CINXE.COM

Search results for: sulfur

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: sulfur</title> <meta name="description" content="Search results for: sulfur"> <meta name="keywords" content="sulfur"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="sulfur" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="sulfur"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 204</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: sulfur</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">204</span> Appropriate Nutrient Management for Wheat Production in Afghanistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azizurahman%20Sakhizadah">Azizurahman Sakhizadah</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsugiyuki%20Masunaga"> Tsugiyuki Masunaga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of sulfur fertilizer by Afghanistan farmers for wheat production has never been practiced, although sulfur deficiency has been expected for wheat production. A field experiment was conducted at Poza e Ishan Research Station Farm, Baghlan province, Afghanistan to examine the effect of sulfur fertilizer on growth and yield components of wheat. The experiment was laid out in randomize complete block design (RCBD), having three replications and eight treatments. The initial soil of experiment was alkaline (pH8.4), with textural class of sandy clay loam, available sulfur (40.8) mg kg-1, and Olsen-P (28.8) mg kg-1. Wheat variety, Kabul 013 was cultivated from November 2015 to June 2016. The recommended doses of nitrogen and Phosphors (Urea and DAP at 250 and 125 kg ha-1) were applied by broadcasting except control plot. Sulfur was applied by foliar spray (K2 SO4) at the rate of 10, 20, and 30 kg ha-1, split at tillering and flowering stages. The results demonstrated that sulfur application positively influenced on growth and yield of wheat crop with combination of nitrogen. Plant did not respond to sole sulfur application. Plant height, spike length, spikelet's number spike-1, were increased and yield g m-2 was also increased by 1.2, 19.1 and 25.1 % for 10, 20 and 30 kg sulfur ha-1 application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sulfur" title="sulfur">sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=foliar" title=" foliar"> foliar</a> </p> <a href="https://publications.waset.org/abstracts/88926/appropriate-nutrient-management-for-wheat-production-in-afghanistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">203</span> Increasing Sulfur Handling Cost Efficiency Using the Eco Sulfur Paving Block Method at PT Pertamina EP Field Cepu</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adha%20Bayu%20Wijaya">Adha Bayu Wijaya</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zainal%20Abidin"> A. Zainal Abidin</a>, <a href="https://publications.waset.org/abstracts/search?q=Naufal%20Baihaqi"> Naufal Baihaqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Joko%20Suprayitno"> Joko Suprayitno</a>, <a href="https://publications.waset.org/abstracts/search?q=Astika%20Titistiti"> Astika Titistiti</a>, <a href="https://publications.waset.org/abstracts/search?q=Muslim%20Adi%20Wijaya"> Muslim Adi Wijaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Endah%20Tri%20Lestari"> Endah Tri Lestari</a>, <a href="https://publications.waset.org/abstracts/search?q=Agung%20Wibowo"> Agung Wibowo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulfur is a non-metallic chemical element in the form of a yellow crystalline solid with the chemical formula, and is formed from several types of natural and artificial chemical reactions. Commercial applications of sulfur processed products can be found in various aspects of life, for example in the use of processed sulfur as paving blocks. The Gundih Central Processing Plant (CPP) is capable of producing 14 tons/day of sulfur pellets. This amount comes from the high H2S content of the wells with a total concentration of 20,000 ppm and a volume accumulation of 14 MMSCFD acid gas. H2S is converted to sulfur using the thiobacillus microbe in the Biological Sulfur Recovery Unit (BSRU) with a sulfur product purity level greater than 95%. In 2018 sulfur production at Gundih CPP was recorded at 4044 tons which could potentially trigger serious problems from an environmental aspect. The use of sulfur as material for making paving blocks is an alternative solution in addressing the potential impact on the environment, as regulated by Government Regulation No.22 of Year 2021 concerning the Waste Management of Non-Hazardous and Toxic Substances (B3), and the high cost of handling sulfur by third parties. The design mix of ratio sulfur paving blocks is 22% cements, rock ash 67%, and 11% of sulfur pellets. The sulfur used in making the paving mixture is pure sulfur, namely the side product category without any contaminants, thereby eliminating the potential for environmental pollution when implementing sulfur paving. Strength tests of sulfur paving materials have also been confirmed by external laboratories. The standard used in making sulfur paving blocks refers to the SNI 03-0691-1996 standard. With the results of sulfur paving blocks made according to quality B. Currently, sulfur paving blocks are used in building access to wells locations and in public roads in the Cepu Field area as a contribution from Corporate Social Responsibility (CSR). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sulphur" title="sulphur">sulphur</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation" title=" innovation"> innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=paving%20block" title=" paving block"> paving block</a>, <a href="https://publications.waset.org/abstracts/search?q=CSR" title=" CSR"> CSR</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphur%20paving" title=" sulphur paving"> sulphur paving</a> </p> <a href="https://publications.waset.org/abstracts/175532/increasing-sulfur-handling-cost-efficiency-using-the-eco-sulfur-paving-block-method-at-pt-pertamina-ep-field-cepu" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">202</span> Applications of Sulfur Nanoparticles: Synthesis and Characterizations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20K.%20Shukla">Sandeep K. Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Roli%20Jain"> Roli Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumitra%20S.%20Pande"> Soumitra S. Pande</a>, <a href="https://publications.waset.org/abstracts/search?q=Archna%20Pandey"> Archna Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulfur nanoparticles were prepared by different methods with different sizes and shapes. When the sulfur is present as nanoparticles they have many practical applications in our life. This research discusses sulfur nanoparticles synthesis, characterizations and applications. With dandruff being a common everyday problem and the market is loaded with antidandruff shampoos and such skin care products, it is obvious to assume resourceful research into this area would be both objective to present scenario and potentially lucrative. Nanoparticles are frequently in use in some very powerful antimicrobial, antifungal cosmetics nowadays, especially silver. To check its antidandruff activity, experiments have been conducted on Malassezia furfur the causal organism for seborrheaic dermatitis or dandruff, which have been cultured for such study in our lab. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CTAB%20surfactant%20SEM" title="CTAB surfactant SEM">CTAB surfactant SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur%20nanoparticles%20%28S-NPs%29" title=" sulfur nanoparticles (S-NPs)"> sulfur nanoparticles (S-NPs)</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20surfactant" title=" polymeric surfactant"> polymeric surfactant</a> </p> <a href="https://publications.waset.org/abstracts/34650/applications-of-sulfur-nanoparticles-synthesis-and-characterizations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">589</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">201</span> Extractive Desulfurization of Atmospheric Gasoil with N,N-Dimethylformamide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kahina%20Bedda">Kahina Bedda</a>, <a href="https://publications.waset.org/abstracts/search?q=Boudjema%20Hamada"> Boudjema Hamada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental regulations have been introduced in many countries around the world to reduce the sulfur content of diesel fuel to ultra low levels with the intention of lowering diesel engine’s harmful exhaust emissions and improving air quality. Removal of sulfur containing compounds from diesel feedstocks to produce ultra low sulfur diesel fuel by extraction with selective solvents has received increasing attention in recent years. This is because the sulfur extraction technologies compared to the hydrotreating processes could reduce the cost of desulfurization substantially since they do not demand hydrogen, and are carried out at atmospheric pressure. In this work, the desulfurization of distillate gasoil by liquid-liquid extraction with N, N-dimethylformamide was investigated. This fraction was recovered from a mixture of Hassi Messaoud crude oils and Hassi R'Mel gas-condensate in Algiers refinery. The sulfur content of this cut is 281 ppm. Experiments were performed in six-stage with a ratio of solvent:feed equal to 3:1. The effect of the extraction temperature was investigated in the interval 30 ÷ 110°C. At 110°C the yield of refined gas oil was 82% and its sulfur content was 69 ppm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desulfurization" title="desulfurization">desulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=gasoil" title=" gasoil"> gasoil</a>, <a href="https://publications.waset.org/abstracts/search?q=N" title=" N"> N</a>, <a href="https://publications.waset.org/abstracts/search?q=N-dimethylformamide" title="N-dimethylformamide">N-dimethylformamide</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur%20content" title=" sulfur content"> sulfur content</a> </p> <a href="https://publications.waset.org/abstracts/9332/extractive-desulfurization-of-atmospheric-gasoil-with-nn-dimethylformamide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">200</span> Health Exposure Assessment of Sulfur Loading Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayman%20M.%20Arfaj">Ayman M. Arfaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Lauro%20M.%20Llamas"> Jose Lauro M. Llamas</a>, <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Y%20Qahtani">Saleh Y Qahtani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulfur Loading Operation (SLO) is an operation that poses risk of exposure to toxic gases such as Hydrogen Sulfid and Sulfur Dioxide during molten sulfur loading operation. In this operation molten sulfur is loaded into a truck tanker in a liquid state and the temperature of the tanker must maintain liquid sulfur within a 43-degree range — between 266 degrees and 309 degrees Fahrenheit in order for safe loading and unloading to occur. Accordingly, in this study, the e potential risk of occupational exposure to the airborne toxic gases was assessed at three sulfur loading facilities. The concentrations of toxic airborne substances such as Hydrogen Sulfide (H2S) and Sulfur Dioxide (SO2), were monitored during operations at the different locations within the sulfur loading operation facilities. In addition to extensive real-time monitoring, over one hundred and fifty samples were collected and analysed at internationally accredited laboratories. The concentrations of H2S, and SO2 were all found to be well below their respective occupational exposure limits. Very low levels of H2S account for the odours observed intermittingly during mixing and application operations but do not pose a considerable health risk and hence these levels are considered a nuisance. These results were comparable to those reported internationally. Aside from observing the usual general safe work practices such as wearing safety glasses, there are no specific occupational health related concerns at the examined sulfur loading facilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exposure%20assessment" title="exposure assessment">exposure assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur%20loading%20operation" title=" sulfur loading operation"> sulfur loading operation</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risk%20study" title=" health risk study"> health risk study</a>, <a href="https://publications.waset.org/abstracts/search?q=molten%20sulfur" title=" molten sulfur"> molten sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=toxic%20airborne%20substances" title=" toxic airborne substances"> toxic airborne substances</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20contaminants%20monitoring" title=" air contaminants monitoring"> air contaminants monitoring</a> </p> <a href="https://publications.waset.org/abstracts/163487/health-exposure-assessment-of-sulfur-loading-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">199</span> Possible Sulfur Induced Superconductivity in Nano-Diamond</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Mona">J. Mona</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20R.%20da%20Silva"> R. R. da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=C.-L.Cheng"> C.-L.Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Kopelevich"> Y. Kopelevich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report on a possible occurrence of superconductivity in 5 nm particle size diamond powders treated with sulfur (S) at 500 o C for 10 hours in ~10-2 Torr vacuum. Superconducting-like magnetization hysteresis loops M(H) have been measured up to ~ 50 K by means of the SQUID magnetometer (Quantum Design). Both X-ray (Θ-2Θ geometry) and Raman spectroscopy analyses revealed no impurity or additional phases. Nevertheless, the measured Raman spectra are characteristic to the diamond with embedded disordered carbon and/or graphitic fragments suggesting a link to the previous reports of the local or surface superconductivity in graphite- and amorphous carbon–sulfur composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanodiamond" title="nanodiamond">nanodiamond</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur" title=" sulfur"> sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=superconductivity" title=" superconductivity"> superconductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy "> Raman spectroscopy </a> </p> <a href="https://publications.waset.org/abstracts/14990/possible-sulfur-induced-superconductivity-in-nano-diamond" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">198</span> The Effect of Sulfur and Calcium on the Formation of Dioxin in a Bubbling Fluidized Bed Incinerator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chien-Song%20Chyang">Chien-Song Chyang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Chih%20Wang"> Wei-Chih Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the incineration process, the inhibition of dioxin formation is an important issue. Many investigations indicate that adding sulfur compounds in the combustion process can be an effectively inhibition for the dioxin formation. In the process, the ratio of sulfur-to-chlorine plays an important role for the reduction efficiency of dioxin formation. Ca-base sorbent is also a common used for the acid gas removing. Moreover, that is also the indirectly way for dioxin inhibition. Although sulfur and calcium can reduce the dioxin formation, it still have some confusion exists between these additives. To understand and clarify the relationship between the dioxin and simultaneous addition of sulfur and calcium are presented in this study. The experimental data conducted in a pilot scale fluidized bed combustion system at various operating conditions are analysis comprehensively. The focus is on the dioxin of fly ash in this study. The experimental data in this study showed that the PCDD/Fs concentration in the fly ash collected from the baghouse is increased slightly as the simultaneous addition of sulfur and calcium. This work described the CO concentration with the addition of sulfur and calcium at the freeboard temperature from 800°C to 900°C, which is raised by the fuel complexity. The positive correlation exists between the dioxin concentration and CO concentration and carbon contained in the fly ash.. At the same sulfur/chlorine ratio, the toxic equivalent quantity (TEQ) can be reduced by increasing the actual concentration of sulfur and calcium. The homologue profiles showed that the P₅CDD and P₅CDF were the two major sources for the toxicity of dioxin. 2,3,7,8-TCDD and 2,3,7,8-TCDF reduced by the addition of pyrite and hydrated lime. The experimental results showed that the trend of PCDD/Fs concentration in the fly ash was different by the different sulfur/chlorine ratio with the addition of sulfur at 800°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reduction%20of%20dioxin%20emissions" title="reduction of dioxin emissions">reduction of dioxin emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur-to-chlorine%20ratio" title=" sulfur-to-chlorine ratio"> sulfur-to-chlorine ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=de-chlorination" title=" de-chlorination"> de-chlorination</a>, <a href="https://publications.waset.org/abstracts/search?q=Ca-based%20sorbent" title=" Ca-based sorbent"> Ca-based sorbent</a> </p> <a href="https://publications.waset.org/abstracts/96170/the-effect-of-sulfur-and-calcium-on-the-formation-of-dioxin-in-a-bubbling-fluidized-bed-incinerator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">197</span> Size Selective Synthesis of Sulfur Nanoparticles and Their Anticancer Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anas%20Al-Ali">Anas Al-Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Suleiman"> Mohammed Suleiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayman%20Hussein"> Ayman Hussein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulfur is an important element has many practical applications in present as nanoparticles. Nanosize sulfur particles also have many important applications like in pharmaceuticals, medicine, syn-thesis of nano-composites for lithium batteries, modification of carbon nano tubes. Different methods were used for nano-sized particle synthesis; among those, chemical precipitation, electrochemical method, micro emulsion technique, composing of oil, surfactant, co-surfactant, aqueous phases with the specific compositions and ultrasonic treatment of sulfur-cystine solution. In this work Sulfur nanoparticles (S NPs) were prepared by a quick precipitation method with and without using a surfactant to stabilize the formed S NPs. The synthesized S NPs were characterized by XRD, SEM and TEM in order to confirm their sizes and structures.Application of nanotechnology is suggested for diag-nosis and treatment of cancer. The anticancer activity of the prepared S NPs has been tested on various types of cancer cell clones including leukemia, kidney and colon cancers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sulfur%20nanoparticles%20%28S-NPs%29" title="sulfur nanoparticles (S-NPs)">sulfur nanoparticles (S-NPs)</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/18082/size-selective-synthesis-of-sulfur-nanoparticles-and-their-anticancer-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">654</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">196</span> Size Selective Synthesis of Sulfur Nanoparticles and Their Anti Cancer Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anas%20Al-Ali">Anas Al-Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Suleiman"> Mohammed Suleiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayman%20Hussein"> Ayman Hussein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulfur is an important element has many practical applications in present as nanoparticles. Nanosize sulfur particles also have many important applications like in pharmaceuticals, medicine, synthesis of nanocomposites for lithium batteries, modification of carbon nanotubes. Different methods were used for nano-sized particle synthesis; among those, chemical precipitation, electrochemical method, micro-emulsion technique, composing of oil, surfactant, co-surfactant, aqueous phases with the specific compositions and ultrasonic treatment of sulfur-cystine solution. In this work, sulfur nanoparticles (S NPs) were prepared by a quick precipitation method with and without using a surfactant to stabilize the formed S NPs. The synthesized S NPs were characterized by XRD, SEM, and TEM in order to confirm their sizes and structures. Application of nanotechnology is suggested for diagnosis and treatment of cancer. The anticancer activity of the prepared S NPs has been tested on various types of cancer cell clones including leukemia, kidney and colon cancers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sulfur%20nanoparticles%20%28S-NPs%29" title="sulfur nanoparticles (S-NPs)">sulfur nanoparticles (S-NPs)</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=anti%20cancer%20activity" title=" anti cancer activity"> anti cancer activity</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/26651/size-selective-synthesis-of-sulfur-nanoparticles-and-their-anti-cancer-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">195</span> Effect of Sulfur Content on Fatigue Strength of AISI 4140 Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sachin%20S.%20Patil">Sachin S. Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohan%20I.%20Mehta"> Mohan I. Mehta</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandip%20J.%20Sutar"> Sandip J. Sutar</a>, <a href="https://publications.waset.org/abstracts/search?q=Akshay%20B.%20Patil"> Akshay B. Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Shreyas%20S.%20Kirwai"> Shreyas S. Kirwai</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Arangi"> Suresh Arangi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MnS is the most commonly found inclusion in steel, which is desirable for machinability of alloy steels but only up to a certain limit, beyond which it weakens fatigue properties of steel. In present work, the effect of sulfur content and its inclusions on the fatigue behavior of AISI 4140 steel is studied (sulfur content 0.002% and 0.016%). Metallurgical analysis, Mechanical testing and Rotating Bending Fatigue (RBF) test were carried out. With the increase in sulfur content, ductility and toughness of the material decrease significantly and large scatter is observed in UTS and impact energy values. From the results of RBF testing, it can be observed that increase in sulfur content from 0.002% to 0.016% has a negligible effect on the endurance strength of AISI 4140 for similar hardness level. Fractography analysis was carried out to study the failure modes in testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AISI%204140" title="AISI 4140">AISI 4140</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur%20content" title=" sulfur content"> sulfur content</a>, <a href="https://publications.waset.org/abstracts/search?q=MnS%20inclusion" title=" MnS inclusion"> MnS inclusion</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20bending%20fatigue" title=" rotating bending fatigue"> rotating bending fatigue</a> </p> <a href="https://publications.waset.org/abstracts/50032/effect-of-sulfur-content-on-fatigue-strength-of-aisi-4140-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">194</span> Biological Organic or Inorganic Sulfur Sources Feeding Effects on Intake and Some Blood Metabolites of Close-Up Holstein Cows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Kazemi-Bonchenari">Mehdi Kazemi-Bonchenari</a>, <a href="https://publications.waset.org/abstracts/search?q=Esmaeil%20Manidari"> Esmaeil Manidari</a>, <a href="https://publications.waset.org/abstracts/search?q=Vahid%20Keshavarz"> Vahid Keshavarz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was carried out to investigate the effects of increased level of sulfur by supplementing magnesium sulfate with or without biologically organic source in dairy cow close-up diets on dry matter intake (DMI) and some blood metabolites. The 24 multiparous close-up Holstein cows averaging body weight 687.94 kg and days until expected calving date 21.89 d were allocated in three different treatments (8 cows per each) in a completely randomized design. The first treatment (T1) has contained 0.21% sulfur (DM basis), the second treatment (T2) has contained 0.41% sulfur which entirely supplied through magnesium sulfate and the third treatment (T3) has contained 0.41% sulfur which supplied through combination of magnesium sulfate and an organic source of sulfur. All the cows were fed same diet after parturition until 21 d. The DMI for both pre-calving (P < 0.001) and post-calving was affected by treatments (P < 0.004) and T2 showed the lowest DMI among treatments. Among the blood metabolites, glucose, calcium, and copper were decreased in T2 (P < 0.05). However, blood concentrations of BHBA, NEFA, urea, CPK, and AST were increased in T2 (P < 0.05). The results of the present study indicate that although magnesium sulfate has negative effect on dairy cow health and performance, a combination of magnesium sulfate and biological organic source of sulfur in close-up diets could have positive effects on DMI and performance of Holstein dairy cows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20sulfur" title="organic sulfur">organic sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20cow" title=" dairy cow"> dairy cow</a>, <a href="https://publications.waset.org/abstracts/search?q=intake" title=" intake"> intake</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20metabolites" title=" blood metabolites"> blood metabolites</a> </p> <a href="https://publications.waset.org/abstracts/10692/biological-organic-or-inorganic-sulfur-sources-feeding-effects-on-intake-and-some-blood-metabolites-of-close-up-holstein-cows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">193</span> Depyritization of US Coal Using Iron-Oxidizing Bacteria: Batch Stirred Reactor Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Pathak">Ashish Pathak</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Jin%20Kim"> Dong-Jin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Haragobinda%20Srichandan"> Haragobinda Srichandan</a>, <a href="https://publications.waset.org/abstracts/search?q=Byoung-Gon%20Kim"> Byoung-Gon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial depyritization of coal using chemoautotrophic bacteria is gaining acceptance as an efficient and eco-friendly technique. The process uses the metabolic activity of chemoautotrophic bacteria in removing sulfur and pyrite from the coal. The aim of the present study was to investigate the potential of Acidithiobacillus ferrooxidans in removing the pyritic sulfur and iron from high iron and sulfur containing US coal. The experiment was undertaken in 8 L bench scale stirred tank reactor having 1% (w/v) pulp density of coal. The reactor was operated at 35ºC and aerobic conditions were maintained by sparging the air into the reactor. It was found that at the end of bio-depyritization process, about 90% of pyrite and 67% of pyritic sulfur was removed from the coal. The results indicate that the bio-depyritization process is an efficient process in treating the high pyrite and sulfur containing coal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=At.ferrooxidans" title="At.ferrooxidans">At.ferrooxidans</a>, <a href="https://publications.waset.org/abstracts/search?q=batch%20reactor" title=" batch reactor"> batch reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20desulfurization" title=" coal desulfurization"> coal desulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite" title=" pyrite"> pyrite</a> </p> <a href="https://publications.waset.org/abstracts/1871/depyritization-of-us-coal-using-iron-oxidizing-bacteria-batch-stirred-reactor-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">192</span> Tribological Behavior of EP Additives with Different Percentage of Sulfur </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salete%20Martins%20Alves">Salete Martins Alves</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Josemar%20de%20Oliveira%20Junior"> José Josemar de Oliveira Junior</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current efforts on design of lubricants are based in attending the new requirement of modern equipment with the focus on the choice of base oil and additives. Nowadays, there are different types of lubricant oils’ bases, such as mineral oils, synthetic oils, re-refined oils and vegetable oils. The lubrication in the boundary condition is controlled mainly by EP additives that interact with the surface forming very thin films. Therefore, the study’s goal is to evaluate the action of three EP additives, with different percentage of sulfur, on friction and wear reduction. They were evaluated in mineral and synthetic oils. Lubricants were prepared with synthetic and mineral oils and added 3 % and 5 % of EP additives. The friction and wear characteristics were studied using HFRR test. In this test, a normal load of 10 N was applied at a frequency of 20 Hz. The analysis of results has appointed that the percentage of sulfur in mineral oil has influenced on wear reduction. However, synthetic oil had good performance with low sulfur content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20lubrication" title="boundary lubrication">boundary lubrication</a>, <a href="https://publications.waset.org/abstracts/search?q=EP%20additives" title=" EP additives"> EP additives</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur" title=" sulfur"> sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/10706/tribological-behavior-of-ep-additives-with-different-percentage-of-sulfur" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">191</span> Refinery Sulfur as an Alternative Agent to Decrease Pesticide Exposure in Pistachio Orchards and Common Pistachio Psylla’s Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Basirat">Mehdi Basirat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Rouhani"> Mohammad Rouhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahla%20Borzouei"> Shahla Borzouei</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Zarangi"> Majid Zarangi</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Abolghasemi"> Asma Abolghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Fazel%20Soltani"> Mohammad Fazel Soltani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Gorji"> Mohammad Gorji</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Amin%20Samih"> Mohammad Amin Samih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The common pistachio psylla, Agonoscena pistaciae Burckhardt and Lauterer (Hemiptera: Aphalaridae), as one of the most detrimental pests in all pistachio producing regions, causes great economic damages to pistachio trees. Nowadays, various pesticides are used to control the common pistachio psylla and robust pesticide exposure has occurred in orchards. In this study, field experiments were conducted during 2018–2021 to assess the effects of sulfur on A. pistaciae. This study compared sulfur with asafoetida extract and pesticide (acetamiprid) on A. pistaciae based on complete randomized blocks with three replications. The analysis results of variance showed that the effect of treatments on egg (F2,24 = 17.61, P = 0.00) and nymphs (F2,24 = 18.29, P = 0.00) had a significant difference at a 1% level. The results demonstrated that sulfur had the highest measure of control on eggs and nymphs significantly compared to the plant extract and pesticide (negative control). These results provide support to the potential use of sulfur as an alternative pest management tool against A. pistaciae. The results clearly indicated that sulfur could control the common pistachio psylla population for six weeks at least. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agonoscena%20pistaciae" title="Agonoscena pistaciae">Agonoscena pistaciae</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20exposure" title=" pesticide exposure"> pesticide exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=pistachio" title=" pistachio"> pistachio</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur" title=" sulfur"> sulfur</a> </p> <a href="https://publications.waset.org/abstracts/148558/refinery-sulfur-as-an-alternative-agent-to-decrease-pesticide-exposure-in-pistachio-orchards-and-common-pistachio-psyllas-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">190</span> Structural Property and Mechanical Behavior of Polypropylene–Elemental Sulfur (S8) Composites: Effect of Sulfur Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Vijay%20Kumar">S. Vijay Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kishore%20K.%20Jena"> Kishore K. Jena</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20M.%20Alhassan"> Saeed M. Alhassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elemental sulfur is currently produced on the level of 70 million tons annually by petroleum refining, majority of which is used in the production of sulfuric acid, fertilizer and other chemicals. Still, over 6 million tons of elemental sulfur is generated in excess, which creates exciting opportunities to develop new chemistry to utilize sulfur as a feedstock for polymers. Development of new polymer composite materials using sulfur is not widely explored and remains an important challenge in the field. Polymer nanocomposites prepared by carbon nanotube, graphene, silica and other nanomaterials were well established. However, utilization of sulfur as filler in the polymer matrix could be an interesting study. This work is to presents the possibility of utilizing elemental sulfur as reinforcing fillers in the polymer matrix. In this study we attempted to prepare polypropylene/sulfur nanocomposite. The physical, mechanical and morphological properties of the newly developed composites were studied according to the sulfur loading. In the sample preparation, four levels of elemental sulfur loading (5, 10, 20 and 30 wt. %) were designed. Composites were prepared by the melt mixing process by using laboratory scale mini twin screw extruder at 180°C for 15 min. The reaction time and temperature were maintained constant for all prepared composites. The structure and crystallization behavior of composites was investigated by Raman, FTIR, XRD and DSC analysis. It was observed that sulfur interfere with the crystalline arrangement of polypropylene and depresses the crystallization, which affects the melting point, mechanical and thermal stability. In the tensile test, one level of test temperature (room temperature) and crosshead speed (10 mm/min) was designed. Tensile strengths and tensile modulus of the composites were slightly decreased with increasing in filler loading, however, percentage of elongation improved by more than 350% compared to neat polypropylene. The effect of sulfur on the morphology of polypropylene was studied with TEM and SEM techniques. Microscope analysis revels that sulfur is homogeneously dispersed in polymer matrix and behaves as single phase arrangement in the polymer. The maximum elongation for the polypropylene can be achieved by adjusting the sulfur loading in the polymer. This study reviles the possibility of using elemental sulfur as a solid plasticizer in the polypropylene matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystallization" title="crystallization">crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=elemental%20sulfur" title=" elemental sulfur"> elemental sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-mechanical%20properties" title=" thermo-mechanical properties"> thermo-mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposites" title=" polymer nanocomposites"> polymer nanocomposites</a> </p> <a href="https://publications.waset.org/abstracts/36983/structural-property-and-mechanical-behavior-of-polypropylene-elemental-sulfur-s8-composites-effect-of-sulfur-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">189</span> Designing of Efficient Polysulphide Reservoirs to Boost the Performance of Li-S Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarish%20Rehman">Sarish Rehman</a>, <a href="https://publications.waset.org/abstracts/search?q=Kishwar%20Khan"> Kishwar Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanglong%20Hou"> Yanglong Hou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among the existed myriad energy-storage technologies, lithium–sulfur batteries (LSBs) show the appealing potential for the ubiquitous growth of next-generation electrical energy storage application, owing to their unparalleled theoretical energy density of 2600 Wh/kg that is over five times larger than that of conventional lithium-ion batteries (LIBs). Despite its significant advances, its large scale implementations are plagued by multitude issues: particularly the intrinsic insulating nature of the sulfur (10-30 S/cm), mechanical degradation of the cathode due to large volume changes of sulfur up to 80 % during cycling and loss of active material (producing polysulfide shuttle effect). We design a unique structure, namely silicon/silica (Si/SiO2) crosslink with hierarchical porous carbon spheres (Si/SiO2@C), and use it as a new and efficient sulfur host to prepare Si/SiO2@C-S hybrid spheres to solve the hurdle of the polysulfides dissolution. As results of intriguing structural advantages developed hybrids spheres, it acts as efficient polysulfides reservoir for enhancing lithium sulfur battery (LSB) in the terms of capacity, rate ability and cycling stability via combined chemical and physical effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20specific%20surface%20area" title="high specific surface area">high specific surface area</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20power%20density" title=" high power density"> high power density</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20content%20of%20sulfur" title=" high content of sulfur"> high content of sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20sulfur%20battery" title=" lithium sulfur battery"> lithium sulfur battery</a> </p> <a href="https://publications.waset.org/abstracts/55339/designing-of-efficient-polysulphide-reservoirs-to-boost-the-performance-of-li-s-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">188</span> Effect of Pulp Density on Biodesulfurization of Mongolian Lignite Coal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Pathak">Ashish Pathak</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Jin%20Kim"> Dong-Jin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Byoung-Gon%20Kim"> Byoung-Gon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biological processes based on oxidation of sulfur compounds by chemolithotrophic microorganisms are emerging as an efficient and eco-friendly technique for removal of sulfur from the coal. In the present article, study was carried out to investigate the potential of biodesulfurization process in removing the sulfur from lignite coal sample collected from a Mongolian coal mine. The batch biodesulfurization experiments were conducted in 2.5 L borosilicate baffle type reactors at 35 &ordm;C using Acidithiobacillus ferrooxidans. The effect of pulp density on efficiency of biodesulfurization was investigated at different solids concentration (1-10%) of coal. The results of the present study suggested that the rate of desulfurization was retarded at higher coal pulp density. The optimum pulp density found 5% at which about 48% of the total sulfur was removed from the coal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodesulfurization" title="biodesulfurization">biodesulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=bioreactor" title=" bioreactor"> bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrite" title=" pyrite "> pyrite </a> </p> <a href="https://publications.waset.org/abstracts/13312/effect-of-pulp-density-on-biodesulfurization-of-mongolian-lignite-coal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">187</span> Valorization of Gypsum as Industrial Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasna%20Soli">Hasna Soli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this work is the extraction of sulfur from gypsum here is industrial waste. Indeed the sulfuric acid production, passing through the following process; melting sulfur, filtration of the liquid sulfur, sulfur combustion to produce SO₂, conversion of SO₂ to SO₃ and SO₃ absorption in water to produce H₂SO₄ product as waste CaSO₄ the anhydrous calcium sulfate. The main objectives of this work are improving the industrial practices and to find other ways to manage these solid wastes. It should also assess the consequences of treatment in terms of training and become byproducts. Firstly there will be a characterization of this type of waste by an X-ray diffraction; to obtain phase solid compositions and chemical analysis; gravimetrically and atomic absorption spectrometry or by ICP. The samples are mineralized in suitable acidic or basic solutions. The elements analyzed are CaO, Sulfide (SO₃), Al₂O₃, Fe₂O₃, MgO, SiO₂. Then an analysis by EDS energy dispersive spectrometry using an Oxford EDX probe and differential thermal and gravimetric analyzes. Gypsum’s valuation will be performed. Indeed, the CaSO₄ will be reused to produce sulfuric acid, which will be reintroduced into the production line. The second approach explored in this work is the thermal utilization of solid waste to remove sulfur as a dilute sulfuric acid solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environment" title="environment">environment</a>, <a href="https://publications.waset.org/abstracts/search?q=gypsum" title=" gypsum"> gypsum</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur" title=" sulfur"> sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a> </p> <a href="https://publications.waset.org/abstracts/61417/valorization-of-gypsum-as-industrial-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">186</span> Measuring Elemental Sulfur in Late Manually-Treated Grape Juice in Relation to Polyfunctional Mercaptan Formation in Sauvignon Blanc Wines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahareh%20Sarmadi">Bahareh Sarmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20A.%20Kilmartin"> Paul A. Kilmartin</a>, <a href="https://publications.waset.org/abstracts/search?q=Leandro%20D.%20Ara%C3%BAjo"> Leandro D. Araújo</a>, <a href="https://publications.waset.org/abstracts/search?q=Brandt%20P.%20Bastow"> Brandt P. Bastow</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: Sauvignon blanc is the most substantial variety cultivated in almost 62% of all producing vineyards of New Zealand. The popularity of New Zealand Sauvignon blanc is due to its unique taste. It is the most famous wine characterized by its aroma profile derived from mercaptans. 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA) are two of the most important volatile mercaptans found in Sauvignon blanc wines. “Viticultural” and “Enological” factors such as machine-harvesting, the most common harvesting practice used in New Zealand, can be among the reasons for this distinct flavor. Elemental sulfur is commonly sprayed in the fields to protect berries against powdery mildew. Although it is not the only source of sulfur, this practice creates a source of elemental sulfur that can be transferred into the must and eventually into wines. Despite the clear effects of residual elemental sulfur present in the must on the quality and aroma of the final wines, its measurement before harvest or fermentation is not a regular practice in the wineries. This can be due to the lack of accessible and applicable methods for the equipment at most commercial wineries. This study aims to establish a relationship between the number and frequency of elemental sulfur applications and the concentration of polyfunctional mercaptans in the final wines. Methods: An apparatus was designed to reduce elemental sulfur to sulfide, then an ion-selective electrode to measure sulfide concentration. During harvest 2022, we explored a wider range of residual elemental sulfur levels than what typically applies in the vineyards. This has been done through later manual elemental sulfur applications in the vineyard. Additional sulfur applications were made 20, 10 and 5 days prior to harvesting the treated grapes, covering long and short pre-harvest intervals (PHI). The grapes were processed into juice and fermented into wine; then, they were analyzed to find the correlation between polyfunctional mercaptans concentrations in the wines and residual elemental sulfur in the juice samples. Results: The research showed that higher 3MH/3MHA was formed when elemental sulfur was applied more frequent in the vineyards and supported the proposed pathway in which elemental sulfur is a source of 3MH formation in wines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sauvignon%20blanc" title="sauvignon blanc">sauvignon blanc</a>, <a href="https://publications.waset.org/abstracts/search?q=elemental%20sulfur" title=" elemental sulfur"> elemental sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=polyfunctional%20mercaptans" title=" polyfunctional mercaptans"> polyfunctional mercaptans</a>, <a href="https://publications.waset.org/abstracts/search?q=varietal%20thiols" title=" varietal thiols"> varietal thiols</a> </p> <a href="https://publications.waset.org/abstracts/153956/measuring-elemental-sulfur-in-late-manually-treated-grape-juice-in-relation-to-polyfunctional-mercaptan-formation-in-sauvignon-blanc-wines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">185</span> Microwave Assisted Extractive Desulfurization of Gas Oil Feedstock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamida%20Y.%20Mostafa">Hamida Y. Mostafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghada%20E.%20Khedr"> Ghada E. Khedr</a>, <a href="https://publications.waset.org/abstracts/search?q=Dina%20M.%20Abd%20El-Aty"> Dina M. Abd El-Aty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulfur compound removal from petroleum fractions is a critical component of environmental protection demands. Solvent extraction, oxidative desulfurization, or hydro-treatment techniques have traditionally been used as the removal processes. While all methods were capable of eliminating sulfur compounds at moderate rates, they had some limitations. A major problem with these routes is their high running expenses, which are caused by their prolonged operation times and high energy consumption. Therefore, new methods for removing sulfur are still necessary. In the current study, a simple assisted desulfurization system for gas oil fraction has been successfully developed using acetonitrile and methanol as a solvent under microwave irradiation. The key variables affecting sulfur removal have been studied, including microwave power, irradiation time, and solvent to gas oil volume ratio. At the conclusion of the research that is being presented, promising results have been found. The results show that a microwave-assisted extractive desulfurization method had remove sulfur with a high degree of efficiency under the suitable conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extractive%20desulfurization" title="extractive desulfurization">extractive desulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20assisted%20extraction" title=" microwave assisted extraction"> microwave assisted extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20fractions" title=" petroleum fractions"> petroleum fractions</a>, <a href="https://publications.waset.org/abstracts/search?q=acetonitrile%20and%20methanol" title=" acetonitrile and methanol"> acetonitrile and methanol</a> </p> <a href="https://publications.waset.org/abstracts/167883/microwave-assisted-extractive-desulfurization-of-gas-oil-feedstock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">184</span> Leaching Losses of Fertilizer Nitrogen as Affected by Sulfur and Nitrification Inhibitor Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdel%20Khalek%20Selim">Abdel Khalek Selim</a>, <a href="https://publications.waset.org/abstracts/search?q=Safaa%20Mahmoud"> Safaa Mahmoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experiments were designed to study nitrogen loss through leaching in soil columns treated with different nitrogen sources and elemental sulfur. The soil material (3 kg alluvial or calcareous soil) were packed in Plexiglas columns (10 cm diameter). The soil columns were treated with 2 g N in the form of Ca(NO3)2, urea, urea + inhibitor (Nitrapyrin), another set of these treatments was prepared to add elemental sulfur. During incubation period, leaching was performed by applying a volume of water that allows the percolation of 250-ml water throughout the soil column. The leachates were analyzed for NH4-N and N03-N. After 10 weeks, soil columns were cut into four equal segments and analyzed for ammonium, nitrate, and total nitrogen. Results indicated the following: Ca(NO3)2 treatment showed a rapid NO3 leaching, especially in the first 3 weeks, in both clay and calcareous soils. This means that soil texture did not play any role in this respect. Sulfur addition also did not affect the rate of NO3 leaching. In urea treatment, there was a steady increase of NH4- and NO3–N from one leachate to another. Addition of sulfur with urea slowed down the nitrification process and decreased N losses. Clay soil contained residual N much more than calcareous soil. Almost one-third of added nitrogen might have been immobilized by soil microorganisms or lost through other loss paths. Nitrification inhibitor can play a role in preserving added nitrogen from being lost through leaching. Combining the inhibitor with elemental sulfur may help to stabilize certain preferred ratio of NH4 to NO3 in the soil for the benefit of the growing plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alluvial%20soil" title="alluvial soil">alluvial soil</a>, <a href="https://publications.waset.org/abstracts/search?q=calcareous%20soil" title=" calcareous soil"> calcareous soil</a>, <a href="https://publications.waset.org/abstracts/search?q=elemental%20sulfur" title=" elemental sulfur"> elemental sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate%20leaching" title=" nitrate leaching"> nitrate leaching</a> </p> <a href="https://publications.waset.org/abstracts/62101/leaching-losses-of-fertilizer-nitrogen-as-affected-by-sulfur-and-nitrification-inhibitor-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">183</span> A Study on Removal of SO3 in Flue Gas Generated from Power Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Y.%20Jo">E. Y. Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Park"> S. M. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20S.%20Yeo"> I. S. Yeo</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Kim"> K. K. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Park"> S. J. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20K.%20Kim"> Y. K. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20D.%20Kim"> Y. D. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20Park"> C. G. Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> SO3 is created in small quantities during the combustion of fuel that contains sulfur, with the quantity produced a function of the boiler design, fuel sulfur content, excess air level, and the presence of oxidizing agents. Typically, about 1% of the fuel sulfur will be oxidized to SO3, but it can range from 0.5% to 1.5% depending on various factors. Combustion of fuels that contain oxidizing agents, such as certain types of fuel oil or petroleum coke, can result in even higher levels of oxidation. SO3 levels in the flue gas emitted by combustion are very high, which becomes a cause of machinery corrosion or a visible blue plume. Because of that, power plants firing petroleum residues need to installation of SO3 removal system. In this study, SO3 removal system using salt solution was developed and several salts solutions were tested for obtain optimal solution for SO3 removal system. Response surface methodology was used to optimize the operation parameters such as gas-liquid ratio, concentration of salts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flue%20gas%20desulfurization" title="flue gas desulfurization">flue gas desulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20cokes" title=" petroleum cokes"> petroleum cokes</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulfur%20trioxide" title=" Sulfur trioxide"> Sulfur trioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=SO3%20removal" title=" SO3 removal"> SO3 removal</a> </p> <a href="https://publications.waset.org/abstracts/18701/a-study-on-removal-of-so3-in-flue-gas-generated-from-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">182</span> Effect of Helium and Sulfur Hexafluoride Gas Inhalation on Voice Resonances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pallavi%20Marathe">Pallavi Marathe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Voice is considered to be a unique biometric property of human beings. Unlike other biometric evidence, for example, fingerprints and retina scans, etc., voice can be easily changed or mimicked. The present paper talks about how the inhalation of helium and sulfur hexafluoride (SF6) gas affects the voice formant frequencies that are the resonant frequencies of the vocal tract. Helium gas is low-density gas; hence, the voice travels with a higher speed than that of air. On the other side in SF6 gas voice travels with lower speed than that of air due to its higher density. These results in decreasing the resonant frequencies of voice in helium and increasing in SF6. Results are presented with the help of Praat software, which is used for voice analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=voice%20formants" title="voice formants">voice formants</a>, <a href="https://publications.waset.org/abstracts/search?q=helium" title=" helium"> helium</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur%20hexafluoride" title=" sulfur hexafluoride"> sulfur hexafluoride</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20inhalation" title=" gas inhalation"> gas inhalation</a> </p> <a href="https://publications.waset.org/abstracts/115121/effect-of-helium-and-sulfur-hexafluoride-gas-inhalation-on-voice-resonances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">181</span> A Comparison of Sulfur Mustard Cytotoxic Effects on the Two Human Lung Origin Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Jost">P. Jost</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Muckova"> L. Muckova</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Matula"> M. Matula</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Pejchal"> J. Pejchal</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Jun"> D. Jun</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Stetina"> R. Stetina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulfur mustard (bis(2-chlorethyl) sulfide) is highly toxic, chemical warfare agent that has been used in the past in several armed conflicts. Except for the skin, respiratory tract is one of the important routes of exposure. The elucidation and understanding of the mechanism of toxicity of SM have been effort intensive research. The multiple targets character of SM caused cellular damage resulted in activation of many different mechanisms which contribute to cellular response and participate in the final cytopathology effect. In our present work, we compared time-dependent changes in sulfur mustard exposed adult human lung fibroblasts NHLF and lung epithelial alveolar cell line A-549. Cell viability (MTT assay, Calcein-AM assay, and xCELLigence - real-time cell analysis), apoptosis (flow cytometry), mitochondrial membrane potential (Δψm, flow cytometry), reactive oxygen species induction (DC and cell cycle distribution (flow cytometry) were studied. We observed significantly decreased mitochondrial membrane potential and subsequent induction of apoptosis correlating with decreased cellular viability in the sulfur mustard exposed cells. In low concentrations, sulfur mustard-induced S-phase cell cycle arrest, on the other hand, high concentrations, cell cycle phase distribution of sulfur mustard exposed cells resembled cell cycle phase distribution of control group, which implies nonspecific cell cycle inhibition. Epithelial cells A-549 was found as more sensible to sulfur mustard toxicity. Acknowledgements: This work was supported by a long-term organization development plan Medical Aspects of Weapons of Mass Destruction of the Faculty of Military Health Sciences, University of Defence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title="apoptosis">apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20cycle" title=" cell cycle"> cell cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur%20mustard" title=" sulfur mustard"> sulfur mustard</a> </p> <a href="https://publications.waset.org/abstracts/74433/a-comparison-of-sulfur-mustard-cytotoxic-effects-on-the-two-human-lung-origin-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">180</span> Effect of Dietary Supplementation of Allium Hookeri Root and Processed Sulfur on the Growth Performance of Guinea Pigs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nayeon">Nayeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee"> Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Won-Young"> Won-Young</a>, <a href="https://publications.waset.org/abstracts/search?q=Cho"> Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Joo"> Hyun Joo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jang"> Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Ho"> Chi-Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee"> Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the effects of the dietary supplementation of the <em>Allium hookeri </em>root, and processed sulfur, on the growth performance of guinea pigs. The guinea pigs were fed a control diet (CON), as well as the control diet including 1% freeze-dried <em>Allium hookeri </em>root (AH), or 0.1% processed sulfur (S), or including both the freeze-dried <em>Allium hookeri </em>root and the processed sulfur (AHS). The weight of perirenal adipose tissue (PAT) and the epididymal adipose tissue (EAT) in the AH were significantly lower than CON (p &lt; 0.05). The serum cholesterols levels of the AH and the AHS were significantly lower than the S (p &lt; 0.05). While the total saturated fatty acid content in the serum of the AH and AHS groups showed a tendency to decrease, the total monounsaturated fatty acid increased. The results of this study suggested that dietary consumption of <em>Allium hookeri</em> root may help to decrease fat accumulation, lower serum cholesterol levels, and control serum free fatty acid contents in the guinea pigs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Allium%20hookeri" title="Allium hookeri">Allium hookeri</a>, <a href="https://publications.waset.org/abstracts/search?q=dietary%20supplementation" title=" dietary supplementation"> dietary supplementation</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20performance" title=" growth performance"> growth performance</a>, <a href="https://publications.waset.org/abstracts/search?q=processed%20sulfur" title=" processed sulfur"> processed sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=Guinea%20pig" title=" Guinea pig"> Guinea pig</a> </p> <a href="https://publications.waset.org/abstracts/77113/effect-of-dietary-supplementation-of-allium-hookeri-root-and-processed-sulfur-on-the-growth-performance-of-guinea-pigs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">179</span> Evaluation of Water Quality on the Strength of Simple Concrete: Case Study of Wells in Jipijapa, Manabí, Ecuador</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Julio%20Cesar%20Pino%20Tarrag%C3%B3">Julio Cesar Pino Tarragó</a>, <a href="https://publications.waset.org/abstracts/search?q=Dunia%20Lisbet%20Dom%C3%ADnguez%20G%C3%A1lvez"> Dunia Lisbet Domínguez Gálvez</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Alfonso%20Moreno%20Ponce"> Luis Alfonso Moreno Ponce</a>, <a href="https://publications.waset.org/abstracts/search?q=Jhony%20Julio%20Regalado%20Jalca"> Jhony Julio Regalado Jalca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the impact of three distinct types of water on the compressive strength of plain concrete, focusing on samples from wells in Jipijapa, Manabí, Ecuador: Joa water, characterized by high sulfur content; Chade 1 water, with low sulfur content; and Chade 2 water, which is highly brackish. Compressive strength tests were conducted at 7, 14, and 28 days to assess the influence of these water types on the structural integrity of the concrete. The results indicate that both brackish and sulfur-rich water significantly reduces concrete strength, while Chade 1 water, though initially enhancing strength, displays variability in long-term performance. These outcomes underscore the importance of optimizing construction practices in regions like Jipijapa, where potable water is scarce, by exploring sustainable alternatives for using non-potable water, thereby conserving limited water resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=plain%20concrete" title=" plain concrete"> plain concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur%20water" title=" sulfur water"> sulfur water</a>, <a href="https://publications.waset.org/abstracts/search?q=brackish%20water" title=" brackish water"> brackish water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/189221/evaluation-of-water-quality-on-the-strength-of-simple-concrete-case-study-of-wells-in-jipijapa-manabi-ecuador" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">178</span> Review of Sulfur Unit Capacity Expansion Options</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avinashkumar%20Karre">Avinashkumar Karre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulfur recovery unit, most commonly called as Claus process, is very significant gas desulfurization process unit in refinery and gas industries. Explorations of new natural gas fields, refining of high-sulfur crude oils, and recent crude expansion projects are needing capacity expansion of Claus unit for many companies around the world. In refineries, the sulphur recovery units take acid gas from amine regeneration units and sour water strippers, converting hydrogen sulfide to elemental sulfur using the Claus process. The Claus process is hydraulically limited by mass flow rate. Reducing the pressure drop across control valves, flow meters, lines, knock-out drums, and packing improves the capacity. Oxygen enrichment helps improve the capacity by removing nitrogen, this is more commonly done on all capacity expansion projects. Typical upgrades required due to oxygen enrichment are new burners, new refractory in thermal reactor, resizing of 1st condenser, instrumentation changes, and steam/condensate heat integration. Some other capacity expansion options typically considered are tail gas compressor, replacing air blower with higher head, hydrocarbon minimization in the feed, water removal, and ammonia removal. Increased capacity related upgrades in sulfur recovery unit also need changes in the tail gas treatment unit, typical changes include improvement to quench tower duty, packing area upgrades in quench and absorber towers and increased amine circulation flow rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Claus%20process" title="Claus process">Claus process</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20enrichment" title=" oxygen enrichment"> oxygen enrichment</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur%20recovery%20unit" title=" sulfur recovery unit"> sulfur recovery unit</a>, <a href="https://publications.waset.org/abstracts/search?q=tail%20gas%20treatment%20unit" title=" tail gas treatment unit"> tail gas treatment unit</a> </p> <a href="https://publications.waset.org/abstracts/109156/review-of-sulfur-unit-capacity-expansion-options" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">177</span> Electrocatalysts for Lithium-Sulfur Energy Storage Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirko%20Ante">Mirko Ante</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eeniz%20S%C3%B6rgel"> Şeniz Sörgel</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Bund"> Andreas Bund</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Li-S- (Lithium-Sulfur-) battery systems provide very high specific gravimetric energy (2600 Wh/kg) and volumetric energy density (2800Wh/l). Hence, Li-S batteries are one of the key technologies for both the upcoming electromobility and stationary applications. Furthermore, the Li-S battery system is potentially cheap and environmentally benign. However, the technical implementation suffers from cycling stability, low charge and discharge rates and incomplete understanding of the complex polysulfide reaction mechanism. The aim of this work is to develop an effective electrocatalyst for the polysulfide reactions so that the electrode kinetics of the sulfur half-cell will be improved. Accordingly, the overvoltage will be decreased, and the efficiency of the cell will be increased. An enhanced electroactive surface additionally improves the charge and discharge rates. To reach this goal, functionalized electrocatalytic coatings are investigated to accelerate the kinetics of the polysulfide reactions. In order to determine a suitable electrocatalyst, apparent exchange current densities of a variety of materials (Ni, Co, Pt, Cr, Al, Cu, ITO, stainless steel) have been evaluated in a polysulfide containing electrolyte by potentiodynamic measurements and a Butler-Volmer fit including diffusion limitation. The samples have been examined by Scanning Electron Microscopy (SEM) after the potentiodynamic measurements. Up to now, our work shows that cobalt is a promising material with good electrocatalytic properties for the polysulfide reactions and good chemical stability in the system. Furthermore, an electrodeposition from a modified Watt’s nickel electrolyte with a sulfur source seems to provide an autocatalytic effect, but the electrocatalytic behavior decreases after several cycles of the current-potential-curve. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrocatalyst" title="electrocatalyst">electrocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20sulfur%20battery" title=" lithium sulfur battery"> lithium sulfur battery</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur%20electrode%20materials" title=" sulfur electrode materials"> sulfur electrode materials</a> </p> <a href="https://publications.waset.org/abstracts/78665/electrocatalysts-for-lithium-sulfur-energy-storage-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">176</span> An Approach in Design of Large-Scale Hydrogen Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Sahaleh">Hamidreza Sahaleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because of the stringent prerequisite of low sulfur and heavier raw oil feedstock more hydrogen will be devoured in the refineries. Specifically if huge scale limits are the reaction to an expanded hydrogen request, certain configuration and building background are obliged with, which will be depicted in this paper with an illustration. Chosen procedure plan prerequisite will be recorded and portrayed in agreement to the flowsheet. Also, a determination of imaginative outline elements, similar to process condensate reuse, safe reformer start up and prerequisites will be highlighted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20sulfur" title="low sulfur">low sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=raw%20oil" title=" raw oil"> raw oil</a>, <a href="https://publications.waset.org/abstracts/search?q=refineries" title=" refineries"> refineries</a>, <a href="https://publications.waset.org/abstracts/search?q=flowsheet" title=" flowsheet"> flowsheet</a> </p> <a href="https://publications.waset.org/abstracts/33284/an-approach-in-design-of-large-scale-hydrogen-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">175</span> Isolation of Soil Thiobacterii and Determination of Their Bio-Oxidation Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kistaubayeva">A. Kistaubayeva</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Savitskaya"> I. Savitskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ibrayeva"> D. Ibrayeva</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdulzhanova"> M. Abdulzhanova</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Voronova"> N. Voronova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 36 strains of sulfur-oxidizing bacteria were isolated in Southern Kazakhstan soda-saline soils and identified. Screening of strains according bio-oxidation (destruction thiosulfate to sulfate) and enzymatic (Thiosulfate dehydrogenises and thiosulfate reductase) activity was conducted. There were selected modes of aeration and culture conditions (pH, temperature), which provide optimum harvest cells. These strains can be used in bio-melioration technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elemental%20sulfur" title="elemental sulfur">elemental sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20activity" title=" oxidation activity"> oxidation activity</a>, <a href="https://publications.waset.org/abstracts/search?q=%D0%A2hiobacilli" title=" Тhiobacilli"> Тhiobacilli</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizers" title=" fertilizers"> fertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=heterotrophic%20S-oxidizers" title=" heterotrophic S-oxidizers"> heterotrophic S-oxidizers</a> </p> <a href="https://publications.waset.org/abstracts/10021/isolation-of-soil-thiobacterii-and-determination-of-their-bio-oxidation-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sulfur&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sulfur&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sulfur&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sulfur&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sulfur&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sulfur&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sulfur&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10