CINXE.COM

Search results for: Debarghya Mallick

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Debarghya Mallick</title> <meta name="description" content="Search results for: Debarghya Mallick"> <meta name="keywords" content="Debarghya Mallick"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Debarghya Mallick" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Debarghya Mallick"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Debarghya Mallick</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Electrical Transport in Bi₁Sb₁Te₁.₅Se₁.₅ /α-RuCl₃ Heterostructure Nanodevices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shoubhik%20Mandal">Shoubhik Mandal</a>, <a href="https://publications.waset.org/abstracts/search?q=Debarghya%20Mallick"> Debarghya Mallick</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Banerjee"> Abhishek Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ganesan"> R. Ganesan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Anil%20Kumar"> P. S. Anil Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report magnetotransport measurements in Bi₁Sb₁Te₁.₅Se₁.₅/RuCl₃ heterostructure nanodevices. Bi₁Sb₁Te₁.₅Se₁.₅ (BSTS) is a strong three-dimensional topological insulator (3D-TI) that hosts conducting topological surface states (TSS) enclosing an insulating bulk. α-RuCl₃ (namely, RuCl₃) is an anti-ferromagnet that is predicted to behave as a Kitaev-like quantum spin liquid carrying Majorana excitations. Temperature (T)-dependent resistivity measurements show the interplay between parallel bulk and surface transport channels. At T < 150 K, surface state transport dominates over bulk transport. Multi-channel weak anti-localization (WAL) is observed, as a sharp cusp in the magnetoconductivity, indicating strong spin-orbit coupling. The presence of top and bottom topological surface states (TSS), including a pair of electrically coupled Rashba surface states (RSS), are indicated. Non-linear Hall effect, explained by a two-band model, further supports this interpretation. Finally, a low-T logarithmic resistance upturn is analyzed using the Lu-Shen model, supporting the presence of gapless surface states with a π Berry phase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=topological%20materials" title="topological materials">topological materials</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20transport" title=" electrical transport"> electrical transport</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu-Shen%20model" title=" Lu-Shen model"> Lu-Shen model</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20spin%20liquid" title=" quantum spin liquid"> quantum spin liquid</a> </p> <a href="https://publications.waset.org/abstracts/149012/electrical-transport-in-bi1sb1te15se15-a-rucl3-heterostructure-nanodevices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Ion Beam Induced 2D Mesophase Patterning of Nanocrystallites in Polymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srutirekha%20Giri">Srutirekha Giri</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoranjan%20Sahoo"> Manoranjan Sahoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Anuradha%20Das"> Anuradha Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Pravanjan%20Mallick"> Pravanjan Mallick</a>, <a href="https://publications.waset.org/abstracts/search?q=Biswajit%20Mallick"> Biswajit Mallick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ion Beam (IB) technique is a very powerful experimental technique for both material synthesis and material modifications. In this work, 3MeV proton beam was generated using the 3MV Tandem machine of the Institute of Physics, Bhubaneswar and extracted into air for the irradiation-induced modification purpose[1]. The polymeric material can be modeled for a three-phase system viz. crystalline(I), amorphous(II) and mesomorphic(III). So far, our knowledge is concerned. There are only few techniques reported for the synthesis of this third-phase(III) of polymer. The IB induced technique is one of them and has been reported very recently [2-4]. It was observed that by irradiating polyethylene terephthalate (PET) fiber at very low proton fluence, 10¹⁰ - 10¹² p/s, possess 2D mesophase structure. This was confirmed using X-ray diffraction technique. A low-intensity broad peak was observed at small angle of about 2θ =6º, when the fiber axis was mounted parallel to the X-ray direction. Such peak vanished in the diffraction spectrum when the fiber axis was mounted perpendicular to the beam direction. The appearance of this extra peak in a particular orientation confirms that the phase is 2-dimensionally oriented (mesophase). It is well known that the mesophase is a 2-dimensionally ordered structure but 3-dimensionally disordered. Again, the crystallite of the mesophase peak particle was measured about 3nm. The MeV proton-induced 2D mesophase patterning of nanocrystallites (3nm) of PET due to irradiation was observed within the above low fluence range and failed in high proton fluence. This is mainly due to the breaking of crystallites, radiation-induced thermal degradation, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ion%20irradiation" title="Ion irradiation">Ion irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=mesophase" title=" mesophase"> mesophase</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocrystallites" title=" nanocrystallites"> nanocrystallites</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a> </p> <a href="https://publications.waset.org/abstracts/143365/ion-beam-induced-2d-mesophase-patterning-of-nanocrystallites-in-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Effect of Confinement on Flexural Tensile Strength of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ahmed">M. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Javed%20Mallick"> Javed Mallick</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Abul%20Hasan"> Mohammad Abul Hasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flexural tensile strength of concrete is an important parameter for determining cracking behavior of concrete structure and to compute deflection under flexure. Many factors have been shown to influence the flexural tensile strength, particularly the level of concrete strength, size of member, age of concrete and confinement to flexure member etc. Empirical equations have been suggested to relate the flexural tensile strength and compressive strength. Limited literature is available for relationship between flexural tensile strength and compressive strength giving consideration to the factors affecting the flexural tensile strength specially the concrete confinement factor. The concrete member such as slabs, beams and columns critical locations are under confinement effects. The paper presents the experimental study to predict the flexural tensile strength and compressive strength empirical relations using statistical procedures considering the effect of confinement and age of concrete for wide range of concrete strength (from 35 to about 100 MPa). It is concluded from study that due consideration of confinement should be given in deriving the flexural tensile strength and compressive strength proportionality equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20tensile%20strength" title=" flexural tensile strength"> flexural tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20rupture" title=" modulus of rupture"> modulus of rupture</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20procedures" title=" statistical procedures"> statistical procedures</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20confinement" title=" concrete confinement"> concrete confinement</a> </p> <a href="https://publications.waset.org/abstracts/2078/effect-of-confinement-on-flexural-tensile-strength-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Host-Assisted Delivery of a Model Drug to Genomic DNA: Key Information From Ultrafast Spectroscopy and in Silico Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ria%20Ghosh">Ria Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumendra%20Singh"> Soumendra Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipanjan%20Mukherjee"> Dipanjan Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Susmita%20Mondal"> Susmita Mondal</a>, <a href="https://publications.waset.org/abstracts/search?q=Monojit%20Das"> Monojit Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Uttam%20Pal"> Uttam Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Aniruddha%20Adhikari"> Aniruddha Adhikari</a>, <a href="https://publications.waset.org/abstracts/search?q=Aman%20Bhushan"> Aman Bhushan</a>, <a href="https://publications.waset.org/abstracts/search?q=Surajit%20Bose"> Surajit Bose</a>, <a href="https://publications.waset.org/abstracts/search?q=Siddharth%20Sankar%20Bhattacharyya"> Siddharth Sankar Bhattacharyya</a>, <a href="https://publications.waset.org/abstracts/search?q=Debasish%20Pal"> Debasish Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanusri%20Saha-Dasgupta"> Tanusri Saha-Dasgupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Maitree%20Bhattacharyya"> Maitree Bhattacharyya</a>, <a href="https://publications.waset.org/abstracts/search?q=Debasis%20Bhattacharyya"> Debasis Bhattacharyya</a>, <a href="https://publications.waset.org/abstracts/search?q=Asim%20Kumar%20Mallick"> Asim Kumar Mallick</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjan%20Das"> Ranjan Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Kumar%20Pal"> Samir Kumar Pal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drug delivery to a target without adverse effects is one of the major criteria for clinical use. Herein, we have made an attempt to explore the delivery efficacy of SDS surfactant in a monomer and micellar stage during the delivery of the model drug, Toluidine Blue (TB) from the micellar cavity to DNA. Molecular recognition of pre-micellar SDS encapsulated TB with DNA occurs at a rate constant of k1 ~652 s 1. However, no significant release of encapsulated TB at micellar concentration was observed within the experimental time frame. This originated from the higher binding affinity of TB towards the nano-cavity of SDS at micellar concentration which does not allow the delivery of TB from the nano-cavity of SDS micelles to DNA. Thus, molecular recognition controls the extent of DNA recognition by TB which in turn modulates the rate of delivery of TB from SDS in a concentration-dependent manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA" title="DNA">DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=micelle" title=" micelle"> micelle</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-micelle" title=" pre-micelle"> pre-micelle</a>, <a href="https://publications.waset.org/abstracts/search?q=SDS" title=" SDS"> SDS</a>, <a href="https://publications.waset.org/abstracts/search?q=toluidine%20blue" title=" toluidine blue"> toluidine blue</a> </p> <a href="https://publications.waset.org/abstracts/154090/host-assisted-delivery-of-a-model-drug-to-genomic-dna-key-information-from-ultrafast-spectroscopy-and-in-silico-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Reduction in Hot Metal Silicon through Statistical Analysis at G-Blast Furnace, Tata Steel Jamshedpur </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shoumodip%20Roy">Shoumodip Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankit%20Singhania"> Ankit Singhania</a>, <a href="https://publications.waset.org/abstracts/search?q=Santanu%20Mallick"> Santanu Mallick</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhiram%20%20Jha"> Abhiram Jha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20%20Agarwal"> M. K. Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20V.%20Ramna"> R. V. Ramna</a>, <a href="https://publications.waset.org/abstracts/search?q=Uttam%20Singh"> Uttam Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quality of hot metal at any blast furnace is judged by the silicon content in it. Lower hot metal silicon not only enhances process efficiency at steel melting shops but also reduces hot metal costs. The Hot metal produced at G-Blast furnace Tata Steel Jamshedpur has a significantly higher Si content than Benchmark Blast furnaces. The higher content of hot metal Si is mainly due to inferior raw material quality than those used in benchmark blast furnaces. With minimum control over raw material quality, the only option left to control hot metal Si is via optimizing the furnace parameters. Therefore, in order to identify the levers to reduce hot metal Si, Data mining was carried out, and multiple regression models were developed. The statistical analysis revealed that Slag B3{(CaO+MgO)/SiO2}, Slag Alumina and Hot metal temperature are key controllable parameters affecting hot metal silicon. Contour Plots were used to determine the optimum range of levels identified through statistical analysis. A trial plan was formulated to operate relevant parameters, at G blast furnace, in the identified range to reduce hot metal silicon. This paper details out the process followed and subsequent reduction in hot metal silicon by 15% at G blast furnace. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blast%20furnace" title="blast furnace">blast furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20tools" title=" statistical tools"> statistical tools</a> </p> <a href="https://publications.waset.org/abstracts/74955/reduction-in-hot-metal-silicon-through-statistical-analysis-at-g-blast-furnace-tata-steel-jamshedpur" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Significant Reduction in Specific CO₂ Emission through Process Optimization at G Blast Furnace, Tata Steel Jamshedpur</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shoumodip%20Roy">Shoumodip Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankit%20Singhania"> Ankit Singhania</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20G.%20Choudhury"> M. K. G. Choudhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Santanu%20Mallick"> Santanu Mallick</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Agarwal"> M. K. Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20V.%20Ramna"> R. V. Ramna</a>, <a href="https://publications.waset.org/abstracts/search?q=Uttam%20Singh"> Uttam Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the key corporate goals of Tata Steel company is to demonstrate Environment Leadership. Decreasing specific CO₂ emission is one of the key steps to achieve the stated corporate goal. At any Blast Furnace, specific CO₂ emission is directly proportional to fuel intake. To reduce the fuel intake at G Blast Furnace, an initial benchmarking exercise was carried out with international and domestic Blast Furnaces to determine the potential for improvement. The gap identified during the exercise revealed that the benchmark Blast Furnaces operated with superior raw material quality than that in G Blast Furnace. However, since the raw materials to G Blast Furnace are sourced from the captive mines, improvement in the raw material quality was out of scope. Therefore, trials were taken with different operating regimes, to identify the key process parameters, which on optimization could significantly reduce the fuel intake in G Blast Furnace. The key process parameters identified from the trial were the Stoichiometric Oxygen Ratio, Melting Capacity ratio and the burden distribution inside the furnace. These identified process parameters were optimized to bridge the gap in fuel intake at G Blast Furnace, thereby reducing specific CO₂ emission to benchmark levels. This paradigm shift enabled to lower the fuel intake by 70kg per ton of liquid iron produced, thereby reducing the specific CO₂ emission by 15 percent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benchmark" title="benchmark">benchmark</a>, <a href="https://publications.waset.org/abstracts/search?q=blast%20furnace" title=" blast furnace"> blast furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20emission" title=" CO₂ emission"> CO₂ emission</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20rate" title=" fuel rate"> fuel rate</a> </p> <a href="https://publications.waset.org/abstracts/74952/significant-reduction-in-specific-co2-emission-through-process-optimization-at-g-blast-furnace-tata-steel-jamshedpur" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Formulation and Anticancer Evaluation of Beta-Sitosterol in Henna Methanolic Extract Embedded in Controlled Release Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjukta%20Badhai">Sanjukta Badhai</a>, <a href="https://publications.waset.org/abstracts/search?q=Durga%20Barik"> Durga Barik</a>, <a href="https://publications.waset.org/abstracts/search?q=Bairagi%20C.%20Mallick"> Bairagi C. Mallick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, Beta-Sitosterol in Lawsonia methanolic leaf extract embedded in controlled release nanocomposite was prepared and evaluated for in vivo anticancer efficacy in dimethyl hydrazine (DMH) induced colon cancer. In the present study, colon cancer was induced by s.c injection of DMH (20 mg/kg b.wt) for 15 weeks. The animals were divided into five groups as follows control, DMH alone, DMH and Beta Sitosterol nanocomposite (50mg/kg), DMH and Beta Sitosterol nanocomposite (100 mg/kg) and DMH and Standard Silymarin (100mg/kg) and the treatment was carried out for 15 weeks. At the end of the study period, the blood was withdrawn, and serum was separated for haematological, biochemical analysis and tumor markers. Further, the colonic tissue was removed for the estimation of antioxidants and histopathological analysis. The results of the study displays that DMH intoxication elicits altered haematological parameters (RBC,WBC, and Hb), elevated lipid peroxidation and decreased antioxidants level (SOD, CAT, GPX, GST and GSH), elevated lipid profiles (cholesterol and triglycerides), tumor markers (CEA and AFP) and altered colonic tissue histology. Meanwhile, treatment with Beta Sitosterol nanocomposites significantly restored the altered biochemicals parameters in DMH induced colon cancer mediated by its anticancer efficacy. Further, Beta Sitosterol nanocomposite (100 mg/kg) showed marked efficacy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title="nanocomposites">nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=herbal%20formulation" title=" herbal formulation"> herbal formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=henna" title=" henna"> henna</a>, <a href="https://publications.waset.org/abstracts/search?q=beta%20sitosterol" title=" beta sitosterol"> beta sitosterol</a>, <a href="https://publications.waset.org/abstracts/search?q=colon%20cancer" title=" colon cancer"> colon cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=dimethyl%20hydrazine" title=" dimethyl hydrazine"> dimethyl hydrazine</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20peroxidation" title=" lipid peroxidation"> lipid peroxidation</a> </p> <a href="https://publications.waset.org/abstracts/84194/formulation-and-anticancer-evaluation-of-beta-sitosterol-in-henna-methanolic-extract-embedded-in-controlled-release-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Using Geo-Statistical Techniques and Machine Learning Algorithms to Model the Spatiotemporal Heterogeneity of Land Surface Temperature and its Relationship with Land Use Land Cover</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javed%20Mallick">Javed Mallick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In metropolitan areas, rapid changes in land use and land cover (LULC) have ecological and environmental consequences. Saudi Arabia's cities have experienced tremendous urban growth since the 1990s, resulting in urban heat islands, groundwater depletion, air pollution, loss of ecosystem services, and so on. From 1990 to 2020, this study examines the variance and heterogeneity in land surface temperature (LST) caused by LULC changes in Abha-Khamis Mushyet, Saudi Arabia. LULC was mapped using the support vector machine (SVM). The mono-window algorithm was used to calculate the land surface temperature (LST). To identify LST clusters, the local indicator of spatial associations (LISA) model was applied to spatiotemporal LST maps. In addition, the parallel coordinate (PCP) method was used to investigate the relationship between LST clusters and urban biophysical variables as a proxy for LULC. According to LULC maps, urban areas increased by more than 330% between 1990 and 2018. Between 1990 and 2018, built-up areas had an 83.6% transitional probability. Furthermore, between 1990 and 2020, vegetation and agricultural land were converted into built-up areas at a rate of 17.9% and 21.8%, respectively. Uneven LULC changes in built-up areas result in more LST hotspots. LST hotspots were associated with high NDBI but not NDWI or NDVI. This study could assist policymakers in developing mitigation strategies for urban heat islands <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use%20land%20cover%20mapping" title="land use land cover mapping">land use land cover mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20surface%20temperature" title=" land surface temperature"> land surface temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=LISA%20model" title=" LISA model"> LISA model</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20coordinate%20plot" title=" parallel coordinate plot"> parallel coordinate plot</a> </p> <a href="https://publications.waset.org/abstracts/161861/using-geo-statistical-techniques-and-machine-learning-algorithms-to-model-the-spatiotemporal-heterogeneity-of-land-surface-temperature-and-its-relationship-with-land-use-land-cover" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Inverse Prediction of Thermal Parameters of an Annular Hyperbolic Fin Subjected to Thermal Stresses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashis%20Mallick">Ashis Mallick</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Ranjan"> Rajeev Ranjan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The closed form solution for thermal stresses in an annular fin with hyperbolic profile is derived using Adomian decomposition method (ADM). The conductive-convective fin with variable thermal conductivity is considered in the analysis. The nonlinear heat transfer equation is efficiently solved by ADM considering insulated convective boundary conditions at the tip of fin. The constant of integration in the solution is to be estimated using minimum decomposition error method. The solution of temperature field is represented in a polynomial form for convenience to use in thermo-elasticity equation. The non-dimensional thermal stress fields are obtained using the ADM solution of temperature field coupled with the thermo-elasticity solution. The influence of the various thermal parameters in temperature field and stress fields are presented. In order to show the accuracy of the ADM solution, the present results are compared with the results available in literature. The stress fields in fin with hyperbolic profile are compared with those of uniform thickness profile. Result shows that hyperbolic fin profile is better choice for enhancing heat transfer. Moreover, less thermal stresses are developed in hyperbolic profile as compared to rectangular profile. Next, Nelder-Mead based simplex search method is employed for the inverse estimation of unknown non-dimensional thermal parameters in a given stress fields. Owing to the correlated nature of the unknowns, the best combinations of the model parameters which are satisfying the predefined stress field are to be estimated. The stress fields calculated using the inverse parameters give a very good agreement with the stress fields obtained from the forward solution. The estimated parameters are suitable to use for efficient and cost effective fin designing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adomian%20decomposition" title="Adomian decomposition">Adomian decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20analysis" title=" inverse analysis"> inverse analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperbolic%20fin" title=" hyperbolic fin"> hyperbolic fin</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20thermal%20conductivity" title=" variable thermal conductivity"> variable thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/36901/inverse-prediction-of-thermal-parameters-of-an-annular-hyperbolic-fin-subjected-to-thermal-stresses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Immuno-Protective Role of Mucosal Delivery of Lactococcus lactis Expressing Functionally Active JlpA Protein on Campylobacter jejuni Colonization in Chickens </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankita%20Singh">Ankita Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandan%20Gorain"> Chandan Gorain</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirul%20I.%20Mallick"> Amirul I. Mallick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Successful adherence of the mucosal epithelial cells is the key early step for Campylobacter jejuni pathogenesis (C. jejuni). A set of Surface Exposed Colonization Proteins (SECPs) are among the major factors involved in host cell adherence and invasion of C. jejuni. Among them, constitutively expressed surface-exposed lipoprotein adhesin of C. jejuni, JlpA, interacts with intestinal heat shock protein 90 (hsp90α) and contributes in disease progression by triggering pro-inflammatory response via activation of NF-κB and p38 MAP kinase pathway. Together with its ability to express in the bacterial surface, higher sequence conservation and predicted predominance of several B cells epitopes, JlpA protein reserves its potential to become an effective vaccine candidate against wide range of Campylobacter sps including C. jejuni. Given that chickens are the primary sources for C. jejuni and persistent gut colonization remain as major cause for foodborne pathogenesis to humans, present study explicitly used chickens as model to test the immune-protective efficacy of JlpA protein. Taking into account that gastrointestinal tract is the focal site for C. jejuni colonization, to extrapolate the benefit of mucosal (intragastric) delivery of JlpA protein, a food grade Nisin inducible Lactic acid producing bacteria, Lactococcus lactis (L. lactis) was engineered to express recombinant JlpA protein (rJlpA) in the surface of the bacteria. Following evaluation of optimal surface expression and functionality of recombinant JlpA protein expressed by recombinant L. lactis (rL. lactis), the immune-protective role of intragastric administration of live rL. lactis was assessed in commercial broiler chickens. In addition to the significant elevation of antigen specific mucosal immune responses in the intestine of chickens that received three doses of rL. lactis, marked upregulation of Toll-like receptor 2 (TLR2) gene expression in association with mixed pro-inflammatory responses (both Th1 and Th17 type) was observed. Furthermore, intragastric delivery of rJlpA expressed by rL. lactis, but not the injectable form, resulted in a significant reduction in C. jejuni colonization in chickens suggesting that mucosal delivery of live rL. lactis expressing JlpA serves as a promising vaccine platform to induce strong immune-protective responses against C. jejuni in chickens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chickens" title="chickens">chickens</a>, <a href="https://publications.waset.org/abstracts/search?q=lipoprotein%20adhesion%20of%20Campylobacter%20jejuni" title=" lipoprotein adhesion of Campylobacter jejuni"> lipoprotein adhesion of Campylobacter jejuni</a>, <a href="https://publications.waset.org/abstracts/search?q=immuno-protection" title=" immuno-protection"> immuno-protection</a>, <a href="https://publications.waset.org/abstracts/search?q=Lactococcus%20lactis" title=" Lactococcus lactis"> Lactococcus lactis</a>, <a href="https://publications.waset.org/abstracts/search?q=mucosal%20delivery" title=" mucosal delivery"> mucosal delivery</a> </p> <a href="https://publications.waset.org/abstracts/108716/immuno-protective-role-of-mucosal-delivery-of-lactococcus-lactis-expressing-functionally-active-jlpa-protein-on-campylobacter-jejuni-colonization-in-chickens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Integration of EEG and Motion Tracking Sensors for Objective Measure of Attention-Deficit Hyperactivity Disorder in Pre-Schoolers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Bhattacharyya">Neha Bhattacharyya</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumendra%20Singh"> Soumendra Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Amrita%20Banerjee"> Amrita Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ria%20Ghosh"> Ria Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Oindrila%20Sinha"> Oindrila Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Nairit%20Das"> Nairit Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Gayen"> Rajkumar Gayen</a>, <a href="https://publications.waset.org/abstracts/search?q=Somya%20Subhra%20Pal"> Somya Subhra Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahely%20Ganguly"> Sahely Ganguly</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanmoy%20Dasgupta"> Tanmoy Dasgupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanusree%20Dasgupta"> Tanusree Dasgupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Pulak%20Mondal"> Pulak Mondal</a>, <a href="https://publications.waset.org/abstracts/search?q=Aniruddha%20Adhikari"> Aniruddha Adhikari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharmila%20Sarkar"> Sharmila Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Debasish%20Bhattacharyya"> Debasish Bhattacharyya</a>, <a href="https://publications.waset.org/abstracts/search?q=Asim%20Kumar%20Mallick"> Asim Kumar Mallick</a>, <a href="https://publications.waset.org/abstracts/search?q=Om%20Prakash%20Singh"> Om Prakash Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Kumar%20Pal"> Samir Kumar Pal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: We aim to develop an integrated device comprised of single-probe EEG and CCD-based motion sensors for a more objective measure of Attention-deficit Hyperactivity Disorder (ADHD). While the integrated device (MAHD) relies on the EEG signal (spectral density of beta wave) for the assessment of attention during a given structured task (painting three segments of a circle using three different colors, namely red, green and blue), the CCD sensor depicts movement pattern of the subjects engaged in a continuous performance task (CPT). A statistical analysis of the attention and movement patterns was performed, and the accuracy of the completed tasks was analysed using indigenously developed software. The device with the embedded software, called MAHD, is intended to improve certainty with criterion E (i.e. whether symptoms are better explained by another condition). Methods: We have used the EEG signal from a single-channel dry sensor placed on the frontal lobe of the head of the subjects (3-5 years old pre-schoolers). During the painting of three segments of a circle using three distinct colors (red, green, and blue), absolute power for delta and beta EEG waves from the subjects are found to be correlated with relaxation and attention/cognitive load conditions. While the relaxation condition of the subject hints at hyperactivity, a more direct CCD-based motion sensor is used to track the physical movement of the subject engaged in a continuous performance task (CPT) i.e., separation of the various colored balls from one table to another. We have used our indigenously developed software for the statistical analysis to derive a scale for the objective assessment of ADHD. We have also compared our scale with clinical ADHD evaluation. Results: In a limited clinical trial with preliminary statistical analysis, we have found a significant correlation between the objective assessment of the ADHD subjects with that of the clinician’s conventional evaluation. Conclusion: MAHD, the integrated device, is supposed to be an auxiliary tool to improve the accuracy of ADHD diagnosis by supporting greater criterion E certainty. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ADHD" title="ADHD">ADHD</a>, <a href="https://publications.waset.org/abstracts/search?q=CPT" title=" CPT"> CPT</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG%20signal" title=" EEG signal"> EEG signal</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20sensor" title=" motion sensor"> motion sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=psychometric%20test" title=" psychometric test"> psychometric test</a> </p> <a href="https://publications.waset.org/abstracts/152917/integration-of-eeg-and-motion-tracking-sensors-for-objective-measure-of-attention-deficit-hyperactivity-disorder-in-pre-schoolers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Wetland Community and Their Livelihood Opportunities in the Face of Changing Climatic Condition in Southwest Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsina%20Aktar">Mohsina Aktar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bishawjit%20Mallick"> Bishawjit Mallick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bangladesh faces the multidimensional manifestations of climate change e.g. flood, cyclone, sea level rise, drainage congestion, salinity, etc. This study aimed at to find out the community’s perception of the perceived impact of climate change on their wetland resource based livelihood, to analyze their present livelihood scenario and to find out required institutional setup to strengthen present livelihood scenario. Therefore, this study required both quantitative analysis like quantification of wetland resources, occupation, etc. and also exploratory information like policy and institutional reform. For quantitative information 200 questionnaire survey and in some cases observation survey and for socially shareable qualitative and quantitative issues case study and focus group discussion were conducted. In-Depth interview was conducted for socially non-shareable qualitative issues. The overall findings of this study have been presented maintaining a sequence- perception about climate change effect, livelihood scenario and required institutional support of the wetland community. Flood has been ranked where cyclone effect is comparatively less disastrous in this area. Heavy rainfall comes after the cyclone. Female members responded almost same about the ranking and effects of frequently occurred and devastating effects of climate change. People are much more aware of the impact of climate change. Training of Care in RVCC project helps to increase their knowledge level. If the level of education can be increased, people can fight against calamity and poverty with more confidence. People seem to overcome the problems of water logging and thus besides involving in Hydroponics (33.3%) as prime occupation in monsoon; they are also engaged in other business related activities. January to May is the low-income season for the farmers. But some people don’t want to change their traditional occupation and their age is above 45. The young earning member wants to utilize their lean income period by alternative occupation. People who do not have own land and performing water transportation or other types of occupation are now interested about Hydroponics. People who give their land on rent are now thinking about renting their land in monsoon as through that they can earn a sound amount rather than get nothing. What they require is just seed, training, and capital. Present marketing system faces the problem of communication. So this sector needed to be developed. Involvement of women in income earning activity is very low (5.1%), and 100% women are housewives. They became inferior due to their educational level and dominance of their husband. Only one NGO named BCAS (Bangladesh Center for Advanced Studies) has been found engage training facilities and advocacy for this purpose. Upazilla agricultural extension office like other GO remains inactive to give support the community for extension and improvement of Hydroponics agriculture. If the community gets proper support and inspiration, they can fight against crisis of low-income and climate change, with the Hydroponics cultivation system successfully. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wetland%20community" title="wetland community">wetland community</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroponics" title=" hydroponics"> hydroponics</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change%20adaptation" title=" climate change adaptation"> climate change adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=livelihood" title=" livelihood"> livelihood</a> </p> <a href="https://publications.waset.org/abstracts/53230/wetland-community-and-their-livelihood-opportunities-in-the-face-of-changing-climatic-condition-in-southwest-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Moths of Indian Himalayas: Data Digging for Climate Change Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angshuman%20Raha">Angshuman Raha</a>, <a href="https://publications.waset.org/abstracts/search?q=Abesh%20Kumar%20Sanyal"> Abesh Kumar Sanyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Uttaran%20Bandyopadhyay"> Uttaran Bandyopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaushik%20Mallick"> Kaushik Mallick</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamalika%20Bhattacharyya"> Kamalika Bhattacharyya</a>, <a href="https://publications.waset.org/abstracts/search?q=Subrata%20Gayen"> Subrata Gayen</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaurab%20Nandi%20Das"> Gaurab Nandi Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd.%20Ali"> Mohd. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Kailash%20Chandra"> Kailash Chandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indian Himalayan Region (IHR), due to its sheer latitudinal and altitudinal expanse, acts as a mixing ground for different zoogeographic faunal elements. The innumerable unique and distributional restricted rare species of IHR are constantly being threatened with extinction by the ongoing climate change scenario. Many of which might have faced extinction without even being noticed or discovered. Monitoring the community dynamics of a suitable taxon is indispensable to assess the effect of this global perturbation at micro-habitat level. Lepidoptera, particularly moths are suitable for this purpose due to their huge diversity and strict herbivorous nature. The present study aimed to collate scattered historical records of moths from IHR and spatially disseminate the same in Geographic Information System (GIS) domain. The study also intended to identify moth species with significant altitudinal shifts which could be prioritised for monitoring programme to assess the effect of climate change on biodiversity. A robust database on moths recorded from IHR was prepared from voluminous secondary literature and museum collections. Historical sampling points were transformed into richness grids which were spatially overlaid on altitude, annual precipitation and vegetation layers separately to show moth richness patterns along major environmental gradients. Primary samplings were done by setting standard light traps at 11 Protected Areas representing five Indian Himalayan biogeographic provinces. To identify significant altitudinal shifts, past and present altitudinal records of the identified species from primary samplings were compared. A consolidated list of 4107 species belonging to 1726 genera of 62 families of moths was prepared from a total of 10,685 historical records from IHR. Family-wise assemblage revealed Erebidae to be the most speciose family with 913 species under 348 genera, followed by Geometridae with 879 species under 309 genera and Noctuidae with 525 species under 207 genera. Among biogeographic provinces, Central Himalaya represented maximum records with 2248 species, followed by Western and North-western Himalaya with 1799 and 877 species, respectively. Spatial analysis revealed species richness was more or less uniform (up to 150 species record per cell) across IHR. Throughout IHR, the middle elevation zones between 1000-2000m encompassed high species richness. Temperate coniferous forest associated with 1500-2000mm rainfall zone showed maximum species richness. Total 752 species of moths were identified representing 23 families from the present sampling. 13 genera were identified which were restricted to specialized habitats of alpine meadows over 3500m. Five historical localities with high richness of >150 species were selected which could be considered for repeat sampling to assess climate change influence on moth assemblage. Of the 7 species exhibiting significant altitudinal ascend of >2000m, Trachea auriplena, Diphtherocome fasciata (Noctuidae) and Actias winbrechlini (Saturniidae) showed maximum range shift of >2500m, indicating intensive monitoring of these species. Great Himalayan National Park harbours most diverse assemblage of high-altitude restricted species and should be a priority site for habitat conservation. Among the 13 range restricted genera, Arichanna, Opisthograptis, Photoscotosia (Geometridae), Phlogophora, Anaplectoides and Paraxestia (Noctuidae) were dominant and require rigorous monitoring, as they are most susceptible to climatic perturbations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=altitudinal%20shifts" title="altitudinal shifts">altitudinal shifts</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=historical%20records" title=" historical records"> historical records</a>, <a href="https://publications.waset.org/abstracts/search?q=Indian%20Himalayan%20region" title=" Indian Himalayan region"> Indian Himalayan region</a>, <a href="https://publications.waset.org/abstracts/search?q=Lepidoptera" title=" Lepidoptera"> Lepidoptera</a> </p> <a href="https://publications.waset.org/abstracts/92385/moths-of-indian-himalayas-data-digging-for-climate-change-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10