CINXE.COM
Search results for: space environment simulator
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: space environment simulator</title> <meta name="description" content="Search results for: space environment simulator"> <meta name="keywords" content="space environment simulator"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="space environment simulator" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="space environment simulator"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12266</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: space environment simulator</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12266</span> The Control System Architecture of Space Environment Simulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhan%20Haiyang">Zhan Haiyang</a>, <a href="https://publications.waset.org/abstracts/search?q=Gu%20Miao"> Gu Miao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article mainly introduces the control system architecture of space environment simulator, simultaneously also briefly introduce the automation control technology of industrial process and the measurement technology of vacuum and cold black environment. According to the volume of chamber, the space environment simulator is divided into three types of small, medium and large. According to the classification and application of space environment simulator, the control system is divided into the control system of small, medium, large space environment simulator and the centralized control system of multiple space environment simulators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space%20environment%20simulator" title="space environment simulator">space environment simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20system" title=" control system"> control system</a>, <a href="https://publications.waset.org/abstracts/search?q=architecture" title=" architecture"> architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=automation%20control%20technology" title=" automation control technology"> automation control technology</a> </p> <a href="https://publications.waset.org/abstracts/2428/the-control-system-architecture-of-space-environment-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12265</span> Research on Level Adjusting Mechanism System of Large Space Environment Simulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Xiao">Han Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Lei"> Zhang Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Huang%20Hai"> Huang Hai</a>, <a href="https://publications.waset.org/abstracts/search?q=Lv%20Shizeng"> Lv Shizeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space environment simulator is a device for spacecraft test. KM8 large space environment simulator built in Tianjing Space City is the largest as well as the most advanced space environment simulator in China. Large deviation of spacecraft level will lead to abnormally work of the thermal control device in spacecraft during the thermal vacuum test. In order to avoid thermal vacuum test failure, level adjusting mechanism system is developed in the KM8 large space environment simulator as one of the most important subsystems. According to the level adjusting requirements of spacecraft’s thermal vacuum tests, the four fulcrums adjusting model is established. By means of collecting level instruments and displacement sensors data, stepping motors controlled by PLC drive four supporting legs simultaneous movement. In addition, a PID algorithm is used to control the temperature of supporting legs and level instruments which long time work under the vacuum cold and black environment in KM8 large space environment simulator during thermal vacuum tests. Based on the above methods, the data acquisition and processing, the analysis and calculation, real time adjustment and fault alarming of the level adjusting mechanism system are implemented. The level adjusting accuracy reaches 1mm/m, and carrying capacity is 20 tons. Debugging showed that the level adjusting mechanism system of KM8 large space environment simulator can meet the thermal vacuum test requirement of the new generation spacecraft. The performance and technical indicators of the level adjusting mechanism system which provides important support for the development of spacecraft in China have been ahead of similar equipment in the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space%20environment%20simulator" title="space environment simulator">space environment simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20vacuum%20test" title=" thermal vacuum test"> thermal vacuum test</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20adjusting" title=" level adjusting"> level adjusting</a>, <a href="https://publications.waset.org/abstracts/search?q=spacecraft" title=" spacecraft"> spacecraft</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20mechanism" title=" parallel mechanism"> parallel mechanism</a> </p> <a href="https://publications.waset.org/abstracts/69565/research-on-level-adjusting-mechanism-system-of-large-space-environment-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12264</span> Structure Design of Vacuum Vessel with Large Openings for Spacecraft Thermal Vacuum Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Xiao">Han Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruan%20Qi"> Ruan Qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Lei"> Zhang Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Yan"> Qi Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space environment simulator is a facility used to conduct thermal test for spacecraft, and vacuum vessel is the main body of it. According to the requirements for thermal tests of the spacecraft and its solar array panels, the primary vessel and the side vessels are designed to be a combinative structure connected with aperture, which ratio reaches 0.7. Since the vacuum vessel suffers 0.1MPa external pressure during the process of thermal test, in order to ensure the simulator’s reliability and safety, it’s necessary to calculate the vacuum vessel’s intensity and stability. Based on the impact of large openings to vacuum vessel structure, this paper explored the reinforce design and analytical way of vacuum vessel with large openings, using a large space environment simulator’s vacuum vessel design as an example. Tests showed that the reinforce structure is effective to fulfill the requirements of external pressure and the gravity. This ensured the reliability of the space environment simulator, providing a guarantee for developing the spacecraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vacuum%20vessel" title="vacuum vessel">vacuum vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20opening" title=" large opening"> large opening</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20environment%20simulator" title=" space environment simulator"> space environment simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20design" title=" structure design"> structure design</a> </p> <a href="https://publications.waset.org/abstracts/10540/structure-design-of-vacuum-vessel-with-large-openings-for-spacecraft-thermal-vacuum-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12263</span> Development of Configuration Software of Space Environment Simulator Control System Based on Linux </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhan%20Haiyang">Zhan Haiyang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Lei"> Zhang Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Ning%20Juan"> Ning Juan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a configuration software solution in Linux, which is used for the control of space environment simulator. After introducing the structure and basic principle, it is said that the developing of QT software frame and the dynamic data exchanging between PLC and computer. The OPC driver in Linux is also developed. This driver realizes many-to-many communication between hardware devices and SCADA software. Moreover, an algorithm named “Scan PRI” is put forward. This algorithm is much more optimizable and efficient compared with "Scan in sequence" in Windows. This software has been used in practical project. It has a good control effect and can achieve the expected goal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Linux%20OS" title="Linux OS">Linux OS</a>, <a href="https://publications.waset.org/abstracts/search?q=configuration%20software" title=" configuration software"> configuration software</a>, <a href="https://publications.waset.org/abstracts/search?q=OPC%20Server%20driver" title=" OPC Server driver"> OPC Server driver</a>, <a href="https://publications.waset.org/abstracts/search?q=MYSQL%20database" title=" MYSQL database"> MYSQL database</a> </p> <a href="https://publications.waset.org/abstracts/54104/development-of-configuration-software-of-space-environment-simulator-control-system-based-on-linux" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12262</span> Study on Liquid Nitrogen Gravity Circulation Loop for Cryopumps in Large Space Simulator </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weiwei%20Shan">Weiwei Shan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenjing%20Ding"> Wenjing Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Ning"> Juan Ning</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20He"> Chao He</a>, <a href="https://publications.waset.org/abstracts/search?q=Zijuan%20Wang"> Zijuan Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gravity circulation loop for the cryopumps of the space simulator is introduced, and two phase mathematic model of flow heat transfer is analyzed as well. Based on this model, the liquid nitrogen (LN<sub>2</sub>) gravity circulation loop including its equipment and layout is designed and has served as LN<sub>2</sub> feeding system for cryopumps in one large space simulator. With the help of control software and human machine interface, this system can be operated flexibly, simply, and automatically under four conditions. When running this system, the results show that the cryopumps can be cooled down and maintained under the required temperature, 120 K. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryopumps" title="cryopumps">cryopumps</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity%20circulation%20loop" title=" gravity circulation loop"> gravity circulation loop</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20nitrogen" title=" liquid nitrogen"> liquid nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase" title=" two-phase"> two-phase</a> </p> <a href="https://publications.waset.org/abstracts/71782/study-on-liquid-nitrogen-gravity-circulation-loop-for-cryopumps-in-large-space-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12261</span> From Problem Space to Executional Architecture: The Development of a Simulator to Examine the Effect of Autonomy on Mainline Rail Capacity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emily%20J.%20Morey">Emily J. Morey</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Galvin"> Kevin Galvin</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Riley"> Thomas Riley</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Eddie%20Wilson"> R. Eddie Wilson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The key challenges faced by integrating autonomous rail operations into the existing mainline railway environment have been identified through the understanding and framing of the problem space and stakeholder analysis. This was achieved through the completion of the first four steps of Soft Systems Methodology, where the problem space has been expressed via conceptual models. Having identified these challenges, we investigated one of them, namely capacity, via the use of models and simulation. This paper examines the approach used to move from the conceptual models to a simulation which can determine whether the integration of autonomous trains can plausibly increase capacity. Within this approach, we developed an architecture and converted logical models into physical resource models and associated design features which were used to build a simulator. From this simulator, we are able to analyse mixtures of legacy-autonomous operations and produce fundamental diagrams and trajectory plots to describe the dynamic behaviour of mixed mainline railway operations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomy" title="autonomy">autonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=executable%20architecture" title=" executable architecture"> executable architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling%20and%20simulation" title=" modelling and simulation"> modelling and simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20capacity" title=" railway capacity"> railway capacity</a> </p> <a href="https://publications.waset.org/abstracts/164089/from-problem-space-to-executional-architecture-the-development-of-a-simulator-to-examine-the-effect-of-autonomy-on-mainline-rail-capacity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12260</span> Environmental and Space Travel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alimohammad">Alimohammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Man's entry into space is one of the most important results of developments and advances made in information technology. But this human step, like many of his other actions, is not free of danger, as space pollution today has become a major problem for the global community. Paying attention to the issue of preserving the space environment is in the interest of all governments and mankind, and ignoring it can increase the possibility of conflict between countries. What many space powers still do not pay attention to is the freedom to explore and exploit space should be limited by banning pollution of the space environment. Therefore, freedom and prohibition are complementary and should not be considered conflicting concepts. The legal system created by the current space treaties for the effective preservation of the space environment has failed. Customary international law also does not have an effective provision and guarantee of sufficient executions in order to prevent damage to the environment. Considering the responsibility of each generation in the healthy transfer of the environment to the next generation and considering the sustainable development concept, the space environment must also be passed on to future generations in a healthy and undamaged manner. As a result, many environmental policies related to Earth should also be applied to the space environment.. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=law" title="law">law</a>, <a href="https://publications.waset.org/abstracts/search?q=space" title=" space"> space</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=responsibility" title=" responsibility"> responsibility</a> </p> <a href="https://publications.waset.org/abstracts/161584/environmental-and-space-travel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12259</span> A Trends Analysis of Yatch Simulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Neung%20Lee">Jae-Neung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Keun-Chang%20Kwak"> Keun-Chang Kwak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes an analysis of Yacht Simulator international trends and also explains about Yacht. Examples of yacht Simulator using Yacht Simulator include image processing for totaling the total number of vehicles, edge/target detection, detection and evasion algorithm, image processing using SIFT (scale invariant features transform) matching, and application of median filter and thresholding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=yacht%20simulator" title="yacht simulator">yacht simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=simulator" title=" simulator"> simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=trends%20analysis" title=" trends analysis"> trends analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SIFT" title=" SIFT"> SIFT</a> </p> <a href="https://publications.waset.org/abstracts/23888/a-trends-analysis-of-yatch-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12258</span> A Multi-Agent Urban Traffic Simulator for Generating Autonomous Driving Training Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Florin%20Leon">Florin Leon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a simulator of traffic scenarios tailored to facilitate autonomous driving model training for urban environments. With the rising prominence of self-driving vehicles, the need for diverse datasets is very important. The proposed simulator provides a flexible framework that allows the generation of custom scenarios needed for the validation and enhancement of trajectory prediction algorithms. Its controlled yet dynamic environment addresses the challenges associated with real-world data acquisition and ensures adaptability to diverse driving scenarios. By providing an adaptable solution for scenario creation and algorithm testing, this tool proves to be a valuable resource for advancing autonomous driving technology that aims to ensure safe and efficient self-driving vehicles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20driving" title="autonomous driving">autonomous driving</a>, <a href="https://publications.waset.org/abstracts/search?q=car%20simulator" title=" car simulator"> car simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20training" title=" model training"> model training</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20simulation%20environment" title=" urban simulation environment"> urban simulation environment</a> </p> <a href="https://publications.waset.org/abstracts/182587/a-multi-agent-urban-traffic-simulator-for-generating-autonomous-driving-training-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12257</span> Numerical Simulation of Liquid Nitrogen Spray Equipment for Space Environmental Simulation Facility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=He%20Chao">He Chao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Lei"> Zhang Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Ran"> Liu Ran</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Ang"> Li Ang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Temperature regulating system by gaseous nitrogen is of importance to the space environment simulator, which keep the shrouds in the temperature range from -150℃ to +150℃. Liquid nitrogen spray equipment is one of the most critical parts in the temperature regulating system by gaseous nitrogen. Y type jet atomizer and internal mixing atomizer of the liquid nitrogen spray equipment are studied in this paper, 2D/3D atomizer model was established and grid division was conducted respectively by the software of Catia and ICEM. Based on the above preparation, numerical simulation on the spraying process of the atomizer by FLUENT is performed. Using air and water as the medium, comparison between the tests and numerical simulation was conducted and the results of two ways match well. Hence, it can be conclude that this atomizer model can be applied in the numerical simulation of liquid nitrogen spray equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space%20environmental%20simulator" title="space environmental simulator">space environmental simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20nitrogen%20spray" title=" liquid nitrogen spray"> liquid nitrogen spray</a>, <a href="https://publications.waset.org/abstracts/search?q=Y%20type%20jet%20atomizer" title=" Y type jet atomizer"> Y type jet atomizer</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20mixing%20atomizer" title=" internal mixing atomizer"> internal mixing atomizer</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fluent" title=" fluent"> fluent</a> </p> <a href="https://publications.waset.org/abstracts/32103/numerical-simulation-of-liquid-nitrogen-spray-equipment-for-space-environmental-simulation-facility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12256</span> Developing a Driving Simulator with a Navigation System to Measure Driver Distraction, Workload, Driving Safety and Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamer%20E.%20Yared">Tamer E. Yared</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of driving simulators has made laboratory testing easier. It has been proven to be valid for testing driving ability by many researchers. One benefit of using driving simulators is keeping the human subjects away from traffic hazards, which drivers usually face in a real driving environment while performing a driving experiment. In this study, a driving simulator was developed with a navigation system using a game development software (Unity 3D) and C-sharp codes to measure and evaluate driving performance, safety, and workload for different driving tasks. The driving simulator hardware included a gaming steering wheel and pedals as well as a monitor to view the driving tasks. Moreover, driver distraction was evaluated by utilizing an eye-tracking system working in conjunction with the driving simulator. Twenty subjects were recruited to evaluate driver distraction, workload, driving safety, and performance, as well as provide their feedback about the driving simulator. The subjects’ feedback was obtained by filling a survey after conducting several driving tasks. The main question of that survey was asking the subjects to compare driving on the driving simulator with real driving. Furthermore, other aspects of the driving simulator were evaluated by the subjects in the survey. The survey revealed that the recruited subjects gave an average score of 7.5 out of 10 to the driving simulator when compared to real driving, where the scores ranged between 6 and 8.5. This study is a preliminary effort that opens the door for more improvements to the driving simulator in terms of hardware and software development, which will contribute significantly to driving ability testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=driver%20distraction" title="driver distraction">driver distraction</a>, <a href="https://publications.waset.org/abstracts/search?q=driving%20performance" title=" driving performance"> driving performance</a>, <a href="https://publications.waset.org/abstracts/search?q=driving%20safety" title=" driving safety"> driving safety</a>, <a href="https://publications.waset.org/abstracts/search?q=driving%20simulator" title=" driving simulator"> driving simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=driving%20workload" title=" driving workload"> driving workload</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation%20system" title=" navigation system"> navigation system</a> </p> <a href="https://publications.waset.org/abstracts/132536/developing-a-driving-simulator-with-a-navigation-system-to-measure-driver-distraction-workload-driving-safety-and-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12255</span> Students' Perception of Virtual Learning Environment (VLE) Skills in Setting up the Simulator Welding Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Afif%20Md%20Nasir">Mohd Afif Md Nasir</a>, <a href="https://publications.waset.org/abstracts/search?q=Faizal%20Amin%20Nur%20Yunus"> Faizal Amin Nur Yunus</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamaluddin%20Hashim"> Jamaluddin Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=Abd%20Samad%20Hassan%20Basari"> Abd Samad Hassan Basari</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Halim%20Sahelan"> A. Halim Sahelan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to identify the suitability of Virtual Learning Environment (VLE) in welding simulator application towards Computer-Based Training (CBT) in developing skills upon new students at the Advanced Technology Training Center (ADTEC), Batu Pahat, Johor, Malaysia and GIATMARA, Batu Pahat, Johor, Malaysia. The purpose of the study is to create a computer-based skills development approach in welding technology among new students in ADTEC and GIATMARA, as well as cultivating the elements of general skills among them. This study is also important in elevating the number of individual knowledge workers (K-workers) working in manufacturing industry in order to achieve a national vision which is to be an industrial nation in the year of 2020. The design of the study is a survey type of research which uses questionnaires as the instruments and 136 students from ADTEC and GIATMARA were interviewed. Descriptive analysis is used to identify the frequency and mean values. The findings of the study shows that the welding technology skills have developed in the students as a result of the application of VLE simulator at a high level and the respondents agreed that the skills could be embedded through the application of the VLE simulator. In summary, the VLE simulator is suitable in welding skills development training in terms of exposing new students with the relevant characteristics of welding skills and at the same time spurring the students’ interest towards learning more about the skills. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer-based%20training%20%28CBT%29" title="computer-based training (CBT)">computer-based training (CBT)</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20workers%20%28K-workers%29" title=" knowledge workers (K-workers)"> knowledge workers (K-workers)</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20learning%20environment" title=" virtual learning environment"> virtual learning environment</a>, <a href="https://publications.waset.org/abstracts/search?q=welding%20simulator" title=" welding simulator"> welding simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=welding%20technology" title=" welding technology"> welding technology</a> </p> <a href="https://publications.waset.org/abstracts/31784/students-perception-of-virtual-learning-environment-vle-skills-in-setting-up-the-simulator-welding-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12254</span> Ecopsychological Approach to Enhance Space Consciousness Toward Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tiwi%20Kamidin">Tiwi Kamidin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After years of effort trying to integrate environmental education, studies keep revealing that Malaysian still not reached the certain level of desired commitment toward the environment. Some researchers mentioned that our planet healthy is depending on our mentally health especially our psychological and spiritual is split from the natural. Therefore, this study discussed on ecopcyhological approach in order to enhance space consciousness toward the environment. Space consciousness represents not only freedom from ego but also from dependency on the things of this world, from materialism and materiality. It is the spiritual dimension which alone can give transcendent and true meaning to this world. If pupils can balance this internal awareness will put an individual to respect the environment as part of yourself and your family against only as contributors to the continuance of human’s life. Qualitative findings showed that the informants considered their consciousness toward environment has been changed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecopsychological%20approach" title="ecopsychological approach">ecopsychological approach</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20consciousness" title=" space consciousness"> space consciousness</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20education" title=" environmental education"> environmental education</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/59384/ecopsychological-approach-to-enhance-space-consciousness-toward-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12253</span> Scalable Cloud-Based LEO Satellite Constellation Simulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karim%20Sobh">Karim Sobh</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20El-Ayat"> Khaled El-Ayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Fady%20Morcos"> Fady Morcos</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20El-Kadi"> Amr El-Kadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Distributed applications deployed on LEO satellites and ground stations require substantial communication between different members in a constellation to overcome the earth coverage barriers imposed by GEOs. Applications running on LEO constellations suffer the earth line-of-sight blockage effect. They need adequate lab testing before launching to space. We propose a scalable cloud-based net-work simulation framework to simulate problems created by the earth line-of-sight blockage. The framework utilized cloud IaaS virtual machines to simulate LEO satellites and ground stations distributed software. A factorial ANOVA statistical analysis is conducted to measure simulator overhead on overall communication performance. The results showed a very low simulator communication overhead. Consequently, the simulation framework is proposed as a candidate for testing LEO constellations with distributed software in the lab before space launch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LEO" title="LEO">LEO</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=constellation" title=" constellation"> constellation</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite" title=" satellite"> satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20simulation" title=" network simulation"> network simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=netfilter" title=" netfilter"> netfilter</a> </p> <a href="https://publications.waset.org/abstracts/23478/scalable-cloud-based-leo-satellite-constellation-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12252</span> Disaster Response Training Simulator Based on Augmented Reality, Virtual Reality, and MPEG-DASH</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunho%20Seo">Sunho Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Younghwan%20Shin"> Younghwan Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Hong%20Park"> Jong-Hong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sooeun%20Song"> Sooeun Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Junsung%20Kim"> Junsung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jusik%20Yun"> Jusik Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongkyun%20Kim"> Yongkyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Moon%20Chung"> Jong-Moon Chung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to effectively cope with large and complex disasters, disaster response training is needed. Recently, disaster response training led by the ROK (Republic of Korea) government is being implemented through a 4 year R&D project, which has several similar functions as the HSEEP (Homeland Security Exercise and Evaluation Program) of the United States, but also has several different features as well. Due to the unpredictiveness and diversity of disasters, existing training methods have many limitations in providing experience in the efficient use of disaster incident response and recovery resources. Always, the challenge is to be as efficient and effective as possible using the limited human and material/physical resources available based on the given time and environmental circumstances. To enable repeated training under diverse scenarios, an AR (Augmented Reality) and VR (Virtual Reality) combined simulator is under development. Unlike existing disaster response training, simulator based training (that allows remote login simultaneous multi-user training) enables freedom from limitations in time and space constraints, and can be repeatedly trained with different combinations of functions and disaster situations. There are related systems such as ADMS (Advanced Disaster Management Simulator) developed by ETC simulation and HLS2 (Homeland Security Simulation System) developed by ELBIT system. However, the ROK government needs a simulator custom made to the country's environment and disaster types, and also combines the latest information and communication technologies, which include AR, VR, and MPEG-DASH (Moving Picture Experts Group - Dynamic Adaptive Streaming over HTTP) technology. In this paper, a new disaster response training simulator is proposed to overcome the limitation of existing training systems, and adapted to actual disaster situations in the ROK, where several technical features are described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title="augmented reality">augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20response%20training%20simulator" title=" emergency response training simulator"> emergency response training simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=MPEG-DASH" title=" MPEG-DASH"> MPEG-DASH</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20reality" title=" virtual reality"> virtual reality</a> </p> <a href="https://publications.waset.org/abstracts/67510/disaster-response-training-simulator-based-on-augmented-reality-virtual-reality-and-mpeg-dash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12251</span> Trainees' Perception of Virtual Learning Skills in Setting up the Simulator Welding Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Afif%20Md%20Nasir">Mohd Afif Md Nasir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Faizal%20Amin%20Nur"> Mohd Faizal Amin Nur</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamaluddin%20Hasim"> Jamaluddin Hasim</a>, <a href="https://publications.waset.org/abstracts/search?q=Abd%20Samad%20Hasan%20Basari"> Abd Samad Hasan Basari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Halim%20Sahelan"> Mohd Halim Sahelan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is aimed to investigate the suitability of Computer-Based Training (CBT) as one of the approaches in skills competency development at the Centre of Instructor and Advanced Skills Training (CIAST) Shah Alam Selangor and National Youth Skills Institute (NYSI) Pagoh Muar Johor. This study has also examined the perception among trainees toward Virtual Learning Environment (VLE) as to realize the development of skills in Welding Technology. The significance of the study is to create a computer-based skills development approach in welding technology among new trainees in CIAST and IKBN as well as to cultivate the element of general skills among them. This study is also important in elevating the number of individual knowledge workers (K-Workers) working in manufacturing industry in order to achieve the national vision which is to be an industrial nation in the year 2020. The design is a survey of research which using questionnaires as the instruments and is conducted towards 136 trainees from CIAST and IKBN. Data from the questionnaires is proceeding in a Statistical Package for Social Science (SPSS) in order to find the frequency, mean and chi-square testing. The findings of the study show the welding technology skills have developed in the trainees as a result of the application of the Virtual Reality simulator at a high level (mean=3.90) and the respondents agreed the skills could be embedded through the application of the Virtual Reality simulator (78.01%). The Study also found that there is a significant difference between trainee skill characteristics through the application of the Virtual Reality simulator (p<0.05). Thereby, the Virtual Reality simulator is suitable to be used in the development of welding skills among trainees through the skills training institute. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer-based%20training" title="computer-based training">computer-based training</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20learning%20environment" title=" virtual learning environment"> virtual learning environment</a>, <a href="https://publications.waset.org/abstracts/search?q=welding%20technology" title=" welding technology"> welding technology</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20reality%20simulator" title=" virtual reality simulator"> virtual reality simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20learning%20environment" title=" virtual learning environment"> virtual learning environment</a> </p> <a href="https://publications.waset.org/abstracts/30219/trainees-perception-of-virtual-learning-skills-in-setting-up-the-simulator-welding-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12250</span> Classification of Traffic Complex Acoustic Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bin%20Wang">Bin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Kang"> Jian Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After years of development, the study of soundscape has been refined to the types of urban space and building. Traffic complex takes traffic function as the core, with obvious design features of architectural space combination and traffic streamline. The acoustic environment is strongly characterized by function, space, material, user and other factors. Traffic complex integrates various functions of business, accommodation, entertainment and so on. It has various forms, complex and varied experiences, and its acoustic environment is turned rich and interesting with distribution and coordination of various functions, division and unification of the mass, separation and organization of different space and the cross and the integration of multiple traffic flow. In this study, it made field recordings of each space of various traffic complex, and extracted and analyzed different acoustic elements, including changes in sound pressure, frequency distribution, steady sound source, sound source information and other aspects, to make cluster analysis of each independent traffic complex buildings. It divided complicated traffic complex building space into several typical sound space from acoustic environment perspective, mainly including stable sound space, high-pressure sound space, rhythm sound space and upheaval sound space. This classification can further deepen the study of subjective evaluation and control of the acoustic environment of traffic complex. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soundscape" title="soundscape">soundscape</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20complex" title=" traffic complex"> traffic complex</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster%20analysis" title=" cluster analysis"> cluster analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/57017/classification-of-traffic-complex-acoustic-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12249</span> Finite Element Method Analysis of Occluded-Ear Simulator and Natural Human Ear Canal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sasajima">M. Sasajima</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Yamaguchi"> T. Yamaguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Hu"> Y. Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Koike"> Y. Koike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we discuss the propagation of sound in the narrow pathways of an occluded-ear simulator typically used for the measurement of insert-type earphones. The simulator has a standardized frequency response conforming to the international standard (IEC60318-4). In narrow pathways, the speed and phase of sound waves are modified by viscous air damping. In our previous paper, we proposed a new finite element method (FEM) to consider the effects of air viscosity in this type of audio equipment. In this study, we will compare the results from the ear simulator FEM model, and those from a three dimensional human ear canal FEM model made from computed tomography images, with the measured frequency response data from the ear canals of 18 people. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ear%20simulator" title="ear simulator">ear simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20ear%20canal" title=" human ear canal"> human ear canal</a> </p> <a href="https://publications.waset.org/abstracts/39590/finite-element-method-analysis-of-occluded-ear-simulator-and-natural-human-ear-canal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12248</span> Enhance Engineering Learning Using Cognitive Simulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lior%20Davidovitch">Lior Davidovitch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditional training based on static models and case studies is the backbone of most teaching and training programs of engineering education. However, project management learning is characterized by dynamics models that requires new and enhanced learning method. The results of empirical experiments evaluating the effectiveness and efficiency of using cognitive simulator as a new training technique are reported. The empirical findings are focused on the impact of keeping and reviewing learning history in a dynamic and interactive simulation environment of engineering education. The cognitive simulator for engineering project management learning had two learning history keeping modes: manual (student-controlled), automatic (simulator-controlled) and a version with no history keeping. A group of industrial engineering students performed four simulation-runs divided into three identical simple scenarios and one complicated scenario. The performances of participants running the simulation with the manual history mode were significantly better than users running the simulation with the automatic history mode. Moreover, the effects of using the undo enhanced further the learning process. The findings indicate an enhancement of engineering students’ learning and decision making when they use the record functionality of the history during their engineering training process. Furthermore, the cognitive simulator as educational innovation improves students learning and training. The practical implications of using simulators in the field of engineering education are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20simulator" title="cognitive simulator">cognitive simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20making" title=" decision making"> decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20learning" title=" engineering learning"> engineering learning</a>, <a href="https://publications.waset.org/abstracts/search?q=project%20management" title=" project management"> project management</a> </p> <a href="https://publications.waset.org/abstracts/78929/enhance-engineering-learning-using-cognitive-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12247</span> FEM Analysis of an Occluded Ear Simulator with Narrow Slit Pathway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manabu%20Sasajima">Manabu Sasajima</a>, <a href="https://publications.waset.org/abstracts/search?q=Takao%20Yamaguchi"> Takao Yamaguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshio%20Koike"> Yoshio Koike</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitsuharu%20Watanabe"> Mitsuharu Watanabe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses the propagation of sound waves in air, specifically in narrow rectangular pathways of an occluded-ear simulator for acoustic measurements. In narrow pathways, both the speed of sound and the phase of the sound waves are affected by the damping of the air viscosity. Herein, we propose a new finite-element method (FEM) that considers the effects of the air viscosity. The method was developed as an extension of existing FEMs for porous, sound-absorbing materials. The results of a numerical calculation for a three-dimensional ear-simulator model using the proposed FEM were validated by comparing with theoretical lumped-parameter modeling analysis and standard values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ear%20simulator" title="ear simulator">ear simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/30896/fem-analysis-of-an-occluded-ear-simulator-with-narrow-slit-pathway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12246</span> The Research of Reliability of MEMS Device under Thermal Shock Test in Space Mission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liu%20Ziyu">Liu Ziyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gao%20Yongfeng"> Gao Yongfeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Muhua"> Li Muhua</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Jiahao"> Zhao Jiahao</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Song"> Meng Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of thermal shock on the operation of micro electromechanical systems (MEMS) were examined. All MEMS device were tested before and after three different conditions of thermal shock (from -55℃ to 85℃, from -65℃ to 125℃, from -65℃ to 200℃). The micro lens showed no changes after thermal shock, which shows that the design of the micro lens can be well adapted to the application environment in the space. The design of the micro mirror can be well adapted to the space application environment. The micro-magnetometer, RF MEMS switch and the micro accelerometer exhibited degradation and parameter drift after thermal shock, potential mechanical was proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS" title="MEMS">MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20shock%20test" title=" thermal shock test"> thermal shock test</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20environment" title=" space environment"> space environment</a> </p> <a href="https://publications.waset.org/abstracts/41898/the-research-of-reliability-of-mems-device-under-thermal-shock-test-in-space-mission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">590</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12245</span> Application of the Total Least Squares Estimation Method for an Aircraft Aerodynamic Model Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaouche%20Mohamed">Zaouche Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Amini%20Mohamed"> Amini Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Foughali%20Khaled"> Foughali Khaled</a>, <a href="https://publications.waset.org/abstracts/search?q=Aitkaid%20Souhila"> Aitkaid Souhila</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouchiha%20Nihad%20Sarah"> Bouchiha Nihad Sarah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aerodynamic coefficients are important in the evaluation of an aircraft performance and stability-control characteristics. These coefficients also can be used in the automatic flight control systems and mathematical model of flight simulator. The study of the aerodynamic aspect of flying systems is a reserved domain and inaccessible for the developers. Doing tests in a wind tunnel to extract aerodynamic forces and moments requires a specific and expensive means. Besides, the glaring lack of published documentation in this field of study makes the aerodynamic coefficients determination complicated. This work is devoted to the identification of an aerodynamic model, by using an aircraft in virtual simulated environment. We deal with the identification of the system, we present an environment framework based on Software In the Loop (SIL) methodology and we use Microsoft<sup>TM</sup> Flight Simulator (FS-2004) as the environment for plane simulation. We propose The Total Least Squares Estimation technique (TLSE) to identify the aerodynamic parameters, which are unknown, variable, classified and used in the expression of the piloting law. In this paper, we define each aerodynamic coefficient as the mean of its numerical values. All other variations are considered as modeling uncertainties that will be compensated by the robustness of the piloting control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft%20aerodynamic%20model" title="aircraft aerodynamic model">aircraft aerodynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20least%20squares%20estimation" title=" total least squares estimation"> total least squares estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=piloting%20the%20aircraft" title=" piloting the aircraft"> piloting the aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20control" title=" robust control"> robust control</a>, <a href="https://publications.waset.org/abstracts/search?q=Microsoft%20Flight%20Simulator" title=" Microsoft Flight Simulator"> Microsoft Flight Simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=MQ-1%20predator" title=" MQ-1 predator"> MQ-1 predator</a> </p> <a href="https://publications.waset.org/abstracts/44416/application-of-the-total-least-squares-estimation-method-for-an-aircraft-aerodynamic-model-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12244</span> Accuracy Improvement of Traffic Participant Classification Using Millimeter-Wave Radar by Leveraging Simulator Based on Domain Adaptation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tokihiko%20Akita">Tokihiko Akita</a>, <a href="https://publications.waset.org/abstracts/search?q=Seiichi%20Mita"> Seiichi Mita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A millimeter-wave radar is the most robust against adverse environments, making it an essential environment recognition sensor for automated driving. However, the reflection signal is sparse and unstable, so it is difficult to obtain the high recognition accuracy. Deep learning provides high accuracy even for them in recognition, but requires large scale datasets with ground truth. Specially, it takes a lot of cost to annotate for a millimeter-wave radar. For the solution, utilizing a simulator that can generate an annotated huge dataset is effective. Simulation of the radar is more difficult to match with real world data than camera image, and recognition by deep learning with higher-order features using the simulator causes further deviation. We have challenged to improve the accuracy of traffic participant classification by fusing simulator and real-world data with domain adaptation technique. Experimental results with the domain adaptation network created by us show that classification accuracy can be improved even with a few real-world data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=millimeter-wave%20radar" title="millimeter-wave radar">millimeter-wave radar</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20classification" title=" object classification"> object classification</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=domain%20adaptation" title=" domain adaptation"> domain adaptation</a> </p> <a href="https://publications.waset.org/abstracts/164634/accuracy-improvement-of-traffic-participant-classification-using-millimeter-wave-radar-by-leveraging-simulator-based-on-domain-adaptation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12243</span> Review of Urban Vitality in China: Exploring the Theoretical Framework, Characteristics, and Assessment Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong%20Wei">Dong Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Wu%20Jinxiu"> Wu Jinxiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As China's urban construction enters a new phase of 'stock optimization,' the key point of urban development has shifted to the development and reuse of existing public space. However, cities still face a series of challenges, such as the shortage of space quantity and insufficient space quality, which indirectly affect urban vitality. A review of the vitality of urban public space will significantly contribute to optimizing the quality of the urban built environment. It firstly analyses the research hotspots of urban vitality at home and abroad, based on a semi-systematic literature review. Then this paper summarizes the theoretical definitions of the vitality of urban public space and sorts out the influencing factors from the perspectives of society, environment, and users. Lastly, the paper concludes with the mainstream quantitative and evaluation methods, such as linear evaluation and integrated evaluation. This paper renders a multi-theoretical perspective to understand the characteristics and evaluation system of the vitality of public space, which helps to acknowledge the dynamic relationship between users, urban environment, and vitality. It also looks forward to providing optimal design strategies for constructing a vigorous public space in future cities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=public%20space" title="public space">public space</a>, <a href="https://publications.waset.org/abstracts/search?q=quantification%20of%20vitality" title=" quantification of vitality"> quantification of vitality</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20vitality" title=" spatial vitality"> spatial vitality</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20vitality" title=" urban vitality"> urban vitality</a> </p> <a href="https://publications.waset.org/abstracts/152188/review-of-urban-vitality-in-china-exploring-the-theoretical-framework-characteristics-and-assessment-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12242</span> Optimization of Commercial Gray Space along the Street from the Perspective of Vitality Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mengjiao%20Hu">Mengjiao Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, China's consumption pattern is entering the "experience era"; people's consumption behavior is no longer simply "buy, buy, buy" but the transition from "consumption in space" to "consumption of space". The street is a basic public product and an important public space in the city, and commerce along the street is an important space for people to consume in the "experience era". Therefore, in this way, it is particularly important to create the vitality of the gray space along the street. From the perspective of vitality construction, this paper takes Sha Zheng Street in Chongqing as the empirical object, combined with the theoretical knowledge of behavioral architecture, and based on the current situation of the commercial gray space along Sha Zheng Street, this paper explores the influence factors and the constraints behind the spatial vitality and then puts forward a general strategy to improve the spatial vitality of the commercial gray space along the street. The author hopes that through the exploration of the vitality of commercial gray space along the street, environmental design can be introduced into the integrated design vision of the urban public environment, and the urban designers can be inspired to create a street environment with a living atmosphere with a small start. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vitality%20creation" title="vitality creation">vitality creation</a>, <a href="https://publications.waset.org/abstracts/search?q=gray%20space" title=" gray space"> gray space</a>, <a href="https://publications.waset.org/abstracts/search?q=street%20commerce" title=" street commerce"> street commerce</a>, <a href="https://publications.waset.org/abstracts/search?q=sha%20zheng%20street" title=" sha zheng street"> sha zheng street</a> </p> <a href="https://publications.waset.org/abstracts/170660/optimization-of-commercial-gray-space-along-the-street-from-the-perspective-of-vitality-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12241</span> Effective Training System for Riding Posture Using Depth and Inertial Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sangseung%20Kang">Sangseung Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyekyung%20Kim"> Kyekyung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Suyoung%20Chi"> Suyoung Chi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A good posture is the most important factor in riding. In this paper, we present an effective posture correction system for a riding simulator environment to provide position error detection and customized training functions. The proposed system detects and analyzes the rider's posture using depth data and inertial sensing data. Our experiments show that including these functions will help users improve their seat for a riding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=posture%20correction" title="posture correction">posture correction</a>, <a href="https://publications.waset.org/abstracts/search?q=posture%20training" title=" posture training"> posture training</a>, <a href="https://publications.waset.org/abstracts/search?q=riding%20posture" title=" riding posture"> riding posture</a>, <a href="https://publications.waset.org/abstracts/search?q=riding%20simulator" title=" riding simulator"> riding simulator</a> </p> <a href="https://publications.waset.org/abstracts/20842/effective-training-system-for-riding-posture-using-depth-and-inertial-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12240</span> A Multi-Agent Simulation of Serious Games to Predict Their Impact on E-Learning Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibtissem%20Daoudi">Ibtissem Daoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Raoudha%20Chebil"> Raoudha Chebil</a>, <a href="https://publications.waset.org/abstracts/search?q=Wided%20Lejouad%20Chaari"> Wided Lejouad Chaari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Serious games constitute actually a recent and attractive way supposed to replace the classical boring courses. However, the choice of the adapted serious game to a specific learning environment remains a challenging task that makes teachers unwilling to adopt this concept. To fill this gap, we present, in this paper, a multi-agent-based simulator allowing to predict the impact of a serious game integration in a learning environment given several game and players characteristics. As results, the presented tool gives intensities of several emotional aspects characterizing learners reactions to the serious game adoption. The presented simulator is tested to predict the effect of basing a coding course on the serious game ”CodeCombat”. The obtained results are compared with feedbacks of using the same serious game in a real learning process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emotion" title="emotion">emotion</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20process" title=" learning process"> learning process</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20simulation" title=" multi-agent simulation"> multi-agent simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=serious%20games" title=" serious games"> serious games</a> </p> <a href="https://publications.waset.org/abstracts/61776/a-multi-agent-simulation-of-serious-games-to-predict-their-impact-on-e-learning-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12239</span> Simulation Study on Spacecraft Surface Charging Induced by Jovian Plasma Environment with Particle in Cell Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meihua%20Fang">Meihua Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yipan%20Guo"> Yipan Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Fei"> Tao Fei</a>, <a href="https://publications.waset.org/abstracts/search?q=Pengyu%20Tian"> Pengyu Tian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space plasma caused spacecraft surface charging is the major space environment hazard. Particle in cell (PIC) method can be used to simulate the interaction between space plasma and spacecraft. It was proved that surface charging level of spacecraft in Jupiter’s orbits was high for its’ electron-heavy plasma environment. In this paper, Jovian plasma environment is modeled and surface charging analysis is carried out by PIC based software Spacecraft Plasma Interaction System (SPIS). The results show that the spacecraft charging potentials exceed 1000V at 2Rj, 15Rj and 25Rj polar orbits in the dark side at worst case plasma model. Furthermore, the simulation results indicate that the large Jovian magnetic field increases the surface charging level for secondary electron gyration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jupiter" title="Jupiter">Jupiter</a>, <a href="https://publications.waset.org/abstracts/search?q=PIC" title=" PIC"> PIC</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20plasma" title=" space plasma"> space plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20charging" title=" surface charging"> surface charging</a> </p> <a href="https://publications.waset.org/abstracts/106455/simulation-study-on-spacecraft-surface-charging-induced-by-jovian-plasma-environment-with-particle-in-cell-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12238</span> Environment Saving and Efficiency of Diesel Heat-Insulated Combustion Chamber Using Semitransparent Ceramic Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victoria%20Yu.%20Garnova">Victoria Yu. Garnova</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20G.%20Merzlikin"> Vladimir G. Merzlikin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20V.%20Khudyakov"> Sergey V. Khudyakov</a>, <a href="https://publications.waset.org/abstracts/search?q=Valeriy%20A.%20Tovstonog"> Valeriy A. Tovstonog</a>, <a href="https://publications.waset.org/abstracts/search?q=Svyatoslav%20V.%20Cheranev"> Svyatoslav V. Cheranev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Long-term scientific forecasts confirm that diesel engines still will be the basis of the transport and stationary power in the near future. This is explained by their high efficiency and profitability compared to other types of heat engines. In the automotive industry carried basic researches are aimed at creating a new generation of diesel engines with reduced exhaust emissions (with stable performance) determining the minimum impact on the environment. The application of thermal barrier coatings (TBCs) and especially their modifications based on semitransparent ceramic materials allows solving this problem. For such researches, the preliminary stage of testing of physical characteristics materials and coatings especially with semitransparent properties the authors proposed experimental operating innovative radiative-and-convective cycling simulator. This setup contains original radiation sources (imitator) with tunable spectrum for modeling integral flux up to several MW/m2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environment%20saving" title="environment saving">environment saving</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20and%20convective%20cycling%20simulator" title=" radiative and convective cycling simulator"> radiative and convective cycling simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=semitransparent%20ceramic%20coatings" title=" semitransparent ceramic coatings"> semitransparent ceramic coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=imitator%20radiant%20energy" title=" imitator radiant energy"> imitator radiant energy</a> </p> <a href="https://publications.waset.org/abstracts/36494/environment-saving-and-efficiency-of-diesel-heat-insulated-combustion-chamber-using-semitransparent-ceramic-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12237</span> Investigation of Heat Affected Zone of Steel P92 Using the Thermal Cycle Simulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Petr%20Mohyla">Petr Mohyla</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivo%20Hlavat%C3%BD"> Ivo Hlavatý</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Hrub%C3%BD"> Jiří Hrubý</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucie%20Krej%C4%8D%C3%AD"> Lucie Krejčí</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is focused on mechanical properties and microstructure of heat affected zone (HAZ) of steel P92. The thermal cycle simulator was used for modeling a fine grained zone of HAZ. Hardness and impact toughness were measured on simulated samples. Microstructural analysis using optical microscopy was performed on selected samples. Achieved results were compared with the values of a real welded joint. The thermal cycle simulator allows transferring the properties of very small HAZ to the sufficiently large sample where the tests of the mechanical properties can be performed. A satisfactory accordance was found when comparing the microstructure and mechanical properties of real welds and simulated samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20affected%20zone" title="heat affected zone">heat affected zone</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20test" title=" impact test"> impact test</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20cycle%20simulator" title=" thermal cycle simulator"> thermal cycle simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20of%20tempering" title=" time of tempering"> time of tempering</a> </p> <a href="https://publications.waset.org/abstracts/67694/investigation-of-heat-affected-zone-of-steel-p92-using-the-thermal-cycle-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=space%20environment%20simulator&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=space%20environment%20simulator&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=space%20environment%20simulator&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=space%20environment%20simulator&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=space%20environment%20simulator&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=space%20environment%20simulator&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=space%20environment%20simulator&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=space%20environment%20simulator&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=space%20environment%20simulator&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=space%20environment%20simulator&page=408">408</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=space%20environment%20simulator&page=409">409</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=space%20environment%20simulator&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>