CINXE.COM

Search results for: binary fluid

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: binary fluid</title> <meta name="description" content="Search results for: binary fluid"> <meta name="keywords" content="binary fluid"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="binary fluid" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="binary fluid"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2817</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: binary fluid</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2697</span> The Influence of the Normative Gender Binary in Diversity Management: A Multi-Method Study on Gender Diversity of Diversity Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robin%20C.%20Ladwig">Robin C. Ladwig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diversity Management, as a substantial element of Human Resource Management, aims to secure the economic benefit that assumingly comes with a diverse workforce. Consequently, diversity managers focus on the protection of employees and securing equality measurements to assure organisational gender diversity. Gender diversity as one aspect of Diversity Management seems to adhere to gender binarism and cis-normativity. Workplaces are gendered spaces which are echoing the binary gender-normativity presented in Diversity Management, sold under the label of gender diversity. While the expectation of Diversity Management implies the inclusion of a multiplicity of marginalised groups, such as trans and gender diverse people, in current literature and practice, the reality is curated by gender binarism and cis-normativity. The qualitative multi-method research showed a lack of knowledge about trans and gender diverse matters within the profession of Diversity Management and Human Resources. The semi-structured interviews with trans and gender diverse individuals from various backgrounds and occupations in Australia exposed missing considerations of trans and gender diverse experiences in the inclusivity and gender equity of various workplaces. Even if practitioners consider trans and gender diverse matters under gender diversity, the practical execution is limited to gender binary structures and cis-normative actions as the photo-elicit questionnaire with diversity managers, human resource officers, and personnel management demonstrates. Diversity Management should approach a broader source of informed practice by extending their business focus to the knowledge of humanity studies. Humanity studies could include diversity, queer, or gender studies to increase the inclusivity of marginalised groups such as trans and gender diverse employees and people. Furthermore, the definition of gender diversity should be extended beyond the gender binary and cis-normative experience. People may lose trust in Diversity Management as a supportive ally of marginalised employees if the understanding of inclusivity is limited to a gender binary and cis-normativity value system that misrepresents the richness of gender diversity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cis-normativity" title="cis-normativity">cis-normativity</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity%20management" title=" diversity management"> diversity management</a>, <a href="https://publications.waset.org/abstracts/search?q=gender%20binarism" title=" gender binarism"> gender binarism</a>, <a href="https://publications.waset.org/abstracts/search?q=trans%20and%20gender%20diversity" title=" trans and gender diversity"> trans and gender diversity</a> </p> <a href="https://publications.waset.org/abstracts/141766/the-influence-of-the-normative-gender-binary-in-diversity-management-a-multi-method-study-on-gender-diversity-of-diversity-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2696</span> Real-Time Observation of Concentration Distribution for Mix Liquids including Water in Micro Fluid Channel with Near-Infrared Spectroscopic Imaging Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiroki%20Takiguchi">Hiroki Takiguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Masahiro%20Furuya"> Masahiro Furuya</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahiro%20Arai"> Takahiro Arai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to quantitatively comprehend thermal flow for some industrial applications such as nuclear and chemical reactors, detailed measurements for temperature and abundance (concentration) of materials at high temporal and spatial resolution are required. Additionally, rigorous evaluation of the size effect is also important for practical realization. This paper introduces a real-time spectroscopic imaging method in micro scale field, which visualizes temperature and concentration distribution of a liquid or mix liquids with near-infrared (NIR) wavelength region. This imaging principle is based on absorption of pre-selected narrow band from absorption spectrum peak or its dependence property of target liquid in NIR region. For example, water has a positive temperature sensitivity in the wavelength at 1905 nm, therefore the temperature of water can be measured using the wavelength band. In the experiment, the real-time imaging observation of concentration distribution in micro channel was demonstrated to investigate the applicability of micro-scale diffusion coefficient and temperature measurement technique using this proposed method. The effect of thermal diffusion and binary mutual diffusion was evaluated with the time-series visualizations of concentration distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=near-infrared%20spectroscopic%20imaging" title="near-infrared spectroscopic imaging">near-infrared spectroscopic imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20fluid%20channel" title=" micro fluid channel"> micro fluid channel</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration%20distribution" title=" concentration distribution"> concentration distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion%20phenomenon" title=" diffusion phenomenon"> diffusion phenomenon</a> </p> <a href="https://publications.waset.org/abstracts/82076/real-time-observation-of-concentration-distribution-for-mix-liquids-including-water-in-micro-fluid-channel-with-near-infrared-spectroscopic-imaging-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2695</span> The Influence of Imposter Phenomenon on the Experiences of Intimacy in Non-Binary Young Adults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muskan%20Jain">Muskan Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Baiju%20Gopal"> Baiju Gopal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: Intimacy in interpersonal relationships is integral to psychological health and everyday wellbeing; the focus is on intimacy, which can be described as feelings of closeness, connection, and belonging within relationships, which is influenced by an individual's gender identity as well as life experiences. The study aims to explore the experiences of intimacy of the non-binary gender; this marginalized community has increased risks of developing the imposter phenomenon. The study explores the influence of IP on the development and sustenance of intimacy in relationships. Methods: The present study accumulates detailed narratives from 10 non-binary young adults ages 18 to 25 in metropolitan cities of India. Thematic analysis was used for the data analysis. Results: Seven major themes have emerged revolving around internalized criticism and self-depreciating behavior, which causes distance between partners. The four themes that result in the internalization of criticism are lack of social stability, invalidation by social units, adverse life experiences, and estrangement due to gender identity. Three themes that encapsulate major difficulties in relationships are limited self-disclosure, inhibition of physical needs, and fear of taking space. The findings have been critically compared and contrasted with the existing body of literature in the domain, which sets the agenda for further inquiry. Conclusion: It is important for future studies to capture the experiences of non-binary genders in India to provide better therapeutic support in order to assist them in forming meaningful and authentic relationships, thus increasing overall wellbeing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=imposter%20phenomenon" title="imposter phenomenon">imposter phenomenon</a>, <a href="https://publications.waset.org/abstracts/search?q=intimacy" title=" intimacy"> intimacy</a>, <a href="https://publications.waset.org/abstracts/search?q=internalized%20criticism" title=" internalized criticism"> internalized criticism</a>, <a href="https://publications.waset.org/abstracts/search?q=marginalized%20community" title=" marginalized community"> marginalized community</a> </p> <a href="https://publications.waset.org/abstracts/177836/the-influence-of-imposter-phenomenon-on-the-experiences-of-intimacy-in-non-binary-young-adults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2694</span> Contemplation of Thermal Characteristics by Filling Ratio of Aluminium Oxide Nano Fluid in Wire Mesh Heat Pipe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Mala">D. Mala</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sendhilnathan"> S. Sendhilnathan</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ratchagaraja"> D. Ratchagaraja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the performance of heat pipe in terms of overall heat transfer coefficient and thermal resistance is quantified by varying the volume of working fluid and the performance parameters are contemplated. For this purpose Al2O3 nano particles with a density of 9.8 gm/cm3 and a volume concentration of 1% is used as the working fluid in experimental heat pipe. The performance of heat pipe was evaluated by conducting experiments with different thermal loads and different angle of inclinations. Thermocouples are used to record the temperature distribution across the experiment. The results provide evidence that the suspension of Al2O3 nano particles in the base fluid increases the thermal efficiency of heat pipe and can be used in practical heat exchange applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20pipe" title="heat pipe">heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=angle%20of%20inclination" title=" angle of inclination"> angle of inclination</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20resistance" title=" thermal resistance"> thermal resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20efficiency" title=" thermal efficiency"> thermal efficiency</a> </p> <a href="https://publications.waset.org/abstracts/29373/contemplation-of-thermal-characteristics-by-filling-ratio-of-aluminium-oxide-nano-fluid-in-wire-mesh-heat-pipe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">562</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2693</span> Cavitating Flow through a Venturi Using Computational Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imane%20Benghalia">Imane Benghalia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Zamoum"> Mohammed Zamoum</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Boucetta"> Rachid Boucetta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrodynamic cavitation is a complex physical phenomenon that appears in hydraulic systems (pumps, turbines, valves, Venturi tubes, etc.) when the fluid pressure decreases below the saturated vapor pressure. The works carried out in this study aimed to get a better understanding of the cavitating flow phenomena. For this, we have numerically studied a cavitating bubbly flow through a Venturi nozzle. The cavitation model is selected and solved using a commercial computational fluid dynamics (CFD) code. The obtained results show the effect of the inlet pressure (10, 7, 5, and 2 bars) of the Venturi on pressure, the velocity of the fluid flow, and the vapor fraction. We found that the inlet pressure of the Venturi strongly affects the evolution of the pressure, velocity, and vapor fraction formation in the cavitating flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavitating%20flow" title="cavitating flow">cavitating flow</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change" title=" phase change"> phase change</a>, <a href="https://publications.waset.org/abstracts/search?q=venturi" title=" venturi"> venturi</a> </p> <a href="https://publications.waset.org/abstracts/166565/cavitating-flow-through-a-venturi-using-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2692</span> Prescription of Maintenance Fluids in the Emergency Department</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Craig">Adrian Craig</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Easaw"> Jonathan Easaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Rose%20Jordan"> Rose Jordan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Hall"> Ben Hall</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prescription of intravenous fluids is a fundamental component of inpatient management, but it is one which usually lacks thought. Fluids are a drug, which like any other can cause harm when prescribed inappropriately or wrongly. However, it is well recognised that it is poorly done, especially in the acute portals. The National Institute for Health and Care Excellence (NICE) recommends 1mmol/kg of potassium, sodium, and chloride per day. With various options of fluids, clinicians tend to face difficulty in choosing the most appropriate maintenance fluid, and there is a reluctance to prescribe potassium as part of an intravenous maintenance fluid regime. The aim was to prospectively audit the prescription of the first bag of intravenous maintenance fluids, the use of urea and electrolytes results to guide the choice of fluid and the use of fluid prescription charts, in a busy emergency department of a major trauma centre in Stoke-on-Trent, United Kingdom. This was undertaken over a week in early November 2016. Of those prescribed maintenance fluid only 8.9% were prescribed a fluid which was most appropriate for their daily electrolyte requirements. This audit has helped to highlight further the issues that are faced in busy Emergency Departments within hospitals that are stretched and lack capacity for prompt transfer to a ward. It has supported the findings of NICE, that emergency admission portals such as Emergency Departments poorly prescribed intravenous fluid therapy. The findings have enabled simple steps to be taken to educate clinicians about their fluid of choice. This has included: posters to remind clinicians to consider the urea and electrolyte values before prescription, suggesting the inclusion of a suggested intravenous fluid of choice in the prescription chart of the trust and the inclusion of a session within the introduction programme revising intravenous fluid therapy and daily electrolyte requirements. Moving forward, once the interventions have been implemented then, the data will be reaudited in six months to note any improvement in maintenance fluid choice. Alongside this, an audit of the rate of intravenous maintenance fluid therapy would be proposed to further increase patient safety by avoiding unintentional fluid overload which may cause unnecessary harm to patients within the hospital. In conclusion, prescription of maintenance fluid therapy was poor within the Emergency Department, and there is a great deal of opportunity for improvement. Therefore, the measures listed above will be implemented and the data reaudited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chloride" title="chloride">chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolyte" title=" electrolyte"> electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20department" title=" emergency department"> emergency department</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20medicine" title=" emergency medicine"> emergency medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid" title=" fluid"> fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20therapy" title=" fluid therapy"> fluid therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=intravenous" title=" intravenous"> intravenous</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=major%20trauma" title=" major trauma"> major trauma</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium" title=" potassium"> potassium</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium" title=" sodium"> sodium</a>, <a href="https://publications.waset.org/abstracts/search?q=trauma" title=" trauma"> trauma</a> </p> <a href="https://publications.waset.org/abstracts/64854/prescription-of-maintenance-fluids-in-the-emergency-department" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2691</span> Electrokinetic Transport of Power Law Fluid through Hydrophobic Micro-Slits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ainul%20Haque">Ainul Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameeye%20Kumar%20Nayak"> Ameeye Kumar Nayak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flow enhancement and species transport in a slit hydrophobic microchannel is studied for non-Newtonian fluids with the externally imposed electric field and pressure gradient. The incompressible Poisson-Nernst-Plank equations and the Navier-Stokes equations are approximated by lubrication theory to quantify the flow structure due to hydrophobic and hydrophilic surfaces. The analytical quantification of velocity and pressure of electroosmotic flow (EOF) is made with the numerical results due to the staggered grid based finite volume method for flow governing equations. The resistance force due to fluid friction and shear force along the surface are decreased by the hydrophobicity, enables the faster movement of fluid particles. The resulting flow enhancement factor Ef is increased with the low viscous fluid and provides maximum species transport. Also, the analytical comparison of EOF with pressure driven EOF justifies the flow enhancement due to hydrophobicity and shear impact on flow variation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroosmotic%20flow" title="electroosmotic flow">electroosmotic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic%20surface" title=" hydrophobic surface"> hydrophobic surface</a>, <a href="https://publications.waset.org/abstracts/search?q=power-law%20fluid" title=" power-law fluid"> power-law fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20effect" title=" shear effect"> shear effect</a> </p> <a href="https://publications.waset.org/abstracts/81689/electrokinetic-transport-of-power-law-fluid-through-hydrophobic-micro-slits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2690</span> Thermal Effects on Wellbore Stability and Fluid Loss in High-Temperature Geothermal Drilling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mubarek%20Alpkiray">Mubarek Alpkiray</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Nguyen"> Tan Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Arild%20Saasen"> Arild Saasen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geothermal drilling operations contain numerous challenges that are encountered to increase the well cost and nonproductive time. Fluid loss is one of the most undesirable troublesome that can cause well abandonment in geothermal drilling. Lost circulation can be seen due to natural fractures, high mud weight, and extremely high formation temperatures. This challenge may cause wellbore stability problems and lead to expensive drilling operations. Wellbore stability is the main domain that should be considered to mitigate or prevent fluid loss into the formation. This paper describes the causes of fluid loss in the Pamukoren geothermal field in Turkey. A geomechanics approach integration and assessment is applied to help the understanding of fluid loss problems. In geothermal drillings, geomechanics is primarily based on rock properties, in-situ stress characterization, the temperature of the rock, determination of stresses around the wellbore, and rock failure criteria. Since a high-temperature difference between the wellbore wall and drilling fluid is presented, temperature distribution through the wellbore is estimated and implemented to the wellbore stability approach. This study reviewed geothermal drilling data to analyze temperature estimation along the wellbore, the cause of fluid loss and stored electric capacity of the reservoir. Our observation demonstrates the geomechanical approach's significant role in understanding safe drilling operations on high-temperature wells. Fluid loss is encountered due to thermal stress effects around the borehole. This paper provides a wellbore stability analysis for a geothermal drilling operation to discuss the causes of lost circulation resulting in nonproductive time and cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geothermal%20wells" title="geothermal wells">geothermal wells</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=wellbore%20stresses" title=" wellbore stresses"> wellbore stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling%20fluid%20loss" title=" drilling fluid loss"> drilling fluid loss</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stress" title=" thermal stress"> thermal stress</a> </p> <a href="https://publications.waset.org/abstracts/143311/thermal-effects-on-wellbore-stability-and-fluid-loss-in-high-temperature-geothermal-drilling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2689</span> Effect of Slip Condition and Magnetic Field on Unsteady MHD Thin Film Flow of a Third Grade Fluid with Heat Transfer down an Inclined Plane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20Aiyesimi">Y. M. Aiyesimi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20T.%20Okedayo"> G. T. Okedayo</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20W.%20Lawal"> O. W. Lawal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The analysis has been carried out to study unsteady MHD thin film flow of a third grade fluid down an inclined plane with heat transfer when the slippage between the surface of plane and the lower surface of the fluid is valid. The governing nonlinear partial differential equations involved are reduced to linear partial differential equations using regular perturbation method. The resulting equations were solved analytically using method of separation of variable and eigenfunctions expansion. The solutions obtained were examined and discussed graphically. It is interesting to find that the variation of the velocity and temperature profile with the slip and magnetic field parameter depends on time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian%20fluid" title="non-Newtonian fluid">non-Newtonian fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD%20flow" title=" MHD flow"> MHD flow</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film%20flow" title=" thin film flow"> thin film flow</a>, <a href="https://publications.waset.org/abstracts/search?q=third%20grade%20fluid" title=" third grade fluid"> third grade fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=slip%20boundary%20condition" title=" slip boundary condition"> slip boundary condition</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20of%20variable" title=" separation of variable"> separation of variable</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenfunction%20expansion" title=" eigenfunction expansion"> eigenfunction expansion</a> </p> <a href="https://publications.waset.org/abstracts/4836/effect-of-slip-condition-and-magnetic-field-on-unsteady-mhd-thin-film-flow-of-a-third-grade-fluid-with-heat-transfer-down-an-inclined-plane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2688</span> Towards the Modeling of Lost Core Viability in High-Pressure Die Casting: A Fluid-Structure Interaction Model with 2-Phase Flow Fluid Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Kohlst%C3%A4dt">Sebastian Kohlstädt</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20%20Vynnycky"> Michael Vynnycky</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephan%20Goeke"> Stephan Goeke</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20J%C3%A4ckel"> Jan Jäckel</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Gebauer-Teichmann"> Andreas Gebauer-Teichmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper summarizes the progress in the latest computational fluid dynamics research towards the modeling in of lost core viability in high-pressure die casting. High-pressure die casting is a process that is widely employed in the automotive and neighboring industries due to its advantages in casting quality and cost efficiency. The degrees of freedom are however somewhat limited as it has been so far difficult to use lost cores in the process. This is right now changing and the deployment of lost cores is considered a future growth potential for high-pressure die casting companies. The use of this technology itself is difficult though. The strength of the core material, as chiefly salt is used, is limited and experiments have shown that the cores will not hold under all circumstances and process designs. For this purpose, the publicly available CFD library foam-extend (OpenFOAM) is used, and two additional fluid models for incompressible and compressible two-phase flow are implemented as fluid solver models into the FSI library. For this purpose, the volume-of-fluid (VOF) methodology is used. The necessity for the fluid-structure interaction (FSI) approach is shown by a simple CFD model geometry. The model is benchmarked against analytical models and experimental data. Sufficient agreement is found with the analytical models and good agreement with the experimental data. An outlook on future developments concludes the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-structure%20interaction" title=" fluid-structure interaction"> fluid-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=high-pressure%20die%20casting" title=" high-pressure die casting"> high-pressure die casting</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20flow" title=" multiphase flow"> multiphase flow</a> </p> <a href="https://publications.waset.org/abstracts/78928/towards-the-modeling-of-lost-core-viability-in-high-pressure-die-casting-a-fluid-structure-interaction-model-with-2-phase-flow-fluid-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2687</span> Fluid-Structure Interaction Study of Fluid Flow past Marine Turbine Blade Designed by Using Blade Element Theory and Momentum Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abu%20Afree%20Andalib">Abu Afree Andalib</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mezbah%20Uddin"> M. Mezbah Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rafiur%20Rahman"> M. Rafiur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abir%20Hossain"> M. Abir Hossain</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajia%20Sultana%20Kamol"> Rajia Sultana Kamol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the analysis of flow past the marine turbine blade which is designed by using the blade element theory and momentum theory for the purpose of using in the field of renewable energy. The designed blade is analyzed for various parameters using FSI module of Ansys. Computational Fluid Dynamics is used for the study of fluid flow past the blade and other fluidic phenomena such as lift, drag, pressure differentials, energy dissipation in water. Finite Element Analysis (FEA) module of Ansys was used to analyze the structural parameter such as stress and stress density, localization point, deflection, force propagation. Fine mesh is considered in every case for more accuracy in the result according to computational machine power. The relevance of design, search and optimization with respect to complex fluid flow and structural modeling is considered and analyzed. The relevancy of design and optimization with respect to complex fluid for minimum drag force using Ansys Adjoint Solver module is analyzed as well. The graphical comparison of the above-mentioned parameter using CFD and FEA and subsequently FSI technique is illustrated and found the significant conformity between both the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blade%20element%20theory" title="blade element theory">blade element theory</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-structure%20interaction" title=" fluid-structure interaction"> fluid-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=momentum%20theory" title=" momentum theory"> momentum theory</a> </p> <a href="https://publications.waset.org/abstracts/81379/fluid-structure-interaction-study-of-fluid-flow-past-marine-turbine-blade-designed-by-using-blade-element-theory-and-momentum-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2686</span> Estimating the Effect of Fluid in Pressing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Movaghar">A. Movaghar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Mahdavinejad"> R. A. Mahdavinejad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> To analyze the effect of various parameters of fluid on the material properties such as surface and depth defects and/or cracks, it is possible to determine the affection of pressure field on these specifications. Stress tensor analysis is also able to determine the points in which the probability of defection creation is more. Besides, from pressure field, it is possible to analyze the affection of various fluid specifications such as viscosity and density on defect created in the material. In this research, the concerned boundary conditions are analyzed first. Then the solution network and stencil used are mentioned. With the determination of relevant equation on the fluid flow between notch and matrix and their discretion according to the governed boundary conditions, these equations can be solved. Finally, with the variation creations on fluid parameters such as density and viscosity, the affection of these variations can be determined on pressure field. In this direction<strong>,</strong> the flowchart and solution algorithm with their results as vortex and current function contours for two conditions with most applications in pressing process are introduced and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pressing" title="pressing">pressing</a>, <a href="https://publications.waset.org/abstracts/search?q=notch" title=" notch"> notch</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix" title=" matrix"> matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20function" title=" flow function"> flow function</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex" title=" vortex"> vortex</a> </p> <a href="https://publications.waset.org/abstracts/39900/estimating-the-effect-of-fluid-in-pressing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2685</span> Vitamin C Status and Nitric Oxide in Buffalo Ovarian Follicular Fluid in Relation to Seasonal Heat Stress and Phase of Estrous Cycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20F.%20Hozyen">H. F. Hozyen</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Abo-El%20Maaty"> A. M. Abo-El Maaty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat stress is a recognized problem causing huge economic losses to the buffalo breeders as well as dairy industry. The aim of the present work was to study the pattern of vitamin C and nitric oxide in follicular fluid of buffalo during different seasons of the year considering phase of estrous cycle. This study was conducted on 208 cyclic buffaloes slaughtered at Al-Qaliobia governorate, Egypt, over one year. The obtained results revealed that vitamin C in follicular fluid was significantly lower in summer than winter and spring. On the other hand, nitric oxide (NO) was significantly higher in summer and autumn than winter and spring. Both vitamin C and NO did not differ significantly between follicular and luteal phases. In conclusion, the present study revealed that alterations in concentrations of follicular fluid vitamin C and NO that occur in summer could be related to low summer fertility in buffalo. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buffalo" title="Buffalo">Buffalo</a>, <a href="https://publications.waset.org/abstracts/search?q=follicular%20fluid" title=" follicular fluid"> follicular fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin%20C" title=" vitamin C"> vitamin C</a>, <a href="https://publications.waset.org/abstracts/search?q=nitric%20oxide" title=" nitric oxide"> nitric oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20stress" title=" heat stress"> heat stress</a> </p> <a href="https://publications.waset.org/abstracts/60887/vitamin-c-status-and-nitric-oxide-in-buffalo-ovarian-follicular-fluid-in-relation-to-seasonal-heat-stress-and-phase-of-estrous-cycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2684</span> Study on the Effect of Coupling Fluid Compressible-Deformable Wall on the Flow of Molten Polymers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Driouich">Mohamed Driouich</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Gueraoui"> Kamal Gueraoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Sammouda"> Mohamed Sammouda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this work is to establish a numerical code for studying the flow of molten polymers in deformable pipes. Using an iterative numerical method based on finite differences, we determine the profiles of the fluid velocity, the temperature and the apparent viscosity of the fluid. The numerical code presented can also be applied to other industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20code" title="numerical code">numerical code</a>, <a href="https://publications.waset.org/abstracts/search?q=molten%20polymers" title=" molten polymers"> molten polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=deformable%20pipes" title=" deformable pipes"> deformable pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20differences" title=" finite differences"> finite differences</a> </p> <a href="https://publications.waset.org/abstracts/8493/study-on-the-effect-of-coupling-fluid-compressible-deformable-wall-on-the-flow-of-molten-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">574</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2683</span> Nature Writing in Margaret Atwood’s &#039;The Testaments&#039;</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Fontes%20De%20Oliveira">Natalia Fontes De Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nature and women have a long age association that has persisted throughout history, cultures, literature, and arts. Women’s physiological functions of reproduction and childbearing are viewed as closer to nature as a binary opposition to men, who have metaphorically and historically been associated with culture. To liberate from strictures of phallogocentric rhetoric, a radical critique of the categories of nature and culture must be undertaken. This paper proposes that nature writing in Margaret Atwood’s The Testaments is used subversively as a form of rebellion to disrupt the metaphorical relationship between women and nature. In tune with ecofeminist concerns, the imagery rewrites patriarchal paradigms of binary oppositions as the protagonists narrate a complex and plural relationship between nature and women. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecofeminism" title="ecofeminism">ecofeminism</a>, <a href="https://publications.waset.org/abstracts/search?q=Margaret%20Atwood" title=" Margaret Atwood"> Margaret Atwood</a>, <a href="https://publications.waset.org/abstracts/search?q=nature%20writing" title=" nature writing"> nature writing</a>, <a href="https://publications.waset.org/abstracts/search?q=women%27s%20writing" title=" women&#039;s writing"> women&#039;s writing</a> </p> <a href="https://publications.waset.org/abstracts/136049/nature-writing-in-margaret-atwoods-the-testaments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2682</span> Dynamic Response of Magnetorheological Fluid Tapered Laminated Beams Reinforced with Nano-Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saman%20Momeni">Saman Momeni</a>, <a href="https://publications.waset.org/abstracts/search?q=Abolghassem%20Zabihollah"> Abolghassem Zabihollah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Behzad"> Mehdi Behzad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-uniform laminated composite structures are being used in many engineering applications where the structures are subjected to unpredicted vibration. To mitigate the vibration response of these structures, recently, magnetorheological fluid (MR), is added to non-uniform (tapered) thickness laminated composite structures to achieve a new generation of the smart composite as MR tapered beam. However, due to the nature of MR fluid, especially the low stiffness, MR tapered beam exhibit lower stiffness and in turn, lower natural frequencies. To achieve the basic design requirements of the structure without MR fluid, one may need to apply a predefined magnetic energy to the structures, requiring a constant source of energy. In the present work, a passive initial stiffness control of MR tapered beam has been studied. The effects of adding nanoparticles on the dynamic response of MR tapered beam has been investigated. It is observed that adding nanoparticles up to 3% may significantly modify the natural frequencies of the structures and achieve dynamic behavior of the structures before addition of MR fluid. Two Models of tapered structures have been taken into consideration. It is observed that adding only 3% of nanoparticles backs the structures to its initial dynamic behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non%20uniform%20laminated%20structures" title="non uniform laminated structures">non uniform laminated structures</a>, <a href="https://publications.waset.org/abstracts/search?q=MR%20fluid" title=" MR fluid"> MR fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a> </p> <a href="https://publications.waset.org/abstracts/79955/dynamic-response-of-magnetorheological-fluid-tapered-laminated-beams-reinforced-with-nano-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2681</span> Simulation of Elastic Bodies through Discrete Element Method, Coupled with a Nested Overlapping Grid Fluid Flow Solver</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Sassi">Paolo Sassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Freiria"> Jorge Freiria</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Usera"> Gabriel Usera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a finite volume fluid flow solver is coupled with a discrete element method module for the simulation of the dynamics of free and elastic bodies in interaction with the fluid and between themselves. The open source fluid flow solver, caffa3d.MBRi, includes the capability to work with nested overlapping grids in order to easily refine the grid in the region where the bodies are moving. To do so, it is necessary to implement a recognition function able to identify the specific mesh block in which the device is moving in. The set of overlapping finer grids might be displaced along with the set of bodies being simulated. The interaction between the bodies and the fluid is computed through a two-way coupling. The velocity field of the fluid is first interpolated to determine the drag force on each object. After solving the objects displacements, subject to the elastic bonding among them, the force is applied back onto the fluid through a Gaussian smoothing considering the cells near the position of each object. The fishnet is represented as lumped masses connected by elastic lines. The internal forces are derived from the elasticity of these lines, and the external forces are due to drag, gravity, buoyancy and the load acting on each element of the system. When solving the ordinary differential equations system, that represents the motion of the elastic and flexible bodies, it was found that the Runge Kutta solver of fourth order is the best tool in terms of performance, but requires a finer grid than the fluid solver to make the system converge, which demands greater computing power. The coupled solver is demonstrated by simulating the interaction between the fluid, an elastic fishnet and a set of free bodies being captured by the net as they are dragged by the fluid. The deformation of the net, as well as the wake produced in the fluid stream are well captured by the method, without requiring the fluid solver mesh to adapt for the evolving geometry. Application of the same strategy to the simulation of elastic structures subject to the action of wind is also possible with the method presented, and one such application is currently under development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title=" discrete element method"> discrete element method</a>, <a href="https://publications.waset.org/abstracts/search?q=fishnets" title=" fishnets"> fishnets</a>, <a href="https://publications.waset.org/abstracts/search?q=nested%20overlapping%20grids" title=" nested overlapping grids"> nested overlapping grids</a> </p> <a href="https://publications.waset.org/abstracts/50935/simulation-of-elastic-bodies-through-discrete-element-method-coupled-with-a-nested-overlapping-grid-fluid-flow-solver" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2680</span> Impacts on the Modification of a Two-Blade Mobile on the Agitation of Newtonian Fluids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abderrahim%20Sidi%20Mohammed%20Nekrouf">Abderrahim Sidi Mohammed Nekrouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarra%20Youcefi"> Sarra Youcefi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluid mixing plays a crucial role in numerous industries as it has a significant impact on the final product quality and performance. In certain cases, the circulation of viscous fluids presents challenges, leading to the formation of stagnant zones. To overcome this issue, stirring devices are employed for fluid mixing. This study focuses on a numerical analysis aimed at understanding the behavior of Newtonian fluids when agitated by a two-blade agitator in a cylindrical vessel. We investigate the influence of the agitator shape on fluid motion. Bi-blade agitators of this type are commonly used in the food, cosmetic, and chemical industries to agitate both viscous and non-viscous liquids. Numerical simulations were conducted using Computational Fluid Dynamics (CFD) software to obtain velocity profiles, streamlines, velocity contours, and the associated power number. The obtained results were compared with experimental data available in the literature, validating the accuracy of our numerical approach. The results clearly demonstrate that modifying the agitator shape has a significant impact on fluid motion. This modification generates an axial flow that enhances the efficiency of the fluid flow. The various velocity results convincingly reveal that the fluid is more uniformly agitated with this modification, resulting in improved circulation and a substantial reduction in stagnant zones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Newtonian%20fluids" title="Newtonian fluids">Newtonian fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20blade." title=" two blade."> two blade.</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/169839/impacts-on-the-modification-of-a-two-blade-mobile-on-the-agitation-of-newtonian-fluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2679</span> A Transient Coupled Numerical Analysis of the Flow of Magnetorheological Fluids in Closed Domains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wael%20Elsaady">Wael Elsaady</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Olutunde%20Oyadiji"> S. Olutunde Oyadiji</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Nasser"> Adel Nasser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The non-linear flow characteristics of magnetorheological (MR) fluids in MR dampers are studied via a coupled numerical approach that incorporates a two-phase flow model. The approach couples the Finite Element (FE) modelling of the damper magnetic circuit, with the Computational Fluid Dynamics (CFD) analysis of the flow field in the damper. The two-phase flow CFD model accounts for the effect of fluid compressibility due to the presence of liquid and gas in the closed domain of the damper. The dynamic mesh model included in ANSYS/Fluent CFD solver is used to simulate the movement of the MR damper piston in order to perform the fluid excitation. The two-phase flow analysis is studied by both Volume-Of-Fluid (VOF) model and mixture model that are included in ANSYS/Fluent. The CFD models show that the hysteretic behaviour of MR dampers is due to the effect of fluid compressibility. The flow field shows the distributions of pressure, velocity, and viscosity contours. In particular, it shows the high non-Newtonian viscosity in the affected fluid regions by the magnetic field and the low Newtonian viscosity elsewhere. Moreover, the dependence of gas volume fraction on the liquid pressure inside the damper is predicted by the mixture model. The presented approach targets a better understanding of the complicated flow characteristics of viscoplastic fluids that could be applied in different applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viscoplastic%20fluid" title="viscoplastic fluid">viscoplastic fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20FE%20analysis" title=" magnetic FE analysis"> magnetic FE analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20flow" title=" two-phase flow"> two-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20mesh" title=" dynamic mesh"> dynamic mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=user-defined%20functions" title=" user-defined functions"> user-defined functions</a> </p> <a href="https://publications.waset.org/abstracts/110056/a-transient-coupled-numerical-analysis-of-the-flow-of-magnetorheological-fluids-in-closed-domains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2678</span> Entropy Generation of Natural Convection Heat Transfer in a Square Cavity Using Al2O3-Water Nanofluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Alipanah">M. Alipanah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ranjbar"> A. Ranjbar</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Farnad"> E. Farnad</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Alipanah"> F. Alipanah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Entropy generation of an Al2O3-water nanofluid due to heat transfer and fluid friction irreversibility has been investigated in a square cavity subject to different side wall temperatures using a nanofluid for natural convection flow. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number between 104 to 107 and volume fraction between 0 to 0.05. Based on the obtained dimensionless velocity and temperature values, the distributions of local entropy generation, average entropy generation and average Bejan number are determined. The results are compared for a pure fluid and a nanofluid. It is totally found that the heat transfer and entropy generation of the nanofluid is more than the pure fluid and minimum entropy generation and Nusselt number occur in the pure fluid at any Rayleigh number. Results depict that the addition of nanoparticles to the pure fluid has more effect on the entropy generation as the Rayleigh number goes up. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy%20generation" title="entropy generation">entropy generation</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=bejan%20number" title=" bejan number"> bejan number</a>, <a href="https://publications.waset.org/abstracts/search?q=nuselt%20number" title=" nuselt number"> nuselt number</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a> </p> <a href="https://publications.waset.org/abstracts/10068/entropy-generation-of-natural-convection-heat-transfer-in-a-square-cavity-using-al2o3-water-nanofluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2677</span> Mineralisation and Fluid Inclusions Studies of the Fluorite Deposit at Jebel Mecella, North Eastern Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miladi%20Yasmine">Miladi Yasmine</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouhlel%20Salah"> Bouhlel Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=Garnit%20Hechmi"> Garnit Hechmi</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Banks"> David Banks</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Jebel Mecella F (Ba-Pb-Zn) ore deposits of the Zaghouan district are located in northeastern Tunisia, 60 km south of Tunis. The host rocks belong to the Ressas Formation of Kimmeridgian-Tithonian age and lower Cretaceous layers. Mineralisations occur as stratiform lenses and fracture fillings. The ore mineral assemblage is composed of fluorite, barite, sphalerite galena, and quartz. Primary fluid inclusions in sphalerite have homogenization temperatures ranging from 129 to 145°C final melting temperature range from -14.9 to -10.0, corresponding to salinities of 14.0 to 17.7 wt% NaCl equivalent. Fluid inclusions in fluorite homogenize to the liquid phase between 116 and 160°C. The final ice melting temperature ranges from -23 to -15 °C, corresponding to salinities between 17 and 24 wt% NaCl equivalent. The LAICP-MS analyses of the fluid inclusions in fluorite show that these fluids are dominated by Na>K>Mg. Furthermore, the high K/Na values from fluid inclusions suggest the brine interacted with K-rich rocks in the basement or in siliciclastic sediments in the basins. The ore fluids in Jebel Mecella are highly saline and Na-K dominated with lower Mg concentrations, and come from the leaching of the dolomitic host rocks. These results are compatible with Mississippi-Valley-type mineralizing fluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jebel%20Mecella" title="Jebel Mecella">Jebel Mecella</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20inclusions" title=" fluid inclusions"> fluid inclusions</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20thermometry" title=" micro thermometry"> micro thermometry</a>, <a href="https://publications.waset.org/abstracts/search?q=LA-ICP-MS" title=" LA-ICP-MS"> LA-ICP-MS</a> </p> <a href="https://publications.waset.org/abstracts/141650/mineralisation-and-fluid-inclusions-studies-of-the-fluorite-deposit-at-jebel-mecella-north-eastern-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2676</span> Numerical Investigation of Fluid Outflow through a Retinal Hole after Scleral Buckling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Walczak">T. Walczak</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20K.%20Grabski"> J. K. Grabski</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Fritzkowski"> P. Fritzkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Stopa"> M. Stopa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives of the study are i) to perform numerical simulations that permit an analysis of the dynamics of subretinal fluid when an implant has induced scleral intussusception and ii) assess the impact of the physical parameters of the model on the flow rate. Computer simulations were created using finite element method (FEM) based on a model that takes into account the interaction of a viscous fluid (subretinal fluid) with a hyperelastic body (retina). The purpose of the calculation was to investigate the dependence of the flow rate of subretinal fluid through a hole in the retina on different factors such as viscosity of subretinal fluid, material parameters of the retina, and the offset of the implant from the retina’s hole. These simulations were performed for different speeds of eye movement that reflect the behavior of the eye when reading, REM, and saccadic movements. Similar to other works in the field of subretinal fluid flow, it was assumed stationary, single sided, forced fluid flow in the considered area simulating the subretinal space. Additionally, a hyperelastic material model of the retina and parameterized geometry of the considered model was adopted. The calculations also examined the influence the direction of the force of gravity due to the position of the patient’s head on the trend of outflow of fluid. The simulations revealed that fluid outflow from the retina becomes significant with eyeball movement speed of 100°/sec. This speed is greater than in the case of reading but is four times less than saccadic movement. The increase of viscosity of the fluid increased beneficial effect. Further, the simulation results suggest that moderate eye movement speed is optimal and that the conventional prescription of the avoidance of routine eye movement following retinal detachment surgery should be relaxed. Additionally, to verify numerical results, some calculations were repeated with use of meshless method (method of fundamental solutions), which is relatively fast and easy to implement. The paper has been supported by 02/21/DSPB/3477 grant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD%20simulations" title="CFD simulations">CFD simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM%20analysis" title=" FEM analysis"> FEM analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=meshless%20method" title=" meshless method"> meshless method</a>, <a href="https://publications.waset.org/abstracts/search?q=retinal%20detachment" title=" retinal detachment"> retinal detachment</a> </p> <a href="https://publications.waset.org/abstracts/67590/numerical-investigation-of-fluid-outflow-through-a-retinal-hole-after-scleral-buckling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2675</span> Efficient Monolithic FEM for Compressible Flow and Conjugate Heat Transfer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santhosh%20A.%20K.">Santhosh A. K.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents an efficient monolithic finite element strategy for solving thermo-fluid-structure interaction problems involving compressible fluids and linear-elastic structure. This formulation uses displacement variables for structure and velocity variables for the fluid, with no additional variables required to ensure traction, velocity, temperature, and heat flux continuity at the fluid-structure interface. Rate of convergence in each time step is quadratic, which is achieved in this formulation by deriving an exact tangent stiffness matrix. The robustness and good performance of the method is ascertained by applying the proposed strategy on a wide spectrum of problems taken from the literature pertaining to steady, transient, two dimensional, axisymmetric, and three dimensional fluid flow and conjugate heat transfer. It is shown that the current formulation gives excellent results on all the case studies conducted, which includes problems involving compressibility effects as well as problems where fluid can be treated as incompressible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20thermoelasticity" title="linear thermoelasticity">linear thermoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=compressible%20flow" title=" compressible flow"> compressible flow</a>, <a href="https://publications.waset.org/abstracts/search?q=conjugate%20heat%20transfer" title=" conjugate heat transfer"> conjugate heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=monolithic%20FEM" title=" monolithic FEM"> monolithic FEM</a> </p> <a href="https://publications.waset.org/abstracts/139003/efficient-monolithic-fem-for-compressible-flow-and-conjugate-heat-transfer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2674</span> A Physical Theory of Information vs. a Mathematical Theory of Communication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manouchehr%20Amiri">Manouchehr Amiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article introduces a general notion of physical bit information that is compatible with the basics of quantum mechanics and incorporates the Shannon entropy as a special case. This notion of physical information leads to the Binary data matrix model (BDM), which predicts the basic results of quantum mechanics, general relativity, and black hole thermodynamics. The compatibility of the model with holographic, information conservation, and Landauer’s principles are investigated. After deriving the “Bit Information principle” as a consequence of BDM, the fundamental equations of Planck, De Broglie, Beckenstein, and mass-energy equivalence are derived. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physical%20theory%20of%20information" title="physical theory of information">physical theory of information</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20data%20matrix%20model" title=" binary data matrix model"> binary data matrix model</a>, <a href="https://publications.waset.org/abstracts/search?q=Shannon%20information%20theory" title=" Shannon information theory"> Shannon information theory</a>, <a href="https://publications.waset.org/abstracts/search?q=bit%20information%20principle" title=" bit information principle"> bit information principle</a> </p> <a href="https://publications.waset.org/abstracts/166010/a-physical-theory-of-information-vs-a-mathematical-theory-of-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2673</span> Theoretical Analysis of Performance Parameters of a Microchannel Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreyas%20Kotian">Shreyas Kotian</a>, <a href="https://publications.waset.org/abstracts/search?q=Nishant%20Jainm"> Nishant Jainm</a>, <a href="https://publications.waset.org/abstracts/search?q=Nachiket%20Methekar"> Nachiket Methekar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase in energy demands in various industrial sectors has called for devices small in size with high heat transfer rates. Microchannel heat exchangers (MCHX) have thus been studied and applied in various fields such as thermal engineering, aerospace engineering and nanoscale heat transfer. They have been a case of investigation due to their augmented thermal characteristics and low-pressure drop. The goal of the current investigation is to analyze the thermohydraulic performance of the heat exchanger analytically. Studies are done for various inlet conditions and flow conditions. At Thi of 90°C, the effectiveness increased by about 22% for an increase in Re from 1000 to 5000 of the cold fluid. It was also observed that at Re = 5000 for the hot fluid, the heat recovered by the hot fluid increases by about 69% for an increase in inlet temperature of the hot fluid from 50°C to 70°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=theoretical%20analysis" title="theoretical analysis">theoretical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20parameters" title=" performance parameters"> performance parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=microchannel%20heat%20exchanger" title=" microchannel heat exchanger"> microchannel heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a> </p> <a href="https://publications.waset.org/abstracts/142967/theoretical-analysis-of-performance-parameters-of-a-microchannel-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2672</span> National Directorate of Employment Training and Agricultural-Small and Medium Enterprises Performance in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Festus%20M.%20Epetimehin">Festus M. Epetimehin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to identify the effect of National Directorate of Employment (NDE) training on the profit of Agricultural-Small and Medium Enterprises (SMEs) and to evaluate the factors that influenced farmers' participation in NDE training, as well as the type and frequency of training farmers and other agro-allied entrepreneurs in Nigeria. Using a multi-stage sampling procedure, a total of 384 respondents were sampled, including 192 beneficiaries and 192 non-beneficiaries in Oyo and Lagos States, respectively. Data were analysed using Binary Logit regression and Propensity Score Matching techniques. According to the binary logit analysis, respondents’ gender, availability to extension services, and the location of respondent’s operation were determinant factors influencing NDE training enrolment. All identified factors are related to the probability of respondents’ involvement in a positive way. Propensity score matching revealed that Agricultural-SMEs who participated in the NDE program boosted their profit by N341,072.18. The positive outcome of the effect implies that NDE training enhances Agri-SME performance in Nigeria. The study concluded that greater funding should be provided for the NDE for performance-enhancing training of the Agri-SMEs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PSM" title="PSM">PSM</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20logit%20model" title=" binary logit model"> binary logit model</a>, <a href="https://publications.waset.org/abstracts/search?q=Agri-SME" title=" Agri-SME"> Agri-SME</a> </p> <a href="https://publications.waset.org/abstracts/153024/national-directorate-of-employment-training-and-agricultural-small-and-medium-enterprises-performance-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2671</span> Innovative Pump Design Using the Concept of Viscous Fluid Sinusoidal Excitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20H.%20Elkholy">Ahmed H. Elkholy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concept of applying a prescribed oscillation to viscous fluids to aid or increase flow is used to produce a maintenance free pump. Application of this technique to fluids presents unique problems such as physical separation; control of heat and mass transfer in certain industrial applications; and improvement of some fluid process methods. The problem as stated is to obtain the velocity distribution, wall shear stress and energy expended when a pipe containing a stagnant viscous fluid is externally excited by a sinusoidal pulse, one end of the pipe being pinned. On the other hand, the effect of different parameters on the results are presented. Such parameters include fluid viscosity, frequency of oscillations and pipe geometry. It was found that the flow velocity through the pump is maximum at the pipe wall, and it decreases rapidly towards the pipe centerline. The frequency of oscillation should be above a certain value in order to obtain meaningful flow velocity. The amount of energy absorbed in the system is mainly due to pipe wall strain energy, while the fluid pressure and kinetic energies are comparatively small. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sinusoidal%20excitation" title="sinusoidal excitation">sinusoidal excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=pump" title=" pump"> pump</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20stress" title=" shear stress"> shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=flow" title=" flow"> flow</a> </p> <a href="https://publications.waset.org/abstracts/48529/innovative-pump-design-using-the-concept-of-viscous-fluid-sinusoidal-excitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2670</span> Experimental Study on Dehumidification Performance of Supersonic Nozzle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esam%20Jassim">Esam Jassim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supersonic nozzles are commonly used to purify natural gas in gas processing technology. As an innovated technology, it is employed to overcome the deficit of the traditional method, related to gas dynamics, thermodynamics and fluid dynamics theory. An indoor test rig is built to study the dehumidification process of moisture fluid. Humid air was chosen for the study. The working fluid was circulating in an open loop, which had provision for filtering, metering, and humidifying. A stainless steel supersonic separator is constructed together with the C-D nozzle system. The result shows that dehumidification enhances as NPR increases. This is due to the high intensity in the turbulence caused by the shock formation in the divergent section. Such disturbance strengthens the centrifugal force, pushing more particles toward the near-wall region. In return return, the pressure recovery factor, defined as the ratio of the outlet static pressure of the fluid to its inlet value, decreases with NPR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supersonic%20nozzle" title="supersonic nozzle">supersonic nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=dehumidification" title=" dehumidification"> dehumidification</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20separation" title=" particle separation"> particle separation</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle%20geometry" title=" nozzle geometry"> nozzle geometry</a> </p> <a href="https://publications.waset.org/abstracts/64186/experimental-study-on-dehumidification-performance-of-supersonic-nozzle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2669</span> Thermodynamic Behaviour of Binary Mixtures of 1, 2-Dichloroethane with Some Cyclic Ethers: Experimental Results and Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fouzia%20Amireche-Ziar">Fouzia Amireche-Ziar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilham%20Mokbel"> Ilham Mokbel</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacques%20Jose"> Jacques Jose</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vapour pressures of the three binary mixtures: 1, 2- dichloroethane + 1,3-dioxolane, + 1,4-dioxane or + tetrahydropyrane, are carried out at ten temperatures ranging from 273 to 353.15 K. An accurate static device was employed for these measurements. The VLE data were reduced using the Redlich-Kister equation by taking into consideration the vapour pressure non-ideality in terms of the second molar virial coefficient. The experimental data were compared to the results predicted with the DISQUAC and Dortmund UNIFAC group contribution models for the total pressures P and the excess molar Gibbs energies GE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disquac%20model" title="disquac model">disquac model</a>, <a href="https://publications.waset.org/abstracts/search?q=dortmund%20UNIFAC%20model" title=" dortmund UNIFAC model"> dortmund UNIFAC model</a>, <a href="https://publications.waset.org/abstracts/search?q=excess%20molar%20Gibbs%20energies%20GE" title=" excess molar Gibbs energies GE"> excess molar Gibbs energies GE</a>, <a href="https://publications.waset.org/abstracts/search?q=VLE" title=" VLE"> VLE</a> </p> <a href="https://publications.waset.org/abstracts/49663/thermodynamic-behaviour-of-binary-mixtures-of-1-2-dichloroethane-with-some-cyclic-ethers-experimental-results-and-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2668</span> Numerical Solution of Magneto-Hydrodynamic Flow of a Viscous Fluid in the Presence of Nanoparticles with Fractional Derivatives through a Cylindrical Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Abdullah">Muhammad Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Rashid%20Butt"> Asma Rashid Butt</a>, <a href="https://publications.waset.org/abstracts/search?q=Nauman%20Raza"> Nauman Raza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biomagnetic fluids like blood play key role in different applications of medical science and bioengineering. In this paper, the magnetohydrodynamic flow of a viscous fluid with magnetic particles through a cylindrical tube is investigated. The fluid is electrically charged in the presence of a uniform external magnetic field. The movement in the fluid is produced due to the cylindrical tube. Initially, the fluid and tube are at rest and at time t=0⁺, the tube starts to move along its axis. To obtain the mathematical model of flow with fractional derivatives fractional calculus approach is used. The solution of the flow model is obtained by using Laplace transformation. The Simon's numerical algorithm is employed to obtain inverse Laplace transform. The hybrid technique, we are employing has less computational effort as compared to other methods. The numerical calculations have been performed with Mathcad software. As the special cases of our problem, the solution of flow model with ordinary derivatives and flow without magnetic particles has been procured. Finally, the impact of non-integer fractional parameter alpha, Hartmann number Ha, and Reynolds number Re on flow and magnetic particles velocity is analyzed and depicted by graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viscous%20fluid" title="viscous fluid">viscous fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20particles" title=" magnetic particles"> magnetic particles</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20calculus" title=" fractional calculus"> fractional calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=laplace%20transformation" title=" laplace transformation"> laplace transformation</a> </p> <a href="https://publications.waset.org/abstracts/90032/numerical-solution-of-magneto-hydrodynamic-flow-of-a-viscous-fluid-in-the-presence-of-nanoparticles-with-fractional-derivatives-through-a-cylindrical-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=binary%20fluid&amp;page=4" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=binary%20fluid&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=binary%20fluid&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=binary%20fluid&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=binary%20fluid&amp;page=4">4</a></li> <li class="page-item active"><span class="page-link">5</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=binary%20fluid&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=binary%20fluid&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=binary%20fluid&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=binary%20fluid&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=binary%20fluid&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=binary%20fluid&amp;page=93">93</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=binary%20fluid&amp;page=94">94</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=binary%20fluid&amp;page=6" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10