CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 156 results for author: <span class="mathjax">Piekarewicz, J</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Piekarewicz, J"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Piekarewicz%2C+J&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Piekarewicz, J"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03490">arXiv:2411.03490</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.03490">pdf</a>, <a href="https://arxiv.org/format/2411.03490">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Assessing the impact of uniform rotation on the structure of neutron stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Salinas%2C+M">Marc Salinas</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">Jorge Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03490v1-abstract-short" style="display: inline;"> Driven by recent laboratory experiments and astronomical observations, significant advances have deepened our understanding of neutron-star physics. NICER&#39;s Pulse Profile Modeling has refined our knowledge of neutron star masses and radii, while gravitational-wave detections have revealed key insights into the structure of neutron stars. Particularly relevant is the extraction of the tidal deforma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03490v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03490v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03490v1-abstract-full" style="display: none;"> Driven by recent laboratory experiments and astronomical observations, significant advances have deepened our understanding of neutron-star physics. NICER&#39;s Pulse Profile Modeling has refined our knowledge of neutron star masses and radii, while gravitational-wave detections have revealed key insights into the structure of neutron stars. Particularly relevant is the extraction of the tidal deformability by the LIGO-Virgo collaboration and the most recent determination of stellar radii by NICER, both suggesting a relatively soft equation of state (EOS) at intermediate densities. Additionally, measurements from the PREX collaboration and from pulsar timing suggest instead that the EOS is stiff in the vicinity of saturation density and at the highest densities accessible to date. But how stiff can the EOS be at these very high densities? Recent events featuring compact objects near the &#34;lower mass gap&#34; have raised questions about the existence of very massive neutron stars. Motivated by this finding and in light of new refinements to theoretical models, we explore the possibility that these massive objects may indeed be rapidly rotating neutron stars. We explore how rotation affects both the maximum neutron star mass and their associated radii, and discuss the implications they may have on the equation of state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03490v1-abstract-full').style.display = 'none'; document.getElementById('2411.03490v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages and 3 figures. Submitted to Physical Review C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09743">arXiv:2407.09743</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.09743">pdf</a>, <a href="https://arxiv.org/format/2407.09743">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.110.035501">10.1103/PhysRevC.110.035501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simultaneous Extraction of the Weak Radius and the Weak Mixing Angle from Parity-Violating Electron Scattering on $^{12}\mathrm{C}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Cadeddu%2C+M">Matteo Cadeddu</a>, <a href="/search/?searchtype=author&amp;query=Cargioli%2C+N">Nicola Cargioli</a>, <a href="/search/?searchtype=author&amp;query=Erler%2C+J">Jens Erler</a>, <a href="/search/?searchtype=author&amp;query=Gorchtein%2C+M">Mikhail Gorchtein</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">Jorge Piekarewicz</a>, <a href="/search/?searchtype=author&amp;query=Roca-Maza%2C+X">Xavier Roca-Maza</a>, <a href="/search/?searchtype=author&amp;query=Spiesberger%2C+H">Hubert Spiesberger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09743v2-abstract-short" style="display: inline;"> We study the impact of nuclear structure uncertainties on a measurement of the weak charge of $^{12}\mathrm{C}$ at the future MESA facility in Mainz. Information from a large variety of nuclear models, accurately calibrated to the ground-state properties of selected nuclei, suggest that a $0.3$% precision measurement of the parity-violating asymmetry at forward angles will not be compromised by nu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09743v2-abstract-full').style.display = 'inline'; document.getElementById('2407.09743v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09743v2-abstract-full" style="display: none;"> We study the impact of nuclear structure uncertainties on a measurement of the weak charge of $^{12}\mathrm{C}$ at the future MESA facility in Mainz. Information from a large variety of nuclear models, accurately calibrated to the ground-state properties of selected nuclei, suggest that a $0.3$% precision measurement of the parity-violating asymmetry at forward angles will not be compromised by nuclear structure effects, thereby allowing a world-leading determination of the weak charge of $^{12}\mathrm{C}$. Furthermore, we show that a combination of measurements of the parity-violating asymmetry at forward and backward angles for the same electron beam energy can be used to extract information on the nuclear weak charge distribution. We conclude that a $0.34$% precision on the weak radius of $^{12}\mathrm{C}$ may be achieved by performing a $3$% precision measurement of the parity-violating asymmetry at backward angles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09743v2-abstract-full').style.display = 'none'; document.getElementById('2407.09743v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figure, 1 table. Matches the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 110, 035501 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01747">arXiv:2406.01747</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.01747">pdf</a>, <a href="https://arxiv.org/format/2406.01747">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> A universal reduced basis for the calibration of covariant energy density functionals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Anderson%2C+A+L">Amy L. Anderson</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01747v1-abstract-short" style="display: inline;"> The reduced basis method is used to construct a &#34;universal&#34; basis of Dirac orbitals that may be applicable throughout the nuclear chart to calibrate covariant energy density functionals. Relative to our earlier work using the non-relativistic Schr枚dinger equation, the Dirac equation adds an extra layer of complexity due to the existence of negative energy states. However, once this problem is miti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01747v1-abstract-full').style.display = 'inline'; document.getElementById('2406.01747v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01747v1-abstract-full" style="display: none;"> The reduced basis method is used to construct a &#34;universal&#34; basis of Dirac orbitals that may be applicable throughout the nuclear chart to calibrate covariant energy density functionals. Relative to our earlier work using the non-relativistic Schr枚dinger equation, the Dirac equation adds an extra layer of complexity due to the existence of negative energy states. However, once this problem is mitigated, the resulting reduced basis is able to accurately and efficiently reproduce the high-fidelity model at a fraction of the computational cost. We are confident that the resulting reduced basis will serve as a foundational element in developing rapid and accurate emulators. In turn, these emulators will play a critical role in the Bayesian optimization of covariant energy density functionals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01747v1-abstract-full').style.display = 'none'; document.getElementById('2406.01747v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures, to be submitted to Physical Review C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.02748">arXiv:2405.02748</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.02748">pdf</a>, <a href="https://arxiv.org/format/2405.02748">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.110.044320">10.1103/PhysRevC.110.044320 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Bayesian mixture model approach to quantifying the empirical nuclear saturation point </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Drischler%2C+C">C. Drischler</a>, <a href="/search/?searchtype=author&amp;query=Giuliani%2C+P+G">P. G. Giuliani</a>, <a href="/search/?searchtype=author&amp;query=Bezoui%2C+S">S. Bezoui</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a>, <a href="/search/?searchtype=author&amp;query=Viens%2C+F">F. Viens</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.02748v2-abstract-short" style="display: inline;"> The equation of state (EOS) in the limit of infinite symmetric nuclear matter exhibits an equilibrium density, $n_0 \approx 0.16 \, \mathrm{fm}^{-3}$, at which the pressure vanishes and the energy per particle attains its minimum, $E_0 \approx -16 \, \mathrm{MeV}$. Although not directly measurable, the saturation point $(n_0,E_0)$ can be extrapolated by density functional theory (DFT), providing t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02748v2-abstract-full').style.display = 'inline'; document.getElementById('2405.02748v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.02748v2-abstract-full" style="display: none;"> The equation of state (EOS) in the limit of infinite symmetric nuclear matter exhibits an equilibrium density, $n_0 \approx 0.16 \, \mathrm{fm}^{-3}$, at which the pressure vanishes and the energy per particle attains its minimum, $E_0 \approx -16 \, \mathrm{MeV}$. Although not directly measurable, the saturation point $(n_0,E_0)$ can be extrapolated by density functional theory (DFT), providing tight constraints for microscopic interactions derived from chiral effective field theory (EFT). However, when considering several DFT predictions for $(n_0,E_0)$ from Skyrme and Relativistic Mean Field models together, a discrepancy between these model classes emerges at high confidence levels that each model prediction&#39;s uncertainty cannot explain. How can we leverage these DFT constraints to rigorously benchmark saturation properties of chiral interactions? To address this question, we present a Bayesian mixture model that combines multiple DFT predictions for $(n_0,E_0)$ using an efficient conjugate prior approach. The inferred posterior for the saturation point&#39;s mean and covariance matrix follows a Normal-inverse-Wishart class, resulting in posterior predictives in the form of correlated, bivariate $t$-distributions. The DFT uncertainty reports are then used to mix these posteriors using an ordinary Monte Carlo approach. At the 95\% credibility level, we estimate $n_0 \approx 0.157 \pm 0.010 \, \mathrm{fm}^{-3}$ and $E_0 \approx -15.97 \pm 0.40 \, \mathrm{MeV}$ for the marginal (univariate) $t$-distributions. Combined with chiral EFT calculations of the pure neutron matter EOS, we obtain bivariate normal distributions for the symmetry energy and its slope parameter at $n_0$: $S_v \approx 32.0 \pm 1.1 \, \mathrm{MeV}$ and $L\approx 52.6\pm 8.1 \, \mathrm{MeV}$ (95\%), respectively. Our Bayesian framework is publicly available, so practitioners can readily use and extend our results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.02748v2-abstract-full').style.display = 'none'; document.getElementById('2405.02748v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">close to the published version; extended analysis and minor changes; 31 pages, 14 figures, 5 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 110, 044320 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.16154">arXiv:2403.16154</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.16154">pdf</a>, <a href="https://arxiv.org/format/2403.16154">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Heaven and Earth: Nuclear Astrophysics after GW170817 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.16154v1-abstract-short" style="display: inline;"> The historical detection of gravitational waves from the binary neutron star merger GW170817 is providing fundamental new insights into the astrophysical site for the creation of the heaviest elements in the cosmos and on the equation of state of neutron-rich matter. Shortly after this historical detection, electromagnetic observations of neutron stars together with measurements of the properties&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16154v1-abstract-full').style.display = 'inline'; document.getElementById('2403.16154v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.16154v1-abstract-full" style="display: none;"> The historical detection of gravitational waves from the binary neutron star merger GW170817 is providing fundamental new insights into the astrophysical site for the creation of the heaviest elements in the cosmos and on the equation of state of neutron-rich matter. Shortly after this historical detection, electromagnetic observations of neutron stars together with measurements of the properties of neutron-rich nuclei at terrestrial facilities have placed additional constraints on the dynamics of neutron-rich matter. It is this unique synergy between heaven and earth that is the focus of this article. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16154v1-abstract-full').style.display = 'none'; document.getElementById('2403.16154v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages and 6 figures. Manuscript submitted to the proceedings of the XLV Symposium on Nuclear Physics in Cocoyoc, Mexico</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.13474">arXiv:2312.13474</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.13474">pdf</a>, <a href="https://arxiv.org/format/2312.13474">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Impact of tensor interactions and scalar mixing on covariant energy density functionals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Salinas%2C+M">Marc Salinas</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">Jorge Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.13474v1-abstract-short" style="display: inline;"> The recent pioneering campaigns conducted by the Lead Radius Experiment (PREX) and the Calcium Radius Experiment (CREX) collaborations have uncovered major deficiencies in the theoretical description of some fundamental properties of atomic nuclei. Following a recent refinement to the isovector sector of covariant energy density functionals [1], we present here additional improvements to the funct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13474v1-abstract-full').style.display = 'inline'; document.getElementById('2312.13474v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.13474v1-abstract-full" style="display: none;"> The recent pioneering campaigns conducted by the Lead Radius Experiment (PREX) and the Calcium Radius Experiment (CREX) collaborations have uncovered major deficiencies in the theoretical description of some fundamental properties of atomic nuclei. Following a recent refinement to the isovector sector of covariant energy density functionals [1], we present here additional improvements to the functional by including both tensor couplings and an isoscalar-isovector mixing term in the scalar sector. Motivated by the distinct surface properties of calcium and lead, we expect that the tensor terms that generate derivative couplings will help break the linear correlation between the neutron skin thickness of these two nuclei. Moreover, the addition of these new terms mitigates most of the problems identified in Ref.[1] in describing the properties of both finite nuclei and neutron stars. While significant progress has been made in reconciling the PREX-CREX results without compromising other observables, the final resolution awaits the completion of a proper calibration for this new class of functionals. We expect that powerful reduced basis methods used recently to create efficient emulators will be essential to accomplish this task. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13474v1-abstract-full').style.display = 'none'; document.getElementById('2312.13474v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.05613">arXiv:2312.05613</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.05613">pdf</a>, <a href="https://arxiv.org/format/2312.05613">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Correlating isothermal compressibility to nucleon fluctuations in the inner crust of neutron stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Shafieepour%2C+R">R. Shafieepour</a>, <a href="/search/?searchtype=author&amp;query=Moshfegh%2C+H+R">H. R. Moshfegh</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.05613v1-abstract-short" style="display: inline;"> The question of how and which physical observables or thermodynamic parameters can best predict the onset of a possible phase transition in the inner crust of neutron stars remains largely unresolved. Using semiclassical Monte Carlo simulations, we investigate the isothermal compressibility and density fluctuations in a region of relevance to the dynamics of the inner crust. We show that the isoth&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05613v1-abstract-full').style.display = 'inline'; document.getElementById('2312.05613v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.05613v1-abstract-full" style="display: none;"> The question of how and which physical observables or thermodynamic parameters can best predict the onset of a possible phase transition in the inner crust of neutron stars remains largely unresolved. Using semiclassical Monte Carlo simulations, we investigate the isothermal compressibility and density fluctuations in a region of relevance to the dynamics of the inner crust. We show that the isothermal compressibility serves as a robust observable to characterize the transition from the non-uniform crust to the uniform core for proton fractions over 0.2. Moreover, we show explicitly how the two-component isothermal compressibility, computed using the Kirkwood-Buff theory, is directly connected to the fluctuations in the number density, recorded in the grand canonical ensemble by monitoring the number of particles in a small volume located at the center of the simulation box. That is, we compute mean-square particle fluctuations and compare them against the isothermal compressibility for different proton fractions. Although our results show that the mean-square particle fluctuations are proportional to the isothermal compressibility, the lack of a perfect correlation is attributed to the relatively small number of particles included in the simulations. The non-unity slope observed in the dimensionless isothermal compressibility-total nucleon fluctuation variance relationship suggests that the inner crust of neutron stars is composed of anisotropic and inhomogeneous matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05613v1-abstract-full').style.display = 'none'; document.getElementById('2312.05613v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.06146">arXiv:2311.06146</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.06146">pdf</a>, <a href="https://arxiv.org/format/2311.06146">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1146/annurev-nucl-102122-024207">10.1146/annurev-nucl-102122-024207 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutron Skins: Weak Elastic Scattering and Neutron Stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Mammei%2C+J+M">Juliette M. Mammei</a>, <a href="/search/?searchtype=author&amp;query=Horowitz%2C+C+J">Charles J. Horowitz</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">Jorge Piekarewicz</a>, <a href="/search/?searchtype=author&amp;query=Reed%2C+B">Brendan Reed</a>, <a href="/search/?searchtype=author&amp;query=Sfienti%2C+C">Concettina Sfienti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.06146v1-abstract-short" style="display: inline;"> The recently completed PREX-2 campaign - which measured the weak form factor of lead at an optimal momentum transfer - has confirmed that the neutron skin of lead is relatively large and has provided a precise determination of the interior baryon density of a heavy nucleus. In turn, the measured form factor can be related to various nuclear and neutron-star properties. Astrophysical observations b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06146v1-abstract-full').style.display = 'inline'; document.getElementById('2311.06146v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.06146v1-abstract-full" style="display: none;"> The recently completed PREX-2 campaign - which measured the weak form factor of lead at an optimal momentum transfer - has confirmed that the neutron skin of lead is relatively large and has provided a precise determination of the interior baryon density of a heavy nucleus. In turn, the measured form factor can be related to various nuclear and neutron-star properties. Astrophysical observations by the NICER mission have benefited from improvements in flux, energy resolution, and notably, timing resolution. NICER has the capability to measure pulse profile data, which enables simultaneous mass-radius determinations. During the next decade, measurements in astrophysics, gravitational wave astronomy, and nuclear physics are expected to provide a wealth of more precise data. In this review we provide an overview of the current state of neutron skin measurements and offer insights into the prospects for the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.06146v1-abstract-full').style.display = 'none'; document.getElementById('2311.06146v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to Annual Reviews of Nuclear and Particle Science</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.19376">arXiv:2305.19376</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.19376">pdf</a>, <a href="https://arxiv.org/format/2305.19376">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Density Dependence of the Symmetry Energy in the Post PREX-CREX Era </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Reed%2C+B+T">Brendan T. Reed</a>, <a href="/search/?searchtype=author&amp;query=Fattoyev%2C+F+J">F. J. Fattoyev</a>, <a href="/search/?searchtype=author&amp;query=Horowitz%2C+C+J">C. J. Horowitz</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.19376v4-abstract-short" style="display: inline;"> The recently published CREX results suggest a rather peculiar picture for the density dependence of the symmetry energy. Whereas PREX favors a large neutron skin thickness in $^{208}$Pb, thereby suggesting a stiff equation of state, CREX suggests instead a much softer equation of state. This discrepancy has caused a large spur in the theoretical community since no model has been able to simultaneo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19376v4-abstract-full').style.display = 'inline'; document.getElementById('2305.19376v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.19376v4-abstract-full" style="display: none;"> The recently published CREX results suggest a rather peculiar picture for the density dependence of the symmetry energy. Whereas PREX favors a large neutron skin thickness in $^{208}$Pb, thereby suggesting a stiff equation of state, CREX suggests instead a much softer equation of state. This discrepancy has caused a large spur in the theoretical community since no model has been able to simultaneously reproduce within $1蟽$ the PREX and CREX results. Motivated by a novel correlation between a CREX observable and a combination of bulk symmetry energy parameters, we calibrate three new covariant energy density functionals that reproduce binding energies and charge radii of spherical nuclei - and also accommodate the constraints imposed by PREX and CREX. Given that these models suggest a stiff equation of state at high densities, predictions for neutron star properties are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19376v4-abstract-full').style.display = 'none'; document.getElementById('2305.19376v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, resubmitted to PRC</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05441">arXiv:2304.05441</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.05441">pdf</a>, <a href="https://arxiv.org/format/2304.05441">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Building an Equation of State Density Ladder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Salinas%2C+M">Marc Salinas</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">Jorge Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05441v1-abstract-short" style="display: inline;"> The confluence of major theoretical, experimental, and observational advances are providing a unique perspective on the equation of state of dense neutron-rich matter -- particularly its symmetry energy -- and its imprint on the mass-radius relation for neutron stars. In this contribution we organize these developments in an equation of state density ladder. Of particular relevance to this discuss&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05441v1-abstract-full').style.display = 'inline'; document.getElementById('2304.05441v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05441v1-abstract-full" style="display: none;"> The confluence of major theoretical, experimental, and observational advances are providing a unique perspective on the equation of state of dense neutron-rich matter -- particularly its symmetry energy -- and its imprint on the mass-radius relation for neutron stars. In this contribution we organize these developments in an equation of state density ladder. Of particular relevance to this discussion is the impact of the various rungs on the equation of state and the identification of possible discrepancies among the various methods. A preliminary analysis identifies a possible tension between laboratory measurements and gravitational-wave detections that could indicate the emergence of a phase transition in the stellar core. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05441v1-abstract-full').style.display = 'none'; document.getElementById('2304.05441v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.13253">arXiv:2301.13253</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.13253">pdf</a>, <a href="https://arxiv.org/format/2301.13253">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ppnp.2023.104080">10.1016/j.ppnp.2023.104080 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dense Nuclear Matter Equation of State from Heavy-Ion Collisions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Sorensen%2C+A">Agnieszka Sorensen</a>, <a href="/search/?searchtype=author&amp;query=Agarwal%2C+K">Kshitij Agarwal</a>, <a href="/search/?searchtype=author&amp;query=Brown%2C+K+W">Kyle W. Brown</a>, <a href="/search/?searchtype=author&amp;query=Chaj%C4%99cki%2C+Z">Zbigniew Chaj臋cki</a>, <a href="/search/?searchtype=author&amp;query=Danielewicz%2C+P">Pawe艂 Danielewicz</a>, <a href="/search/?searchtype=author&amp;query=Drischler%2C+C">Christian Drischler</a>, <a href="/search/?searchtype=author&amp;query=Gandolfi%2C+S">Stefano Gandolfi</a>, <a href="/search/?searchtype=author&amp;query=Holt%2C+J+W">Jeremy W. Holt</a>, <a href="/search/?searchtype=author&amp;query=Kaminski%2C+M">Matthias Kaminski</a>, <a href="/search/?searchtype=author&amp;query=Ko%2C+C">Che-Ming Ko</a>, <a href="/search/?searchtype=author&amp;query=Kumar%2C+R">Rohit Kumar</a>, <a href="/search/?searchtype=author&amp;query=Li%2C+B">Bao-An Li</a>, <a href="/search/?searchtype=author&amp;query=Lynch%2C+W+G">William G. Lynch</a>, <a href="/search/?searchtype=author&amp;query=McIntosh%2C+A+B">Alan B. McIntosh</a>, <a href="/search/?searchtype=author&amp;query=Newton%2C+W+G">William G. Newton</a>, <a href="/search/?searchtype=author&amp;query=Pratt%2C+S">Scott Pratt</a>, <a href="/search/?searchtype=author&amp;query=Savchuk%2C+O">Oleh Savchuk</a>, <a href="/search/?searchtype=author&amp;query=Stefaniak%2C+M">Maria Stefaniak</a>, <a href="/search/?searchtype=author&amp;query=Tews%2C+I">Ingo Tews</a>, <a href="/search/?searchtype=author&amp;query=Tsang%2C+M+B">ManYee Betty Tsang</a>, <a href="/search/?searchtype=author&amp;query=Vogt%2C+R">Ramona Vogt</a>, <a href="/search/?searchtype=author&amp;query=Wolter%2C+H">Hermann Wolter</a>, <a href="/search/?searchtype=author&amp;query=Zbroszczyk%2C+H">Hanna Zbroszczyk</a>, <a href="/search/?searchtype=author&amp;query=Abbasi%2C+N">Navid Abbasi</a>, <a href="/search/?searchtype=author&amp;query=Aichelin%2C+J">J枚rg Aichelin</a> , et al. (111 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.13253v4-abstract-short" style="display: inline;"> The nuclear equation of state (EOS) is at the center of numerous theoretical and experimental efforts in nuclear physics. With advances in microscopic theories for nuclear interactions, the availability of experiments probing nuclear matter under conditions not reached before, endeavors to develop sophisticated and reliable transport simulations to interpret these experiments, and the advent of mu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.13253v4-abstract-full').style.display = 'inline'; document.getElementById('2301.13253v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.13253v4-abstract-full" style="display: none;"> The nuclear equation of state (EOS) is at the center of numerous theoretical and experimental efforts in nuclear physics. With advances in microscopic theories for nuclear interactions, the availability of experiments probing nuclear matter under conditions not reached before, endeavors to develop sophisticated and reliable transport simulations to interpret these experiments, and the advent of multi-messenger astronomy, the next decade will bring new opportunities for determining the nuclear matter EOS, elucidating its dependence on density, temperature, and isospin asymmetry. Among controlled terrestrial experiments, collisions of heavy nuclei at intermediate beam energies (from a few tens of MeV/nucleon to about 25 GeV/nucleon in the fixed-target frame) probe the widest ranges of baryon density and temperature, enabling studies of nuclear matter from a few tenths to about 5 times the nuclear saturation density and for temperatures from a few to well above a hundred MeV, respectively. Collisions of neutron-rich isotopes further bring the opportunity to probe effects due to the isospin asymmetry. However, capitalizing on the enormous scientific effort aimed at uncovering the dense nuclear matter EOS, both at RHIC and at FRIB as well as at other international facilities, depends on the continued development of state-of-the-art hadronic transport simulations. This white paper highlights the essential role that heavy-ion collision experiments and hadronic transport simulations play in understanding strong interactions in dense nuclear matter, with an emphasis on how these efforts can be used together with microscopic approaches and neutron star studies to uncover the nuclear EOS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.13253v4-abstract-full').style.display = 'none'; document.getElementById('2301.13253v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">White paper prepared for the 2023 Long Range Plan. v3: Updated version as published in Progress in Particle and Nuclear Physics. Note: the published version does not include the executive summary; in the updated arXiv version, the executive summary is included as an appendix. v4: Corrected list of authors</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-23-001, LA-UR-23-20514, LLNL-TR-844629 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Prog.Part.Nucl.Phys. 134 (2024) 104080 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.09692">arXiv:2301.09692</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.09692">pdf</a>, <a href="https://arxiv.org/format/2301.09692">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.107.045802">10.1103/PhysRevC.107.045802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bayesian refinement of covariant energy density functionals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Salinas%2C+M">Marc Salinas</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.09692v1-abstract-short" style="display: inline;"> The last five years have seen remarkable progress in our quest to determine the equation of state of neutron rich matter. Recent advances across the theoretical, experimental, and observational landscape have been incorporated in a Bayesian framework to refine existing covariant energy density functionals previously calibrated by the properties of finite nuclei. In particular, constraints on the m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.09692v1-abstract-full').style.display = 'inline'; document.getElementById('2301.09692v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.09692v1-abstract-full" style="display: none;"> The last five years have seen remarkable progress in our quest to determine the equation of state of neutron rich matter. Recent advances across the theoretical, experimental, and observational landscape have been incorporated in a Bayesian framework to refine existing covariant energy density functionals previously calibrated by the properties of finite nuclei. In particular, constraints on the maximum neutron star mass from pulsar timing, on stellar radii from the NICER mission, on tidal deformabilities from the LIGO-Virgo collaboration, and on the dynamics of pure neutron matter as predicted from chiral effective field theories, have resulted in significant refinements to the models, particularly to those predicting a stiff symmetry energy. Still, even after these improvements, we find challenging to reproduce simultaneously the neutron skin thickness of both ${}^{208}$Pb and ${}^{48}$Ca recently reported by the PREX/CREX collaboration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.09692v1-abstract-full').style.display = 'none'; document.getElementById('2301.09692v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 Figures, 3 Tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.03855">arXiv:2212.03855</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.03855">pdf</a>, <a href="https://arxiv.org/format/2212.03855">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.103012">10.1103/PhysRevD.107.103012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detectability of Sub-Solar Mass Neutron Stars Through a Template Bank Search </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Bandopadhyay%2C+A">Ananya Bandopadhyay</a>, <a href="/search/?searchtype=author&amp;query=Reed%2C+B">Brendan Reed</a>, <a href="/search/?searchtype=author&amp;query=Padamata%2C+S">Surendra Padamata</a>, <a href="/search/?searchtype=author&amp;query=Leon%2C+E">Erick Leon</a>, <a href="/search/?searchtype=author&amp;query=Horowitz%2C+C+J">C. J. Horowitz</a>, <a href="/search/?searchtype=author&amp;query=Brown%2C+D+A">Duncan A. Brown</a>, <a href="/search/?searchtype=author&amp;query=Radice%2C+D">David Radice</a>, <a href="/search/?searchtype=author&amp;query=Fattoyev%2C+F+J">F. J. Fattoyev</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.03855v2-abstract-short" style="display: inline;"> We study the detectability of gravitational-wave signals from sub-solar mass binary neutron star systems by the current generation of ground-based gravitational-wave detectors. We find that finite size effects from large tidal deformabilities of the neutron stars and lower merger frequencies can significantly impact the sensitivity of the detectors to these sources. By simulating a matched-filter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03855v2-abstract-full').style.display = 'inline'; document.getElementById('2212.03855v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.03855v2-abstract-full" style="display: none;"> We study the detectability of gravitational-wave signals from sub-solar mass binary neutron star systems by the current generation of ground-based gravitational-wave detectors. We find that finite size effects from large tidal deformabilities of the neutron stars and lower merger frequencies can significantly impact the sensitivity of the detectors to these sources. By simulating a matched-filter based search using injected binary neutron star signals with tidal deformabilities derived from physically motivated equations of state, we calculate the reduction in sensitivity of the detectors. We conclude that the loss in sensitive volume can be as high as $78.4 \%$ for an equal mass binary system of chirp mass $0.17 \, \textrm{M}_{\odot}$, in a search conducted using binary black hole template banks. We use this loss in sensitive volume, in combination with the results from the search for sub-solar mass binaries conducted on data collected by the LIGO-Virgo observatories during their first three observing runs, to obtain a conservative upper limit on the merger rate of sub-solar mass binary neutron stars. Since the discovery of a low-mass neutron star would provide new insight into formation mechanisms of neutron stars and further constrain the equation of state of dense nuclear matter, our result merits a dedicated search for sub-solar mass binary neutron star signals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03855v2-abstract-full').style.display = 'none'; document.getElementById('2212.03855v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures, supplemental materials at https://github.com/sugwg/sub-solar-ns-detectability</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 107, 103012 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.14877">arXiv:2209.14877</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.14877">pdf</a>, <a href="https://arxiv.org/format/2209.14877">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> The Nuclear Physics of Neutron Stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.14877v2-abstract-short" style="display: inline;"> Neutron stars -- compact objects with masses similar to that of our Sun but radii comparable to the size of a city -- contain the densest form of matter in the universe that can be probed in terrestrial laboratories as well as in earth- and space-based observatories. The historical detection of gravitational waves from a binary neutron star merger has opened the brand new era of multimessenger ast&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.14877v2-abstract-full').style.display = 'inline'; document.getElementById('2209.14877v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.14877v2-abstract-full" style="display: none;"> Neutron stars -- compact objects with masses similar to that of our Sun but radii comparable to the size of a city -- contain the densest form of matter in the universe that can be probed in terrestrial laboratories as well as in earth- and space-based observatories. The historical detection of gravitational waves from a binary neutron star merger has opened the brand new era of multimessenger astronomy and has propelled neutron stars to the center of a variety of disciplines, such as astrophysics, general relativity, nuclear physics, and particle physics. The main input required to study the structure of neutron stars is the pressure support generated by its constituents against gravitational collapse. These include neutrons, protons, electrons, and perhaps even more exotic constituents. As such, nuclear physics plays a prominent role in elucidating the fascinating structure, dynamics, and composition of neutron stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.14877v2-abstract-full').style.display = 'none'; document.getElementById('2209.14877v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures, submitted to Oxford Research Encyclopedia of Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.13039">arXiv:2209.13039</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.13039">pdf</a>, <a href="https://arxiv.org/format/2209.13039">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Bayes goes fast: Uncertainty Quantification for a Covariant Energy Density Functional emulated by the Reduced Basis Method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Giuliani%2C+P">Pablo Giuliani</a>, <a href="/search/?searchtype=author&amp;query=Godbey%2C+K">Kyle Godbey</a>, <a href="/search/?searchtype=author&amp;query=Bonilla%2C+E">Edgard Bonilla</a>, <a href="/search/?searchtype=author&amp;query=Viens%2C+F">Frederi Viens</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">Jorge Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.13039v1-abstract-short" style="display: inline;"> A covariant energy density functional is calibrated using a principled Bayesian statistical framework informed by experimental binding energies and charge radii of several magic and semi-magic nuclei. The Bayesian sampling required for the calibration is enabled by the emulation of the high-fidelity model through the implementation of a reduced basis method (RBM) - a set of dimensionality reductio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13039v1-abstract-full').style.display = 'inline'; document.getElementById('2209.13039v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.13039v1-abstract-full" style="display: none;"> A covariant energy density functional is calibrated using a principled Bayesian statistical framework informed by experimental binding energies and charge radii of several magic and semi-magic nuclei. The Bayesian sampling required for the calibration is enabled by the emulation of the high-fidelity model through the implementation of a reduced basis method (RBM) - a set of dimensionality reduction techniques that can speed up demanding calculations involving partial differential equations by several orders of magnitude. The RBM emulator we build - using only 100 evaluations of the high-fidelity model - is able to accurately reproduce the model calculations in tens of milliseconds on a personal computer, an increase in speed of nearly a factor of 3,300 when compared to the original solver. Besides the analysis of the posterior distribution of parameters, we present predictions with properly estimated uncertainties for observables not included in the fit, specifically the neutron skin thickness of 208Pb and 48Ca, as reported by PREX and CREX collaborations. The straightforward implementation and outstanding performance of the RBM makes it an ideal tool for assisting the nuclear theory community in providing reliable estimates with properly quantified uncertainties of physical observables. Such uncertainty quantification tools will become essential given the expected abundance of data from the recently inaugurated and future experimental and observational facilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13039v1-abstract-full').style.display = 'none'; document.getElementById('2209.13039v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.14889">arXiv:2206.14889</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.14889">pdf</a>, <a href="https://arxiv.org/format/2206.14889">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.106.L031302">10.1103/PhysRevC.106.L031302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Applications of reduced basis methods to the nuclear single particle spectrum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Anderson%2C+A+L">Amy L. Anderson</a>, <a href="/search/?searchtype=author&amp;query=O%27Donnell%2C+G+L">Graham L. O&#39;Donnell</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.14889v1-abstract-short" style="display: inline;"> Reduced basis methods provide a powerful framework for building efficient and accurate emulators. Although widely applied in many fields to simplify complex models, reduced basis methods have only been recently introduced into nuclear physics. In this letter we build an emulator to study the single-particle structure of atomic nuclei. By scaling a suitable mean-field Hamiltonian, a &#34;universal&#34; red&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14889v1-abstract-full').style.display = 'inline'; document.getElementById('2206.14889v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.14889v1-abstract-full" style="display: none;"> Reduced basis methods provide a powerful framework for building efficient and accurate emulators. Although widely applied in many fields to simplify complex models, reduced basis methods have only been recently introduced into nuclear physics. In this letter we build an emulator to study the single-particle structure of atomic nuclei. By scaling a suitable mean-field Hamiltonian, a &#34;universal&#34; reduced basis is constructed capable of accurately and efficiently reproduce the entire single-particle spectrum of a variety of nuclei. Indeed, the reduced basis model reproduces both ground- and excited-state energies as well as the associated wave-functions with remarkable accuracy. Our results bode well for more demanding applications that use Bayesian optimization to calibrate nuclear energy density functionals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14889v1-abstract-full').style.display = 'none'; document.getElementById('2206.14889v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures, to be submitted to Physical Review C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.13395">arXiv:2204.13395</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.13395">pdf</a>, <a href="https://arxiv.org/format/2204.13395">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Theoretical analysis of the extraction of neutron skin thickness from coherent 蟺0 photoproduction off nuclei </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Colomer%2C+F">F. Colomer</a>, <a href="/search/?searchtype=author&amp;query=Capel%2C+P">P. Capel</a>, <a href="/search/?searchtype=author&amp;query=Ferretti%2C+M">M. Ferretti</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a>, <a href="/search/?searchtype=author&amp;query=Sfienti%2C+C">C. Sfienti</a>, <a href="/search/?searchtype=author&amp;query=Thiel%2C+M">M. Thiel</a>, <a href="/search/?searchtype=author&amp;query=Tsaran%2C+V">V. Tsaran</a>, <a href="/search/?searchtype=author&amp;query=Vanderhaeghen%2C+M">M. Vanderhaeghen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.13395v2-abstract-short" style="display: inline;"> Background: Coherent 蟺0 photoproduction on heavy nuclei has been suggested as a reliable tool to infer neutron skin thicknesses. To this aim, various experiments have been performed, especially on 208Pb. Purpose: We analyze the sensitivity of that reaction process to the nucleonic density, and especially to the neutron skin thickness, for 12C, 40Ca and 208Pb, for which reliable data exist, and on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13395v2-abstract-full').style.display = 'inline'; document.getElementById('2204.13395v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.13395v2-abstract-full" style="display: none;"> Background: Coherent 蟺0 photoproduction on heavy nuclei has been suggested as a reliable tool to infer neutron skin thicknesses. To this aim, various experiments have been performed, especially on 208Pb. Purpose: We analyze the sensitivity of that reaction process to the nucleonic density, and especially to the neutron skin thickness, for 12C, 40Ca and 208Pb, for which reliable data exist, and on 116,124Sn, for which measurements have been performed in Mainz. We study also the role played by the 蟺0-nucleus final-state interaction. Method: A model of the reaction is developed at the impulse approximation considering either plane waves or distorted waves to describe the 蟺0-nucleus scattering in the outgoing channel. Results: Our calculations are in good agreement with existing data, especially for 208Pb. The sensitivity of the theoretical cross sections to the choice of the nucleonic density is small, and below the experimental resolution. Conclusions: Coherent 蟺0 photoproduction is mostly an isoscalar observable that bares no practical sensitivity to the neutron skin thickness. To infer that structure observable it should be coupled to other reaction measurements, such as electron scattering, or by comparing experiments performed on isotopes of the same chemical element. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13395v2-abstract-full').style.display = 'none'; document.getElementById('2204.13395v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Phys. Rev. C. One new Ref.[21]</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.13191">arXiv:2202.13191</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.13191">pdf</a>, <a href="https://arxiv.org/format/2202.13191">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/2340/1/012012">10.1088/1742-6596/2340/1/012012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Insights into the equation of state of neutron-rich matter since GW170817 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.13191v1-abstract-short" style="display: inline;"> The historical detection of gravitational waves emitted from the binary neutron star merger GW170817 has opened the new era of multi-messenger astronomy. Since then, many other significant discoveries -- both on heaven and earth -- are providing new clues into the behavior of neutron-rich matter. It is the goal of this article to illustrate how the remarkable progress made during the last few year&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.13191v1-abstract-full').style.display = 'inline'; document.getElementById('2202.13191v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.13191v1-abstract-full" style="display: none;"> The historical detection of gravitational waves emitted from the binary neutron star merger GW170817 has opened the new era of multi-messenger astronomy. Since then, many other significant discoveries -- both on heaven and earth -- are providing new clues into the behavior of neutron-rich matter. It is the goal of this article to illustrate how the remarkable progress made during the last few years is spearheading the field into the golden age of neutron-star physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.13191v1-abstract-full').style.display = 'none'; document.getElementById('2202.13191v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures, submitted to the proceedings of the XLIV Brazilian Workshop on Nuclear Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.04726">arXiv:2202.04726</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.04726">pdf</a>, <a href="https://arxiv.org/format/2202.04726">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.105.044310">10.1103/PhysRevC.105.044310 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the possible existence of a soft dipole mode in 8He </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.04726v1-abstract-short" style="display: inline;"> With an extreme neutron-to-proton ratio of N/Z=3, 8He provides an ideal laboratory for the study of a variety of exotic phenomena, such as the emergence of a soft dipole mode that is dominated by transitions into the continuum. In this contribution, a covariant density functional theory (DFT) framework is used to compute ground-state properties and the dipole response of 8He. Although 8He is admit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.04726v1-abstract-full').style.display = 'inline'; document.getElementById('2202.04726v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.04726v1-abstract-full" style="display: none;"> With an extreme neutron-to-proton ratio of N/Z=3, 8He provides an ideal laboratory for the study of a variety of exotic phenomena, such as the emergence of a soft dipole mode that is dominated by transitions into the continuum. In this contribution, a covariant density functional theory (DFT) framework is used to compute ground-state properties and the dipole response of 8He. Although 8He is admittedly too light for DFT to be applicable, the great merit of the approach is that the spurious contamination associated with the center-of-mass motion is guaranteed to decouple from the physical response. Given that a strong mixing between the isoscalar and isovector dipole modes is expected for a system with such a large neutron-proton asymmetry as 8He, the narrow structures that emerged at low energies in the isovector dipole response are attributed to the shift of the spurious strength to zero (or near zero) excitation energy. Thus, the theoretical framework implemented here disfavors the emergence of a soft dipole mode in 8He. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.04726v1-abstract-full').style.display = 'none'; document.getElementById('2202.04726v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures, and two tables. Submitted to the Physical Review C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.02429">arXiv:2201.02429</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.02429">pdf</a>, <a href="https://arxiv.org/format/2201.02429">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.105.055809">10.1103/PhysRevC.105.055809 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterization of the inner edge of the neutron star crust </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Shafieepour%2C+R">R. Shafieepour</a>, <a href="/search/?searchtype=author&amp;query=Moshfegh%2C+H+R">H. R. Moshfegh</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.02429v1-abstract-short" style="display: inline;"> The poorly known crustal equation of state plays a critical role in many observational phenomena associated with a neutron star. Using semi-classical Monte Carlo simulations, we explore the possible configurations of the inner edge of the neutron-star crust for a variety of baryon densities and proton fractions. Applying the Kirkwood--Buff theory to these two-component systems, we observe how the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02429v1-abstract-full').style.display = 'inline'; document.getElementById('2201.02429v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.02429v1-abstract-full" style="display: none;"> The poorly known crustal equation of state plays a critical role in many observational phenomena associated with a neutron star. Using semi-classical Monte Carlo simulations, we explore the possible configurations of the inner edge of the neutron-star crust for a variety of baryon densities and proton fractions. Applying the Kirkwood--Buff theory to these two-component systems, we observe how the isothermal compressibility reaches a maximum when isolated non-symmetric clusters are formed in an extremely dilute neutron gas. To determine the neutron fraction, we suggest a geometrical model based on the behavior of the proton-neutron pair correlation function. Accordingly, the equation of state of the inner crust is calculated, illustrating that the nuclear energy in beta-equilibrium follows a power-law behavior with baryon density. As a possible astrophysical outcome of this study, our results could help refine the mass-radius relation. Finally, our results pave the way towards further investigations of the impact of the proton-neutron pair correlation function on transport properties within the neutron-star crust. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02429v1-abstract-full').style.display = 'none'; document.getElementById('2201.02429v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.10378">arXiv:2106.10378</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.10378">pdf</a>, <a href="https://arxiv.org/format/2106.10378">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.182503">10.1103/PhysRevLett.127.182503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge Radius of Neutron-deficient $^{54}$Ni and Symmetry Energy Constraints Using the Difference in Mirror Pair Charge Radii </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Pineda%2C+S+V">Skyy V. Pineda</a>, <a href="/search/?searchtype=author&amp;query=K%C3%B6nig%2C+K">Kristian K枚nig</a>, <a href="/search/?searchtype=author&amp;query=Rossi%2C+D+M">Dominic M. Rossi</a>, <a href="/search/?searchtype=author&amp;query=Brown%2C+B+A">B. Alex Brown</a>, <a href="/search/?searchtype=author&amp;query=Incorvati%2C+A">Anthony Incorvati</a>, <a href="/search/?searchtype=author&amp;query=Lantis%2C+J">Jeremy Lantis</a>, <a href="/search/?searchtype=author&amp;query=Minamisono%2C+K">Kei Minamisono</a>, <a href="/search/?searchtype=author&amp;query=N%C3%B6rtersh%C3%A4user%2C+W">Wilfried N枚rtersh盲user</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">Jorge Piekarewicz</a>, <a href="/search/?searchtype=author&amp;query=Powel%2C+R">Robert Powel</a>, <a href="/search/?searchtype=author&amp;query=Sommer%2C+F">Felix Sommer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.10378v1-abstract-short" style="display: inline;"> The nuclear root-mean-square charge radius of $^{54}$Ni was determined with collinear laser spectroscopy to be $R(^{54}$Ni) = 3.737\,(3)~fm. In conjunction with the known radius of the mirror nucleus $^{54}$Fe, the difference of the charge radii was extracted as $螖R_{\rm ch}$ = 0.049\,(4)~fm. Based on the correlation between $螖R_{\rm ch}$ and the slope of the symmetry energy at nuclear saturation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.10378v1-abstract-full').style.display = 'inline'; document.getElementById('2106.10378v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.10378v1-abstract-full" style="display: none;"> The nuclear root-mean-square charge radius of $^{54}$Ni was determined with collinear laser spectroscopy to be $R(^{54}$Ni) = 3.737\,(3)~fm. In conjunction with the known radius of the mirror nucleus $^{54}$Fe, the difference of the charge radii was extracted as $螖R_{\rm ch}$ = 0.049\,(4)~fm. Based on the correlation between $螖R_{\rm ch}$ and the slope of the symmetry energy at nuclear saturation density ($L$), we deduced $20 \le L \le 70$\,MeV. The present result is consistent with the $L$ from the binary neutron star merger GW170817, favoring a soft neutron matter EOS, and barely consistent with the PREX-2 result within 1$蟽$ error bands. Our result indicates the neutron-skin thickness of $^{48}$Ca as 0.15\,-\,0.19\,fm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.10378v1-abstract-full').style.display = 'none'; document.getElementById('2106.10378v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 total pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.Lett. 127, 182503 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.13452">arXiv:2105.13452</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.13452">pdf</a>, <a href="https://arxiv.org/format/2105.13452">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.104.024329">10.1103/PhysRevC.104.024329 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Implications of PREX-2 on the electric dipole polarizability of neutron rich nuclei </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.13452v1-abstract-short" style="display: inline;"> The recent announcement by the PREX collaboration of an unanticipated thick neutron skin in 208Pb (Rskin208) has challenged our understanding of neutron rich matter in the vicinity of nuclear saturation density. Whereas earlier constraints indicate that the symmetry energy is relatively soft, the PREX-2 result seems to suggest the opposite. We confront constraints on the symmetry energy obtained f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13452v1-abstract-full').style.display = 'inline'; document.getElementById('2105.13452v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.13452v1-abstract-full" style="display: none;"> The recent announcement by the PREX collaboration of an unanticipated thick neutron skin in 208Pb (Rskin208) has challenged our understanding of neutron rich matter in the vicinity of nuclear saturation density. Whereas earlier constraints indicate that the symmetry energy is relatively soft, the PREX-2 result seems to suggest the opposite. We confront constraints on the symmetry energy obtained from measurements of the electric dipole polarizability against those informed by the PREX-2 measurement of Rskin208 and by the correlations that it entails. Covariant energy density functionals informed by the properties of finite nuclei are used to compute the electric dipole response of 48Ca, 68Ni, 132Sn, and 208Pb. The set of functionals used in this work are consistent with experimental data, yet are flexible enough in that they span a wide range of values of Rskin208. It is found that theoretical predictions of the electric dipole polarizability that are consistent with the PREX-2 measurement systematically overestimate the corresponding values extracted from the direct measurements of the distribution of electric dipole strength. The neutron skin thickness of 208Pb extracted from parity violating electron scattering and the electric dipole polarizability measured in photoabsorption experiments are two of the cleanest experimental tools used to constrain the symmetry energy around nuclear saturation density. However, the recent value of Rskin208 that suggests a fairly stiff symmetry energy stands in stark contrast to the conclusions derived from the electric dipole polarizability. At present, we offer no solution to this dilemma. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13452v1-abstract-full').style.display = 'none'; document.getElementById('2105.13452v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages and 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.11013">arXiv:2104.11013</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.11013">pdf</a>, <a href="https://arxiv.org/format/2104.11013">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/andp.202100185">10.1002/andp.202100185 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electric dipole polarizability of neutron rich nuclei </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.11013v1-abstract-short" style="display: inline;"> Insights into the equation of state of neutron rich matter obtained from the neutron skin thickness of 208Pb are in sharp conflict with earlier measurements of the electric dipole polarizability. We use a set of accurately calibrated energy density functionals to highlight the tension and to articulate how plans for a highly-intense Gamma Factory may alleviate the tension. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.11013v1-abstract-full" style="display: none;"> Insights into the equation of state of neutron rich matter obtained from the neutron skin thickness of 208Pb are in sharp conflict with earlier measurements of the electric dipole polarizability. We use a set of accurately calibrated energy density functionals to highlight the tension and to articulate how plans for a highly-intense Gamma Factory may alleviate the tension. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.11013v1-abstract-full').style.display = 'none'; document.getElementById('2104.11013v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages and 3 figures. Submitted to Annals of Physics as a contribution to the Special Issue on Physics Opportunities with the Gamma Factory</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.03193">arXiv:2101.03193</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.03193">pdf</a>, <a href="https://arxiv.org/format/2101.03193">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.172503">10.1103/PhysRevLett.126.172503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Implications of PREX-II on the equation of state of neutron-rich matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Reed%2C+B+T">Brendan T. Reed</a>, <a href="/search/?searchtype=author&amp;query=Fattoyev%2C+F+J">F. J. Fattoyev</a>, <a href="/search/?searchtype=author&amp;query=Horowitz%2C+C+J">C. J. Horowitz</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.03193v3-abstract-short" style="display: inline;"> Laboratory experiments sensitive to the equation of state of neutron rich matter in the vicinity of nuclear saturation density provide the first rung in a &#34;density ladder&#34; that connects terrestrial experiments to astronomical observations. In this context, the neutron skin thickness of 208Pb (Rskin) provides a stringent laboratory constraint on the density dependence of the symmetry energy. In tur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.03193v3-abstract-full').style.display = 'inline'; document.getElementById('2101.03193v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.03193v3-abstract-full" style="display: none;"> Laboratory experiments sensitive to the equation of state of neutron rich matter in the vicinity of nuclear saturation density provide the first rung in a &#34;density ladder&#34; that connects terrestrial experiments to astronomical observations. In this context, the neutron skin thickness of 208Pb (Rskin) provides a stringent laboratory constraint on the density dependence of the symmetry energy. In turn, an improved value of Rskin has been reported recently by the PREX collaboration. Exploiting the strong correlation between Rskin and the slope of the symmetry energy L within a specific class of relativistic energy density functionals, we report a value of L=(106 +/- 37)MeV -- that systematically overestimates current limits based on both theoretical approaches and experimental measurements. The impact of such a stiff symmetry energy on some critical neutron-star observables is also examined. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.03193v3-abstract-full').style.display = 'none'; document.getElementById('2101.03193v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures. Manuscript accepted for publication in the Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 172503 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.07117">arXiv:2007.07117</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.07117">pdf</a>, <a href="https://arxiv.org/format/2007.07117">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.102.044321">10.1103/PhysRevC.102.044321 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Insights into nuclear saturation density from parity violating electron scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Horowitz%2C+C+J">C. J. Horowitz</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a>, <a href="/search/?searchtype=author&amp;query=Reed%2C+B">Brendan Reed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.07117v2-abstract-short" style="display: inline;"> The saturation density of nuclear matter $蟻_0$ is a fundamental nuclear physics property that is difficult to predict from fundamental principles. The saturation density is closely related to the interior density of a heavy nucleus, such as $^{208}$Pb. We use parity violating electron scattering to determine the average interior weak charge and baryon densities in $^{208}$Pb. This requires not onl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07117v2-abstract-full').style.display = 'inline'; document.getElementById('2007.07117v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.07117v2-abstract-full" style="display: none;"> The saturation density of nuclear matter $蟻_0$ is a fundamental nuclear physics property that is difficult to predict from fundamental principles. The saturation density is closely related to the interior density of a heavy nucleus, such as $^{208}$Pb. We use parity violating electron scattering to determine the average interior weak charge and baryon densities in $^{208}$Pb. This requires not only measuring the weak radius $R_{\rm wk}$ but also determining the surface thickness of the weak charge density $a$. We obtain $蟻_0=0.150\pm0.010$ fm$^{-3}$, where the 7\% error has contributions form the PREX error on the weak radius, an assumed 10\% uncertainty in the surface thickness $a$, and from the extrapolation to infinite nuclear matter. These errors can be improved with the upcoming PREX II results and with a new parity violating electron scattering experiment, at a somewhat higher momentum transfer, to determine $a$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07117v2-abstract-full').style.display = 'none'; document.getElementById('2007.07117v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures, minor changes, Phys. Rev. C in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 102, 044321 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.03799">arXiv:2007.03799</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.03799">pdf</a>, <a href="https://arxiv.org/format/2007.03799">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.102.065805">10.1103/PhysRevC.102.065805 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GW190814: Impact of a 2.6 solar mass neutron star on nucleonic equations of state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Fattoyev%2C+F+J">F. J. Fattoyev</a>, <a href="/search/?searchtype=author&amp;query=Horowitz%2C+C+J">C. J. Horowitz</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a>, <a href="/search/?searchtype=author&amp;query=Reed%2C+B">Brendan Reed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.03799v1-abstract-short" style="display: inline;"> Is the secondary component of GW190814 the lightest black hole or the heaviest neutron star ever discovered in a double compact-object system [R. Abbott et al., ApJ Lett., 896, L44 (2020)]? This is the central question animating this letter. Covariant density functional theory provides a unique framework to investigate both the properties of finite nuclei and neutron stars, while enforcing causali&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.03799v1-abstract-full').style.display = 'inline'; document.getElementById('2007.03799v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.03799v1-abstract-full" style="display: none;"> Is the secondary component of GW190814 the lightest black hole or the heaviest neutron star ever discovered in a double compact-object system [R. Abbott et al., ApJ Lett., 896, L44 (2020)]? This is the central question animating this letter. Covariant density functional theory provides a unique framework to investigate both the properties of finite nuclei and neutron stars, while enforcing causality at all densities. By tuning existing energy density functionals we were able to: (a) account for a 2.6 Msun neutron star, (b) satisfy the original constraint on the tidal deformability of a 1.4 Msun neutron star, and (c) reproduce ground-state properties of finite nuclei. Yet, for the class of models explored in this work, we find that the stiffening of the equation of state required to support super-massive neutron stars is inconsistent with either constraints obtained from energetic heavy-ion collisions or from the low deformability of medium-mass stars. Thus, we speculate that the maximum neutron star mass can not be significantly higher than the existing observational limit and that the 2.6 Msun compact object is likely to be the lightest black hole ever discovered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.03799v1-abstract-full').style.display = 'none'; document.getElementById('2007.03799v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages and 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 102, 065805 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.08405">arXiv:2006.08405</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.08405">pdf</a>, <a href="https://arxiv.org/format/2006.08405">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.102.042801">10.1103/PhysRevC.102.042801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analytic insights on the information content of new observables </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Chen%2C+W">Wei-Chia Chen</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.08405v1-abstract-short" style="display: inline;"> Uncertainty quantification has emerged as a rapidly growing field in nuclear science. Theoretical predictions of physical observables often involve extrapolations to regions that are poorly constrained by laboratory experiments and astrophysical observations. Without properly quantified theoretical errors, such model predictions are of limited value. Also, one often deals with theoretical construc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.08405v1-abstract-full').style.display = 'inline'; document.getElementById('2006.08405v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.08405v1-abstract-full" style="display: none;"> Uncertainty quantification has emerged as a rapidly growing field in nuclear science. Theoretical predictions of physical observables often involve extrapolations to regions that are poorly constrained by laboratory experiments and astrophysical observations. Without properly quantified theoretical errors, such model predictions are of limited value. Also, one often deals with theoretical constructs that involve fundamental quantities that are not accessible to experiment or observation. Particularly relevant in this context is the pressure of pure neutron matter. In this contribution we develop an analytic framework to answer the question of &#34;How can new data reduce uncertainties of current theoretical models?&#34; [P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C81, 051303(R) (2010)]. Simple and insightful expressions are obtained to quantify the impact of one or two new observables on theoretical uncertainties in two critical quantities: the slope of the symmetry energy at saturation density and the pressure of pure neutron matter at twice nuclear matter saturation density. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.08405v1-abstract-full').style.display = 'none'; document.getElementById('2006.08405v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages and 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 102, 042801 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.10172">arXiv:2005.10172</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.10172">pdf</a>, <a href="https://arxiv.org/format/2005.10172">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2020.135608">10.1016/j.physletb.2020.135608 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Compressional-mode resonances in the molybdenum isotopes: Emergence of softness in open-shell nuclei near A=90 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Howard%2C+K+B">K. B. Howard</a>, <a href="/search/?searchtype=author&amp;query=Garg%2C+U">U. Garg</a>, <a href="/search/?searchtype=author&amp;query=Itoh%2C+M">M. Itoh</a>, <a href="/search/?searchtype=author&amp;query=Akimune%2C+H">H. Akimune</a>, <a href="/search/?searchtype=author&amp;query=Fujiwara%2C+M">M. Fujiwara</a>, <a href="/search/?searchtype=author&amp;query=Furuno%2C+T">T. Furuno</a>, <a href="/search/?searchtype=author&amp;query=Gupta%2C+Y+K">Y. K. Gupta</a>, <a href="/search/?searchtype=author&amp;query=Harakeh%2C+M+N">M. N. Harakeh</a>, <a href="/search/?searchtype=author&amp;query=Inaba%2C+K">K. Inaba</a>, <a href="/search/?searchtype=author&amp;query=Ishibashi%2C+Y">Y. Ishibashi</a>, <a href="/search/?searchtype=author&amp;query=Karasudani%2C+K">K. Karasudani</a>, <a href="/search/?searchtype=author&amp;query=Kawabata%2C+T">T. Kawabata</a>, <a href="/search/?searchtype=author&amp;query=Kohda%2C+A">A. Kohda</a>, <a href="/search/?searchtype=author&amp;query=Matsuda%2C+Y">Y. Matsuda</a>, <a href="/search/?searchtype=author&amp;query=Murata%2C+M">M. Murata</a>, <a href="/search/?searchtype=author&amp;query=Nakamura%2C+S">S. Nakamura</a>, <a href="/search/?searchtype=author&amp;query=Okamoto%2C+J">J. Okamoto</a>, <a href="/search/?searchtype=author&amp;query=Ota%2C+S">S. Ota</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a>, <a href="/search/?searchtype=author&amp;query=Sakaue%2C+A">A. Sakaue</a>, <a href="/search/?searchtype=author&amp;query=Senyigit%2C+M">M. Senyigit</a>, <a href="/search/?searchtype=author&amp;query=Tsumura%2C+M">M. Tsumura</a>, <a href="/search/?searchtype=author&amp;query=Yang%2C+Y">Y. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.10172v2-abstract-short" style="display: inline;"> &#34;Why are the tin isotopes soft?&#34; has remained, for the past decade, an open problem in nuclear structure physics: models which reproduce the isoscalar giant monopole resonance (ISGMR) in the &#34;doubly-closed shell&#34; nuclei, $^{90}$Zr and $^{208}$Pb, overestimate the ISGMR energies of the open-shell tin and cadmium nuclei, by as much as 1 MeV. In an effort to shed some light onto this problem, we pres&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10172v2-abstract-full').style.display = 'inline'; document.getElementById('2005.10172v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.10172v2-abstract-full" style="display: none;"> &#34;Why are the tin isotopes soft?&#34; has remained, for the past decade, an open problem in nuclear structure physics: models which reproduce the isoscalar giant monopole resonance (ISGMR) in the &#34;doubly-closed shell&#34; nuclei, $^{90}$Zr and $^{208}$Pb, overestimate the ISGMR energies of the open-shell tin and cadmium nuclei, by as much as 1 MeV. In an effort to shed some light onto this problem, we present results of detailed studies of the ISGMR in the molybdenum nuclei, with the goal of elucidating where--and how--the softness manifests itself between $^{90}$Zr and the cadmium and tin isotopes. The experiment was conducted using the $^{94,96,98,100}$Mo($伪,伪^\prime$) reaction at $E_伪= 386$ MeV. A comparison of the results with relativistic, self-consistent Random-Phase Approximation calculations indicates that the ISGMR response begins to show softness in the molybdenum isotopes beginning with $A=92$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10172v2-abstract-full').style.display = 'none'; document.getElementById('2005.10172v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication to Physics Letters B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B 807 (2020) 135608 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.03134">arXiv:2005.03134</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.03134">pdf</a>, <a href="https://arxiv.org/format/2005.03134">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.102.054308">10.1103/PhysRevC.102.054308 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Dirac oscillator: an alternative basis for nuclear structure calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Yang%2C+J">Junjie Yang</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.03134v1-abstract-short" style="display: inline;"> Background: The isotropic harmonic oscillator supplemented by a strong spin-orbit interaction has been the cornerstone of nuclear structure since its inception more than seven decades ago. In this paper we introduce---or rather re-introduced---the &#34;Dirac Oscillator&#34;, a fully relativistic basis that has all the desired attributes of the ordinary harmonic oscillator while naturally incorporating a s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.03134v1-abstract-full').style.display = 'inline'; document.getElementById('2005.03134v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.03134v1-abstract-full" style="display: none;"> Background: The isotropic harmonic oscillator supplemented by a strong spin-orbit interaction has been the cornerstone of nuclear structure since its inception more than seven decades ago. In this paper we introduce---or rather re-introduced---the &#34;Dirac Oscillator&#34;, a fully relativistic basis that has all the desired attributes of the ordinary harmonic oscillator while naturally incorporating a strong spin-orbit coupling. Purpose: To assess---to our knowledge for the first time---the power and flexibility of the Dirac Oscillator basis in the solution of nuclear structure problems within the framework of covariant density functional theory. Methods: Self-consistent calculations of binding energies and ground-state densities for a selected set of doubly-magic magic are performed using the Dirac-oscillator basis and are then compared against results obtained with the often-used Runge-Kutta method. Results: Results obtained using the Dirac oscillator basis reproduced with high accuracy those derived using the Runge-Kutta method and suggest a clear path for a generalization to systems with axial symmetry. Conclusions: Although the three-dimensional harmonic oscillator with spin-orbit corrections has been the staple of the nuclear shell model since the beginning, the Dirac oscillator is practically unknown among the nuclear physics community. In this paper we illustrate the power and flexibility of the Dirac oscillator and suggest extensions to the study of systems without spherical symmetry as required in constrained calculations of nuclear excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.03134v1-abstract-full').style.display = 'none'; document.getElementById('2005.03134v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 102, 054308 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.00479">arXiv:2005.00479</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.00479">pdf</a>, <a href="https://arxiv.org/format/2005.00479">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.102.022501">10.1103/PhysRevC.102.022501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Weak charge and weak radius of ${}^{12}$C </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Koshchii%2C+O">Oleksandr Koshchii</a>, <a href="/search/?searchtype=author&amp;query=Erler%2C+J">Jens Erler</a>, <a href="/search/?searchtype=author&amp;query=Gorchtein%2C+M">Mikhail Gorchtein</a>, <a href="/search/?searchtype=author&amp;query=Horowitz%2C+C+J">Charles J. Horowitz</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">Jorge Piekarewicz</a>, <a href="/search/?searchtype=author&amp;query=Roca-Maza%2C+X">Xavier Roca-Maza</a>, <a href="/search/?searchtype=author&amp;query=Seng%2C+C">Chien-Yeah Seng</a>, <a href="/search/?searchtype=author&amp;query=Spiesberger%2C+H">Hubert Spiesberger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.00479v2-abstract-short" style="display: inline;"> We present a feasibility study of a simultaneous sub-percent extraction of the weak charge and the weak radius of the ${}^{12}$C nucleus using parity-violating electron scattering, based on a largely model-independent assessment of the uncertainties. The corresponding measurement is considered to be carried out at the future MESA facility in Mainz with $E_{\rm beam} = 155$ MeV. We find that a comb&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.00479v2-abstract-full').style.display = 'inline'; document.getElementById('2005.00479v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.00479v2-abstract-full" style="display: none;"> We present a feasibility study of a simultaneous sub-percent extraction of the weak charge and the weak radius of the ${}^{12}$C nucleus using parity-violating electron scattering, based on a largely model-independent assessment of the uncertainties. The corresponding measurement is considered to be carried out at the future MESA facility in Mainz with $E_{\rm beam} = 155$ MeV. We find that a combination of a $0.3\%$ precise measurement of the parity-violating asymmetry at forward angles with a $10\%$ measurement at backward angles will allow to determine the weak charge and the weak radius of ${}^{12}$C with $0.4\%$ and $0.5\%$ precision, respectively. These values could be improved to $0.3\%$ and $0.2\%$ for a $3\%$ backward measurement. This experimental program will have impact on precision low-energy tests in the electroweak sector and nuclear structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.00479v2-abstract-full').style.display = 'none'; document.getElementById('2005.00479v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> MITP/20-020 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 102, 022501 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.11112">arXiv:1912.11112</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.11112">pdf</a>, <a href="https://arxiv.org/format/1912.11112">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1146/annurev-nucl-101918-023608">10.1146/annurev-nucl-101918-023608 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Covariant Density Functional Theory in Nuclear Physics and Astrophysics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Yang%2C+J">Junjie Yang</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.11112v1-abstract-short" style="display: inline;"> How does subatomic matter organize itself? Neutron stars are cosmic laboratories uniquely poised to answer this fundamental question that lies at the heart of nuclear science. Newly commissioned rare isotope facilities, telescopes operating across the entire electromagnetic spectrum, and ever more sensitive gravitational wave detectors will probe the properties of neutron-rich matter with unpreced&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.11112v1-abstract-full').style.display = 'inline'; document.getElementById('1912.11112v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.11112v1-abstract-full" style="display: none;"> How does subatomic matter organize itself? Neutron stars are cosmic laboratories uniquely poised to answer this fundamental question that lies at the heart of nuclear science. Newly commissioned rare isotope facilities, telescopes operating across the entire electromagnetic spectrum, and ever more sensitive gravitational wave detectors will probe the properties of neutron-rich matter with unprecedented precision over an enormous range of densities. Yet, a coordinated effort between observation, experiment, and theoretical research is of paramount importance for realizing the full potential of these investments. Theoretical nuclear physics provides valuable insights into the properties of neutron-rich matter in regimes that are not presently accessible to experiment or observation. In particular, nuclear density functional theory is likely the only tractable framework that can bridge the entire nuclear landscape by connecting finite nuclei to neutron stars. This compelling connection is the main scope of the present review. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.11112v1-abstract-full').style.display = 'none'; document.getElementById('1912.11112v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 5 figures. When citing this paper, please use the following: Yang J, Piekarewicz J. Covariant Density Functional Theory in Nuclear Physics and Astrophysics. Annual Review of Nuclear and Particle Science Volume 70: Submitted. DOI: 10.1146/annurev-nucl-101918-023608</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.10939">arXiv:1908.10939</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.10939">pdf</a>, <a href="https://arxiv.org/format/1908.10939">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.100.054301">10.1103/PhysRevC.100.054301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electroweak probes of ground state densities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Yang%2C+J">Junjie Yang</a>, <a href="/search/?searchtype=author&amp;query=Hernandez%2C+J+A">Jesse A. Hernandez</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.10939v1-abstract-short" style="display: inline;"> Elastic electron scattering has been used to paint the most accurate picture of the proton distribution in atomic nuclei. Spurred by new experimental developments, it is now possible to gain valuable insights into the neutron distribution using exclusively electroweak probes. Our goal is to assess the information content and complementarity of the following three electroweak experiments in constra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.10939v1-abstract-full').style.display = 'inline'; document.getElementById('1908.10939v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.10939v1-abstract-full" style="display: none;"> Elastic electron scattering has been used to paint the most accurate picture of the proton distribution in atomic nuclei. Spurred by new experimental developments, it is now possible to gain valuable insights into the neutron distribution using exclusively electroweak probes. Our goal is to assess the information content and complementarity of the following three electroweak experiments in constraining the neutron distribution of atomic nuclei: (a) parity violating elastic electron scattering, (b) coherent elastic neutrino nucleus scattering, and (c) elastic electron scattering of unstable nuclei. Relativistic mean-field models informed by the properties of finite nuclei and neutron stars are used to compute ground state densities and form factors of a variety of nuclei. All the models follow the same fitting protocol, except for the assumed and presently unknown value of the neutron skin thickness of 208Pb. This enables one to tune the density dependence of the symmetry energy without compromising the success in reproducing well known physical observables. We found that the ongoing PREX-II and upcoming CREX campaigns at Jefferson Lab will play a vital role in constraining the weak form factor of xenon and argon, liquid noble gases that are used for the detection of both neutrinos and dark matter particles. We concluded that remarkable new advances in experimental physics have opened a new window into ground state densities of atomic nuclei using solely electroweak probes. The diversity and versatility of these experiments reveal powerful correlations that impose important nuclear structure constraints. In turn, these constraints provide quantitative theoretical uncertainties that are instrumental in searches for new physics and insights into the behavior of dense matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.10939v1-abstract-full').style.display = 'none'; document.getElementById('1908.10939v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-19-039 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 100, 054301 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.02561">arXiv:1907.02561</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.02561">pdf</a>, <a href="https://arxiv.org/format/1907.02561">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/PT.3.4247">10.1063/PT.3.4247 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutron rich matter in heaven and on Earth </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a>, <a href="/search/?searchtype=author&amp;query=Fattoyev%2C+F+J">F. J. Fattoyev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.02561v1-abstract-short" style="display: inline;"> Despite a length-scale difference of 18 orders of magnitude, the internal structure of neutron stars and the spatial distribution of neutrons in atomic nuclei are profoundly connected. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.02561v1-abstract-full" style="display: none;"> Despite a length-scale difference of 18 orders of magnitude, the internal structure of neutron stars and the spatial distribution of neutrons in atomic nuclei are profoundly connected. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.02561v1-abstract-full').style.display = 'none'; document.getElementById('1907.02561v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript published in final form in Physics Today, July 2019, page 30</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics Today, July 2019, page 30 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.12269">arXiv:1904.12269</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.12269">pdf</a>, <a href="https://arxiv.org/format/1904.12269">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6471/ab2c6d">10.1088/1361-6471/ab2c6d <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutron skins of atomic nuclei: per aspera ad astra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Thiel%2C+M">M. Thiel</a>, <a href="/search/?searchtype=author&amp;query=Sfienti%2C+C">C. Sfienti</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a>, <a href="/search/?searchtype=author&amp;query=Horowitz%2C+C+J">C. J. Horowitz</a>, <a href="/search/?searchtype=author&amp;query=Vanderhaeghen%2C+M">M. Vanderhaeghen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.12269v1-abstract-short" style="display: inline;"> The complex nature of the nuclear forces generates a broad range and diversity of observational phenomena. Heavy nuclei, though orders of magnitude less massive than neutron stars, are governed by the same underlying physics, which is enshrined in the nuclear equation of state. Heavy nuclei are expected to develop a neutron-rich skin where many neutrons collect near the surface. Such a skin thickn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.12269v1-abstract-full').style.display = 'inline'; document.getElementById('1904.12269v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.12269v1-abstract-full" style="display: none;"> The complex nature of the nuclear forces generates a broad range and diversity of observational phenomena. Heavy nuclei, though orders of magnitude less massive than neutron stars, are governed by the same underlying physics, which is enshrined in the nuclear equation of state. Heavy nuclei are expected to develop a neutron-rich skin where many neutrons collect near the surface. Such a skin thickness is strongly sensitive to the poorly-known density dependence of the symmetry energy near saturation density. An accurate and model-independent determination of the neutron-skin thickness of heavy nuclei would provide a significant first constraint on the density dependence of the nuclear symmetry energy. The determination of the neutron-skin thickness of heavy nuclei has far reaching consequences in many areas of physics as diverse as heavy-ion collisions, polarized electron and proton scattering off nuclei, precision tests of the standard model using atomic parity violation, and nuclear astrophysics. While a systematic and concerted experimental effort has been made to measure the neutron-skin thickness of heavy nuclei, a precise and model-independent determination remains elusive. How to move forward at a time when many new facilities are being commissioned and how to strengthen the synergy with other areas of physics are primary goals of this review. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.12269v1-abstract-full').style.display = 'none'; document.getElementById('1904.12269v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted for publication to Journal of Physics G</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.09974">arXiv:1812.09974</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.09974">pdf</a>, <a href="https://arxiv.org/format/1812.09974">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.99.045802">10.1103/PhysRevC.99.045802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impact of the neutron star crust on the tidal polarizability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a>, <a href="/search/?searchtype=author&amp;query=Fattoyev%2C+F+J">F. J. Fattoyev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.09974v1-abstract-short" style="display: inline;"> The first detection of a binary neutron star merger has opened the brand new era of multimessenger astronomy. This historic detection has been instrumental in providing constraints on the tidal polarizability of neutron stars. In turn, the tidal polarizability has been used to impose limits on stellar radii and ultimately on the equation of state (EOS). The tidal polarizability is also sensitive t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.09974v1-abstract-full').style.display = 'inline'; document.getElementById('1812.09974v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.09974v1-abstract-full" style="display: none;"> The first detection of a binary neutron star merger has opened the brand new era of multimessenger astronomy. This historic detection has been instrumental in providing constraints on the tidal polarizability of neutron stars. In turn, the tidal polarizability has been used to impose limits on stellar radii and ultimately on the equation of state (EOS). The tidal polarizability is also sensitive to the second tidal Love number k2. It is the main purpose of this work to perform a detailed study of k2 which, for a given compactness parameter, encodes the entire sensitivity of the tidal polarizability to the EOS. In particular, we examine the role that the crustal component of the EOS plays in the determination of k2. A set of realistic models of the equation of state that yield an accurate description of the properties of finite nuclei and support neutron stars of two solar masses is used. Given that the tidal polarizability scales as the fifth power of the compactness parameter, a universal relation exists among the tidal polarizability and the compactness parameter that is highly insensitive to the underlying EOS. Thus, besides an extraction of the tidal polarizabilities, a measurement of the individual stellar masses is also required to impact the mass-radius relation. However, we observe a strong sensitivity of k2 to the EOS, particularly to the contribution from the inner crust. Although by itself the tidal polarizability can not contribute to the determination of the mass-radius relation, future detections of binary neutron star mergers are poised to provide significant constraints on both the tidal polarizabilities and masses of the individual stars, and thus ultimately on the mass-radius relation. Yet, subleading corrections to the tidal polarizability are encoded in the second Love number k2 which displays a large sensitivity to the entire (crust-plus-core) EOS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.09974v1-abstract-full').style.display = 'none'; document.getElementById('1812.09974v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages and 5 figures; submitted to Physical Review C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 99, 045802 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.04438">arXiv:1812.04438</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.04438">pdf</a>, <a href="https://arxiv.org/format/1812.04438">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.5506/APhysPolB.50.239">10.5506/APhysPolB.50.239 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nuclear Astrophysics in the Multimessenger Era: A Partnership Made in Heaven </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.04438v1-abstract-short" style="display: inline;"> On August 17, 2017 the LIGO-Virgo collaboration detected for the first time gravitational waves from the binary merger of two neutron stars (GW170817). Unlike the merger of two black holes, the associated electromagnetic radiation was also detected by a host of telescopes operating over a wide range of frequencies---opening a brand new era of multimessenger astronomy. This historical detection is&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.04438v1-abstract-full').style.display = 'inline'; document.getElementById('1812.04438v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.04438v1-abstract-full" style="display: none;"> On August 17, 2017 the LIGO-Virgo collaboration detected for the first time gravitational waves from the binary merger of two neutron stars (GW170817). Unlike the merger of two black holes, the associated electromagnetic radiation was also detected by a host of telescopes operating over a wide range of frequencies---opening a brand new era of multimessenger astronomy. This historical detection is providing fundamental new insights into the astrophysical site for the r-process and on the nature of dense matter. In this contribution we examine the impact of GW170817 on the equation of state of neutron rich matter, particularly on the density dependence of the symmetry energy. Limits on the tidal polarizability extracted from GW170817 seem to suggest that the symmetry energy is soft, thereby excluding models that predict overly large stellar radii. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.04438v1-abstract-full').style.display = 'none'; document.getElementById('1812.04438v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures, Invited Lecture presented at the Zakopane Conference on Nuclear Physics &#34;Extremes of the Nuclear Landscape&#34;, Zakopane, Poland, August 26-September 2, 2018. To be published in ACTA PHYSICA POLONICA B Volume 50</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.05977">arXiv:1808.05977</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.05977">pdf</a>, <a href="https://arxiv.org/format/1808.05977">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applications">stat.AP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.99.055202">10.1103/PhysRevC.99.055202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revisiting the proton-radius problem using constrained Gaussian processes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Zhou%2C+S">Shuang Zhou</a>, <a href="/search/?searchtype=author&amp;query=Giuliani%2C+P">P. Giuliani</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a>, <a href="/search/?searchtype=author&amp;query=Bhattacharya%2C+A">Anirban Bhattacharya</a>, <a href="/search/?searchtype=author&amp;query=Pati%2C+D">Debdeep Pati</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.05977v1-abstract-short" style="display: inline;"> Background: The &#34;proton radius puzzle&#34; refers to an eight-year old problem that highlights major inconsistencies in the extraction of the charge radius of the proton from muonic Lamb-shift experiments as compared against experiments using elastic electron scattering. For the latter, the determination of the charge radius involves an extrapolation of the experimental form factor to zero momentum tr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05977v1-abstract-full').style.display = 'inline'; document.getElementById('1808.05977v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.05977v1-abstract-full" style="display: none;"> Background: The &#34;proton radius puzzle&#34; refers to an eight-year old problem that highlights major inconsistencies in the extraction of the charge radius of the proton from muonic Lamb-shift experiments as compared against experiments using elastic electron scattering. For the latter, the determination of the charge radius involves an extrapolation of the experimental form factor to zero momentum transfer. Purpose: To estimate the proton radius by introducing a novel non-parametric approach to model the electric form factor of the proton. Methods: Within a Bayesian paradigm, we develop a model flexible enough to fit the data without any parametric assumptions on the form factor. The Bayesian estimation is guided by imposing only two physical constraints on the form factor: (a) its value at zero momentum transfer (normalization) and (b) its overall shape, assumed to be a monotonically decreasing function of the momentum transfer. Variants of these assumptions are explored to assess the impact of these constraints. Results: So far our results are inconclusive in regard to the proton puzzle, as they depend on both, the assumed constrains and the range of experimental data used. For example, if only low momentum-transfer data is used, adopting only the normalization constraint provides a value compatible with the smaller muonic result, while imposing only the shape constraint favors the larger electronic value. Conclusions: We have presented a novel technique to estimate the proton radius from electron scattering data based on a non-parametric Gaussian process. We have shown the impact of the physical constraints imposed on the form factor and of the range of experimental data used. In this regard, we are hopeful that as this technique is refined and with the anticipated new results from the PRad experiment, we will get closer to resolve of the puzzle. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05977v1-abstract-full').style.display = 'none'; document.getElementById('1808.05977v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 99, 055202 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.04780">arXiv:1805.04780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.04780">pdf</a>, <a href="https://arxiv.org/format/1805.04780">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Nuclear Astrophysics in the New Era of Multimessenger Astronomy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.04780v2-abstract-short" style="display: inline;"> Neutron stars are unique cosmic laboratories for the exploration of matter under extreme conditions of density and neutron-proton asymmetry. Due to their enormous dynamic range, neutron stars display a myriad of exotic states of matter that are impossible to recreate under normal laboratory conditions. In these three lectures I will discuss how the strong synergy that has developed between nuclear&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.04780v2-abstract-full').style.display = 'inline'; document.getElementById('1805.04780v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.04780v2-abstract-full" style="display: none;"> Neutron stars are unique cosmic laboratories for the exploration of matter under extreme conditions of density and neutron-proton asymmetry. Due to their enormous dynamic range, neutron stars display a myriad of exotic states of matter that are impossible to recreate under normal laboratory conditions. In these three lectures I will discuss how the strong synergy that has developed between nuclear physics and astrophysics will uncover some of the deepest secrets behind these fascinating objects. In particular, I will highlight the enormous impact that the very first detection of gravitational waves from the binary neutron-star merger GW170817 is having in constraining the composition, structure, and dynamics of neutron stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.04780v2-abstract-full').style.display = 'none'; document.getElementById('1805.04780v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Lectures presented at the XIV International Workshop on Hadron Physics, Florianopolis, Brazil, March 2018. Few typos corrected in revised version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.00411">arXiv:1712.00411</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.00411">pdf</a>, <a href="https://arxiv.org/ps/1712.00411">ps</a>, <a href="https://arxiv.org/format/1712.00411">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.96.064315">10.1103/PhysRevC.96.064315 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectroscopy of $^{54}$Ti and the systematic behavior of low energy octupole states in Ca and Ti isotopes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Riley%2C+L+A">L. A. Riley</a>, <a href="/search/?searchtype=author&amp;query=Agiorgousis%2C+M+L">M. L. Agiorgousis</a>, <a href="/search/?searchtype=author&amp;query=Baugher%2C+T+R">T. R. Baugher</a>, <a href="/search/?searchtype=author&amp;query=Bazin%2C+D">D. Bazin</a>, <a href="/search/?searchtype=author&amp;query=Blanchard%2C+R+L">R. L. Blanchard</a>, <a href="/search/?searchtype=author&amp;query=Bowry%2C+M">M. Bowry</a>, <a href="/search/?searchtype=author&amp;query=Cottle%2C+P+D">P. D. Cottle</a>, <a href="/search/?searchtype=author&amp;query=DeVone%2C+F+G">F. G. DeVone</a>, <a href="/search/?searchtype=author&amp;query=Gade%2C+A">A. Gade</a>, <a href="/search/?searchtype=author&amp;query=Glowacki%2C+M+T">M. T. Glowacki</a>, <a href="/search/?searchtype=author&amp;query=Kemper%2C+K+W">K. W. Kemper</a>, <a href="/search/?searchtype=author&amp;query=Kustina%2C+J+S">J. S. Kustina</a>, <a href="/search/?searchtype=author&amp;query=Lunderberg%2C+E">E. Lunderberg</a>, <a href="/search/?searchtype=author&amp;query=McPherson%2C+D+M">D. M. McPherson</a>, <a href="/search/?searchtype=author&amp;query=Noji%2C+S">S. Noji</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a>, <a href="/search/?searchtype=author&amp;query=Recchia%2C+F">F. Recchia</a>, <a href="/search/?searchtype=author&amp;query=Sadler%2C+B+V">B. V. Sadler</a>, <a href="/search/?searchtype=author&amp;query=Scott%2C+M">M. Scott</a>, <a href="/search/?searchtype=author&amp;query=Weisshaar%2C+D">D. Weisshaar</a>, <a href="/search/?searchtype=author&amp;query=Zegers%2C+R+G+T">R. G. T. Zegers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.00411v1-abstract-short" style="display: inline;"> Excited states of the $N=32$ nucleus $^{54}$Ti have been studied, via both inverse-kinematics proton scattering and one-neutron knockout from $^{55}$Ti by a liquid hydrogen target, using the GRETINA $纬$-ray tracking array. Inelastic proton-scattering cross sections and deformation lengths have been determined. A low-lying octupole state has been tentatively identified in $^{54}$Ti for the first ti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.00411v1-abstract-full').style.display = 'inline'; document.getElementById('1712.00411v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.00411v1-abstract-full" style="display: none;"> Excited states of the $N=32$ nucleus $^{54}$Ti have been studied, via both inverse-kinematics proton scattering and one-neutron knockout from $^{55}$Ti by a liquid hydrogen target, using the GRETINA $纬$-ray tracking array. Inelastic proton-scattering cross sections and deformation lengths have been determined. A low-lying octupole state has been tentatively identified in $^{54}$Ti for the first time. A comparison of $(p,p&#39;)$ results on low-energy octupole states in the neutron-rich Ca and Ti isotopes with the results of Random Phase Approximation calculations demonstrates that the observed systematic behavior of these states is unexpected. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.00411v1-abstract-full').style.display = 'none'; document.getElementById('1712.00411v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 96, 064315 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1711.06615">arXiv:1711.06615</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1711.06615">pdf</a>, <a href="https://arxiv.org/format/1711.06615">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.120.172702">10.1103/PhysRevLett.120.172702 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutron skins and neutron stars in the multi-messenger era </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Fattoyev%2C+F+J">F. J. Fattoyev</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a>, <a href="/search/?searchtype=author&amp;query=Horowitz%2C+C+J">C. J. Horowitz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1711.06615v2-abstract-short" style="display: inline;"> The historical first detection of a binary neutron star merger by the LIGO-Virgo collaboration [B. P. Abbott et al. Phys. Rev. Lett. 119, 161101 (2017)] is providing fundamental new insights into the astrophysical site for the $r$-process and on the nature of dense matter. A set of realistic models of the equation of state (EOS) that yield an accurate description of the properties of finite nuclei&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.06615v2-abstract-full').style.display = 'inline'; document.getElementById('1711.06615v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1711.06615v2-abstract-full" style="display: none;"> The historical first detection of a binary neutron star merger by the LIGO-Virgo collaboration [B. P. Abbott et al. Phys. Rev. Lett. 119, 161101 (2017)] is providing fundamental new insights into the astrophysical site for the $r$-process and on the nature of dense matter. A set of realistic models of the equation of state (EOS) that yield an accurate description of the properties of finite nuclei, support neutron stars of two solar masses, and provide a Lorentz covariant extrapolation to dense matter are used to confront its predictions against tidal polarizabilities extracted from the gravitational-wave data. Given the sensitivity of the gravitational-wave signal to the underlying EOS, limits on the tidal polarizability inferred from the observation translate into constraints on the neutron-star radius. Based on these constraints, models that predict a stiff symmetry energy, and thus large stellar radii, can be ruled out. Indeed, we deduce an upper limit on the radius of a $1.4\,M_{\odot}$ neutron star of $R_{\star}^{1.4}\!&lt;\!13.76\,{\rm km}$. Given the sensitivity of the neutron-skin thickness of ${}^{208}$Pb to the symmetry energy, albeit at a lower density, we infer a corresponding upper limit of about $R_{\rm skin}^{208}\!\lesssim\!0.25\,{\rm fm}$. However, if the upcoming PREX-II experiment measures a significantly thicker skin, this may be evidence of a softening of the symmetry energy at high densities---likely indicative of a phase transition in the interior of neutron stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1711.06615v2-abstract-full').style.display = 'none'; document.getElementById('1711.06615v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, edited figures and the text with a more correct interpretation of the LIGO-Virgo results</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 172702 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.10182">arXiv:1709.10182</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.10182">pdf</a>, <a href="https://arxiv.org/format/1709.10182">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.97.014314">10.1103/PhysRevC.97.014314 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Difference in proton radii of mirror nuclei as a possible surrogate for the neutron skin </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Yang%2C+J">Junjie Yang</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.10182v1-abstract-short" style="display: inline;"> It has been recently suggested that differences in the charge radii of mirror nuclei are proportional to the neutron-skin thickness of neutron-rich nuclei and to the slope of the symmetry energy $L$ [B.A. Brown Phys. Rev. Lett. 119, 122502 (2017)]. The determination of the neutron skin has important implications for nuclear physics and astrophysics. Although the use of electroweak probes provides&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.10182v1-abstract-full').style.display = 'inline'; document.getElementById('1709.10182v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.10182v1-abstract-full" style="display: none;"> It has been recently suggested that differences in the charge radii of mirror nuclei are proportional to the neutron-skin thickness of neutron-rich nuclei and to the slope of the symmetry energy $L$ [B.A. Brown Phys. Rev. Lett. 119, 122502 (2017)]. The determination of the neutron skin has important implications for nuclear physics and astrophysics. Although the use of electroweak probes provides a largely model-independent determination of the neutron skin, the experimental challenges are enormous. Thus, the possibility that differences in the charge radii of mirror nuclei may be used as a surrogate for the neutron skin is a welcome alternative. To test the validity of this assumption we perform calculations based on a set of relativistic energy density functionals that span a wide region of values of $L$. Our results confirm that the difference in charge radii of various neutron-deficient nickel isotopes and their corresponding mirror nuclei is indeed strongly correlated to both the neutron-skin thickness and $L$. Moreover, given that various neutron-star properties are also sensitive to $L$, a data-to-data relation emerges between the difference in charge radii of mirror nuclei and the radius of low-mass neutron stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.10182v1-abstract-full').style.display = 'none'; document.getElementById('1709.10182v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 97, 014314 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.09502">arXiv:1709.09502</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.09502">pdf</a>, <a href="https://arxiv.org/format/1709.09502">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.97.014306">10.1103/PhysRevC.97.014306 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Validating neural-network refinements of nuclear mass models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Utama%2C+R">R. Utama</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.09502v1-abstract-short" style="display: inline;"> Nuclear astrophysics centers on the role of nuclear physics in the cosmos. In particular, nuclear masses at the limits of stability are critical in the development of stellar structure and the origin of the elements. In this contribution we test and validate the predictions of recently refined nuclear mass models against the newly published AME2016 compilation. The basic paradigm underlining the r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.09502v1-abstract-full').style.display = 'inline'; document.getElementById('1709.09502v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.09502v1-abstract-full" style="display: none;"> Nuclear astrophysics centers on the role of nuclear physics in the cosmos. In particular, nuclear masses at the limits of stability are critical in the development of stellar structure and the origin of the elements. In this contribution we test and validate the predictions of recently refined nuclear mass models against the newly published AME2016 compilation. The basic paradigm underlining the recently refined nuclear mass models is based on existing state-of-the-art models that are subsequently refined through the training of an artificial neural network. We observe a significant improvement in the Bayesian Neural Network (BNN) predictions relative to the corresponding &#34;bare&#34; models when compared to the nearly 50 new masses reported in the AME2016 compilation. Further, AME2016 estimates for the handful of impactful isotopes in the determination of r-process abundances are found to be in fairly good agreement with our theoretical predictions. Indeed, the BNN-improved Duflo-Zuker model predicts a root-mean-square deviation relative to experiment of about 400 keV. Given the excellent performance of the BNN refinement in confronting the recently published AME2016 compilation, we are confident of its critical role in our quest for mass models of the highest quality. Moreover, as uncertainty quantification is at the core of the BNN approach, the improved mass models are in a unique position to identify those nuclei that will have the strongest impact in resolving some of the outstanding questions in nuclear astrophysics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.09502v1-abstract-full').style.display = 'none'; document.getElementById('1709.09502v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, and 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 97, 014306 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.03522">arXiv:1708.03522</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.03522">pdf</a>, <a href="https://arxiv.org/format/1708.03522">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2017.07.062">10.1016/j.physletb.2017.07.062 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pygmy and core polarization dipole modes in $^{206}$Pb: connecting nuclear structure to stellar nucleosynthesis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Tonchev%2C+A+P">A. P. Tonchev</a>, <a href="/search/?searchtype=author&amp;query=Tsoneva%2C+N">N. Tsoneva</a>, <a href="/search/?searchtype=author&amp;query=Bhatia%2C+C">C. Bhatia</a>, <a href="/search/?searchtype=author&amp;query=Arnold%2C+C+W">C. W. Arnold</a>, <a href="/search/?searchtype=author&amp;query=Goriely%2C+S">S. Goriely</a>, <a href="/search/?searchtype=author&amp;query=Hammond%2C+S+L">S. L. Hammond</a>, <a href="/search/?searchtype=author&amp;query=Kelley%2C+J+H">J. H. Kelley</a>, <a href="/search/?searchtype=author&amp;query=Kwan%2C+E">E. Kwan</a>, <a href="/search/?searchtype=author&amp;query=Lenske%2C+H">H. Lenske</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a>, <a href="/search/?searchtype=author&amp;query=Raut%2C+R">R. Raut</a>, <a href="/search/?searchtype=author&amp;query=Rusev%2C+G">G. Rusev</a>, <a href="/search/?searchtype=author&amp;query=Shizuma%2C+T">T. Shizuma</a>, <a href="/search/?searchtype=author&amp;query=Tornow%2C+W">W. Tornow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.03522v1-abstract-short" style="display: inline;"> A high-resolution study of the electromagnetic response of $^{206}$Pb below the neutron separation energy is performed using a ($\vec纬$,$纬&#39;$) experiment at the HI$\vec纬$S facility. Nuclear resonance fluorescence with 100% linearly polarized photon beams is used to measure spins, parities, branching ratios, and decay widths of excited states in $^{206}$Pb from $4.9$ to $8.1$MeV. The extracted $危$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03522v1-abstract-full').style.display = 'inline'; document.getElementById('1708.03522v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.03522v1-abstract-full" style="display: none;"> A high-resolution study of the electromagnetic response of $^{206}$Pb below the neutron separation energy is performed using a ($\vec纬$,$纬&#39;$) experiment at the HI$\vec纬$S facility. Nuclear resonance fluorescence with 100% linearly polarized photon beams is used to measure spins, parities, branching ratios, and decay widths of excited states in $^{206}$Pb from $4.9$ to $8.1$MeV. The extracted $危$$B$(E1)$\uparrow$ and $危$$B$(M1)$\uparrow$ values for the total electric and magnetic dipole strength below the neutron separation energy are 0.9$\pm$0.2e$^2$fm$^2$ and 8.3$\pm$2.0$渭_{N}^2$, respectively. These measurements are found to be in very good agreement with the predictions from an energy-density functional (EDF) plus quasiparticle phonon model (QPM). Such a detailed theoretical analysis allows to separate the pygmy dipole resonance from both the tail of the giant dipole resonance and multi-phonon excitations. Combined with earlier photonuclear experiments above the neutron separation energy, one extracts a value for the electric dipole polarizability of $^{206}$Pb of $伪_{D}\!=\!122\pm10$mb/MeV. When compared to predictions from both the EDF+QPM and accurately calibrated relativistic EDFs, one deduces a range for the neutron-skin thickness of $R_{\rm skin}^{206}\!=\!0.12$-$0.19$fm and a corresponding range for the slope of the symmetry energy of $L\!=\!48$-$60$MeV. This newly obtained information is also used to estimate the Maxwellian-averaged radiative cross section $^{205}$Pb(n,$纬$)$^{206}$Pb at 30keV to be $蟽\!=\!130\!\pm\!25$mb. The astrophysical impact of this measurement--on both the s-process in stellar nucleosynthesis and on the equation of state of neutron-rich matter--is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.03522v1-abstract-full').style.display = 'none'; document.getElementById('1708.03522v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages and 4 figures. Manuscript accepted for publication in Physics Letters B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1707.07185">arXiv:1707.07185</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1707.07185">pdf</a>, <a href="https://arxiv.org/format/1707.07185">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.96.044314">10.1103/PhysRevC.96.044314 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of low-energy monopole strength in the neutron-rich calcium isotopes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1707.07185v1-abstract-short" style="display: inline;"> The isoscalar monopole response of neutron-rich nuclei is sensitive to both the incompressibility coefficient of symmetric nuclear matter and the density dependence of the symmetry energy. The main goal of this paper is to explore the emergence, evolution, and origin of low energy monopole strength along the even-even calcium isotopes: from 40Ca to 60Ca. The distribution of isoscalar monopole stre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.07185v1-abstract-full').style.display = 'inline'; document.getElementById('1707.07185v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1707.07185v1-abstract-full" style="display: none;"> The isoscalar monopole response of neutron-rich nuclei is sensitive to both the incompressibility coefficient of symmetric nuclear matter and the density dependence of the symmetry energy. The main goal of this paper is to explore the emergence, evolution, and origin of low energy monopole strength along the even-even calcium isotopes: from 40Ca to 60Ca. The distribution of isoscalar monopole strength is computed in a relativistic random phase approximation (RPA) using three effective interactions that have been calibrated to the properties of finite nuclei and neutron stars. A non-spectral approach is adopted that allows for an exact treatment of the continuum without any reliance on discretization. For the stable calcium isotopes, no evidence of low-energy monopole strength is observed, even as the 1f7/2 neutron orbital is being filled and the neutron-skin thickness progressively grows. Further, in contrast to experimental findings, a mild softening of the monopole response with increasing mass number is predicted. Beyond 48Ca, a significant amount of low-energy monopole strength emerges as soon as the weak-binding neutron orbitals (2p and 1f5/2) become populated. The emergence and evolution of low-energy strength is identified with transitions from these weakly-bound states into the continuum. Moreover, given that models with a soft symmetry energy tend to reach the neutron-drip line earlier than their stiffer counterparts, we identify an inverse correlation between the neutron-skin thickness and the inverse energy weighted sum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1707.07185v1-abstract-full').style.display = 'none'; document.getElementById('1707.07185v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures, and 5 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 96, 044314 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.06632">arXiv:1704.06632</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.06632">pdf</a>, <a href="https://arxiv.org/format/1704.06632">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.96.044308">10.1103/PhysRevC.96.044308 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Refining mass formulas for astrophysical applications: a Bayesian neural network approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Utama%2C+R">Raditya Utama</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">Jorge Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.06632v1-abstract-short" style="display: inline;"> Exotic nuclei, particularly those near the driplines, are at the core of one of the fundamental questions driving nuclear structure and astrophysics today: what are the limits of nuclear binding? Exotic nuclei play a critical role in both informing theoretical models as well as in our understanding of the origin of the heavy elements. Our purpose is to refine existing mass models through the train&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.06632v1-abstract-full').style.display = 'inline'; document.getElementById('1704.06632v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.06632v1-abstract-full" style="display: none;"> Exotic nuclei, particularly those near the driplines, are at the core of one of the fundamental questions driving nuclear structure and astrophysics today: what are the limits of nuclear binding? Exotic nuclei play a critical role in both informing theoretical models as well as in our understanding of the origin of the heavy elements. Our purpose is to refine existing mass models through the training of an artificial neural network that will mitigate the large model discrepancies far away from stability. The basic paradigm of our two-pronged approach is an existing mass model that captures as much as possible of the underlying physics followed by the implementation of a Bayesian Neural Network (BNN) refinement to account for the missing physics. Bayesian inference is employed to determine the parameters of the neural network so that model predictions may be accompanied by theoretical uncertainties. Despite the undeniable quality of the mass models adopted in this work, we observe a significant improvement (of about 40%) after the BNN refinement is implemented. Indeed, in the specific case of the Duflo-Zuker mass formula, we find that the rms deviation relative to experiment is reduced from rms =0.503MeV to rms=0.286 MeV. These newly refined mass tables are used to map the neutron drip lines (or rather &#34;drip bands&#34;) and to study a few critical r-process nuclei. The BNN approach is highly successful in refining the predictions of existing mass models. In particular, the large discrepancy displayed by the original &#34;bare&#34; models in regions where experimental data is unavailable is considerably quenched after the BNN refinement. This lends credence to our approach and has motivated us to publish refined mass tables that we trust will be helpful for future astrophysical applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.06632v1-abstract-full').style.display = 'none'; document.getElementById('1704.06632v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 96, 044308 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.03020">arXiv:1608.03020</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.03020">pdf</a>, <a href="https://arxiv.org/format/1608.03020">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0954-3899/43/11/114002">10.1088/0954-3899/43/11/114002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nuclear charge radii: Density functional theory meets Bayesian neural networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Utama%2C+R">Raditya Utama</a>, <a href="/search/?searchtype=author&amp;query=Chen%2C+W">Wei-Chia Chen</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">Jorge Piekarewicz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.03020v1-abstract-short" style="display: inline;"> The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. We explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.03020v1-abstract-full').style.display = 'inline'; document.getElementById('1608.03020v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.03020v1-abstract-full" style="display: none;"> The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. We explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonstrated the ability of the BNN approach to significantly increase the accuracy of nuclear models in the predictions of nuclear charge radii. However, as many before us, we failed to uncover the underlying physics behind the intriguing behavior of charge radii along the calcium isotopic chain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.03020v1-abstract-full').style.display = 'none'; document.getElementById('1608.03020v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. G: Nucl. Part. Phys. 43 (2016) 114002 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.07799">arXiv:1604.07799</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.07799">pdf</a>, <a href="https://arxiv.org/format/1604.07799">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.94.034316">10.1103/PhysRevC.94.034316 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The power of two: Assessing the impact of a second measurement of the weak-charge form factor of 208Pb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a>, <a href="/search/?searchtype=author&amp;query=Linero%2C+A">A. Linero</a>, <a href="/search/?searchtype=author&amp;query=Giuliani%2C+P">P. Giuliani</a>, <a href="/search/?searchtype=author&amp;query=Chicken%2C+E">E. Chicken</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.07799v1-abstract-short" style="display: inline;"> [Background] Besides its intrinsic value as a fundamental nuclear-structure observable, the weak-charge density of 208Pb - a quantity that is closely related to its neutron distribution - is of fundamental importance in constraining the equation of state of neutron-rich matter. [Purpose] To assess the impact that a second electroweak measurement of the weak-charge form factor of 208Pb may have o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.07799v1-abstract-full').style.display = 'inline'; document.getElementById('1604.07799v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.07799v1-abstract-full" style="display: none;"> [Background] Besides its intrinsic value as a fundamental nuclear-structure observable, the weak-charge density of 208Pb - a quantity that is closely related to its neutron distribution - is of fundamental importance in constraining the equation of state of neutron-rich matter. [Purpose] To assess the impact that a second electroweak measurement of the weak-charge form factor of 208Pb may have on the determination of its overall weak-charge density. [Methods] Using the two putative experimental values of the form factor, together with a simple implementation of Bayes&#39; theorem, we calibrate a theoretically sound - yet surprisingly little known - symmetrized Fermi function, that is characterized by a density and form factor that are both known exactly in closed form. [Results] Using the charge form factor of 208Pb as a proxy for its weak-charge form factor, we demonstrate that using only two experimental points to calibrate the symmetrized Fermi function is sufficient to accurately reproduce the experimental charge form factor over a significant range of momentum transfers. [Conclusions] It is demonstrated that a second measurement of the weak-charge form factor of 208Pb supplemented by a robust theoretical input in the form of the symmetrized Fermi function, would place significant constraints on the neutron distribution of 208Pb and, ultimately, on the equation of state of neutron-rich matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.07799v1-abstract-full').style.display = 'none'; document.getElementById('1604.07799v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 tables, and 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.01319">arXiv:1603.01319</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.01319">pdf</a>, <a href="https://arxiv.org/format/1603.01319">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.93.044618">10.1103/PhysRevC.93.044618 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sensitivity of the fusion cross section to the density dependence of the symmetry energy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Reinhard%2C+P+-">P. -G. Reinhard</a>, <a href="/search/?searchtype=author&amp;query=Umar%2C+A+S">A. S. Umar</a>, <a href="/search/?searchtype=author&amp;query=Stevenson%2C+P+D">P. D. Stevenson</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a>, <a href="/search/?searchtype=author&amp;query=Oberacker%2C+V+E">V. E. Oberacker</a>, <a href="/search/?searchtype=author&amp;query=Maruhn%2C+J+A">J. A. Maruhn</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.01319v1-abstract-short" style="display: inline;"> It is the aim of this paper to discuss the impact of nuclear fusion on the EOS. This is a timely subject given the expected availability of increasingly exotic beams at rare isotope facilities\,\cite{balantekin2014}. In practice, we focus on $^{48}$Ca+$^{48}$Ca fusion. We employ three different approaches to calculate fusion cross-sections for a set of energy density functionals with systematicall&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.01319v1-abstract-full').style.display = 'inline'; document.getElementById('1603.01319v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.01319v1-abstract-full" style="display: none;"> It is the aim of this paper to discuss the impact of nuclear fusion on the EOS. This is a timely subject given the expected availability of increasingly exotic beams at rare isotope facilities\,\cite{balantekin2014}. In practice, we focus on $^{48}$Ca+$^{48}$Ca fusion. We employ three different approaches to calculate fusion cross-sections for a set of energy density functionals with systematically varying nuclear matter properties. Fusion calculations are performed using frozen densities, using a dynamic microscopic method based on density-constrained time-dependent Hartree-Fock (DC-TDHF) approach, as well as direct TDHF study of above barrier cross-sections. For these studies, we employ a family of Skyrme parametrizations with systematically varied nuclear matter properties. We find a slight preference for forces which deliver a slope of symmetry energy of $L\approx 50$\,MeV that corresponds to a neutron-skin thickness of $^{48}$Ca of $R_\mathrm{skin}\!=\!(0.180\!-\!0.210)$\,fm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.01319v1-abstract-full').style.display = 'none'; document.getElementById('1603.01319v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 93, 044618 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1510.01874">arXiv:1510.01874</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1510.01874">pdf</a>, <a href="https://arxiv.org/format/1510.01874">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.92.064304">10.1103/PhysRevC.92.064304 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The neutron skin thickness from the measured electric dipole polarizability in $^{68}$Ni, $^{120}$Sn, and $^{208}$Pb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Roca-Maza%2C+X">X. Roca-Maza</a>, <a href="/search/?searchtype=author&amp;query=Vi%C3%B1as%2C+X">X. Vi帽as</a>, <a href="/search/?searchtype=author&amp;query=Centelles%2C+M">M. Centelles</a>, <a href="/search/?searchtype=author&amp;query=Agrawal%2C+B+K">B. K. Agrawal</a>, <a href="/search/?searchtype=author&amp;query=Colo%27%2C+G">G. Colo&#39;</a>, <a href="/search/?searchtype=author&amp;query=Paar%2C+N">N. Paar</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a>, <a href="/search/?searchtype=author&amp;query=Vretenar%2C+D">D. Vretenar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1510.01874v2-abstract-short" style="display: inline;"> The information on the symmetry energy and its density dependence is deduced by comparing the available data on the electric dipole polarizability $伪_D$ of ${}^{68}$Ni, ${}^{120}$Sn, and ${}^{208}$Pb with the predictions of the Random Phase Approximation, using a representative set of nuclear energy density functionals. The calculated values of $伪_D$ are used to validate different correlations inv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.01874v2-abstract-full').style.display = 'inline'; document.getElementById('1510.01874v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1510.01874v2-abstract-full" style="display: none;"> The information on the symmetry energy and its density dependence is deduced by comparing the available data on the electric dipole polarizability $伪_D$ of ${}^{68}$Ni, ${}^{120}$Sn, and ${}^{208}$Pb with the predictions of the Random Phase Approximation, using a representative set of nuclear energy density functionals. The calculated values of $伪_D$ are used to validate different correlations involving $伪_D$, the symmetry energy at the saturation density $J$, the corresponding slope parameter $L$ and the neutron skin thickness $螖r_{\!np}$, as suggested by the Droplet Model. A subset of models that reproduce simultaneously the measured polarizabilities in ${}^{68}$Ni, ${}^{120}$Sn, and ${}^{208}$Pb are employed to predict the values of the symmetry energy parameters at saturation density and $螖r_{\!np}$. The resulting intervals are: $J\!=\!30 \text{-}35$ MeV, $L\!=\!20 \text{-} 66$ MeV; and the values for $螖r_{\!np}$ in ${}^{68}$Ni, ${}^{120}$Sn, and ${}^{208}$Pb are in the ranges: 0.15\text{-}0.19 fm, 0.12\text{-}0.16 fm, and 0.13\text{-}0.19 fm, respectively. The strong correlation between the electric dipole polarizabilities of two nuclei is instrumental to predict the values of electric dipole polarizabilities in other nuclei. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1510.01874v2-abstract-full').style.display = 'none'; document.getElementById('1510.01874v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 2 tables and 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 92, 064304 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1508.06263">arXiv:1508.06263</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1508.06263">pdf</a>, <a href="https://arxiv.org/format/1508.06263">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.93.014311">10.1103/PhysRevC.93.014311 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nuclear Mass Predictions for the Crustal Composition of Neutron Stars: A Bayesian Neural Network Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Utama%2C+R">R. Utama</a>, <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J">J. Piekarewicz</a>, <a href="/search/?searchtype=author&amp;query=Prosper%2C+H+B">H. B. Prosper</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1508.06263v1-abstract-short" style="display: inline;"> Besides their intrinsic nuclear-structure value, nuclear mass models are essential for astrophysical applications, such as r-process nucleosynthesis and neutron-star structure. To overcome the intrinsic limitations of existing &#34;state-of-the-art&#34; mass models, we propose a refinement based on a Bayesian Neural Network (BNN) formalism. A novel BNN approach is implemented with the goal of optimizing m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.06263v1-abstract-full').style.display = 'inline'; document.getElementById('1508.06263v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1508.06263v1-abstract-full" style="display: none;"> Besides their intrinsic nuclear-structure value, nuclear mass models are essential for astrophysical applications, such as r-process nucleosynthesis and neutron-star structure. To overcome the intrinsic limitations of existing &#34;state-of-the-art&#34; mass models, we propose a refinement based on a Bayesian Neural Network (BNN) formalism. A novel BNN approach is implemented with the goal of optimizing mass residuals between theory and experiment. A significant improvement (of about 40%) in the mass predictions of existing models is obtained after BNN refinement. Moreover, these improved results are now accompanied by proper statistical errors. Finally, by constructing a &#34;world average&#34; of these predictions, a mass model is obtained that is used to predict the composition of the outer crust of a neutron star. The power of the Bayesian neural network method has been successfully demonstrated by a systematic improvement in the accuracy of the predictions of nuclear masses. Extension to other nuclear observables is a natural next step that is currently under investigation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1508.06263v1-abstract-full').style.display = 'none'; document.getElementById('1508.06263v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures, submitted to Physical Review C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 93, 014311 (2016) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Piekarewicz%2C+J&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10