CINXE.COM
Fredholm determinant in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> Fredholm determinant in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="noindex,nofollow" /> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } </style> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- function updateSize(elt, w, h) { // adjust to the size of the user's browser area. // w and h are the original, unadjusted, width and height per row/column var parentheight = document.viewport.getHeight(); var parentwidth = $('Container').getWidth(); elt.writeAttribute({'cols': Math.floor(parentwidth/w) - 1, 'rows': Math.floor(parentheight/h) - 2 }); elt.setStyle({Width: parentwidth, Height: parentheight}); } function resizeableTextarea() { //make the textarea resize to fit available space $$('textarea#content').each( function(textarea) { var w = textarea.getWidth()/textarea.getAttribute('cols'); var h = textarea.getStyle('lineHeight').replace(/(\d*)px/, "$1"); Event.observe(window, 'resize', function(){ updateSize(textarea, w, h) }); updateSize(textarea, w, h); Form.Element.focus(textarea); }); } window.onload = function (){ resizeableTextarea(); } //--><!]]> </script> </head> <body> <div id="Container"> <textarea id='content' readonly=' readonly' rows='24' cols='60' >_Fredholm determinant_ is a generalization of a determinant of a finite-dimensional matrix to a class of operators on Banach spaces which differ from identity by a trace class operator or by an appropriate analogue in more abstract context (there are appropriate determinants on certain Banach ideals). It is often considered as an analytic function of a perturbation parameter $\lambda$. The calculations with Fredholm determinants have applications in operator theory, [[random matrix]] theory, integrable models etc. In his original setup, Fredholm attached the determinant $$ d(\lambda) = \sum_{n=0}^{\infty} \frac{\lambda^n}{n!}\int_a^b\int_a^b\ldots \int_a^b det((K(x_k, x_l))_{k,l=1}^n) d x_1 \cdots d x_n $$ to the Fredholm integral equation of the second kind $$ u(x) + \lambda \int^b_a K(x,y) u(y) d y = f(x), \,\,\,x\in (a,b), $$ and $d$ is an [[entire function]] of $\lambda$ such that $d(\lambda) \neq 0$ iff the integral equation has a unique solution. ## References #### General and mathematical * wikipedia [Fredholm determinant](http://en.wikipedia.org/wiki/Fredholm_determinant) * Albrecht Pietsch, _Operator ideals_, North-Holland Mathematical Library 20; _Eigenvalues and s-Numbers_, Cambridge Studies in Advanced Mathematics 13; _History of Banach spaces and linear operators_, sec 6.5.2 * [[Alexander Grothendieck]], _La th&#233;orie de Fredholm_, Bulletin de la Soci&#233;t&#233; Math&#233;matique de France __84__ (1956), p. 319-384, [numdam](http://www.numdam.org/item?id=BSMF_1956__84__319_0) * Fritz Gesztesy, Yuri Latushkin, Konstantin A. Makarov, _Evans functions, Jost functions and Fredholm determinants, Arch. Rational Mech. Anal. 186 (2007) 361&#8211;421,[doi](http://dx.doi.org/10.1007/s00205-007-0071-7) [pdf](http://www.math.missouri.edu/~yuri/preprints/EJF.pdf) * Barry Simon, _Notes on infinite determinants of Hilbert space operators_, Advances in Math. __24__ (1977), no. 3, 244&#8211;273 [MR482328](http://www.ams.org/mathscinet-getitem?mr=482328) <a href="http://dx.doi.org/10.1016/0001-8708(77)90057-3">doi</doi> * Folkmar Bornemann, _On the numerical evaluation of Fredholm determinants_, Math. Comp. 79 (2010), no. 270, 871&#8211;915 [MR2600548](http://www.ams.org/mathscinet-getitem?mr=2600548) [pdf](http://www-m3.ma.tum.de/foswiki/pub/M3/Allgemeines/FolkmarBornemannPublications/Fredholm.pdf) [doi](http://dx.doi.org/10.1090/S0025-5718-09-02280-7) #### Physics applications * F. J. Dyson, _Fredholm determinants and inverse scattering problems_, Comm. Math. Phys. 47, 171&#8211;183 (1976) [MR406201](http://www.ams.org/mathscinet-getitem?mr=406201) [euclid](http://projecteuclid.org/euclid.cmp/1103899727) * C. A. Tracy, H. Widom, _Fredholm determinants, differential equations and matrix models_, Commun. Math. Phys. __163__, 33&#8211;72 (1994) [MR1277933](http://www.ams.org/mathscinet-getitem?mr=1277933) [euclid](http://projecteuclid.org/getRecord?id=euclid.cmp/1104270379) * J. Harnad, Alexander R. Its, _Integrable Fredholm operators and dual isomonodromic deformations_, Comm. Math. Phys. 226 (2002), no. 3, 497&#8211;530 [MR1896879](http://www.ams.org/mathscinet-getitem?mr=1896879) [doi](http://dx.doi.org/10.1007/s002200200614) * M. Adler, [[M. Cafasso]], P. van Moerbeke, _Nonlinear PDEs for Fredholm determinants arising from string equations_, [arxiv/1207.6341](http://arxiv.org/abs/1207.6341) * M. Bertola, [[M. Cafasso]], _Fredholm determinants and pole-free solutions to the noncommutative Painlev&#233; II equation_, Comm. Math. Phys. __309__ (2012), no. 3, 793&#8211;833 [MR2885610](http://www.ams.org/mathscinet-getitem?mr=2885610) [doi](http://dx.doi.org/10.1007/s00220-011-1383-x) * Michio Jimbo, Tetsuji Miwa, Yasuko M&#244;ri, Mikio Sato, _Density matrix of an impenetrable Bose gas and the fifth Painlev&#233; transcendent_, Phys. D 1 (1980), no. 1, 80&#8211;158 [MR573370](http://www.ams.org/mathscinet-getitem?mr=573370) <a href="http://dx.doi.org/10.1016/0167-2789(8090006-8)"> category: functional analysis [[!redirects Fredholm determinants]]</textarea> </div> <!-- Container --> </body> </html>