CINXE.COM
JSON Files - Spark 3.5.3 Documentation
<!DOCTYPE html> <!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7"> <![endif]--> <!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8"> <![endif]--> <!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]--> <!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]--> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>JSON Files - Spark 3.5.3 Documentation</title> <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-EVSTQN3/azprG1Anm3QDgpJLIm9Nao0Yz1ztcQTwFspd3yD65VohhpuuCOmLASjC" crossorigin="anonymous"> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,wght@0,400;0,500;0,700;1,400;1,500;1,700&Courier+Prime:wght@400;700&display=swap" rel="stylesheet"> <link href="css/custom.css" rel="stylesheet"> <script src="js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script> <link rel="stylesheet" href="css/pygments-default.css"> <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/docsearch.js@2/dist/cdn/docsearch.min.css" /> <link rel="stylesheet" href="css/docsearch.css"> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(["disableCookies"]); _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="https://analytics.apache.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '40']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> </head> <body class="global"> <!--[if lt IE 7]> <p class="chromeframe">You are using an outdated browser. <a href="https://browsehappy.com/">Upgrade your browser today</a> or <a href="http://www.google.com/chromeframe/?redirect=true">install Google Chrome Frame</a> to better experience this site.</p> <![endif]--> <!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html --> <nav class="navbar navbar-expand-lg navbar-dark p-0 px-4 fixed-top" style="background: #1d6890;" id="topbar"> <div class="navbar-brand"><a href="index.html"> <img src="img/spark-logo-rev.svg" width="141" height="72"/></a><span class="version">3.5.3</span> </div> <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarCollapse" aria-controls="navbarCollapse" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="collapse navbar-collapse" id="navbarCollapse"> <ul class="navbar-nav me-auto"> <li class="nav-item"><a href="index.html" class="nav-link">Overview</a></li> <li class="nav-item dropdown"> <a href="#" class="nav-link dropdown-toggle" id="navbarQuickStart" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Programming Guides</a> <div class="dropdown-menu" aria-labelledby="navbarQuickStart"> <a class="dropdown-item" href="quick-start.html">Quick Start</a> <a class="dropdown-item" href="rdd-programming-guide.html">RDDs, Accumulators, Broadcasts Vars</a> <a class="dropdown-item" href="sql-programming-guide.html">SQL, DataFrames, and Datasets</a> <a class="dropdown-item" href="structured-streaming-programming-guide.html">Structured Streaming</a> <a class="dropdown-item" href="streaming-programming-guide.html">Spark Streaming (DStreams)</a> <a class="dropdown-item" href="ml-guide.html">MLlib (Machine Learning)</a> <a class="dropdown-item" href="graphx-programming-guide.html">GraphX (Graph Processing)</a> <a class="dropdown-item" href="sparkr.html">SparkR (R on Spark)</a> <a class="dropdown-item" href="api/python/getting_started/index.html">PySpark (Python on Spark)</a> </div> </li> <li class="nav-item dropdown"> <a href="#" class="nav-link dropdown-toggle" id="navbarAPIDocs" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">API Docs</a> <div class="dropdown-menu" aria-labelledby="navbarAPIDocs"> <a class="dropdown-item" href="api/scala/org/apache/spark/index.html">Scala</a> <a class="dropdown-item" href="api/java/index.html">Java</a> <a class="dropdown-item" href="api/python/index.html">Python</a> <a class="dropdown-item" href="api/R/index.html">R</a> <a class="dropdown-item" href="api/sql/index.html">SQL, Built-in Functions</a> </div> </li> <li class="nav-item dropdown"> <a href="#" class="nav-link dropdown-toggle" id="navbarDeploying" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Deploying</a> <div class="dropdown-menu" aria-labelledby="navbarDeploying"> <a class="dropdown-item" href="cluster-overview.html">Overview</a> <a class="dropdown-item" href="submitting-applications.html">Submitting Applications</a> <div class="dropdown-divider"></div> <a class="dropdown-item" href="spark-standalone.html">Spark Standalone</a> <a class="dropdown-item" href="running-on-mesos.html">Mesos</a> <a class="dropdown-item" href="running-on-yarn.html">YARN</a> <a class="dropdown-item" href="running-on-kubernetes.html">Kubernetes</a> </div> </li> <li class="nav-item dropdown"> <a href="#" class="nav-link dropdown-toggle" id="navbarMore" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a> <div class="dropdown-menu" aria-labelledby="navbarMore"> <a class="dropdown-item" href="configuration.html">Configuration</a> <a class="dropdown-item" href="monitoring.html">Monitoring</a> <a class="dropdown-item" href="tuning.html">Tuning Guide</a> <a class="dropdown-item" href="job-scheduling.html">Job Scheduling</a> <a class="dropdown-item" href="security.html">Security</a> <a class="dropdown-item" href="hardware-provisioning.html">Hardware Provisioning</a> <a class="dropdown-item" href="migration-guide.html">Migration Guide</a> <div class="dropdown-divider"></div> <a class="dropdown-item" href="building-spark.html">Building Spark</a> <a class="dropdown-item" href="https://spark.apache.org/contributing.html">Contributing to Spark</a> <a class="dropdown-item" href="https://spark.apache.org/third-party-projects.html">Third Party Projects</a> </div> </li> <li class="nav-item"> <input type="text" id="docsearch-input" placeholder="Search the docs…"> </li> </ul> <!--<span class="navbar-text navbar-right"><span class="version-text">v3.5.3</span></span>--> </div> </nav> <div class="container"> <div class="left-menu-wrapper"> <div class="left-menu"> <h3><a href="sql-programming-guide.html">Spark SQL Guide</a></h3> <ul> <li> <a href="sql-getting-started.html"> Getting Started </a> </li> <li> <a href="sql-data-sources.html"> Data Sources </a> </li> <ul> <li> <a href="sql-data-sources-load-save-functions.html"> Generic Load/Save Functions </a> </li> <li> <a href="sql-data-sources-generic-options.html"> Generic File Source Options </a> </li> <li> <a href="sql-data-sources-parquet.html"> Parquet Files </a> </li> <li> <a href="sql-data-sources-orc.html"> ORC Files </a> </li> <li> <a href="sql-data-sources-json.html"> JSON Files </a> </li> <li> <a href="sql-data-sources-csv.html"> CSV Files </a> </li> <li> <a href="sql-data-sources-text.html"> Text Files </a> </li> <li> <a href="sql-data-sources-hive-tables.html"> Hive Tables </a> </li> <li> <a href="sql-data-sources-jdbc.html"> JDBC To Other Databases </a> </li> <li> <a href="sql-data-sources-avro.html"> Avro Files </a> </li> <li> <a href="sql-data-sources-protobuf.html"> Protobuf data </a> </li> <li> <a href="sql-data-sources-binaryFile.html"> Whole Binary Files </a> </li> <li> <a href="sql-data-sources-troubleshooting.html"> Troubleshooting </a> </li> </ul> <li> <a href="sql-performance-tuning.html"> Performance Tuning </a> </li> <li> <a href="sql-distributed-sql-engine.html"> Distributed SQL Engine </a> </li> <li> <a href="sql-pyspark-pandas-with-arrow.html"> PySpark Usage Guide for Pandas with Apache Arrow </a> </li> <li> <a href="sql-migration-guide.html"> Migration Guide </a> </li> <li> <a href="sql-ref.html"> SQL Reference </a> </li> <li> <a href="sql-error-conditions.html"> Error Conditions </a> </li> </ul> </div> </div> <input id="nav-trigger" class="nav-trigger" checked type="checkbox"> <label for="nav-trigger"></label> <div class="content-with-sidebar mr-3" id="content"> <h1 class="title">JSON Files</h1> <div class="codetabs"> <div data-lang="python"> <p>Spark SQL can automatically infer the schema of a JSON dataset and load it as a DataFrame. This conversion can be done using <code class="language-plaintext highlighter-rouge">SparkSession.read.json</code> on a JSON file.</p> <p>Note that the file that is offered as <em>a json file</em> is not a typical JSON file. Each line must contain a separate, self-contained valid JSON object. For more information, please see <a href="http://jsonlines.org/">JSON Lines text format, also called newline-delimited JSON</a>.</p> <p>For a regular multi-line JSON file, set the <code class="language-plaintext highlighter-rouge">multiLine</code> parameter to <code class="language-plaintext highlighter-rouge">True</code>.</p> <div class="highlight"><pre class="codehilite"><code><span class="c1"># spark is from the previous example. </span><span class="n">sc</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">sparkContext</span> <span class="c1"># A JSON dataset is pointed to by path. # The path can be either a single text file or a directory storing text files </span><span class="n">path</span> <span class="o">=</span> <span class="s">"examples/src/main/resources/people.json"</span> <span class="n">peopleDF</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="n">json</span><span class="p">(</span><span class="n">path</span><span class="p">)</span> <span class="c1"># The inferred schema can be visualized using the printSchema() method </span><span class="n">peopleDF</span><span class="p">.</span><span class="n">printSchema</span><span class="p">()</span> <span class="c1"># root # |-- age: long (nullable = true) # |-- name: string (nullable = true) </span> <span class="c1"># Creates a temporary view using the DataFrame </span><span class="n">peopleDF</span><span class="p">.</span><span class="n">createOrReplaceTempView</span><span class="p">(</span><span class="s">"people"</span><span class="p">)</span> <span class="c1"># SQL statements can be run by using the sql methods provided by spark </span><span class="n">teenagerNamesDF</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">sql</span><span class="p">(</span><span class="s">"SELECT name FROM people WHERE age BETWEEN 13 AND 19"</span><span class="p">)</span> <span class="n">teenagerNamesDF</span><span class="p">.</span><span class="n">show</span><span class="p">()</span> <span class="c1"># +------+ # | name| # +------+ # |Justin| # +------+ </span> <span class="c1"># Alternatively, a DataFrame can be created for a JSON dataset represented by # an RDD[String] storing one JSON object per string </span><span class="n">jsonStrings</span> <span class="o">=</span> <span class="p">[</span><span class="s">'{"name":"Yin","address":{"city":"Columbus","state":"Ohio"}}'</span><span class="p">]</span> <span class="n">otherPeopleRDD</span> <span class="o">=</span> <span class="n">sc</span><span class="p">.</span><span class="n">parallelize</span><span class="p">(</span><span class="n">jsonStrings</span><span class="p">)</span> <span class="n">otherPeople</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">read</span><span class="p">.</span><span class="n">json</span><span class="p">(</span><span class="n">otherPeopleRDD</span><span class="p">)</span> <span class="n">otherPeople</span><span class="p">.</span><span class="n">show</span><span class="p">()</span> <span class="c1"># +---------------+----+ # | address|name| # +---------------+----+ # |[Columbus,Ohio]| Yin| # +---------------+----+</span></code></pre></div> <div><small>Find full example code at "examples/src/main/python/sql/datasource.py" in the Spark repo.</small></div> </div> <div data-lang="scala"> <p>Spark SQL can automatically infer the schema of a JSON dataset and load it as a <code class="language-plaintext highlighter-rouge">Dataset[Row]</code>. This conversion can be done using <code class="language-plaintext highlighter-rouge">SparkSession.read.json()</code> on either a <code class="language-plaintext highlighter-rouge">Dataset[String]</code>, or a JSON file.</p> <p>Note that the file that is offered as <em>a json file</em> is not a typical JSON file. Each line must contain a separate, self-contained valid JSON object. For more information, please see <a href="http://jsonlines.org/">JSON Lines text format, also called newline-delimited JSON</a>.</p> <p>For a regular multi-line JSON file, set the <code class="language-plaintext highlighter-rouge">multiLine</code> option to <code class="language-plaintext highlighter-rouge">true</code>.</p> <div class="highlight"><pre class="codehilite"><code><span class="c1">// Primitive types (Int, String, etc) and Product types (case classes) encoders are</span> <span class="c1">// supported by importing this when creating a Dataset.</span> <span class="k">import</span> <span class="nn">spark.implicits._</span> <span class="c1">// A JSON dataset is pointed to by path.</span> <span class="c1">// The path can be either a single text file or a directory storing text files</span> <span class="k">val</span> <span class="nv">path</span> <span class="k">=</span> <span class="s">"examples/src/main/resources/people.json"</span> <span class="k">val</span> <span class="nv">peopleDF</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">json</span><span class="o">(</span><span class="n">path</span><span class="o">)</span> <span class="c1">// The inferred schema can be visualized using the printSchema() method</span> <span class="nv">peopleDF</span><span class="o">.</span><span class="py">printSchema</span><span class="o">()</span> <span class="c1">// root</span> <span class="c1">// |-- age: long (nullable = true)</span> <span class="c1">// |-- name: string (nullable = true)</span> <span class="c1">// Creates a temporary view using the DataFrame</span> <span class="nv">peopleDF</span><span class="o">.</span><span class="py">createOrReplaceTempView</span><span class="o">(</span><span class="s">"people"</span><span class="o">)</span> <span class="c1">// SQL statements can be run by using the sql methods provided by spark</span> <span class="k">val</span> <span class="nv">teenagerNamesDF</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">sql</span><span class="o">(</span><span class="s">"SELECT name FROM people WHERE age BETWEEN 13 AND 19"</span><span class="o">)</span> <span class="nv">teenagerNamesDF</span><span class="o">.</span><span class="py">show</span><span class="o">()</span> <span class="c1">// +------+</span> <span class="c1">// | name|</span> <span class="c1">// +------+</span> <span class="c1">// |Justin|</span> <span class="c1">// +------+</span> <span class="c1">// Alternatively, a DataFrame can be created for a JSON dataset represented by</span> <span class="c1">// a Dataset[String] storing one JSON object per string</span> <span class="k">val</span> <span class="nv">otherPeopleDataset</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">createDataset</span><span class="o">(</span> <span class="s">"""{"name":"Yin","address":{"city":"Columbus","state":"Ohio"}}"""</span> <span class="o">::</span> <span class="nc">Nil</span><span class="o">)</span> <span class="k">val</span> <span class="nv">otherPeople</span> <span class="k">=</span> <span class="nv">spark</span><span class="o">.</span><span class="py">read</span><span class="o">.</span><span class="py">json</span><span class="o">(</span><span class="n">otherPeopleDataset</span><span class="o">)</span> <span class="nv">otherPeople</span><span class="o">.</span><span class="py">show</span><span class="o">()</span> <span class="c1">// +---------------+----+</span> <span class="c1">// | address|name|</span> <span class="c1">// +---------------+----+</span> <span class="c1">// |[Columbus,Ohio]| Yin|</span> <span class="c1">// +---------------+----+</span></code></pre></div> <div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/sql/SQLDataSourceExample.scala" in the Spark repo.</small></div> </div> <div data-lang="java"> <p>Spark SQL can automatically infer the schema of a JSON dataset and load it as a <code class="language-plaintext highlighter-rouge">Dataset<Row></code>. This conversion can be done using <code class="language-plaintext highlighter-rouge">SparkSession.read().json()</code> on either a <code class="language-plaintext highlighter-rouge">Dataset<String></code>, or a JSON file.</p> <p>Note that the file that is offered as <em>a json file</em> is not a typical JSON file. Each line must contain a separate, self-contained valid JSON object. For more information, please see <a href="http://jsonlines.org/">JSON Lines text format, also called newline-delimited JSON</a>.</p> <p>For a regular multi-line JSON file, set the <code class="language-plaintext highlighter-rouge">multiLine</code> option to <code class="language-plaintext highlighter-rouge">true</code>.</p> <div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span> <span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span> <span class="c1">// A JSON dataset is pointed to by path.</span> <span class="c1">// The path can be either a single text file or a directory storing text files</span> <span class="nc">Dataset</span><span class="o"><</span><span class="nc">Row</span><span class="o">></span> <span class="n">people</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">json</span><span class="o">(</span><span class="s">"examples/src/main/resources/people.json"</span><span class="o">);</span> <span class="c1">// The inferred schema can be visualized using the printSchema() method</span> <span class="n">people</span><span class="o">.</span><span class="na">printSchema</span><span class="o">();</span> <span class="c1">// root</span> <span class="c1">// |-- age: long (nullable = true)</span> <span class="c1">// |-- name: string (nullable = true)</span> <span class="c1">// Creates a temporary view using the DataFrame</span> <span class="n">people</span><span class="o">.</span><span class="na">createOrReplaceTempView</span><span class="o">(</span><span class="s">"people"</span><span class="o">);</span> <span class="c1">// SQL statements can be run by using the sql methods provided by spark</span> <span class="nc">Dataset</span><span class="o"><</span><span class="nc">Row</span><span class="o">></span> <span class="n">namesDF</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">sql</span><span class="o">(</span><span class="s">"SELECT name FROM people WHERE age BETWEEN 13 AND 19"</span><span class="o">);</span> <span class="n">namesDF</span><span class="o">.</span><span class="na">show</span><span class="o">();</span> <span class="c1">// +------+</span> <span class="c1">// | name|</span> <span class="c1">// +------+</span> <span class="c1">// |Justin|</span> <span class="c1">// +------+</span> <span class="c1">// Alternatively, a DataFrame can be created for a JSON dataset represented by</span> <span class="c1">// a Dataset<String> storing one JSON object per string.</span> <span class="nc">List</span><span class="o"><</span><span class="nc">String</span><span class="o">></span> <span class="n">jsonData</span> <span class="o">=</span> <span class="nc">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span> <span class="s">"{\"name\":\"Yin\",\"address\":{\"city\":\"Columbus\",\"state\":\"Ohio\"}}"</span><span class="o">);</span> <span class="nc">Dataset</span><span class="o"><</span><span class="nc">String</span><span class="o">></span> <span class="n">anotherPeopleDataset</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">createDataset</span><span class="o">(</span><span class="n">jsonData</span><span class="o">,</span> <span class="nc">Encoders</span><span class="o">.</span><span class="na">STRING</span><span class="o">());</span> <span class="nc">Dataset</span><span class="o"><</span><span class="nc">Row</span><span class="o">></span> <span class="n">anotherPeople</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">read</span><span class="o">().</span><span class="na">json</span><span class="o">(</span><span class="n">anotherPeopleDataset</span><span class="o">);</span> <span class="n">anotherPeople</span><span class="o">.</span><span class="na">show</span><span class="o">();</span> <span class="c1">// +---------------+----+</span> <span class="c1">// | address|name|</span> <span class="c1">// +---------------+----+</span> <span class="c1">// |[Columbus,Ohio]| Yin|</span> <span class="c1">// +---------------+----+</span></code></pre></div> <div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/sql/JavaSQLDataSourceExample.java" in the Spark repo.</small></div> </div> <div data-lang="r"> <p>Spark SQL can automatically infer the schema of a JSON dataset and load it as a DataFrame. using the <code class="language-plaintext highlighter-rouge">read.json()</code> function, which loads data from a directory of JSON files where each line of the files is a JSON object.</p> <p>Note that the file that is offered as <em>a json file</em> is not a typical JSON file. Each line must contain a separate, self-contained valid JSON object. For more information, please see <a href="http://jsonlines.org/">JSON Lines text format, also called newline-delimited JSON</a>.</p> <p>For a regular multi-line JSON file, set a named parameter <code class="language-plaintext highlighter-rouge">multiLine</code> to <code class="language-plaintext highlighter-rouge">TRUE</code>.</p> <div class="highlight"><pre class="codehilite"><code><span class="c1"># A JSON dataset is pointed to by path.</span><span class="w"> </span><span class="c1"># The path can be either a single text file or a directory storing text files.</span><span class="w"> </span><span class="n">path</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="s2">"examples/src/main/resources/people.json"</span><span class="w"> </span><span class="c1"># Create a DataFrame from the file(s) pointed to by path</span><span class="w"> </span><span class="n">people</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="n">read.json</span><span class="p">(</span><span class="n">path</span><span class="p">)</span><span class="w"> </span><span class="c1"># The inferred schema can be visualized using the printSchema() method.</span><span class="w"> </span><span class="n">printSchema</span><span class="p">(</span><span class="n">people</span><span class="p">)</span><span class="w"> </span><span class="c1">## root</span><span class="w"> </span><span class="c1">## |-- age: long (nullable = true)</span><span class="w"> </span><span class="c1">## |-- name: string (nullable = true)</span><span class="w"> </span><span class="c1"># Register this DataFrame as a table.</span><span class="w"> </span><span class="n">createOrReplaceTempView</span><span class="p">(</span><span class="n">people</span><span class="p">,</span><span class="w"> </span><span class="s2">"people"</span><span class="p">)</span><span class="w"> </span><span class="c1"># SQL statements can be run by using the sql methods.</span><span class="w"> </span><span class="n">teenagers</span><span class="w"> </span><span class="o"><-</span><span class="w"> </span><span class="n">sql</span><span class="p">(</span><span class="s2">"SELECT name FROM people WHERE age >= 13 AND age <= 19"</span><span class="p">)</span><span class="w"> </span><span class="n">head</span><span class="p">(</span><span class="n">teenagers</span><span class="p">)</span><span class="w"> </span><span class="c1">## name</span><span class="w"> </span><span class="c1">## 1 Justin</span></code></pre></div> <div><small>Find full example code at "examples/src/main/r/RSparkSQLExample.R" in the Spark repo.</small></div> </div> <div data-lang="SQL"> <figure class="highlight"><pre><code class="language-sql" data-lang="sql"><span class="k">CREATE</span> <span class="k">TEMPORARY</span> <span class="k">VIEW</span> <span class="n">jsonTable</span> <span class="k">USING</span> <span class="n">org</span><span class="p">.</span><span class="n">apache</span><span class="p">.</span><span class="n">spark</span><span class="p">.</span><span class="k">sql</span><span class="p">.</span><span class="n">json</span> <span class="k">OPTIONS</span> <span class="p">(</span> <span class="n">path</span> <span class="nv">"examples/src/main/resources/people.json"</span> <span class="p">)</span> <span class="k">SELECT</span> <span class="o">*</span> <span class="k">FROM</span> <span class="n">jsonTable</span></code></pre></figure> </div> </div> <h2 id="data-source-option">Data Source Option</h2> <p>Data source options of JSON can be set via:</p> <ul> <li>the <code class="language-plaintext highlighter-rouge">.option</code>/<code class="language-plaintext highlighter-rouge">.options</code> methods of <ul> <li><code class="language-plaintext highlighter-rouge">DataFrameReader</code></li> <li><code class="language-plaintext highlighter-rouge">DataFrameWriter</code></li> <li><code class="language-plaintext highlighter-rouge">DataStreamReader</code></li> <li><code class="language-plaintext highlighter-rouge">DataStreamWriter</code></li> </ul> </li> <li>the built-in functions below <ul> <li><code class="language-plaintext highlighter-rouge">from_json</code></li> <li><code class="language-plaintext highlighter-rouge">to_json</code></li> <li><code class="language-plaintext highlighter-rouge">schema_of_json</code></li> </ul> </li> <li><code class="language-plaintext highlighter-rouge">OPTIONS</code> clause at <a href="sql-ref-syntax-ddl-create-table-datasource.html">CREATE TABLE USING DATA_SOURCE</a></li> </ul> <table> <thead><tr><th><b>Property Name</b></th><th><b>Default</b></th><th><b>Meaning</b></th><th><b>Scope</b></th></tr></thead> <tr> <!-- TODO(SPARK-35433): Add timeZone to Data Source Option for CSV, too. --> <td><code>timeZone</code></td> <td>(value of <code>spark.sql.session.timeZone</code> configuration)</td> <td>Sets the string that indicates a time zone ID to be used to format timestamps in the JSON datasources or partition values. The following formats of <code>timeZone</code> are supported:<br /> <ul> <li>Region-based zone ID: It should have the form 'area/city', such as 'America/Los_Angeles'.</li> <li>Zone offset: It should be in the format '(+|-)HH:mm', for example '-08:00' or '+01:00'. Also 'UTC' and 'Z' are supported as aliases of '+00:00'.</li> </ul> Other short names like 'CST' are not recommended to use because they can be ambiguous. </td> <td>read/write</td> </tr> <tr> <td><code>primitivesAsString</code></td> <td><code>false</code></td> <td>Infers all primitive values as a string type.</td> <td>read</td> </tr> <tr> <td><code>prefersDecimal</code></td> <td><code>false</code></td> <td>Infers all floating-point values as a decimal type. If the values do not fit in decimal, then it infers them as doubles.</td> <td>read</td> </tr> <tr> <td><code>allowComments</code></td> <td><code>false</code></td> <td>Ignores Java/C++ style comment in JSON records.</td> <td>read</td> </tr> <tr> <td><code>allowUnquotedFieldNames</code></td> <td><code>false</code></td> <td>Allows unquoted JSON field names.</td> <td>read</td> </tr> <tr> <td><code>allowSingleQuotes</code></td> <td><code>true</code></td> <td>Allows single quotes in addition to double quotes.</td> <td>read</td> </tr> <tr> <td><code>allowNumericLeadingZeros</code></td> <td><code>false</code></td> <td>Allows leading zeros in numbers (e.g. 00012).</td> <td>read</td> </tr> <tr> <td><code>allowBackslashEscapingAnyCharacter</code></td> <td><code>false</code></td> <td>Allows accepting quoting of all character using backslash quoting mechanism.</td> <td>read</td> </tr> <tr> <td><code>mode</code></td> <td><code>PERMISSIVE</code></td> <td>Allows a mode for dealing with corrupt records during parsing.<br /> <ul> <li><code>PERMISSIVE</code>: when it meets a corrupted record, puts the malformed string into a field configured by <code>columnNameOfCorruptRecord</code>, and sets malformed fields to <code>null</code>. To keep corrupt records, an user can set a string type field named <code>columnNameOfCorruptRecord</code> in an user-defined schema. If a schema does not have the field, it drops corrupt records during parsing. When inferring a schema, it implicitly adds a <code>columnNameOfCorruptRecord</code> field in an output schema.</li> <li><code>DROPMALFORMED</code>: ignores the whole corrupted records. This mode is unsupported in the JSON built-in functions.</li> <li><code>FAILFAST</code>: throws an exception when it meets corrupted records.</li> </ul> </td> <td>read</td> </tr> <tr> <td><code>columnNameOfCorruptRecord</code></td> <td>(value of <code>spark.sql.columnNameOfCorruptRecord</code> configuration)</td> <td>Allows renaming the new field having malformed string created by <code>PERMISSIVE</code> mode. This overrides spark.sql.columnNameOfCorruptRecord.</td> <td>read</td> </tr> <tr> <td><code>dateFormat</code></td> <td><code>yyyy-MM-dd</code></td> <td>Sets the string that indicates a date format. Custom date formats follow the formats at <a href="https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html"> datetime pattern</a>. This applies to date type.</td> <td>read/write</td> </tr> <tr> <td><code>timestampFormat</code></td> <td><code>yyyy-MM-dd'T'HH:mm:ss[.SSS][XXX]</code></td> <td>Sets the string that indicates a timestamp format. Custom date formats follow the formats at <a href="https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html"> datetime pattern</a>. This applies to timestamp type.</td> <td>read/write</td> </tr> <tr> <td><code>timestampNTZFormat</code></td> <td>yyyy-MM-dd'T'HH:mm:ss[.SSS]</td> <td>Sets the string that indicates a timestamp without timezone format. Custom date formats follow the formats at <a href="https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html">Datetime Patterns</a>. This applies to timestamp without timezone type, note that zone-offset and time-zone components are not supported when writing or reading this data type.</td> <td>read/write</td> </tr> <tr> <td><code>enableDateTimeParsingFallback</code></td> <td>Enabled if the time parser policy has legacy settings or if no custom date or timestamp pattern was provided.</td> <td>Allows falling back to the backward compatible (Spark 1.x and 2.0) behavior of parsing dates and timestamps if values do not match the set patterns.</td> <td>read</td> </tr> <tr> <td><code>multiLine</code></td> <td><code>false</code></td> <td>Parse one record, which may span multiple lines, per file. JSON built-in functions ignore this option.</td> <td>read</td> </tr> <tr> <td><code>allowUnquotedControlChars</code></td> <td><code>false</code></td> <td>Allows JSON Strings to contain unquoted control characters (ASCII characters with value less than 32, including tab and line feed characters) or not.</td> <td>read</td> </tr> <tr> <td><code>encoding</code></td> <td>Detected automatically when <code>multiLine</code> is set to <code>true</code> (for reading), <code>UTF-8</code> (for writing)</td> <td>For reading, allows to forcibly set one of standard basic or extended encoding for the JSON files. For example UTF-16BE, UTF-32LE. For writing, Specifies encoding (charset) of saved json files. JSON built-in functions ignore this option.</td> <td>read/write</td> </tr> <tr> <td><code>lineSep</code></td> <td><code>\r</code>, <code>\r\n</code>, <code>\n</code> (for reading), <code>\n</code> (for writing)</td> <td>Defines the line separator that should be used for parsing. JSON built-in functions ignore this option.</td> <td>read/write</td> </tr> <tr> <td><code>samplingRatio</code></td> <td><code>1.0</code></td> <td>Defines fraction of input JSON objects used for schema inferring.</td> <td>read</td> </tr> <tr> <td><code>dropFieldIfAllNull</code></td> <td><code>false</code></td> <td>Whether to ignore column of all null values or empty array during schema inference.</td> <td>read</td> </tr> <tr> <td><code>locale</code></td> <td><code>en-US</code></td> <td>Sets a locale as language tag in IETF BCP 47 format. For instance, <code>locale</code> is used while parsing dates and timestamps.</td> <td>read</td> </tr> <tr> <td><code>allowNonNumericNumbers</code></td> <td><code>true</code></td> <td>Allows JSON parser to recognize set of “Not-a-Number” (NaN) tokens as legal floating number values.<br /> <ul> <li><code>+INF</code>: for positive infinity, as well as alias of <code>+Infinity</code> and <code>Infinity</code>.</li> <li><code>-INF</code>: for negative infinity, alias <code>-Infinity</code>.</li> <li><code>NaN</code>: for other not-a-numbers, like result of division by zero.</li> </ul> </td> <td>read</td> </tr> <tr> <td><code>compression</code></td> <td>(none)</td> <td>Compression codec to use when saving to file. This can be one of the known case-insensitive shorten names (none, bzip2, gzip, lz4, snappy and deflate). JSON built-in functions ignore this option.</td> <td>write</td> </tr> <tr> <td><code>ignoreNullFields</code></td> <td>(value of <code>spark.sql.jsonGenerator.ignoreNullFields</code> configuration)</td> <td>Whether to ignore null fields when generating JSON objects.</td> <td>write</td> </tr> </table> <p>Other generic options can be found in <a href="https://spark.apache.org/docs/latest/sql-data-sources-generic-options.html"> Generic File Source Options</a>.</p> </div> <!-- /container --> </div> <script src="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/dist/js/bootstrap.bundle.min.js" integrity="sha384-MrcW6ZMFYlzcLA8Nl+NtUVF0sA7MsXsP1UyJoMp4YLEuNSfAP+JcXn/tWtIaxVXM" crossorigin="anonymous"></script> <script src="https://code.jquery.com/jquery.js"></script> <script src="js/vendor/anchor.min.js"></script> <script src="js/main.js"></script> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/docsearch.js@2/dist/cdn/docsearch.min.js"></script> <script type="text/javascript"> // DocSearch is entirely free and automated. DocSearch is built in two parts: // 1. a crawler which we run on our own infrastructure every 24 hours. It follows every link // in your website and extract content from every page it traverses. It then pushes this // content to an Algolia index. // 2. a JavaScript snippet to be inserted in your website that will bind this Algolia index // to your search input and display its results in a dropdown UI. If you want to find more // details on how works DocSearch, check the docs of DocSearch. docsearch({ apiKey: 'd62f962a82bc9abb53471cb7b89da35e', appId: 'RAI69RXRSK', indexName: 'apache_spark', inputSelector: '#docsearch-input', enhancedSearchInput: true, algoliaOptions: { 'facetFilters': ["version:3.5.3"] }, debug: false // Set debug to true if you want to inspect the dropdown }); </script> <!-- MathJax Section --> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ TeX: { equationNumbers: { autoNumber: "AMS" } } }); </script> <script> // Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS. // We could use "//cdn.mathjax...", but that won't support "file://". (function(d, script) { script = d.createElement('script'); script.type = 'text/javascript'; script.async = true; script.onload = function(){ MathJax.Hub.Config({ tex2jax: { inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ], displayMath: [ ["$$","$$"], ["\\[", "\\]"] ], processEscapes: true, skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'] } }); }; script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') + 'cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js' + '?config=TeX-AMS-MML_HTMLorMML'; d.getElementsByTagName('head')[0].appendChild(script); }(document)); </script> </body> </html>