CINXE.COM

Search results for: adjacent footings

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: adjacent footings</title> <meta name="description" content="Search results for: adjacent footings"> <meta name="keywords" content="adjacent footings"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="adjacent footings" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="adjacent footings"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 454</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: adjacent footings</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">454</span> Effect of Adjacent Footings on Elastic Settlement of Shallow Foundations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Aytekin">Mustafa Aytekin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, impact of adjacent footings is considered on the estimation of elastic settlement of shallow foundations. In the estimation of elastic settlement, the Schmertmann’s method that is a very popular method in the elastic settlement estimation of shallow foundations is employed. In order to consider affect of neighboring footings on elastic settlement of main footing in different configurations, a MATLAB script has been generated. Elastic settlements of the various configurations are estimated by the script and several conclusions have been reached. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20%28immediate%29%20settlement" title="elastic (immediate) settlement">elastic (immediate) settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=Schmertman%20Method" title=" Schmertman Method"> Schmertman Method</a>, <a href="https://publications.waset.org/abstracts/search?q=adjacent%20footings" title=" adjacent footings"> adjacent footings</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20foundations" title=" shallow foundations"> shallow foundations</a> </p> <a href="https://publications.waset.org/abstracts/3005/effect-of-adjacent-footings-on-elastic-settlement-of-shallow-foundations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">453</span> Effect of Footing Shape on Bearing Capacity and Settlement of Closely Spaced Footings on Sandy Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Shafaghat">A. Shafaghat</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Khabbaz"> H. Khabbaz</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Moravej"> S. Moravej</a>, <a href="https://publications.waset.org/abstracts/search?q=Ah.%20Shafaghat"> Ah. Shafaghat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bearing capacity of closely spaced shallow footings alters with their spacing and the shape of footing. In this study, the bearing capacity and settlement of two adjacent footings constructed on a sand layer are investigated. The effect of different footing shapes including square, circular, ring and strip on sandy soil is captured in the calculations. The investigations are carried out numerically using PLAXIS-3D software and analytically employing conventional settlement equations. For this purpose, foundations are modelled in the program with practical dimensions and various spacing ratios ranging from 1 to 5. The spacing ratio is defined as the centre-to-centre distance to the width of foundations (S/B). Overall, 24 models are analyzed; and the results are compared and discussed in detail. It can be concluded that the presence of adjacent foundation leads to the reduction in bearing capacity for round shape footings while it can increase the bearing capacity of rectangular footings in some specific distances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title="bearing capacity">bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=loose%20sand" title=" loose sand"> loose sand</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement%20equations" title=" settlement equations"> settlement equations</a>, <a href="https://publications.waset.org/abstracts/search?q=shallow%20foundation" title=" shallow foundation"> shallow foundation</a> </p> <a href="https://publications.waset.org/abstracts/101564/effect-of-footing-shape-on-bearing-capacity-and-settlement-of-closely-spaced-footings-on-sandy-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">452</span> Evaluating of Bearing Capacity of Two Adjacent Strip Foundations Located around a Soil Slip </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Meftahi">M. Meftahi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hoseinzadeh"> M. Hoseinzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Naeini"> S. A. Naeini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selection of soil bearing capacity is an important issue that should be investigated under different conditions. The bearing capacity of foundation around of soil slope is based on the active and passive forces. On the other hand, due to extension of urban structures, it is inevitable to put the foundations together. Concerning the two cases mentioned above, investigating the behavior of adjacent foundations which are constructed besides soil slope is essential. It should be noted that, according to the conditions, the bearing capacity of adjacent foundations can be less or more than mat foundations. Also, soil reinforcement increases the bearing capacity of adjacent foundations, and the amount of its increase depends on the distance between foundations. In this research, based on numerical studies, a method is presented for evaluating ultimate bearing capacity of adjacent foundations at different intervals. In the present study, the effect of foundation width, the center to center distance of adjacent foundations and reinforced soil has been investigated on the bearing capacity of adjacent foundations beside soil slope. The results indicate that, due to interference of failure surfaces created under foundation, it depends on their intervals and the ultimate bearing capacity of foundation varies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adjacent%20foundation" title="adjacent foundation">adjacent foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title=" bearing capacity"> bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcements" title=" reinforcements"> reinforcements</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a> </p> <a href="https://publications.waset.org/abstracts/107540/evaluating-of-bearing-capacity-of-two-adjacent-strip-foundations-located-around-a-soil-slip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">451</span> Investigation of Building Loads Effect on the Stability of Slope</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadj%20Brahim%20Mounia">Hadj Brahim Mounia</a>, <a href="https://publications.waset.org/abstracts/search?q=Belhamel%20Farid"> Belhamel Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Souici%20Messoud"> Souici Messoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In big cities, construction on sloping land (landslide) is becoming increasingly prevalent due to the unavailability of flat lands. This has created a major challenge for structural engineers with regard to structure design, due to the difficulties encountered during the implementation of projects, both for the structure and the soil. This paper analyses the effect of the number of floors of a building, founded on isolated footing on the stability of the slope using the computer code finite element PLAXIS 2D v. 8.2. The isolated footings of a building in this case were anchored in soil so that the levels of successive isolated footing realize a maximum slope of base of three for two heights, which connects the edges of the nearest footings, according to the Algerian building code DTR-BC 2.331: Shallow foundations. The results show that the embedment of the foundation into the soil reduces the value of the safety factor due to the change of the stress state of the soil by these foundations. The number of floors a building has also influences the safety factor. It has been noticed from this case of study that there is no risk of collapse of slopes for an inclination between 5&deg; and 8&deg;. In the case of slope inclination greater than 10&deg; it has been noticed that the urbanization is prohibited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isolated%20footings" title="isolated footings">isolated footings</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-storeys%20building" title=" multi-storeys building"> multi-storeys building</a>, <a href="https://publications.waset.org/abstracts/search?q=PLAXIS%202D" title=" PLAXIS 2D"> PLAXIS 2D</a>, <a href="https://publications.waset.org/abstracts/search?q=slope" title=" slope"> slope</a> </p> <a href="https://publications.waset.org/abstracts/55350/investigation-of-building-loads-effect-on-the-stability-of-slope" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">450</span> Circular Raft Footings Strengthened by Stone Columns under Static Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed">R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Mohammadi-Haji"> B. Mohammadi-Haji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stone columns have been widely employed to improve the load-settlement characteristics of soft soils. The results of two small scale displacement control loading tests on stone columns were used in order to validate numerical finite element simulations. Additionally, a series of numerical calculations of static loading have been performed on strengthened raft footing to investigate the effects of using stone columns on bearing capacity of footings. The bearing capacity of single and group of stone columns under static loading compares with unimproved ground. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20raft%20footing" title="circular raft footing">circular raft footing</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a>, <a href="https://publications.waset.org/abstracts/search?q=vertically%20encased%20stone%20column" title=" vertically encased stone column"> vertically encased stone column</a> </p> <a href="https://publications.waset.org/abstracts/43844/circular-raft-footings-strengthened-by-stone-columns-under-static-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">449</span> Seismic Analysis of Adjacent Buildings Connected with Dampers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devyani%20D.%20Samarth">Devyani D. Samarth</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachin%20V.%20Bakre"> Sachin V. Bakre</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratnesh%20Kumar"> Ratnesh Kumar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work deals with two buildings adjacent to each other connected with dampers. The “Imperial Valley Earthquake - El Centro", "May 18, 1940 earthquake time history is used for dynamic analysis of the system in the time domain. The effectiveness of fluid joint dampers is then investigated in terms of the reduction of displacement, acceleration and base shear responses of adjacent buildings. Finally, an extensive parametric study is carried out to find optimum damper properties like stiffness (Kd) and damping coefficient (Cd) for adjacent buildings. Results show that using fluid dampers to connect the adjacent buildings of different fundamental frequencies can effectively reduce earthquake-induced responses of either building if damper optimum properties are selected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation%20devices" title="energy dissipation devices">energy dissipation devices</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20history%20analysis" title=" time history analysis"> time history analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20damper" title=" viscous damper"> viscous damper</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20parameters" title=" optimum parameters"> optimum parameters</a> </p> <a href="https://publications.waset.org/abstracts/10751/seismic-analysis-of-adjacent-buildings-connected-with-dampers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">448</span> Effect of Slope Height and Horizontal Forces on the Bearing Capacity of Strip Footings near Slopes in Cohesionless Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sven%20Krabbenhoft">Sven Krabbenhoft</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristian%20Krabbenhoft"> Kristian Krabbenhoft</a>, <a href="https://publications.waset.org/abstracts/search?q=Lars%20Damkilde"> Lars Damkilde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of determining the bearing capacity of a strip foundation located near a slope of infinite height has been dealt with by several authors. Very often in practical problems the slope is of limited height, and furthermore the resulting load may be inclined at an angle to the horizontal, and in such cases the bearing capacity of the footing cannot be found using the existing methods. The present work comprises finite element based upper- and lower-bound calculations, using the geotechnical software OptumG2 to investigate the effect of the slope height and horizontal forces on the total bearing capacity, both without and with using superposition as presupposed in the traditional bearing capacity equation. The results for friction angles 30, 35 and 40 degrees, slope inclinations 1:2, 1:3 and 1:4, for selfweight and surcharge are given as charts showing the slope inclination factors suitable for design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=footings" title="footings">footings</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title=" bearing capacity"> bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=slopes" title=" slopes"> slopes</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesionnless%20soil" title=" cohesionnless soil"> cohesionnless soil</a> </p> <a href="https://publications.waset.org/abstracts/12708/effect-of-slope-height-and-horizontal-forces-on-the-bearing-capacity-of-strip-footings-near-slopes-in-cohesionless-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">447</span> Numerical Modeling of Geogrid Reinforced Soil Bed under Strip Footings Using Finite Element Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Gamal">Ahmed M. Gamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20M.%20Belal"> Adel M. Belal</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Elsoud"> S. A. Elsoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article aims to study the effect of reinforcement inclusions (geogrids) on the sand dunes bearing capacity under strip footings. In this research experimental physical model was carried out to study the effect of the first geogrid reinforcement depth (u/B), the spacing between the reinforcement (h/B) and its extension relative to the footing length (L/B) on the mobilized bearing capacity. This paper presents the numerical modeling using the commercial finite element package (PLAXIS version 8.2) to simulate the laboratory physical model, studying the same parameters previously handled in the experimental work (u/B, L/B & h/B) for the purpose of validation. In this study the soil, the geogrid, the interface element and the boundary condition are discussed with a set of finite element results and the validation. Then the validated FEM used for studying real material and dimensions of strip foundation. Based on the experimental and numerical investigation results, a significant increase in the bearing capacity of footings has occurred due to an appropriate location of the inclusions in sand. The optimum embedment depth of the first reinforcement layer (u/B) is equal to 0.25. The optimum spacing between each successive reinforcement layer (h/B) is equal to 0.75 B. The optimum Length of the reinforcement layer (L/B) is equal to 7.5 B. The optimum number of reinforcement is equal to 4 layers. The study showed a directly proportional relation between the number of reinforcement layer and the Bearing Capacity Ratio BCR, and an inversely proportional relation between the footing width and the BCR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20soil" title="reinforced soil">reinforced soil</a>, <a href="https://publications.waset.org/abstracts/search?q=geogrid" title=" geogrid"> geogrid</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20dunes" title=" sand dunes"> sand dunes</a>, <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title=" bearing capacity"> bearing capacity</a> </p> <a href="https://publications.waset.org/abstracts/40815/numerical-modeling-of-geogrid-reinforced-soil-bed-under-strip-footings-using-finite-element-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">446</span> Numerical Investigation on the Effects of Deep Excavation on Adjacent Pile Groups Subjected to Inclined Loading </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Shafee">Ashkan Shafee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Fahimifar"> Ahmad Fahimifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a growing demand for construction of high-rise buildings and infrastructures in large cities, which sometimes require deep excavations in the vicinity of pile foundations. In this study, a two-dimensional finite element analysis is used to gain insight into the response of pile groups adjacent to deep excavations in sand. The numerical code was verified by available experimental works, and a parametric study was performed on different working load combinations, excavation depth and supporting system. The results show that the simple two-dimensional plane strain model can accurately simulate the excavation induced changes on adjacent pile groups. It was found that further excavation than pile toe level and also inclined loading on adjacent pile group can severely affect the serviceability of the foundation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20excavation" title="deep excavation">deep excavation</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20loading" title=" inclined loading"> inclined loading</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20deformation" title=" lateral deformation"> lateral deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20group" title=" pile group"> pile group</a> </p> <a href="https://publications.waset.org/abstracts/95108/numerical-investigation-on-the-effects-of-deep-excavation-on-adjacent-pile-groups-subjected-to-inclined-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">445</span> Circular Raft Footings Strengthened by Stone Columns under Dynamic Harmonic Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed">R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mahigir"> A. Mahigir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stone column technique has been successfully employed to improve the load-settlement characteristics of foundations. A series of finite element numerical analyses of harmonic dynamic loading have been conducted on strengthened raft footing to study the effects of single and group stone columns on settlement of circular footings. The settlement of circular raft footing that improved by single and group of stone columns are studied under harmonic dynamic loading. This loading is caused by heavy machinery foundations. A detailed numerical investigation on behavior of single column and group of stone columns is carried out by varying parameters like weight of machinery, loading frequency and period. The result implies that presence of single and group of stone columns enhanced dynamic behavior of the footing so that the maximum and residual settlement of footing significantly decreased.&nbsp; <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title="finite element analysis">finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20loading" title=" harmonic loading"> harmonic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20column" title=" stone column"> stone column</a> </p> <a href="https://publications.waset.org/abstracts/78842/circular-raft-footings-strengthened-by-stone-columns-under-dynamic-harmonic-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">444</span> Vibration Control of Two Adjacent Structures Using a Non-Linear Damping System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soltani%20Amir">Soltani Amir</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Xuan"> Wang Xuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advantage of using non-linear passive damping system in vibration control of two adjacent structures is investigated under their base excitation. The base excitation is El Centro earthquake record acceleration. The damping system is considered as an optimum and effective non-linear viscous damper that is connected between two adjacent structures. A Matlab program is developed to produce the stiffness and damping matrices and to determine a time history analysis of the dynamic motion of the system. One structure is assumed to be flexible while the other has a rule as laterally supporting structure with rigid frames. The response of the structure has been calculated and the non-linear damping coefficient is determined using optimum LQR algorithm in an optimum vibration control system. The non-linear parameter of damping system is estimated and it has shown a significant advantage of application of this system device for vibration control of two adjacent tall building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20control" title="active control">active control</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20control" title=" passive control"> passive control</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20dampers" title=" viscous dampers"> viscous dampers</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20control" title=" structural control"> structural control</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20control" title=" vibration control"> vibration control</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20building" title=" tall building"> tall building</a> </p> <a href="https://publications.waset.org/abstracts/5867/vibration-control-of-two-adjacent-structures-using-a-non-linear-damping-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">443</span> Tooth Fractures Following the Placement of Adjacent Dental Implants: A Case Series and a Systematic Review of the Literature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eyal%20Rosen">Eyal Rosen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is aimed to report a possible effect of the presence of dental implants on the development of crown or root fractures in adjacent natural teeth. A series of 26 cases of teeth diagnosed with crown or root fractures following the placement of adjacent dental implants is presented. In addition, a comprehensive systematic review of the literature was performed to detect other studies that evaluated this possible complication. The case series analysis revealed that all crown-fractured teeth were non-endodontically treated teeth (n=18), and all root fractured teeth were endodontically treated teeth (n=8). The time from implant loading to the diagnosis of a fracture in an adjacent tooth was longer than 1 year in 78% of cases. The majority of crown or root fractures occurred in female patients, over 50 years of age, with an average age of 59 in the crown fractures group, and 54 in the root fractures group. Most of the patients received 2 or more implants. Nine (50%) of the teeth with crown fracture were molars, 7 (39%) were mandibular premolars, and 2 (11%) were incisor teeth. The majority of teeth with root fracture were premolar or mandibular molar teeth (6 (75%)). The systematic review of the literature did not reveal additional studies that reported on this possible complication. To the best of the author’s knowledge this case series, although limited in its extent, is the first clinical report of a possible serious complication of implants, associated fractures in adjacent endodontically and non-endodontically treated natural teeth. The most common patient profile found in this series was a woman over 50 years of age, having a fractured premolar tooth, which was diagnosed more than 1 year after reconstruction that was based on multiple adjacent implants. Additional clinical studies are required in order to shed light on this potential serious complication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complications" title="complications">complications</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20implants" title=" dental implants"> dental implants</a>, <a href="https://publications.waset.org/abstracts/search?q=endodontics" title=" endodontics"> endodontics</a>, <a href="https://publications.waset.org/abstracts/search?q=fractured%20teeth" title=" fractured teeth"> fractured teeth</a> </p> <a href="https://publications.waset.org/abstracts/93087/tooth-fractures-following-the-placement-of-adjacent-dental-implants-a-case-series-and-a-systematic-review-of-the-literature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">442</span> Comparative Analysis of Hybrid Dynamic Stabilization and Fusion for Degenerative Disease of the Lumbosacral Spine: Finite Element Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Bendoukha">Mohamed Bendoukha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Mosbah"> Mustapha Mosbah </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Radiographic apparent assumed that the asymptomatic adjacent segment disease ASD is common after lumbar fusion, but this does not correlate with the functional outcomes while compensatory increased motion and stresses at the adjacent level of fusion is well-known to be associated to ASD. Newly developed, the hybrid stabilization are allocated to substituted for mostly the superior level of the fusion in an attempt to reduce the number of fusion levels and likelihood of degeneration process at the adjacent levels during the fusion with pedicle screws. Nevertheless, its biomechanical efficiencies still remain unknown and complications associated with failure of constructs such screw loosening and toggling should be elucidated In the current study, a finite element (FE) study was performed using a validated L2/S1 model subjected to a moment of 7.5 Nm and follower load of 400 N to assess the biomedical behavior of hybrid constructs based on dynamic topping off, semi rigid fusion. The residual range of motion (ROM), stress distribution at the fused and adjacent levels, stress distribution at the disc and the cage-endplate interface with respect to changes of bone quality were investigated. The hybrid instrumentation was associated with a reduction in compressive stresses compared to the fusion construct in the adjacent-level disc and showed high substantial axial force in the implant while fusion instrumentation increased the motion for both flexion and extension. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intervertebral%20disc" title="intervertebral disc">intervertebral disc</a>, <a href="https://publications.waset.org/abstracts/search?q=lumbar%20spine" title=" lumbar spine"> lumbar spine</a>, <a href="https://publications.waset.org/abstracts/search?q=degenerative%20nuclesion" title=" degenerative nuclesion"> degenerative nuclesion</a>, <a href="https://publications.waset.org/abstracts/search?q=L4-L5" title=" L4-L5"> L4-L5</a>, <a href="https://publications.waset.org/abstracts/search?q=range%20of%20motion%20finite%20element%20model" title=" range of motion finite element model"> range of motion finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperelasticy" title=" hyperelasticy"> hyperelasticy</a> </p> <a href="https://publications.waset.org/abstracts/89019/comparative-analysis-of-hybrid-dynamic-stabilization-and-fusion-for-degenerative-disease-of-the-lumbosacral-spine-finite-element-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">441</span> Effect of Cantilever Sheet Pile Wall to Adjacent Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Mohamed%20Aly">Ahmed A. Mohamed Aly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ground movements induced from excavations is a major cause of deformation and damage to the adjacent buildings and utilities. With the increasing rate of construction work in urban area, this problem is growing more significant and has become the cause of numerous legal disputes. This problem is investigated numerically in the present study using finite element method. Five-story reinforced concrete building rests on raft foundation is idealized as two dimensional model. The building is considered to be constructed adjacent to excavation affected by an adjacent excavation in medium sand. Excavation is supported using sheet pile wall. Two dimensional plane strain program PLAXIS is used in this study. 15 nodes triangular element is used to idealize soil with Mohr-Coulomb model. Five nodes isoperimetric beam element is used to idealize sheet pile and building. Interface element is used to represent the contact between beam element and soil. Two parameters were studied, the first is the foundation depth and the second is the building distance from the excavation. Nodal displacements and elements straining actions were obtained and studied from the analyzed finite element model results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=excavation" title="excavation">excavation</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20distance" title=" relative distance"> relative distance</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20stresses" title=" effective stresses"> effective stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20deformation" title=" lateral deformation"> lateral deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20depth" title=" relative depth"> relative depth</a> </p> <a href="https://publications.waset.org/abstracts/112507/effect-of-cantilever-sheet-pile-wall-to-adjacent-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">440</span> The Interaction of Adjacent Defects and the Effect on the Failure Pressure of the Corroded Pipeline</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Wang">W. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Zhang"> Y. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Shuai"> J. Shuai</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Lv"> Z. Lv</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interaction between defects has an essential influence on the bearing capacity of pipelines. This work developed the finite element model of pipelines containing adjacent defects, which includes longitudinally aligned, circumferentially aligned, and diagonally aligned defects. The relationships between spacing and geometries of defects and the failure pressure of pipelines, and the interaction between defects are investigated. The results show that the orientation of defects is an influential factor in the failure pressure of the pipeline. The influence of defect spacing on the failure pressure of the pipeline is non-linear, and the relationship presents different trends depending on the orientation of defects. The increase of defect geometry will weaken the failure pressure of the pipeline, and for the interaction between defects, the increase of defect depth will enhance it, and the increase of defect length will weaken it. According to the research on the interaction rule between defects with different orientations, the interacting coefficients under different orientations of defects are compared. It is determined that the diagonally aligned defects with the overlap of longitudinal projections are the most obvious arrangement of interaction between defects, and the limited distance of interaction between defects is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pipeline" title="pipeline">pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=adjacent%20defects" title=" adjacent defects"> adjacent defects</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20between%20defects" title=" interaction between defects"> interaction between defects</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20pressure" title=" failure pressure"> failure pressure</a> </p> <a href="https://publications.waset.org/abstracts/155026/the-interaction-of-adjacent-defects-and-the-effect-on-the-failure-pressure-of-the-corroded-pipeline" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">439</span> The Effect of Jet Grouting on the Behavior of Strip Footing Adjacent to Slope Crest</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20El-Tuhami">Ahmed M. El-Tuhami</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Mohamed"> Ahmed A. Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies the behavior of strip footing adjacent to slope crest and the effect of jet grouting under the footing. This problem is investigated numerically in the present study. Two dimensional plane strain program PLAXIS is used in this study. 15 nodes triangular element is used to idealize soil with hardening soil model. Five nodes isoperimetric beam element is used to idealize stripe footing. Interface element is used to represent the contact between beam element and soil. Two parameters were studied, the first is the foundation depth and the second is the Stripe footing distance from the slope crest. Settlement and horizontal displacement of strip footing were obtained and studied from the analyzed finite element model results. The reduction influence of jet grouting on footing displacement were studied and investigated. The results indicate that the inclusion of jet grouting under strip footing adjacent to slope crest has significant effect in improving the response of the strip footing and the slope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=strip%20footing" title="strip footing">strip footing</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20grouting" title=" jet grouting"> jet grouting</a>, <a href="https://publications.waset.org/abstracts/search?q=slope" title=" slope"> slope</a>, <a href="https://publications.waset.org/abstracts/search?q=PLAXIS" title=" PLAXIS"> PLAXIS</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20distance" title=" relative distance"> relative distance</a> </p> <a href="https://publications.waset.org/abstracts/6092/the-effect-of-jet-grouting-on-the-behavior-of-strip-footing-adjacent-to-slope-crest" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">438</span> A Comparative Analysis of the Indoor Thermal Environment of a Room with and without Transitional Space or Threshold in Traditional Row Houses Adjacent to a Narrow Alley &#039;Rupchan Lane&#039; in Old Dhaka, Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatema%20Tasmia">Fatema Tasmia</a>, <a href="https://publications.waset.org/abstracts/search?q=Brishti%20Majumder"> Brishti Majumder</a>, <a href="https://publications.waset.org/abstracts/search?q=Atiqur%20Rahman"> Atiqur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Attaining appropriate thermal comfort conditions in a place where the climate is hot and humid can be perplexing. Especially, when it resides at a congested place like old Dhaka Bangladesh, the provision of giving cross ventilation and building with proper orientation is quite difficult. This paper aims to investigate the indoor thermal environment of a room with and without transitional space or threshold in traditional row houses adjacent to a narrow alley of old Dhaka through field measurements. Transitional spaces are the part of buildings which are used for semi-outdoor household activities, social gathering and it is also proved to provide an indoor thermal effect. The field study was conducted by collecting thermal data (temperature, humidity and airflow) respectively, among the outdoor narrow alley, transitional space and adjacent indoor. This east-west elongated alley has an average width of 2.13 meter (varies from 1.5 to 2.6 meter) holding row houses on both sides. Among different aspects of thermal environment, the study of this paper is based on the analysis of temperature of corresponding cases. Other aspects and their variables were considered as constant (especially material) for accuracy and avoidance of confusion. This study focuses on the outcome that can ultimately contribute to the configuration of row houses with transitional spaces and in its relation to the adjacent outdoor space while achieving thermal comfort. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alley" title="alley">alley</a>, <a href="https://publications.waset.org/abstracts/search?q=Old-Dhaka" title=" Old-Dhaka"> Old-Dhaka</a>, <a href="https://publications.waset.org/abstracts/search?q=row%20houses" title=" row houses"> row houses</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold" title=" threshold"> threshold</a>, <a href="https://publications.waset.org/abstracts/search?q=transitional%20space" title=" transitional space"> transitional space</a> </p> <a href="https://publications.waset.org/abstracts/88256/a-comparative-analysis-of-the-indoor-thermal-environment-of-a-room-with-and-without-transitional-space-or-threshold-in-traditional-row-houses-adjacent-to-a-narrow-alley-rupchan-lane-in-old-dhaka-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">437</span> Location-Domination on Join of Two Graphs and Their Complements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Analen%20Malnegro">Analen Malnegro</a>, <a href="https://publications.waset.org/abstracts/search?q=Gina%20Malacas"> Gina Malacas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dominating sets and related topics have been studied extensively in the past few decades. A dominating set of a graph G is a subset D of V such that every vertex not in D is adjacent to at least one member of D. The domination number γ(G) is the number of vertices in a smallest dominating set for G. Some problems involving detection devices can be modeled with graphs. Finding the minimum number of devices needed according to the type of devices and the necessity of locating the object gives rise to locating-dominating sets. A subset S of vertices of a graph G is called locating-dominating set, LD-set for short, if it is a dominating set and if every vertex v not in S is uniquely determined by the set of neighbors of v belonging to S. The location-domination number λ(G) is the minimum cardinality of an LD-set for G. The complement of a graph G is a graph Ḡ on same vertices such that two distinct vertices of Ḡ are adjacent if and only if they are not adjacent in G. An LD-set of a graph G is global if it is an LD-set of both G and its complement Ḡ. The global location-domination number λg(G) is defined as the minimum cardinality of a global LD-set of G. In this paper, global LD-sets on the join of two graphs are characterized. Global location-domination numbers of these graphs are also determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dominating%20set" title="dominating set">dominating set</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20locating-dominating%20set" title=" global locating-dominating set"> global locating-dominating set</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20location-domination%20number" title=" global location-domination number"> global location-domination number</a>, <a href="https://publications.waset.org/abstracts/search?q=locating-dominating%20set" title=" locating-dominating set"> locating-dominating set</a>, <a href="https://publications.waset.org/abstracts/search?q=location-domination%20number" title=" location-domination number"> location-domination number</a> </p> <a href="https://publications.waset.org/abstracts/92257/location-domination-on-join-of-two-graphs-and-their-complements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">436</span> Cooperative Scheme Using Adjacent Base Stations in Wireless Communication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young-Min%20Ko">Young-Min Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Jun%20Yu"> Seung-Jun Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Bin%20Ha"> Chang-Bin Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyoung-Kyu%20Song"> Hyoung-Kyu Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a wireless communication system, the failure of base station can result in a communication disruption in the cell. This paper proposes a way to deal with the failure of base station in a wireless communication system based on OFDM. Cooperative communication of the adjacent base stations can be a solution of the problem. High performance is obtained by the configuration of transmission signals which is applied CDD scheme in the cooperative communication. The Cooperative scheme can be a effective solution in case of the particular situation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base%20station" title="base station">base station</a>, <a href="https://publications.waset.org/abstracts/search?q=CDD" title=" CDD"> CDD</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDM" title=" OFDM"> OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity%20gain" title=" diversity gain"> diversity gain</a>, <a href="https://publications.waset.org/abstracts/search?q=MIMO" title=" MIMO"> MIMO</a> </p> <a href="https://publications.waset.org/abstracts/43012/cooperative-scheme-using-adjacent-base-stations-in-wireless-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">435</span> Application of Particle Image Velocimetry in the Analysis of Scale Effects in Granular Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zuhair%20Kadhim%20Jahanger">Zuhair Kadhim Jahanger</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Joseph%20Antony"> S. Joseph Antony</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The available studies in the literature which dealt with the scale effects of strip footings on different sand packing systematically still remain scarce. In this research, the variation of ultimate bearing capacity and deformation pattern of soil beneath strip footings of different widths under plane-strain condition on the surface of loose, medium-dense and dense sand have been systematically studied using experimental and noninvasive methods for measuring microscopic deformations. The presented analyses are based on model scale compression test analysed using Particle Image Velocimetry (PIV) technique. Upper bound analysis of the current study shows that the maximum vertical displacement of the sand under the ultimate load increases for an increase in the width of footing, but at a decreasing rate with relative density of sand, whereas the relative vertical displacement in the sand decreases for an increase in the width of the footing. A well agreement is observed between experimental results for different footing widths and relative densities. The experimental analyses have shown that there exists pronounced scale effect for strip surface footing. The bearing capacity factors <em>N&gamma;</em> rapidly decrease up to footing widths <em>B</em>=0.25 m, 0.35 m, and 0.65 m for loose, medium-dense and dense sand respectively, after that there is no significant decrease in <em>N&gamma;</em>. The deformation modes of the soil as well as the ultimate bearing capacity values have been affected by the footing widths. The obtained results could be used to improve settlement calculation of the foundation interacting with granular soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DPIV" title="DPIV">DPIV</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20mechanics" title=" granular mechanics"> granular mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=scale%20effect" title=" scale effect"> scale effect</a>, <a href="https://publications.waset.org/abstracts/search?q=upper%20bound%20analysis" title=" upper bound analysis"> upper bound analysis</a> </p> <a href="https://publications.waset.org/abstracts/72946/application-of-particle-image-velocimetry-in-the-analysis-of-scale-effects-in-granular-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">434</span> Energy Unchained: An Analysis of Affordances of the Blockchain Technology in the Energy Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jonas%20Kahlert">Jonas Kahlert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Blockchain technology has gained importance and momentum in the energy sector. Yet, there is no structured analysis of how specific features of the blockchain technology can create value in the energy sector. We employ a qualitative analysis on insights gained from the current literature and expert interviews. Along the four most prevalent use cases of blockchain technology in the energy sector, we discuss the potential of blockchain technology to support a transition to a more affordable, sustainable and reliable energy system. We show that in its current state, blockchain and adjacent technologies are not a necessity but a sufficiency towards this transition. We also show how current limitations of the blockchain and adjacent technologies can be even counterproductive. Finally, we discuss implications for policy makers and managers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blockchain%20technology" title="blockchain technology">blockchain technology</a>, <a href="https://publications.waset.org/abstracts/search?q=affordance%20theory" title=" affordance theory"> affordance theory</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20trilemma" title=" energy trilemma"> energy trilemma</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/71781/energy-unchained-an-analysis-of-affordances-of-the-blockchain-technology-in-the-energy-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">433</span> Normalized Laplacian Eigenvalues of Graphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaowei%20Sun">Shaowei Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let G be a graph with vertex set V(G)={v_1,v_2,...,v_n} and edge set E(G). For any vertex v belong to V(G), let d_v denote the degree of v. The normalized Laplacian matrix of the graph G is the matrix where the non-diagonal (i,j)-th entry is -1/(d_id_j) when vertex i is adjacent to vertex j and 0 when they are not adjacent, and the diagonal (i,i)-th entry is the di. In this paper, we discuss some bounds on the largest and the second smallest normalized Laplacian eigenvalue of trees and graphs. As following, we found some new bounds on the second smallest normalized Laplacian eigenvalue of tree T in terms of graph parameters. Moreover, we use Sage to give some conjectures on the second largest and the third smallest normalized eigenvalues of graph. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graph" title="graph">graph</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20Laplacian%20eigenvalues" title=" normalized Laplacian eigenvalues"> normalized Laplacian eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20Laplacian%20matrix" title=" normalized Laplacian matrix"> normalized Laplacian matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=tree" title=" tree"> tree</a> </p> <a href="https://publications.waset.org/abstracts/41326/normalized-laplacian-eigenvalues-of-graphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">432</span> Numerical Modelling of Prestressed Geogrid Reinforced Soil System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soukat%20Kumar%20Das">Soukat Kumar Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid industrialization and increase in population has resulted in the scarcity of suitable ground conditions. It has driven the need of ground improvement by means of reinforcement with geosynthetics with the minimum possible settlement and with maximum possible safety. Prestressing the geosynthetics offers an economical yet safe method of gaining the goal. Commercially available software PLAXIS 3D has made the analysis of prestressed geosynthetics simpler with much practical simulations of the ground. Attempts have been made so far to analyse the effect of prestressing geosynthetics and the effect of interference of footing on Unreinforced (UR), Geogrid Reinforced (GR) and Prestressed Geogrid Reinforced (PGR) soil on the load bearing capacity and the settlement characteristics of prestressed geogrid reinforced soil using the numerical analysis by using the software PLAXIS 3D. The results of the numerical analysis have been validated and compared with those given in the referred paper. The results have been found to be in very good agreement with those of the actual field values with very small variation. The GR soil has been found to be improve the bearing pressure 240 % whereas the PGR soil improves it by almost 500 % for 1mm settlement. In fact, the PGR soil has enhanced the bearing pressure of the GR soil by almost 200 %. The settlement reduction has also been found to be very significant as for 100 kPa bearing pressure the settlement reduction of the PGR soil has been found to be about 88 % with respect to UR soil and it reduced to up to 67 % with respect to GR soil. The prestressing force has resulted in enhanced reinforcement mechanism, resulting in the increased bearing pressure. The deformation at the geogrid layer has been found to be 13.62 mm for GR soil whereas it decreased down to mere 3.5 mm for PGR soil which certainly ensures the effect of prestressing on the geogrid layer. The parameter Improvement factor or conventionally known as Bearing Capacity Ratio for different settlements and which depicts the improvement of the PGR with respect to UR and GR soil and the improvement of GR soil with respect to UR soil has been found to vary in the range of 1.66-2.40 in the present analysis for GR soil and was found to be vary between 3.58 and 5.12 for PGR soil with respect to UR soil. The effect of prestressing was also observed in case of two interfering square footings. The centre to centre distance between the two footings (SFD) was taken to be B, 1.5B, 2B, 2.5B and 3B where B is the width of the footing. It was found that for UR soil the improvement of the bearing pressure was up to 1.5B after which it remained almost same. But for GR soil the zone of influence rose up to 2B and for PGR it further went up to 2.5B. So the zone of interference for PGR soil has increased by 67% than Unreinforced (UR) soil and almost 25 % with respect to GR soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing" title="bearing">bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=geogrid" title=" geogrid"> geogrid</a>, <a href="https://publications.waset.org/abstracts/search?q=prestressed" title=" prestressed"> prestressed</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced" title=" reinforced"> reinforced</a> </p> <a href="https://publications.waset.org/abstracts/35804/numerical-modelling-of-prestressed-geogrid-reinforced-soil-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">431</span> Characteristics of Speed Dispersion in Urban Expressway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fujian%20Wang">Fujian Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shubin%20Ruan"> Shubin Ruan</a>, <a href="https://publications.waset.org/abstracts/search?q=Meiwei%20Dai"> Meiwei Dai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Speed dispersion has tight relation to traffic safety. In this paper, several kinds of indicating parameters (the standard speed deviation, the coefficient of variation, the deviation of V85 and V15, the mean speed deviations, and the difference between adjacent car speeds) are applied to investigate the characteristics of speed dispersion, where V85 and V15 are 85th and 15th percentile speed, respectively. Their relationships are into full investigations and the results show that: there exists a positive relation (linear) between mean speed and the deviation of V85 and V15; while a negative relation (quadratic) between traffic flow and standard speed deviation. The mean speed deviation grows exponentially with mean speed while the absolute speed deviation between adjacent cars grows linearly with the headway. The results provide some basic information for traffic management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=headway" title="headway">headway</a>, <a href="https://publications.waset.org/abstracts/search?q=indicating%20parameters" title=" indicating parameters"> indicating parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20dispersion" title=" speed dispersion"> speed dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20expressway" title=" urban expressway"> urban expressway</a> </p> <a href="https://publications.waset.org/abstracts/47095/characteristics-of-speed-dispersion-in-urban-expressway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">430</span> On the Seismic Response of Collided Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20D.%20Hatzigeorgiou">George D. Hatzigeorgiou</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikos%20G.%20Pnevmatikos"> Nikos G. Pnevmatikos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the inelastic behavior of adjacent planar reinforced concrete (R.C.) frames subjected to strong ground motions. The investigation focuses on the effects of vertical ground motion on the seismic pounding. The examined structures are modeled and analyzed by RUAUMOKO dynamic nonlinear analysis program using reliable hysteretic models for both structural members and contact elements. It is found that the vertical ground motion mildly affects the seismic response of adjacent buildings subjected to structural pounding and, for this reason, it can be ignored from the displacement and interstorey drifts assessment. However, the structural damage is moderately affected by the vertical component of earthquakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20seismic%20behavior" title="nonlinear seismic behavior">nonlinear seismic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20structures" title=" reinforced concrete structures"> reinforced concrete structures</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20pounding" title=" structural pounding"> structural pounding</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20ground%20motions" title=" vertical ground motions"> vertical ground motions</a> </p> <a href="https://publications.waset.org/abstracts/7892/on-the-seismic-response-of-collided-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">592</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">429</span> A Discovery on the Symmetrical Pattern of Mirror Primes in P²: Applications in the Formal Proof of the Goldbach Conjecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yingxu%20Wang">Yingxu Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The base 6 structure and properties of mirror primes are discovered in this work towards the proof of Goldbach Conjecture. This paper reveals a fundamental pattern on pairs of mirror primes adjacent to any even number nₑ > 2 with symmetrical distances on both sides determined by a methodology of Mirror Prime Decomposition (MPD). MPD leads to a formal proof of the Goldbach conjecture, which states that the conjecture holds because any pivot even number, nₑ > 2, is a sum of at least an adjacent pair of primes divided by 2. This work has not only revealed the analytic pattern of base 6 primes but also proven the infinitive validation of the Goldbach conjecture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=number%20theory" title="number theory">number theory</a>, <a href="https://publications.waset.org/abstracts/search?q=primes" title=" primes"> primes</a>, <a href="https://publications.waset.org/abstracts/search?q=mirror%20primes" title=" mirror primes"> mirror primes</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20recursive%20patterns" title=" double recursive patterns"> double recursive patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=Goldbach%20conjecture" title=" Goldbach conjecture"> Goldbach conjecture</a>, <a href="https://publications.waset.org/abstracts/search?q=formal%20proof" title=" formal proof"> formal proof</a>, <a href="https://publications.waset.org/abstracts/search?q=mirror-prime%20decomposition" title=" mirror-prime decomposition"> mirror-prime decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=applications" title=" applications"> applications</a> </p> <a href="https://publications.waset.org/abstracts/181850/a-discovery-on-the-symmetrical-pattern-of-mirror-primes-in-p2-applications-in-the-formal-proof-of-the-goldbach-conjecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">428</span> Effects of Earthquake Induced Debris to Pedestrian and Community Street Network Resilience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Amin">Al-Amin</a>, <a href="https://publications.waset.org/abstracts/search?q=Huanjun%20Jiang"> Huanjun Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Anayat%20Ali"> Anayat Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete frames (RC), especially Ordinary RC frames, are prone to structural failures/collapse during seismic events, leading to a large proportion of debris from the structures, which obstructs adjacent areas, including streets. These blocked areas severely impede post-earthquake resilience. This study uses computational simulation (FEM) to investigate the amount of debris generated by the seismic collapse of an ordinary reinforced concrete moment frame building and its effects on the adjacent pedestrian and road network. A three-story ordinary reinforced concrete frame building, primarily designed for gravity load and earthquake resistance, was selected for analysis. Sixteen different ground motions were applied and scaled up until the total collapse of the tested building to evaluate the failure mode under various seismic events. Four types of collapse direction were identified through the analysis, namely aligned (positive and negative) and skewed (positive and negative), with aligned collapse being more predominant than skewed cases. The amount and distribution of debris around the collapsed building were assessed to investigate the interaction between collapsed buildings and adjacent street networks. An interaction was established between a building that collapsed in an aligned direction and the adjacent pedestrian walkway and narrow street located in an unplanned old city. The FEM model was validated against an existing shaking table test. The presented results can be utilized to simulate the interdependency between the debris generated from the collapse of seismic-prone buildings and the resilience of street networks. These findings provide insights for better disaster planning and resilient infrastructure development in earthquake-prone regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20collapse" title="building collapse">building collapse</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake-induced%20debris" title=" earthquake-induced debris"> earthquake-induced debris</a>, <a href="https://publications.waset.org/abstracts/search?q=ORC%20moment%20resisting%20frame" title=" ORC moment resisting frame"> ORC moment resisting frame</a>, <a href="https://publications.waset.org/abstracts/search?q=street%20network" title=" street network"> street network</a> </p> <a href="https://publications.waset.org/abstracts/163300/effects-of-earthquake-induced-debris-to-pedestrian-and-community-street-network-resilience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">427</span> Spatio-Temporal Variability in Reciprocal Resource Subsidies across Adjacent Terrestrial and Aquatic Eastern Cape Ecosystems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tiyisani%20L.%20Chavalala">Tiyisani L. Chavalala</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicole%20B.%20Richoux"> Nicole B. Richoux</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20H.%20Villet"> Martin H. Villet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rivers and their adjacent ecosystems are linked by reciprocal ecological subsidies. Rivers receive nutrients and energy from land, and these transfers can represent important food subsidies, a phenomenon known as allochthony. Emergence of adult aquatic invertebrates can also provide important food sources to terrestrial consumers. Reciprocal subsidies are influenced by factors such as canopy cover, river flow rate and channel width, which can be highly variable through space and time. The aim of this study is to identify and quantify the main trophic links between adjacent ecosystems (terrestrial and freshwater systems) in several Eastern Cape Rivers with different catchment sizes and flow rates and to develop an understanding of the factors that affect the strength of these links and their spatial dynamics. Food sources and consumers were sampled during four seasons (August 2016, November 2016, February 2017 and May 2017), and stable isotope ratios will serve as tracers to estimate the food web structures. Emergence traps are being used to quantify the rates of emergence of adult aquatic insects, and infall-pan traps are being used to quantify the terrestrial insects falling into rivers as potential food subsidies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emerging%20aquatic%20insects" title="emerging aquatic insects">emerging aquatic insects</a>, <a href="https://publications.waset.org/abstracts/search?q=in-falling%20terrestrial%20insects" title=" in-falling terrestrial insects"> in-falling terrestrial insects</a>, <a href="https://publications.waset.org/abstracts/search?q=reciprocal%20resource%20subsidies" title=" reciprocal resource subsidies"> reciprocal resource subsidies</a>, <a href="https://publications.waset.org/abstracts/search?q=stable%20isotopes" title=" stable isotopes"> stable isotopes</a> </p> <a href="https://publications.waset.org/abstracts/80313/spatio-temporal-variability-in-reciprocal-resource-subsidies-across-adjacent-terrestrial-and-aquatic-eastern-cape-ecosystems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">426</span> Transversal Connection Strengthening of T Section Beam Bridge with Brace System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen%20Chen">Chen Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> T section beam bridge has been widely used in China as it is low cost and easy to erect. Some of T section beam bridges only have end diagrams and the adjacent girders are connected by wet-joint along span, which leads to the damage of transversal connection becomes a serious problem in operation and maintenance. This paper presents a brace system to strengthen the transversal connection of T section beam bridge. The strengthening effect was discussed by experiments and finite element analysis. The results show that the proposed brace system can improve load transfer between adjacent girders. Based on experiments and FEA model, displacement of T section beam with proposed brace system reduced 14.9% and 19.1% respectively. Integral rigidity increased 19.4% by static experiments. The transversal connection of T section beam bridge can be improved efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experiment" title="experiment">experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=T%20section%20beam%20bridge" title=" T section beam bridge"> T section beam bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=transversal%20connection" title=" transversal connection"> transversal connection</a> </p> <a href="https://publications.waset.org/abstracts/78983/transversal-connection-strengthening-of-t-section-beam-bridge-with-brace-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">425</span> Investigation of Building Pounding during Earthquake and Calculation of Impact Force between Two Adjacent Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Naderpour">H. Naderpour</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20C.%20Barros"> R. C. Barros</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Khatami"> S. M. Khatami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic excitation is naturally caused large horizontal relative displacements, which is able to provide collisions between two adjacent buildings due to insufficient separation distance and severe damages are occurred due to impact especially in tall buildings. In this paper, an impact is numerically simulated and two needed parameters are calculated, including impact force and energy absorption. In order to calculate mentioned parameters, mathematical study needs to model an unreal link element, which is logically assumed to be spring and dashpot to determine lateral displacement and damping ratio of impact. For the determination of dynamic response of impact, a new equation of motion is theoretically suggested to evaluate impact force and energy dissipation. In order to confirm the rendered equation, a series of parametric study are performed and the accuracy of formula is confirmed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pounding" title="pounding">pounding</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipated%20energy" title=" dissipated energy"> dissipated energy</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficient%20of%20restitution" title=" coefficient of restitution"> coefficient of restitution</a> </p> <a href="https://publications.waset.org/abstracts/43715/investigation-of-building-pounding-during-earthquake-and-calculation-of-impact-force-between-two-adjacent-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adjacent%20footings&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adjacent%20footings&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adjacent%20footings&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adjacent%20footings&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adjacent%20footings&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adjacent%20footings&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adjacent%20footings&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adjacent%20footings&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adjacent%20footings&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adjacent%20footings&amp;page=15">15</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adjacent%20footings&amp;page=16">16</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adjacent%20footings&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10