipment or other agents otherwise. Manually defining a strategy to cover all possibilities is both time-consuming and counter-productive given the capabilities of modern hardware. This paper explores the idea of a model-free self-optimizing obstacle avoidance strategy for multiple autonomous agents in a simulated dynamic environment using the Q-learning algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20vehicles" title="autonomous vehicles">autonomous vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=industry%204.0" title=" industry 4.0"> industry 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title=" multi-agent system"> multi-agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20avoidance" title=" obstacle avoidance"> obstacle avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=Q-learning" title=" Q-learning"> Q-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/132508/simulation-of-obstacle-avoidance-for-multiple-autonomous-vehicles-in-a-dynamic-environment-using-q-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18113</span> Study and Construction on Signalling System during Reverse Motion Due to Obstacle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Yasir%20Arafat">S. M. Yasir Arafat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Driving models are needed by many researchers to improve traffic safety and to advance autonomous vehicle design. To be most useful, a driving model must state specifically what information is needed and how it is processed. So we developed an “Obstacle Avoidance and Detection Autonomous Car” based on sensor application. The ever increasing technological demands of today call for very complex systems, which in turn require highly sophisticated controllers to ensure that high performance can be achieved and maintained under adverse conditions. Based on a developed model of brakes operation, the controller of braking system operation has been designed. It has a task to enable solution to the problem of the better controlling of braking system operation in a more accurate way then it was the case now a day. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automobile" title="automobile">automobile</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle" title=" obstacle"> obstacle</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=sensing" title=" sensing"> sensing</a> </p> <a href="https://publications.waset.org/abstracts/32977/study-and-construction-on-signalling-system-during-reverse-motion-due-to-obstacle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18112</span> Guidance and Control of a Torpedo Autonomous Underwater Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soheil%20Arash%20Moghadam">Soheil Arash Moghadam</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdol%20R.%20Kashani%20Nia"> Abdol R. Kashani Nia</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Akrami%20Zade"> Ali Akrami Zade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considering numerous applications of Autonomous Underwater Vehicles in various industries, there has been plenty of researches and studies on the motion control of such vehicles. One of the useful aspects for studying is the guidance of these vehicles. In this paper, while presenting motion equations with six degrees of freedom for Autonomous Underwater Vehicles, Proportional Navigation Guidance Law and the first order sliding mode control for TAIPAN AUV was used to address its guidance for the purpose of collision with a moving target. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Autonomous%20Underwater%20Vehicle%20%28AUV%29" title="Autonomous Underwater Vehicle (AUV)">Autonomous Underwater Vehicle (AUV)</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20freedom%20%28DOF%29" title=" degree of freedom (DOF)"> degree of freedom (DOF)</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic" title=" hydrodynamic"> hydrodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20of%20sight%28LOS%29" title=" line of sight(LOS)"> line of sight(LOS)</a>, <a href="https://publications.waset.org/abstracts/search?q=proportional%20navigation%20guidance%28PNG%29" title=" proportional navigation guidance(PNG)"> proportional navigation guidance(PNG)</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control%28SMC%29" title=" sliding mode control(SMC) "> sliding mode control(SMC) </a> </p> <a href="https://publications.waset.org/abstracts/17056/guidance-and-control-of-a-torpedo-autonomous-underwater-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18111</span> Deep Reinforcement Learning Model for Autonomous Driving</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boumaraf%20Malak">Boumaraf Malak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of intelligent transportation systems (ITS) and artificial intelligence (AI) are spurring us to pave the way for the widespread adoption of autonomous vehicles (AVs). This is open again opportunities for smart roads, smart traffic safety, and mobility comfort. A highly intelligent decision-making system is essential for autonomous driving around dense, dynamic objects. It must be able to handle complex road geometry and topology, as well as complex multiagent interactions, and closely follow higher-level commands such as routing information. Autonomous vehicles have become a very hot research topic in recent years due to their significant ability to reduce traffic accidents and personal injuries. Using new artificial intelligence-based technologies handles important functions in scene understanding, motion planning, decision making, vehicle control, social behavior, and communication for AV. This paper focuses only on deep reinforcement learning-based methods; it does not include traditional (flat) planar techniques, which have been the subject of extensive research in the past because reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. The DRL algorithm used so far found solutions to the four main problems of autonomous driving; in our paper, we highlight the challenges and point to possible future research directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20reinforcement%20learning" title="deep reinforcement learning">deep reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20driving" title=" autonomous driving"> autonomous driving</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20deterministic%20policy%20gradient" title=" deep deterministic policy gradient"> deep deterministic policy gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20Q-learning" title=" deep Q-learning"> deep Q-learning</a> </p> <a href="https://publications.waset.org/abstracts/166548/deep-reinforcement-learning-model-for-autonomous-driving" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18110</span> Comparison of Extended Kalman Filter and Unscented Kalman Filter for Autonomous Orbit Determination of Lagrangian Navigation Constellation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youtao%20Gao">Youtao Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Bingyu%20Jin"> Bingyu Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanran%20Zhao"> Tanran Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Xu"> Bo Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The history of satellite navigation can be dated back to the 1960s. From the U.S. Transit system and the Russian Tsikada system to the modern Global Positioning System (GPS) and the Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS), performance of satellite navigation has been greatly improved. Nowadays, the navigation accuracy and coverage of these existing systems have already fully fulfilled the requirement of near-Earth users, but these systems are still beyond the reach of deep space targets. Due to the renewed interest in space exploration, a novel high-precision satellite navigation system is becoming even more important. The increasing demand for such a deep space navigation system has contributed to the emergence of a variety of new constellation architectures, such as the Lunar Global Positioning System. Apart from a Walker constellation which is similar to the one adopted by GPS on Earth, a novel constellation architecture which consists of libration point satellites in the Earth-Moon system is also available to construct the lunar navigation system, which can be called accordingly, the libration point satellite navigation system. The concept of using Earth-Moon libration point satellites for lunar navigation was first proposed by Farquhar and then followed by many other researchers. Moreover, due to the special characteristics of Libration point orbits, an autonomous orbit determination technique, which is called ‘Liaison navigation’, can be adopted by the libration point satellites. Using only scalar satellite-to-satellite tracking data, both the orbits of the user and libration point satellites can be determined autonomously. In this way, the extensive Earth-based tracking measurement can be eliminated, and an autonomous satellite navigation system can be developed for future space exploration missions. The method of state estimate is an unnegligible factor which impacts on the orbit determination accuracy besides type of orbit, initial state accuracy and measurement accuracy. We apply the extended Kalman filter(EKF) and the unscented Kalman filter(UKF) to determinate the orbits of Lagrangian navigation satellites. The autonomous orbit determination errors are compared. The simulation results illustrate that UKF can improve the accuracy and z-axis convergence to some extent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extended%20Kalman%20filter" title="extended Kalman filter">extended Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20orbit%20determination" title=" autonomous orbit determination"> autonomous orbit determination</a>, <a href="https://publications.waset.org/abstracts/search?q=unscented%20Kalman%20filter" title=" unscented Kalman filter"> unscented Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation%20constellation" title=" navigation constellation"> navigation constellation</a> </p> <a href="https://publications.waset.org/abstracts/72788/comparison-of-extended-kalman-filter-and-unscented-kalman-filter-for-autonomous-orbit-determination-of-lagrangian-navigation-constellation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18109</span> Research on Autonomous Controllability of BeiDou Navigation Satellite System Based on Knowledge Transformation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hang%20Ju">Hang Ju</a>, <a href="https://publications.waset.org/abstracts/search?q=Changmin%20Zhu"> Changmin Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development level of the BeiDou Navigation Satellite System (BDS) can strongly reflect national defense strength as an important spatial information infrastructure. BDS can be not only used for military purposes, such as intelligence gathering, nuclear explosion monitoring, emergency communications, but also for location services, transportation, mapping, precision agriculture. In order to ensure the national defense security and the wide application of BDS in civil and military areas, BDS must be autonomous and controllable. As a complex system of knowledge-intensive, knowledge transformation runs through the whole process of research and development, production, operation, and maintenance of BDS. Based on the perspective of knowledge transformation, this paper expounds on the meaning of socialization, externalization, combination, and internalization of knowledge transformation, and the coupling relationship of autonomy and control on the basis of analyzing the status quo and problems of the autonomy and control of BDS. The autonomous and controllable framework of BDS based on knowledge transformation is constructed from six dimensions of management capability, R&D capability, technical capability, manufacturing capability, service support capability, and application capability. It can provide support for the smooth implementation of information security policy, provide a reference for the autonomy and control of the upstream and downstream industrial chains in Beidou, and provide a reference for the autonomous and controllable research of aerospace components, military measurement test equipment, and other related industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=knowledge%20transformation" title="knowledge transformation">knowledge transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=BeiDou%20Navigation%20Satellite%20System" title=" BeiDou Navigation Satellite System"> BeiDou Navigation Satellite System</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomy%20and%20control" title=" autonomy and control"> autonomy and control</a>, <a href="https://publications.waset.org/abstracts/search?q=framework" title=" framework"> framework</a> </p> <a href="https://publications.waset.org/abstracts/142088/research-on-autonomous-controllability-of-beidou-navigation-satellite-system-based-on-knowledge-transformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18108</span> Autonomous Learning Motivates EFL Students to Learn English at Al Buraimi University College in the Sultanate of Oman: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yahia%20A.%20M.%20AlKhoudary">Yahia A. M. AlKhoudary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This Study presents the outcome of an investigation to evaluate the importance of autonomous learning as a means of motivation. However, very little research done in this field. Thus, the aims of this study are to ascertain the needs of the learners and to investigate their attitudes and motivation towards the mode of learning. Various suggestions made on how to improve learners’ participation in the learning process. A survey conducted on a sample group of 60 Omani College students. Self-report questionnaires and retrospective interviews conducted to find out their material-type preferences in a self-access learning context. Achieving autonomous learning system, which learners is one of the Ministry of Education goals in the Sultanate of Oman. As a result, this study presents the outcome of an investigation to evaluate the students’ performance in English as a Foreign Language (EFL). It focuses on the effect of autonomous learning that encourages students to learn English, a research conducted at Buraimi city, the Sultanate of Oman. The procedure of this investigation based on four dimensions: (1) sixty students are selected and divided into two groups, (2) pre and posttest projects are given to them, and (3) questionnaires are administered to both students who are involved in the experiment and 50 teachers (25 males and 25 females) to collect accurate data, (4) an interview with students and teachers to find out their attitude towards autonomous learning. Analysis of participants’ responses indicated that autonomous learning motivates students to learn English independently and increase the intrinsic rather than extrinsic motivation to improve their English language as a long-life active learning. The findings of this study show that autonomous learning approach is the best remedy to empower the students’ skills and overcome all relevant difficulties. They also show that secondary school teachers can fully rely on this learning approach that encourages language learners to monitor their progress, increase both learners and teachers’ motivation and ameliorate students’ behavior in the classroom. This approach is also an ongoing process, which takes time, patience and support to be lifelong learning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omani" title="Omani">Omani</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20learning%20system" title=" autonomous learning system"> autonomous learning system</a>, <a href="https://publications.waset.org/abstracts/search?q=English%20as%20a%20Foreign%20Language%20%28EFL%29" title=" English as a Foreign Language (EFL)"> English as a Foreign Language (EFL)</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20approach" title=" learning approach"> learning approach</a> </p> <a href="https://publications.waset.org/abstracts/21122/autonomous-learning-motivates-efl-students-to-learn-english-at-al-buraimi-university-college-in-the-sultanate-of-oman-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autonomous%20system&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autonomous%20system&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autonomous%20system&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autonomous%20system&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autonomous%20system&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autonomous%20system&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autonomous%20system&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autonomous%20system&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autonomous%20system&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autonomous%20system&amp;page=604">604</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autonomous%20system&amp;page=605">605</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=autonomous%20system&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10