CINXE.COM
Search results for: AI Agents
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: AI Agents</title> <meta name="description" content="Search results for: AI Agents"> <meta name="keywords" content="AI Agents"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="AI Agents" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="AI Agents"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1535</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: AI Agents</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1535</span> Passengers’ Behavior Analysis under the Public Transport Disruption: An Agent-Based Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Rahimi">M. Rahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Corman"> F. Corman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper study the travel behavior of passengers in a public transport disruption under information provision strategies. We develop a within-day approach for multi-agent simulation to evaluate the behavior of the agents, under comprehensive scenarios through various information exposure, equilibrium, and non-equilibrium scenarios. In particular, we quantify the effects of information strategies in disruption situation on passengers’ satisfaction, number of involved agents, and the caused delay. An agent-based micro-simulation model (MATSim) is applied for the city of Zürich, Switzerland, for the purpose of activity-based simulation in a multimodal network. Statistic outcome is analysed for all the agents who may be involved in the disruption. Agents’ movement in the public transport network illustrates agents’ adaptations to available information about the disruption. Agents’ delays and utility reveal that information significantly affects agents’ satisfaction and delay in public transport disruption. Besides, while the earlier availability of the information causes the fewer consequent delay for the involved agents, however, it also leads to more amount of affected agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agent-based%20simulation" title="agent-based simulation">agent-based simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=disruption%20management" title=" disruption management"> disruption management</a>, <a href="https://publications.waset.org/abstracts/search?q=passengers%E2%80%99%20behavior%20simulation" title=" passengers’ behavior simulation"> passengers’ behavior simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20transport" title=" public transport"> public transport</a> </p> <a href="https://publications.waset.org/abstracts/122394/passengers-behavior-analysis-under-the-public-transport-disruption-an-agent-based-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1534</span> Inferential Reasoning for Heterogeneous Multi-Agent Mission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sagir%20M.%20Yusuf">Sagir M. Yusuf</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Baber"> Chris Baber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We describe issues bedeviling the coordination of heterogeneous (different sensors carrying agents) multi-agent missions such as belief conflict, situation reasoning, etc. We applied Bayesian and agents' presumptions inferential reasoning to solve the outlined issues with the heterogeneous multi-agent belief variation and situational-base reasoning. Bayesian Belief Network (BBN) was used in modeling the agents' belief conflict due to sensor variations. Simulation experiments were designed, and cases from agents’ missions were used in training the BBN using gradient descent and expectation-maximization algorithms. The output network is a well-trained BBN for making inferences for both agents and human experts. We claim that the Bayesian learning algorithm prediction capacity improves by the number of training data and argue that it enhances multi-agents robustness and solve agents’ sensor conflicts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20constraint%20optimization%20problem" title="distributed constraint optimization problem">distributed constraint optimization problem</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title=" multi-agent system"> multi-agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-robot%20coordination" title=" multi-robot coordination"> multi-robot coordination</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20system" title=" autonomous system"> autonomous system</a>, <a href="https://publications.waset.org/abstracts/search?q=swarm%20intelligence" title=" swarm intelligence"> swarm intelligence</a> </p> <a href="https://publications.waset.org/abstracts/116896/inferential-reasoning-for-heterogeneous-multi-agent-mission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1533</span> Knowledge Management and Tourism: An Exploratory Study Applied to Travel Agents in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Soliman">Mohammad Soliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Abou-Shouk"> Mohamed A. Abou-Shouk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Knowledge management focuses on the development, storage, retrieval, and dissemination of information and expertise. It has become an important tool to improve performance in tourism enterprises. This includes improving decision-making, developing customer services, and increasing sales and profits. Knowledge management adoption depends on human, organizational and technological factors. This study aims to explore the concept of knowledge management in travel agents in Egypt. It explores the requirements of adoption and its impact on performance in these agencies. The study targets Category A travel agents in Egypt. The population of the study encompasses Category A travel agents having online presence. An online questionnaire is used to collect data from managers of travel agents. This study is useful for travel agents who are in urgent need to restructure their intermediary role and support their survival in the global travel market. The study sheds light on the requirements of adoption and the expected impact on performance. This could help travel agents identify their situation and the determine the extent to which they are ready to adopt knowledge management. This study is contributing to knowledge by providing insights from the tourism sector in a developing country where the concept of knowledge management is still in its infancy stages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=knowledge%20management" title="knowledge management">knowledge management</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20management%20adoption" title=" knowledge management adoption"> knowledge management adoption</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=travel%20agents" title=" travel agents"> travel agents</a> </p> <a href="https://publications.waset.org/abstracts/36812/knowledge-management-and-tourism-an-exploratory-study-applied-to-travel-agents-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1532</span> Probabilistic Gathering of Agents with Simple Sensors: Distributed Algorithm for Aggregation of Robots Equipped with Binary On-Board Detectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ariel%20Barel">Ariel Barel</a>, <a href="https://publications.waset.org/abstracts/search?q=Rotem%20Manor"> Rotem Manor</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfred%20M.%20Bruckstein"> Alfred M. Bruckstein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a probabilistic gathering algorithm for agents that can only detect the presence of other agents in front of or behind them. The agents act in the plane and are identical and indistinguishable, oblivious, and lack any means of direct communication. They do not have a common frame of reference in the plane and choose their orientation (direction of possible motion) at random. The analysis of the gathering process assumes that the agents act synchronously in selecting random orientations that remain fixed during each unit time-interval. Two algorithms are discussed. The first one assumes discrete jumps based on the sensing results given the randomly selected motion direction, and in this case, extensive experimental results exhibit probabilistic clustering into a circular region with radius equal to the step-size in time proportional to the number of agents. The second algorithm assumes agents with continuous sensing and motion, and in this case, we can prove gathering into a very small circular region in finite expected time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control" title="control">control</a>, <a href="https://publications.waset.org/abstracts/search?q=decentralized" title=" decentralized"> decentralized</a>, <a href="https://publications.waset.org/abstracts/search?q=gathering" title=" gathering"> gathering</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent" title=" multi-agent"> multi-agent</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20sensors" title=" simple sensors"> simple sensors</a> </p> <a href="https://publications.waset.org/abstracts/115199/probabilistic-gathering-of-agents-with-simple-sensors-distributed-algorithm-for-aggregation-of-robots-equipped-with-binary-on-board-detectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1531</span> From Modern to Contemporary Art: Transformations of Art Market in Istanbul</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cem%20Ozatalay">Cem Ozatalay</a>, <a href="https://publications.waset.org/abstracts/search?q=Senem%20Ornek"> Senem Ornek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Artprice Contemporary Art Market Annual Report 2014 notices that Istanbul, with its art market volume of $3.6 million has become the first city of the Middle East and North Africa region and the 14th city of the World. Indeed, the period 2004–2014 has been significant in terms of the growth of the art market, during which the majority of contemporary art galleries and museums in Istanbul was inaugurated. This boom means that with the joining of new agents, the structure of the art market has dramatically changed. To use Nathalie Heinich’s terminology, in the current art field, three art genres – namely classical art, modern art and contemporary art – coexist, but in the case of Istanbul, such as many art cities in the world, the latter genre has become increasingly dominant. This presentation aims to show how the power shifts away from the classical art agents to contemporary art agents, and the effects produced by the conflicts between the old and new agents of current art field. Based on the data obtained from an ongoing field research in Istanbul among the art market agents such as art dealers, curators, art critics and artists, it will be shown that even if the agents of different art genres are in conflict with each other, there is, at the same time, a continuum between the three art worlds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contemporary%20art%20market" title="contemporary art market">contemporary art market</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20sociology%20of%20art" title=" economic sociology of art"> economic sociology of art</a>, <a href="https://publications.waset.org/abstracts/search?q=Istanbul%20art%20market" title=" Istanbul art market"> Istanbul art market</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20of%20the%20art%20field%20in%20Istanbul" title=" structure of the art field in Istanbul "> structure of the art field in Istanbul </a> </p> <a href="https://publications.waset.org/abstracts/64297/from-modern-to-contemporary-art-transformations-of-art-market-in-istanbul" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1530</span> Cooperative Learning Mechanism in Intelligent Multi-Agent System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayman%20M.%20Mansour">Ayman M. Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilal%20Hawashin"> Bilal Hawashin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20A.%20Mansour"> Mohammed A. Mansour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a cooperative learning mechanism in a multi-agent intelligent system. The basic idea is that intelligent agents are capable of collaborating with one another by sharing their knowledge. The agents will start collaboration by providing their knowledge rules to the other agents. This will allow the most important and insightful detection rules produced by the most experienced agent to bubble up for the benefit of the entire agent community. The updated rules will lead to improving the agents’ decision performance. To evaluate our approach, we designed a five–agent system and implemented it using JADE and FuzzyJess software packages. The agents will work with each other to make a decision about a suspicious medical case. This system provides quick response rate and the decision is faster than the manual methods. This will save patients life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intelligent" title="intelligent">intelligent</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title=" multi-agent system"> multi-agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=cooperative" title=" cooperative"> cooperative</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy" title=" fuzzy"> fuzzy</a>, <a href="https://publications.waset.org/abstracts/search?q=learning" title=" learning"> learning</a> </p> <a href="https://publications.waset.org/abstracts/47913/cooperative-learning-mechanism-in-intelligent-multi-agent-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">684</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1529</span> Strength & Density of an Autoclaved Aerated Concrete Using Various Air Entraining Agent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shashank%20Gupta">Shashank Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiva%20Garg"> Shiva Garg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present paper is to study the changes in the strength characteristics of autoclaved aerated concrete (AAC) and also the density when different expansion agents are used. The expansion agent so used releases air in the concrete thereby making it lighter by reducing its density. It also increases the workability of the concrete. The various air entraining agents used for this study are hydrogen peroxide, oleic acid, and olive oil. The addition of these agents causes the concrete to rise like cake but it reduces the strength of concrete due to the formation of air voids. The amount of agents chosen for concrete production are 0.5%, 1%, 1.5% by weight of cement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AAC" title="AAC">AAC</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20oil" title=" olive oil"> olive oil</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=oleic%20acid" title=" oleic acid"> oleic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20curing" title=" steam curing"> steam curing</a> </p> <a href="https://publications.waset.org/abstracts/13434/strength-density-of-an-autoclaved-aerated-concrete-using-various-air-entraining-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1528</span> Using Automated Agents to Facilitate Instructions in a Large Online Course</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20M%20Gilstrap">David M Gilstrap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an online course with a large enrollment, the potential exists for the instructor to become overburdened with having to respond to students’ emails, which consequently decreases the instructor’s efficiency in teaching the course. Repetition of instructions is an effective way of reducing confusion among students, which in turn increases their efficiencies, as well. World of Turf is the largest online course at Michigan State University, which employs Brightspace as its management system (LMS) software. Recently, the LMS upgraded its capabilities to utilize agents, which are auto generated email notifications to students based on certain criteria. Agents are additional tools that can enhance course design. They can be run on-demand or according to a schedule. Agents can be timed to effectively remind students of approaching deadlines. The content of these generated emails can also include reinforced instructions. With a large online course, even a small percentage of students that either do not read or do not comprehend the course syllabus or do not notice instructions on course pages can result in numerous emails to the instructor, often near the deadlines for assignments. Utilizing agents to decrease the number of emails from students has enabled the instructor to efficiently instruct more than one thousand students per semester without any graduate student teaching assistants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agents" title="agents">agents</a>, <a href="https://publications.waset.org/abstracts/search?q=Brightspace" title=" Brightspace"> Brightspace</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20enrollment" title=" large enrollment"> large enrollment</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20management%20system" title=" learning management system"> learning management system</a>, <a href="https://publications.waset.org/abstracts/search?q=repetition%20of%20instructions" title=" repetition of instructions"> repetition of instructions</a> </p> <a href="https://publications.waset.org/abstracts/79279/using-automated-agents-to-facilitate-instructions-in-a-large-online-course" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1527</span> Dewatering Agents for Granular Bauxite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Diniz%20Fecchio">Bruno Diniz Fecchio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Operations have been demanding increasingly challenging operational targets for the dewatering process, requiring lower humidity for concentrates. Chemical dewatering agents are able to improve solid/liquid separation processes, allowing operations to deal with increased complexity caused by either mineralogical changes or seasonal events that present operations with challenging moisture requirements for transportation and downstream steps. These chemicals reduce water retention by reducing the capillary pressure of the mineral and contributing to improved water drainage. This current study addresses the reagent effects on pile dewatering for Bauxite. Such chemicals were able to decrease the moisture of granulated Bauxite (particle size of 5 – 50 mm). The results of the laboratory scale tests and industrial trials presented the obtention of up to 11% relative moisture reduction, which reinforced the strong interaction between dewatering agents and the particle surface of granulated Bauxite. The evaluated dewatering agents, however, did not present any negative impact on these operations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bauxite" title="bauxite">bauxite</a>, <a href="https://publications.waset.org/abstracts/search?q=dewatering%20agents" title=" dewatering agents"> dewatering agents</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20dewatering" title=" pile dewatering"> pile dewatering</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20reduction" title=" moisture reduction"> moisture reduction</a> </p> <a href="https://publications.waset.org/abstracts/162764/dewatering-agents-for-granular-bauxite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1526</span> Extending BDI Multiagent Systems with Agent Norms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francisco%20Jos%C3%A9%20Pl%C3%A1cido%20da%20Cunha">Francisco José Plácido da Cunha</a>, <a href="https://publications.waset.org/abstracts/search?q=Tassio%20Ferenzini%20Martins%20Sirqueira"> Tassio Ferenzini Martins Sirqueira</a>, <a href="https://publications.waset.org/abstracts/search?q=Marx%20Leles%20Viana"> Marx Leles Viana</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Jos%C3%A9%20Pereira%20de%20Lucena">Carlos José Pereira de Lucena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Open Multiagent Systems (MASs) are societies in which heterogeneous and independently designed entities (agents) work towards similar, or different ends. Software agents are autonomous and the diversity of interests among different members living in the same society is a fact. In order to deal with this autonomy, these open systems use mechanisms of social control (norms) to ensure a desirable social order. This paper considers the following types of norms: (i) obligation — agents must accomplish a specific outcome; (ii) permission — agents may act in a particular way, and (iii) prohibition — agents must not act in a specific way. All of these characteristics mean to encourage the fulfillment of norms through rewards and to discourage norm violation by pointing out the punishments. Once the software agent decides that its priority is the satisfaction of its own desires and goals, each agent must evaluate the effects associated to the fulfillment of one or more norms before choosing which one should be fulfilled. The same applies when agents decide to violate a norm. This paper also introduces a framework for the development of MASs that provide support mechanisms to the agent’s decision-making, using norm-based reasoning. The applicability and validation of this approach is demonstrated applying a traffic intersection scenario. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BDI%20agent" title="BDI agent">BDI agent</a>, <a href="https://publications.waset.org/abstracts/search?q=BDI4JADE%20framework" title=" BDI4JADE framework"> BDI4JADE framework</a>, <a href="https://publications.waset.org/abstracts/search?q=multiagent%20systems" title=" multiagent systems"> multiagent systems</a>, <a href="https://publications.waset.org/abstracts/search?q=normative%20agents" title=" normative agents"> normative agents</a> </p> <a href="https://publications.waset.org/abstracts/85259/extending-bdi-multiagent-systems-with-agent-norms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1525</span> The Implementation of the Multi-Agent Classification System (MACS) in Compliance with FIPA Specifications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20R.%20Mhereeg">Mohamed R. Mhereeg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper discusses the implementation of the MultiAgent classification System (MACS) and utilizing it to provide an automated and accurate classification of end users developing applications in the spreadsheet domain. However, different technologies have been brought together to build MACS. The strength of the system is the integration of the agent technology with the FIPA specifications together with other technologies, which are the .NET widows service based agents, the Windows Communication Foundation (WCF) services, the Service Oriented Architecture (SOA), and Oracle Data Mining (ODM). Microsoft's .NET windows service based agents were utilized to develop the monitoring agents of MACS, the .NET WCF services together with SOA approach allowed the distribution and communication between agents over the WWW. The Monitoring Agents (MAs) were configured to execute automatically to monitor excel spreadsheets development activities by content. Data gathered by the Monitoring Agents from various resources over a period of time was collected and filtered by a Database Updater Agent (DUA) residing in the .NET client application of the system. This agent then transfers and stores the data in Oracle server database via Oracle stored procedures for further processing that leads to the classification of the end user developers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MACS" title="MACS">MACS</a>, <a href="https://publications.waset.org/abstracts/search?q=implementation" title=" implementation"> implementation</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent" title=" multi-agent"> multi-agent</a>, <a href="https://publications.waset.org/abstracts/search?q=SOA" title=" SOA"> SOA</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous" title=" autonomous"> autonomous</a>, <a href="https://publications.waset.org/abstracts/search?q=WCF" title=" WCF"> WCF</a> </p> <a href="https://publications.waset.org/abstracts/2528/the-implementation-of-the-multi-agent-classification-system-macs-in-compliance-with-fipa-specifications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1524</span> Assessment of the Neuroprotective Effect of Oral Hypoglycemic Agents in Patients with Acute Ischemic Stroke</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Alhusban">A. Alhusban</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Alqawasmeh"> M. Alqawasmeh</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Alfawares"> F. Alfawares</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Diabetes is a chronic health problem and a major risk factor of stroke. A number of therapeutic modalities exist for diabetes management. It’s still unknown whether the different oral hypoglycemic agents would ameliorate the detrimental effect of diabetes on stroke severity. The objective of this work is to assess the effect of pretreatment with oral hypoglycemic agents, insulin and their combination on stroke severity at presentation. Patients and Methods: Patients admitted to the King Abdullah University Hospital (KAUH)-Jordan with ischemic stroke between January 2015 and December 2016 were evaluated and their comorbid diseases, treatment on admission and their neurologic severity was assessed using the National Institute of Health Stroke Scale (NIHSS) were documented. Stroke severity was compared for non-diabetic patients and diabetic patients treated with different antidiabetic agents. Results: Data from 324 patients with acute stroke was documented. The median age of participants was 69 years. Diabetes was documented in about 50% of the patients. Multinomial regression analysis identified diabetes treatment status as an independent predictor of neurological severity of stroke (p=0.032). Patients treated with oral hypoglycemic agents had a significantly lower NIHSS as compared to nondiabetic patients and insulin treated patients (p < 0.02). The positive effect of oral hypoglycemic agents was blunted by insulin co-treatment. Insulin did not alter the severity of stroke as compared to non-diabetics. Conclusion: Oral hypoglycemic agents may reduce the severity of neurologic deficit of ischemic stroke and may have neuroprotective effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes" title="diabetes">diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=stroke" title=" stroke"> stroke</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroprotection" title=" neuroprotection"> neuroprotection</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20hypoglycemic%20agents" title=" oral hypoglycemic agents"> oral hypoglycemic agents</a> </p> <a href="https://publications.waset.org/abstracts/100618/assessment-of-the-neuroprotective-effect-of-oral-hypoglycemic-agents-in-patients-with-acute-ischemic-stroke" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1523</span> An Approach to Secure Mobile Agent Communication in Multi-Agent Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olumide%20Simeon%20Ogunnusi">Olumide Simeon Ogunnusi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shukor%20Abd%20Razak"> Shukor Abd Razak</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Kolade%20Adu"> Michael Kolade Adu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inter-agent communication manager facilitates communication among mobile agents via message passing mechanism. Until now, all Foundation for Intelligent Physical Agents (FIPA) compliant agent systems are capable of exchanging messages following the standard format of sending and receiving messages. Previous works tend to secure messages to be exchanged among a community of collaborative agents commissioned to perform specific tasks using cryptosystems. However, the approach is characterized by computational complexity due to the encryption and decryption processes required at the two ends. The proposed approach to secure agent communication allows only agents that are created by the host agent server to communicate via the agent communication channel provided by the host agent platform. These agents are assumed to be harmless. Therefore, to secure communication of legitimate agents from intrusion by external agents, a 2-phase policy enforcement system was developed. The first phase constrains the external agent to run only on the network server while the second phase confines the activities of the external agent to its execution environment. To implement the proposed policy, a controller agent was charged with the task of screening any external agent entering the local area network and preventing it from migrating to the agent execution host where the legitimate agents are running. On arrival of the external agent at the host network server, an introspector agent was charged to monitor and restrain its activities. This approach secures legitimate agent communication from Man-in-the Middle and Replay attacks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agent%20communication" title="agent communication">agent communication</a>, <a href="https://publications.waset.org/abstracts/search?q=introspective%20agent" title=" introspective agent"> introspective agent</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation%20of%20agent" title=" isolation of agent"> isolation of agent</a>, <a href="https://publications.waset.org/abstracts/search?q=policy%20enforcement%20system" title=" policy enforcement system"> policy enforcement system</a> </p> <a href="https://publications.waset.org/abstracts/75444/an-approach-to-secure-mobile-agent-communication-in-multi-agent-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1522</span> Biomedical Countermeasures to Category a Biological Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laura%20Cochrane">Laura Cochrane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The United States Centers for Disease Control and Prevention has established three categories of biological agents based on their ease of spread and the severity of the disease they cause. Category A biological agents are the highest priority because of their high degree of morbidity and mortality, ease of dissemination, the potential to cause social disruption and panic, special requirements for public health preparedness, and past use as a biological weapon. Despite the threat of Category A biological agents, opportunities for medical intervention exist. This work summarizes public information, consolidated and reviewed across the situational usefulness and disease awareness to offer discussion to three specific Category A agents: anthrax (Bacillus anthracis), botulism (Clostridium botulinum toxin), and smallpox (variola major), and provides an overview on the management of medical countermeasures available to treat these three (3) different types of pathogens. The medical countermeasures are discussed in the setting of pre-exposure prophylaxis, post-exposure prophylaxis, and therapeutic treatments to provide a framework for requirements in public health preparedness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anthrax" title="anthrax">anthrax</a>, <a href="https://publications.waset.org/abstracts/search?q=botulism" title=" botulism"> botulism</a>, <a href="https://publications.waset.org/abstracts/search?q=smallpox" title=" smallpox"> smallpox</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20countermeasures" title=" medical countermeasures"> medical countermeasures</a> </p> <a href="https://publications.waset.org/abstracts/146987/biomedical-countermeasures-to-category-a-biological-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1521</span> Antimicrobial Agents Produced by Yeasts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20B%C3%BCy%C3%BCks%C4%B1r%C4%B1t">T. Büyüksırıt</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kulea%C5%9Fan"> H. Kuleaşan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural antimicrobials are used to preserve foods that can be found in plants, animals, and microorganisms. Antimicrobial substances are natural or artificial agents that produced by microorganisms or obtained semi/total chemical synthesis are used at low concentrations to inhibit the growth of other microorganisms. Food borne pathogens and spoilage microorganisms are inactivated by the use of antagonistic microorganisms and their metabolites. Yeasts can produce toxic proteins or glycoproteins (toxins) that cause inhibition of sensitive bacteria and yeast species. Antimicrobial substance producing phenotypes belonging different yeast genus were isolated from different sources. Toxins secreted by many yeast strains inhibiting the growth of other yeast strains. These strains show antimicrobial activity, inhibiting the growth of mold and bacteria. The effect of antimicrobial agents produced by yeasts can be extremely fast, and therefore may be used in various treatment procedures. Rapid inhibition of microorganisms is possibly caused by microbial cell membrane lipopolysaccharide binding and in activation (neutralization) effect. Antimicrobial agents inhibit the target cells via different mechanisms of action. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agents" title="antimicrobial agents">antimicrobial agents</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a>, <a href="https://publications.waset.org/abstracts/search?q=toxic%20protein" title=" toxic protein"> toxic protein</a>, <a href="https://publications.waset.org/abstracts/search?q=glycoprotein" title=" glycoprotein"> glycoprotein</a> </p> <a href="https://publications.waset.org/abstracts/9513/antimicrobial-agents-produced-by-yeasts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1520</span> Antecedents and Consequences of Social Media Adoption in Travel and Tourism: Evidence from Customers and Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Abou-Shouk">Mohamed A. Abou-Shouk</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahamoud%20M.%20Hewedi"> Mahamoud M. Hewedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study extends technology acceptance model (TAM) to investigate the antecedents and consequences of social media adoption by tourists and travel agents. It compares their perceptions on social media adoption and its consequences. Online survey was addressed to tourists and travel agents for data collection purposes. Structural equation modelling was employed for analysis purposes. The findings revealed that the majority of tourists and travel agents involved in the study believe in the usefulness of social media adoption for travel planning and marketing purposes. They agree that adopting social media could change the attitude of tourists towards specific destination or attraction and influence their purchasing decisions. This study contributes to knowledge by extending TAM and provides some managerial implication to marketers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TAM" title="TAM">TAM</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20media" title=" social media"> social media</a>, <a href="https://publications.waset.org/abstracts/search?q=travel%20and%20tourism" title=" travel and tourism"> travel and tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=travel%20agents" title=" travel agents"> travel agents</a> </p> <a href="https://publications.waset.org/abstracts/36787/antecedents-and-consequences-of-social-media-adoption-in-travel-and-tourism-evidence-from-customers-and-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1519</span> Contribution to Energy Management in Hybrid Energy Systems Based on Agents Coordination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Saba">Djamel Saba</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Zohra%20Laallam"> Fatima Zohra Laallam</a>, <a href="https://publications.waset.org/abstracts/search?q=Brahim%20Berbaoui"> Brahim Berbaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a contribution to the design of a multi-agent for the energy management system in a hybrid energy system (SEH). The multi-agent-based energy-coordination management system (MA-ECMS) is based mainly on coordination between agents. The agents share the tasks and exchange information through communications protocols to achieve the main goal. This intelligent system can fully manage the consumption and production or simply to make proposals for action he thinks is best. The initial step is to give a presentation for the system that we want to model in order to understand all the details as much as possible. In our case, it is to implement a system for simulating a process control of energy management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=communications%20protocols" title="communications protocols">communications protocols</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20process" title=" control process"> control process</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20management" title=" energy management"> energy management</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20energy%20system" title=" hybrid energy system"> hybrid energy system</a>, <a href="https://publications.waset.org/abstracts/search?q=modelization" title=" modelization"> modelization</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agents%20system" title=" multi-agents system"> multi-agents system</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/51996/contribution-to-energy-management-in-hybrid-energy-systems-based-on-agents-coordination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1518</span> Capacity Building of Extension Agents for Sustainable Dissemination of Agricultural Information and Technologies in Developing Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20T.%20Ajayi">Michael T. Ajayi</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwakemi%20E.%20Fapojuwo"> Oluwakemi E. Fapojuwo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Farmers are in need of regular and relevant information relating to new technologies. Production of extension materials has been found to be useful in facilitating the process. Extension materials help to provide information to reach large numbers of farmers quickly and economically. However, as good as extension materials are, previous materials produced are not used by farmers. The reasons for this include lack of involvement of farmers in the production of the extension materials, most of the extension materials are not relevant to the farmers’ environments, the agricultural extension agents lack capacity to prepare the materials, and many extension agents lack commitment. These problems led to this innovative capacity building of extension agents. This innovative approach involves five stages. The first stage is the diagnostic survey of farmers’ environment to collect useful information. The second stage is the development and production of draft extension materials. The third stage is the field testing and evaluation of draft materials by the same farmers that were involved at the diagnostic stage. The fourth stage is the revision of the draft extension materials by incorporating suggestions from farmers. The fifth stage is the action plans. This process improves the capacity of agricultural extension agents in the preparation of extension materials and also promotes engagement of farmers and beneficiaries in the process. The process also makes farmers assume some level of ownership of the exercise and the extension materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacity%20building" title="capacity building">capacity building</a>, <a href="https://publications.waset.org/abstracts/search?q=extension%20agents" title=" extension agents"> extension agents</a>, <a href="https://publications.waset.org/abstracts/search?q=dissemination" title=" dissemination"> dissemination</a>, <a href="https://publications.waset.org/abstracts/search?q=information%2Ftechnologies" title=" information/technologies"> information/technologies</a> </p> <a href="https://publications.waset.org/abstracts/12624/capacity-building-of-extension-agents-for-sustainable-dissemination-of-agricultural-information-and-technologies-in-developing-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1517</span> Rule of Natural Synthetic Chemical on Lead Immobilization in Polluted Sandy Soils </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saud%20S.%20AL%20Oud">Saud S. AL Oud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil contamination can have dire consequences, such as loss of ecosystem and agricultural productivity, diminished food chain quality, tainted water resources, economic loss, and human and animal illness. In recent years, attention has focused on the development of in situ immobilization methods that are generally less expensive and disruptive to the natural landscape, hydrology, and ecosystems than are conventional excavation treatments, and disposal methods. Soft, inexpensive, and efficient agents were used in the present research to immobilize Pb in polluted sandy soil. Five agents, either naturally occurring or chemically prepared, were used for this purpose. These agents include; iron ore (72% Fe2O3), cement, a mixture of calcite and shale rich in aluminum (CASH), and two chemically prepared amorphous materials of Al- and Fe-gel. These agents were selected due to their ability to specifically adsorb heavy metals onto their surface OH functional groups, which provide permanent immobilization of metal pollutants and reduce the fraction that is potentially mobile or bioavailable. The efficiency of these agents in immobilizing Pb were examined in a laboratory experiment, in which two rates (0.5 and 1.0 %) of tested agents were added to the polluted soils containing total contents of Pb ranging from 17.4-49.8 mg/kg. The results show that all immobilizing agents were succeed in minimizing the mobile form of Pb as extracted by 0.5 N HNO3. The extracted Pb decreased with increasing addition rate of immobilizing agents. At addition rate of 0.5%, HNO3 extractable-Pb varied widely depending on the agents type and were found to represent 21-67% of the initial values. All agents were able to reduce mobile Pb to levels lower than that (2.0 mg/kg) reported for non polluted soil, particularly for soils had initials of mobile Pb less than 10 mg/kg. Both iron oxide and CASH had the highest efficiency in immobilizing Pb, followed by cement, then amorphous materials of Fe and Al hydroxides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil" title="soil">soil</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20chemical" title=" synthetic chemical"> synthetic chemical</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=polluted" title=" polluted "> polluted </a> </p> <a href="https://publications.waset.org/abstracts/18023/rule-of-natural-synthetic-chemical-on-lead-immobilization-in-polluted-sandy-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1516</span> Agent-Base Modeling of IoT Applications by Using Software Product Line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asad%20Abbas">Asad Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Fezan%20Afzal"> Muhammad Fezan Afzal</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Latif%20Anjum"> Muhammad Latif Anjum</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Azmat"> Muhammad Azmat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Internet of Things (IoT) is used to link up real objects that use the internet to interact. IoT applications allow handling and operating the equipment in accordance with environmental needs, such as transportation and healthcare. IoT devices are linked together via a number of agents that act as a middleman for communications. The operation of a heat sensor differs indoors and outside because agent applications work with environmental variables. In this article, we suggest using Software Product Line (SPL) to model IoT agents and applications' features on an XML-based basis. The contextual diversity within the same domain of application can be handled, and the reusability of features is increased by XML-based feature modelling. For the purpose of managing contextual variability, we have embraced XML for modelling IoT applications, agents, and internet-connected devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IoT%20agents" title="IoT agents">IoT agents</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT%20applications" title=" IoT applications"> IoT applications</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20product%20line" title=" software product line"> software product line</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20model" title=" feature model"> feature model</a>, <a href="https://publications.waset.org/abstracts/search?q=XML" title=" XML"> XML</a> </p> <a href="https://publications.waset.org/abstracts/172165/agent-base-modeling-of-iot-applications-by-using-software-product-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1515</span> Design and Development of Fleet Management System for Multi-Agent Autonomous Surface Vessel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zulkifli%20Zainal%20Abidin">Zulkifli Zainal Abidin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Shahril%20Mohd%20Ghani"> Ahmad Shahril Mohd Ghani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agent-based systems technology has been addressed as a new paradigm for conceptualizing, designing, and implementing software systems. Agents are sophisticated systems that act autonomously across open and distributed environments in solving problems. Nevertheless, it is impractical to rely on a single agent to do all computing processes in solving complex problems. An increasing number of applications lately require multiple agents to work together. A multi-agent system (MAS) is a loosely coupled network of agents that interact to solve problems that are beyond the individual capacities or knowledge of each problem solver. However, the network of MAS still requires a main system to govern or oversees the operation of the agents in order to achieve a unified goal. We had developed a fleet management system (FMS) in order to manage the fleet of agents, plan route for the agents, perform real-time data processing and analysis, and issue sets of general and specific instructions to the agents. This FMS should be able to perform real-time data processing, communicate with the autonomous surface vehicle (ASV) agents and generate bathymetric map according to the data received from each ASV unit. The first algorithm is developed to communicate with the ASV via radio communication using standard National Marine Electronics Association (NMEA) protocol sentences. Next, the second algorithm will take care of the path planning, formation and pattern generation is tested using various sample data. Lastly, the bathymetry map generation algorithm will make use of data collected by the agents to create bathymetry map in real-time. The outcome of this research is expected can be applied on various other multi-agent systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20surface%20vehicle" title="autonomous surface vehicle">autonomous surface vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=fleet%20management%20system" title=" fleet management system"> fleet management system</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20agent%20system" title=" multi agent system"> multi agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=bathymetry" title=" bathymetry"> bathymetry</a> </p> <a href="https://publications.waset.org/abstracts/72389/design-and-development-of-fleet-management-system-for-multi-agent-autonomous-surface-vessel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1514</span> Consensus Problem of High-Order Multi-Agent Systems under Predictor-Based Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheng-Lin%20Liu">Cheng-Lin Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Fei%20Liu"> Fei Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the multi-agent systems with agent's dynamics described by high-order integrator, and usual consensus algorithm composed of the state coordination control parts is proposed. Under communication delay, consensus algorithm in asynchronously-coupled form just can make the agents achieve a stationary consensus, and sufficient consensus condition is obtained based on frequency-domain analysis. To recover the original consensus state of the high-order agents without communication delay, besides, a predictor-based consensus algorithm is constructed via multiplying the delayed neighboring agents' states by a delay-related compensation part, and sufficient consensus condition is also obtained. Simulation illustrates the correctness of the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-order%20dynamic%20agents" title="high-order dynamic agents">high-order dynamic agents</a>, <a href="https://publications.waset.org/abstracts/search?q=communication%20delay" title=" communication delay"> communication delay</a>, <a href="https://publications.waset.org/abstracts/search?q=consensus" title=" consensus"> consensus</a>, <a href="https://publications.waset.org/abstracts/search?q=predictor-based%20algorithm" title=" predictor-based algorithm"> predictor-based algorithm</a> </p> <a href="https://publications.waset.org/abstracts/19075/consensus-problem-of-high-order-multi-agent-systems-under-predictor-based-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1513</span> Cars Redistribution Optimization Problem in the Free-Float Car-Sharing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amine%20Ait-Ouahmed">Amine Ait-Ouahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Didier%20Josselin"> Didier Josselin</a>, <a href="https://publications.waset.org/abstracts/search?q=Fen%20Zhou"> Fen Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Free-Float car-sharing is an one-way car-sharing service where cars are available anytime and anywhere in the streets such that no dedicated stations are needed. This means that after driving a car you can park it anywhere. This car-sharing system creates an imbalance car distribution in the cites which can be regulated by staff agents through the redistribution of cars. In this paper, we aim to solve the car-reservation and agents traveling problem so that the number of successful cars’ reservations could be maximized. Beside, we also tend to minimize the distance traveled by agents for cars redistribution. To this end, we present a mixed integer linear programming formulation for the car-sharing problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=one-way%20car-sharing" title="one-way car-sharing">one-way car-sharing</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20redistribution" title=" vehicle redistribution"> vehicle redistribution</a>, <a href="https://publications.waset.org/abstracts/search?q=car%20reservation" title=" car reservation"> car reservation</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20programming" title=" linear programming"> linear programming</a> </p> <a href="https://publications.waset.org/abstracts/67501/cars-redistribution-optimization-problem-in-the-free-float-car-sharing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1512</span> A Bio-Inspired Approach for Self-Managing Wireless Sensor and Actor Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lyamine%20Guezouli">Lyamine Guezouli</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Barka"> Kamel Barka</a>, <a href="https://publications.waset.org/abstracts/search?q=Zineb%20Seghir"> Zineb Seghir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless sensor and actor networks (WSANs) present a research challenge for different practice areas. Researchers are trying to optimize the use of such networks through their research work. This optimization is done on certain criteria, such as improving energy efficiency, exploiting node heterogeneity, self-adaptability and self-configuration. In this article, we present our proposal for BIFSA (Biologically-Inspired Framework for Wireless Sensor and Actor networks). Indeed, BIFSA is a middleware that addresses the key issues of wireless sensor and actor networks. BIFSA consists of two types of agents: sensor agents (SA) that operate at the sensor level to collect and transport data to actors and actor agents (AA) that operate at the actor level to transport data to base stations. Once the sensor agent arrives at the actor, it becomes an actor agent, which can exploit the resources of the actors and vice versa. BIFSA allows agents to evolve their genetic structures and adapt to the current network conditions. The simulation results show that BIFSA allows the agents to make better use of all the resources available in each type of node, which improves the performance of the network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20and%20actor%20networks" title="wireless sensor and actor networks">wireless sensor and actor networks</a>, <a href="https://publications.waset.org/abstracts/search?q=self-management" title=" self-management"> self-management</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=agent." title=" agent."> agent.</a> </p> <a href="https://publications.waset.org/abstracts/162585/a-bio-inspired-approach-for-self-managing-wireless-sensor-and-actor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1511</span> Factors Determining the Vulnerability to Occupational Health Risk and Safety of Call Center Agents in the Philippines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lito%20M.%20Amit">Lito M. Amit</a>, <a href="https://publications.waset.org/abstracts/search?q=Venecio%20U.%20Ultra"> Venecio U. Ultra</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Woong%20Song"> Young-Woong Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The business process outsourcing (BPO) in the Philippines is expanding rapidly attracting more than 2% of total employment. Currently, the BPO industry is confronted with several issues pertaining to sustainable productivity such as meeting the staffing gap, high rate of employees’ turnover and workforce retention, and the occupational health and safety (OHS) of call center agents. We conducted a survey of OHS programs and health concerns among call center agents in the Philippines and determined the sociocultural factors that affect the vulnerability of call center agents to occupational health risks and hazards. The majority of the agents affirmed that OHS are implemented and OHS orientation and emergency procedures were conducted at employment initiations, perceived favorable and convenient working environment except for occasional noise disturbances and acoustic shock, visual, and voice fatigues. Male agents can easily adjust to the demands and changes in their work environment and flexible work schedules than female agents. Female agents have a higher tendency to be pressured and humiliated by low work performance, experience a higher incidence of emotional abuse, psychological abuse, and experience more physical stress than male agents. The majority of the call center agents had a night-shift schedule and regardless of other factors, night shift work brings higher stress to agents. While working in a call center, higher incidence of headaches and insomnia, burnout, suppressed anger, anxiety, and depressions were experienced by female, younger (21-25 years old) and those at night shift than their counterpart. Most common musculoskeletal disorders include body pain in the neck, shoulders and back; and hand and wrist disorders and these are commonly experienced by female and younger workers. About 30% experienced symptoms of cardiovascular and gastrointestinal disorders and weakened immune systems. Overall, these findings have shown the variable vulnerability by a different subpopulation of call center agents and are important in the occupational health risk prevention and management towards a sustainable human resource for BPO industry in the Philippines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=business%20process%20outsourcing%20industry" title="business process outsourcing industry">business process outsourcing industry</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risk%20of%20call%20center%20agents" title=" health risk of call center agents"> health risk of call center agents</a>, <a href="https://publications.waset.org/abstracts/search?q=socio-cultural%20determinants" title=" socio-cultural determinants"> socio-cultural determinants</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippines" title=" Philippines "> Philippines </a> </p> <a href="https://publications.waset.org/abstracts/24381/factors-determining-the-vulnerability-to-occupational-health-risk-and-safety-of-call-center-agents-in-the-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1510</span> In the Study of Co₂ Capacity Performance of Different Frothing Agents through Process Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Idrees">Muhammad Idrees</a>, <a href="https://publications.waset.org/abstracts/search?q=Masroor%20Abro"> Masroor Abro</a>, <a href="https://publications.waset.org/abstracts/search?q=Sikandar%20Almani"> Sikandar Almani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Presently, the increasing CO₂ concentration in the atmosphere has been taken as one of the major challenges faced by the modern world. The average CO₂ in the atmosphere reached the highest value of 414.72 ppm in 2021, as reported in a conference of the parties (COP26). This study focuses on (i) the comparative study of MEA, NaOH, Acetic acid, and Na₂CO₃ in terms of their CO₂ capture performance, (ii) the significance of adding various frothing agents achieving improved absorption capacity of Na₂CO₃ and (iii) the overall economic evaluation of process with the help of Aspen Plus. The results obtained suggest that the addition of frothing agents significantly increased the absorption rate of dilute sodium carbonate such that from 45% to 99.9%. The effect of temperature, pressure and flow rate of liquid and flue gas streams on CO₂ absorption capacity was also investigated. It was found that the absorption capacity of Na₂CO₃ decreased with increasing temperature of the liquid stream and decreasing flow rate of the liquid stream and pressure of the gas stream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82" title="CO₂">CO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=absorbents" title=" absorbents"> absorbents</a>, <a href="https://publications.waset.org/abstracts/search?q=frothing%20agents" title=" frothing agents"> frothing agents</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20simulation" title=" process simulation"> process simulation</a> </p> <a href="https://publications.waset.org/abstracts/163802/in-the-study-of-co2-capacity-performance-of-different-frothing-agents-through-process-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1509</span> Iron Oxide Magnetic Nanoparticles as MRI Contrast Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suhas%20Pednekar">Suhas Pednekar</a>, <a href="https://publications.waset.org/abstracts/search?q=Prashant%20Chavan"> Prashant Chavan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Chaughule"> Ramesh Chaughule</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Patkar"> Deepak Patkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iron oxide (Fe3O4) magnetic nanoparticles (MNPs) are one of the most attractive nanomaterials for various biomedical applications. An important potential medical application of polymer-coated iron oxide nanoparticles (NPs) is as imaging agents. Composition, size, morphology and surface chemistry of these nanoparticles can now be tailored by various processes to not only improve magnetic properties but also affect the behavior of nanoparticles in vivo. MNPs are being actively investigated as the next generation of magnetic resonance imaging (MRI) contrast agents. Also, there is considerable interest in developing magnetic nanoparticles and their surface modifications with therapeutic agents. Our study involves the synthesis of biocompatible cancer drug coated with iron oxide nanoparticles and to evaluate their efficacy as MRI contrast agents. A simple and rapid microwave method to prepare Fe3O4 nanoparticles has been developed. The drug was successfully conjugated to the Fe3O4 nanoparticles which can be used for various applications. The relaxivity R2 (reciprocal of the spin-spin relaxation time T2) is an important factor to determine the efficacy of Fe nanoparticles as contrast agents for MRI experiments. R2 values of the coated magnetic nanoparticles were also measured using MRI technique and the results showed that R2 of the Fe complex consisting of Fe3O4, polymer and drug was higher than that of bare Fe nanoparticles and polymer coated nanoparticles. This is due to the increase in hydrodynamic sizes of Fe NPs. The results with various amounts of iron molar concentrations are also discussed. Using MRI, it is seen that the R2 relaxivity increases linearly with increase in concentration of Fe NPs in water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20drug" title="cancer drug">cancer drug</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic%20size" title=" hydrodynamic size"> hydrodynamic size</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title=" magnetic nanoparticles"> magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a> </p> <a href="https://publications.waset.org/abstracts/64976/iron-oxide-magnetic-nanoparticles-as-mri-contrast-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1508</span> Simulation of Obstacle Avoidance for Multiple Autonomous Vehicles in a Dynamic Environment Using Q-Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andreas%20D.%20Jansson">Andreas D. Jansson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The availability of inexpensive, yet competent hardware allows for increased level of automation and self-optimization in the context of Industry 4.0. However, such agents require high quality information about their surroundings along with a robust strategy for collision avoidance, as they may cause expensive damage to equipment or other agents otherwise. Manually defining a strategy to cover all possibilities is both time-consuming and counter-productive given the capabilities of modern hardware. This paper explores the idea of a model-free self-optimizing obstacle avoidance strategy for multiple autonomous agents in a simulated dynamic environment using the Q-learning algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20vehicles" title="autonomous vehicles">autonomous vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=industry%204.0" title=" industry 4.0"> industry 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title=" multi-agent system"> multi-agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20avoidance" title=" obstacle avoidance"> obstacle avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=Q-learning" title=" Q-learning"> Q-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/132508/simulation-of-obstacle-avoidance-for-multiple-autonomous-vehicles-in-a-dynamic-environment-using-q-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1507</span> Deep Reinforcement Learning for Optimal Decision-Making in Supply Chains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nitin%20Singh">Nitin Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Ling"> Meng Ling</a>, <a href="https://publications.waset.org/abstracts/search?q=Talha%20Ahmed"> Talha Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Tianxia%20Zhao"> Tianxia Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Reinier%20van%20de%20Pol"> Reinier van de Pol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose the use of reinforcement learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making makes it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and statistical analysis of the results. We study the generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inventory%20management" title="inventory management">inventory management</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement%20learning" title=" reinforcement learning"> reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20optimization" title=" supply chain optimization"> supply chain optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/155576/deep-reinforcement-learning-for-optimal-decision-making-in-supply-chains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1506</span> An Adaptive Distributed Incremental Association Rule Mining System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adewale%20O.%20Ogunde">Adewale O. Ogunde</a>, <a href="https://publications.waset.org/abstracts/search?q=Olusegun%20Folorunso"> Olusegun Folorunso</a>, <a href="https://publications.waset.org/abstracts/search?q=Adesina%20S.%20Sodiya"> Adesina S. Sodiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most existing Distributed Association Rule Mining (DARM) systems are still facing several challenges. One of such challenges that have not received the attention of many researchers is the inability of existing systems to adapt to constantly changing databases and mining environments. In this work, an Adaptive Incremental Mining Algorithm (AIMA) is therefore proposed to address these problems. AIMA employed multiple mobile agents for the entire mining process. AIMA was designed to adapt to changes in the distributed databases by mining only the incremental database updates and using this to update the existing rules in order to improve the overall response time of the DARM system. In AIMA, global association rules were integrated incrementally from one data site to another through Results Integration Coordinating Agents. The mining agents in AIMA were made adaptive by defining mining goals with reasoning and behavioral capabilities and protocols that enabled them to either maintain or change their goals. AIMA employed Java Agent Development Environment Extension for designing the internal agents’ architecture. Results from experiments conducted on real datasets showed that the adaptive system, AIMA performed better than the non-adaptive systems with lower communication costs and higher task completion rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptivity" title="adaptivity">adaptivity</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20association%20rule%20mining" title=" distributed association rule mining"> distributed association rule mining</a>, <a href="https://publications.waset.org/abstracts/search?q=incremental%20mining" title=" incremental mining"> incremental mining</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20agents" title=" mobile agents"> mobile agents</a> </p> <a href="https://publications.waset.org/abstracts/10014/an-adaptive-distributed-incremental-association-rule-mining-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=AI%20Agents&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=AI%20Agents&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=AI%20Agents&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=AI%20Agents&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=AI%20Agents&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=AI%20Agents&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=AI%20Agents&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=AI%20Agents&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=AI%20Agents&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=AI%20Agents&page=51">51</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=AI%20Agents&page=52">52</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=AI%20Agents&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>