CINXE.COM
Search results for: ceramic membrane
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ceramic membrane</title> <meta name="description" content="Search results for: ceramic membrane"> <meta name="keywords" content="ceramic membrane"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ceramic membrane" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ceramic membrane"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1455</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ceramic membrane</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1455</span> Preparation of Ceramic Hollow Fiber Membranes for CO2 Capture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai-Wei%20Huang">Kai-Wei Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Feng%20Lin"> Yi-Feng Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to have chemical resistance, high heat resistance and mechanical strength of ceramic hollow fiber membrane into a membrane contactor, and the combustion process is applied (Post-combustion capture) of the carbon dioxide absorption device. In this paper, we would investigate the effect of the ceramic membrane hydrophobicity to the flux of the carbon dioxide adsorption. To improve the applicability of the ceramic film. We use the dry-wet spinning method with the high temperature sintering process for preparing a ceramic hollow fiber membranes to increase the filling density per unit volume of the membrane. The PESf/Al2O3 ratio of 1:5 was prepared ceramic hollow fibers membrane precursors and investigate the relationship of the different sintering temperature to the membrane pore size and porosity. It can be found that the membrane via the sintering temperature of 1400 °C prepared with the highest porosity of 70%, while the membrane via the sintering temperature of 1600 °C prepared although has a minimum porosity of about 54%, but also has the smallest average pore size of about 0.2 μm. The hydrophilic ceramic hollow fiber membranes which after high-temperature sintering were changed into hydrophobic successfully via the 0.02M FAS modifier. The hydrophobic ceramic hollow fiber membranes with different sintering temperature, the membrane which was prepared via 1400 °C sintering has the highest carbon dioxide adsorption about 4.2 × 10-4 (mole/m2s). The membrane prepared via 1500 °C sintering has the carbon dioxide adsorption about 3.8 × 10-3 (mole/m2s),and the membrane prepared via 1600 °C sintering has the lowest carbon dioxide adsorption about 2.68 × 10-3 (mole/m2s).All of them have reusability and in long time operation, the membrane which was prepared via 1600 °C sintering has the smallest pores and also could operate for three days. After the test, the 1600 °C sintering ceramic hollow fiber membrane was most suitable for the factory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20capture" title="carbon dioxide capture">carbon dioxide capture</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20contactor" title=" membrane contactor"> membrane contactor</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title=" ceramic membrane"> ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20hollow%20fiber%20membrane" title=" ceramic hollow fiber membrane"> ceramic hollow fiber membrane</a> </p> <a href="https://publications.waset.org/abstracts/21521/preparation-of-ceramic-hollow-fiber-membranes-for-co2-capture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1454</span> Ceramic Membrane Filtration Technologies for Oilfield Produced Water Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Ebrahimi">Mehrdad Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20Schmitz"> Oliver Schmitz</a>, <a href="https://publications.waset.org/abstracts/search?q=Axel%20Schmidt"> Axel Schmidt</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Czermak"> Peter Czermak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> “Produced water” (PW) is any fossil water that is brought to the surface along with crude oil or natural gas. By far, PW is the largest waste stream by volume associated with oil and gas production operations. Due to the increasing volume of waste all over the world in the current decade, the outcome and effect of discharging PW on the environment has lately become a significant issue of environmental concerns. Therefore, there is a need for new technologies for PW treatment due to increase focus on water conservation and environmental regulation. The use of membrane processes for treatment of PW has several advantages over many of the traditional separation techniques. In oilfield produced water treatment with ceramic membranes, process efficiency is characterized by the specific permeate flux and by the oil separation performance. Apart from the membrane properties, the permeate flux during filtration of oily wastewaters is known to be strongly dependent on the constituents of the feed solution, as well as on process conditions, e.g. trans-membrane pressure (TMP) and cross-flow velocity (CFV). The research project presented in these report describes the application of different ceramic membrane filtration technologies for the efficient treatment of oil-field produced water and different model oily solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title="ceramic membrane">ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20fouling" title=" membrane fouling"> membrane fouling</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20rejection" title=" oil rejection"> oil rejection</a>, <a href="https://publications.waset.org/abstracts/search?q=produced%20water%20treatment" title=" produced water treatment"> produced water treatment</a> </p> <a href="https://publications.waset.org/abstracts/121611/ceramic-membrane-filtration-technologies-for-oilfield-produced-water-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1453</span> Ultrathin NaA Zeolite Membrane in Solvent Recovery: Preparation and Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eng%20Toon%20Saw">Eng Toon Saw</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun%20Liang%20Ang"> Kun Liang Ang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20He"> Wei He</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuecheng%20Dong"> Xuecheng Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Seeram%20Ramakrishna"> Seeram Ramakrishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solvent recovery process is receiving utmost attention in recent year due to the scarcity of natural resource and consciousness of circular economy in chemical and pharmaceutical manufacturing process. Solvent dehydration process is one of the important process to recover and to purify the solvent for reuse. Due to the complexity of solvent waste or wastewater effluent produced in pharmaceutical industry resulting the wastewater treatment process become complicated, thus an alternative solution is to recover the valuable solvent in solvent waste. To treat solvent waste and to upgrade solvent purity, membrane pervaporation process is shown to be a promising technology due to the energy intensive and low footprint advantages. Ceramic membrane is adopted as solvent dehydration membrane owing to the chemical and thermal stability properties as compared to polymeric membrane. NaA zeolite membrane is generally used as solvent dehydration process because of its narrow and distinct pore size and high hydrophilicity. NaA zeolite membrane has been mainly applied in alcohol dehydration in fermentation process. At this stage, the membrane performance exhibits high separation factor with low flux using tubular ceramic membrane. Thus, defect free and ultrathin NaA membrane should be developed to increase water flux. Herein, we report a simple preparation protocol to prepare ultrathin NaA zeolite membrane supported on tubular ceramic membrane by controlling the seed size synthesis, seeding methods and conditions, ceramic substrate surface pore size selection and secondary growth conditions. The microstructure and morphology of NaA zeolite membrane will be examined and reported. Moreover, the membrane separation performance and stability will also be reported in isopropanol dehydration, ketone dehydration and ester dehydration particularly for the application in pharmaceutical industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title="ceramic membrane">ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=NaA%20zeolite" title=" NaA zeolite"> NaA zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical%20industry" title=" pharmaceutical industry"> pharmaceutical industry</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20recovery" title=" solvent recovery"> solvent recovery</a> </p> <a href="https://publications.waset.org/abstracts/96273/ultrathin-naa-zeolite-membrane-in-solvent-recovery-preparation-and-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1452</span> Sustainable Manufacturing and Performance of Ceramic Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Obsi%20Terfasa">Obsi Terfasa</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhanupriya%20Das"> Bhanupriya Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Mithilish%20Passawan"> Mithilish Passawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The large-scale application of microbial fuel cell (MFC) technology is significantly hindered by the high cost of the commonly used proton exchange membrane, Nafion. This has led to the recent development of ceramic membranes using various clay minerals. This study evaluates the characteristics and potential use of a new ceramic membrane made from potter’s clay © mixed with different proportions (0, 5, 10 wt%) of fly ash (FA), labeled as CFA0, CFA5, CFA10, for cost-effective and sustainable MFC use. Among these, the CFA10 membrane demonstrated superior quality with a fine pore size distribution (average 0.41 μm), which supports higher water uptake and reduced oxygen diffusion. Its oxygen mass transfer coefficient was 4.13 ± 0.13 × 10⁻⁴ cm/s, about 40% lower than the control. X-ray diffraction analysis revealed that the CFA membrane is rich in quartz, which enhances proton conductance and water retention. Electrochemical kinetics studies, including cyclic voltammetry and electrochemical impedance spectroscopy (EIS), also confirmed the effectiveness of the CFA10 membrane in MFC, showing a peak current output of 15.35 mA and low ohmic resistance (78.2 Ω). The novel CFA10 ceramic membrane, incorporating coal fly ash, a waste material, shows promise for high MFC performance at a significantly reduced cost (96%), making it suitable for sustainable scaling up of the technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title="ceramic membrane">ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=Coulombic%20efficiency" title=" Coulombic efficiency"> Coulombic efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-chemical%20kinetics" title=" electro-chemical kinetics"> electro-chemical kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20conductivity" title=" proton conductivity"> proton conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a> </p> <a href="https://publications.waset.org/abstracts/190549/sustainable-manufacturing-and-performance-of-ceramic-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">36</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1451</span> Ultrathin Tin-Silicalite 1 Zeolite Membrane in Ester Solvent Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kun%20Liang%20Ang">Kun Liang Ang</a>, <a href="https://publications.waset.org/abstracts/search?q=Eng%20Toon%20Saw"> Eng Toon Saw</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20He"> Wei He</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuecheng%20Dong"> Xuecheng Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Seeram%20%20Ramakrishna"> Seeram Ramakrishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ester solvents are widely used in pharmaceutical, printing and flavor industry due to their good miscibility, low toxicity, and high volatility. Through pervaporation, these ester solvents can be recovered from industrial wastewater. While metal-doped silicalite 1 zeolite membranes are commonly used in organic solvent recovery in the pervaporation process, these ceramic membranes suffer from low membrane permeation flux, mainly due to the high thickness of the metal-doped zeolite membrane. Herein, a simple method of fabricating an ultrathin tin-silicalite 1 membrane supported on alumina tube is reported. This ultrathin membrane is able to achieve high permeation flux and separation factor for an ester in a diluted aqueous solution. Nanosized tin-Silicalite 1 seeds which are smaller than 500nm has been formed through hydrothermal synthesis. The sn-Silicalite 1 seeds were then seeded onto alumina tube through dip coating, and the tin-Silicalite 1 membrane was then formed by hydrothermal synthesis in an autoclave through secondary growth method. Multiple membrane synthesis factors such as seed size, ceramic substrate surface pore size selection, and secondary growth conditions were studied for their effects on zeolite membrane growth. The microstructure, morphology and the membrane thickness of tin-Silicalite 1 zeolite membrane were examined. The membrane separation performance and stability will also be reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title="ceramic membrane">ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=pervaporation" title=" pervaporation"> pervaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20recovery" title=" solvent recovery"> solvent recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=Sn-MFI%20zeolite" title=" Sn-MFI zeolite"> Sn-MFI zeolite</a> </p> <a href="https://publications.waset.org/abstracts/97044/ultrathin-tin-silicalite-1-zeolite-membrane-in-ester-solvent-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1450</span> Hybrid Method Development for the Removal of Crystal Violet Dye from Aqueous Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Nareshyadav">D. Nareshyadav</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Anand%20Kishore"> K. Anand Kishore</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Bhagawan"> D. Bhagawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water scarcity is the much-identified issue all over the world. The available sources of water need to be reused to sustainable future. The present work explores the treatment of dye wastewater using combinative photocatalysis and ceramic nanofiltration membrane. Commercial ceramic membrane and TiO₂ catalyst were used in this study to investigate the removal of crystal violet dye from the aqueous solution. The effect of operating parameters such as inlet pressure, initial concentration of crystal violet dye, catalyst (TiO₂) loading, initial pH was investigated in the individual system as well as the combined system. In this study, 95 % of dye water was decolorized and 89 % of total organic carbon (TOC) was removed by the hybrid system for 500 ppm of dye and 0.75 g/l of TiO₂ concentrations at pH 9. The operation of the integrated photocatalytic reactor and ceramic membrane filtration has shown the maximum removal of crystal violet dye compared to individual systems. Hence this proposed method may be effective for the removal of Crystal violet dye from effluents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20oxidation%20process" title="advanced oxidation process">advanced oxidation process</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20nanoporous%20membrane" title=" ceramic nanoporous membrane"> ceramic nanoporous membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20degradation%2Fremoval" title=" dye degradation/removal"> dye degradation/removal</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20system" title=" hybrid system"> hybrid system</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a> </p> <a href="https://publications.waset.org/abstracts/97034/hybrid-method-development-for-the-removal-of-crystal-violet-dye-from-aqueous-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1449</span> Coal Fly Ash Based Ceramic Membrane for Water Purification via Ultrafiltration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Obsi%20Terfasa">Obsi Terfasa</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhanupriya%20Das"> Bhanupriya Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiao-Shing%20Chen"> Shiao-Shing Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Converting coal fly ash (CFA) waste into ceramic membranes presents a promising alternative to traditional disposal methods, offering potential economic and environmental advantages that warrant further investigation. This research focuses on the creation of ceramic membranes exclusively from CFA using a uniaxial compaction technique. The membranes' properties were examined through various analytical methods: Scanning Electron Microscopy (SEM) revealed a porous and flawless membrane surface, X-Ray Diffraction (XRD) identified mullite and quartz crystalline structures, and Fourier-Transform Infrared Spectroscopy (FTIR) characterized the membrane's functional groups. Thermogravimetric analysis (TGA) determined the ideal sintering temperature to be 800°C. To evaluate its separation capabilities, the synthesized membrane was tested on wastewater from denim jeans production at 0.2 bar pressure. The results were impressive, with 97.42% removal of Chemical Oxygen Demand (COD), 95% color elimination, and a pure water flux of 4.5 Lm⁻²h⁻¹bar⁻¹. These findings suggest that CFA, a byproduct of thermal power plants, can be effectively repurposed to produce ultrafiltration membranes suitable for various industrial purification and separations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title="wastewater treatment">wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=separator" title=" separator"> separator</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20fly%20ash" title=" coal fly ash"> coal fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title=" ceramic membrane"> ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafiltration" title=" ultrafiltration"> ultrafiltration</a> </p> <a href="https://publications.waset.org/abstracts/190216/coal-fly-ash-based-ceramic-membrane-for-water-purification-via-ultrafiltration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">36</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1448</span> Separation of CO2 Using MFI-Alumina Nanocomposite Hollow Fiber Ion-Exchanged with Alkali Metal Cation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Alshebani">A. Alshebani</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Swesi"> Y. Swesi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mrayed"> S. Mrayed</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Altaher"> F. Altaher</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Musbah"> I. Musbah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cs-type nanocomposite zeolite membrane was successfully synthesized on an alumina ceramic hollow fibre with a mean outer diameter of 1.7 mm; cesium cationic exchange test was carried out inside test module with mean wall thickness of 230 μm and an average crossing pore size smaller than 0.2 μm. Separation factor of n-butane/H2 obtained indicate that a relatively high quality closed to 20. Maxwell-Stefan modeling provides an equivalent thickness lower than 1 µm. To compare the difference an application to CO2/N2 separation has been achieved, reaching separation factors close to (4,18) before and after cation exchange on H-zeolite membrane formed within the pores of a ceramic alumina substrate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MFI%20membrane" title="MFI membrane">MFI membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20hollow%20fibre" title=" ceramic hollow fibre"> ceramic hollow fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2" title=" CO2"> CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=ion-exchange" title=" ion-exchange"> ion-exchange</a> </p> <a href="https://publications.waset.org/abstracts/12639/separation-of-co2-using-mfi-alumina-nanocomposite-hollow-fiber-ion-exchanged-with-alkali-metal-cation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1447</span> Separation of CO2 Using MFI-Alumina Nanocomposite Hollow Fibre Ion-Exchanged with Alkali Metal Cation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Alshebani">A. Alshebani</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Swesi"> Y. Swesi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mrayed"> S. Mrayed</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Altaher"> F. Altaher</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Musbah"> I. Musbah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cs-type nanocomposite zeolite membrane was successfully synthesized on a alumina ceramic hollow fibre with a mean outer diameter of 1.7 mm, cesium cationic exchange test was carried out inside test module with mean wall thickness of 230 μm and an average crossing pore size smaller than 0.2 μm. Separation factor of n-butane/H2 obtained indicate that a relatively high quality closed to 20. Maxwell-Stefan modeling provides an equivalent thickness lower than 1 µm. To compare the difference an application to CO2/N2 separation has been achieved, reaching separation factors close to (4,18) before and after cation exchange on H-zeolite membrane formed within the pores of a ceramic alumina substrate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MFI%20membrane" title="MFI membrane">MFI membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2" title=" CO2"> CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20hollow%20fibre" title=" ceramic hollow fibre"> ceramic hollow fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=ion-exchange" title=" ion-exchange"> ion-exchange</a> </p> <a href="https://publications.waset.org/abstracts/20708/separation-of-co2-using-mfi-alumina-nanocomposite-hollow-fibre-ion-exchanged-with-alkali-metal-cation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1446</span> Removal of Bulk Parameters and Chromophoric Fractions of Natural Organic Matter by Porous Kaolin/Fly Ash Ceramic Membrane at South African Drinking Water Treatment Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samkeliso%20S.%20Ndzimandze">Samkeliso S. Ndzimandze</a>, <a href="https://publications.waset.org/abstracts/search?q=Welldone%20Moyo"> Welldone Moyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Oranso%20T.%20Mahlangu"> Oranso T. Mahlangu</a>, <a href="https://publications.waset.org/abstracts/search?q=Adolph%20A.%20Muleja"> Adolph A. Muleja</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20T.%20Kuvarega"> Alex T. Kuvarega</a>, <a href="https://publications.waset.org/abstracts/search?q=Thabo%20T.%20I.%20Nkambule"> Thabo T. I. Nkambule</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high cost of precursor materials has hindered the commercialization of ceramic membrane technology in water treatment. In this work, a ceramic membrane disc (approximately 50 mm in diameter and 4 mm thick) was prepared from low-cost starting materials, kaolin, and fly ash by pressing at 200 bar and calcining at 900 °C. The fabricated membrane was characterized for various physicochemical properties, natural organic matter (NOM) removal as well as fouling propensity using several techniques. Further, the ceramic membrane was tested on samples collected from four drinking water treatment plants in KwaZulu-Natal, South Africa (named plants 1-4). The membrane achieved 48.6%, 54.6%, 57.4%, and 76.4% bulk UV254 reduction for raw water at plants 1, 2, 3, and 4, respectively. These removal rates were comparable to UV254 reduction achieved by coagulation/flocculation steps at the respective plants. Further, the membrane outperformed sand filtration steps in plants 1-4 in removing disinfection by-product precursors (8%-32%) through size exclusion. Fluorescence excitation-emission matrices (FEEM) studies showed the removal of fluorescent NOM fractions present in the water samples by the membrane. The membrane was fabricated using an up-scalable facile method, and it has the potential for application as a polishing step to complement conventional processes in water treatment for drinking purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crossflow%20filtration" title="crossflow filtration">crossflow filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=drinking%20water%20treatment%20plants" title=" drinking water treatment plants"> drinking water treatment plants</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence%20excitation-emission%20matrices" title=" fluorescence excitation-emission matrices"> fluorescence excitation-emission matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=ultraviolet%20254%20%28UV%E2%82%82%E2%82%85%E2%82%84%29" title=" ultraviolet 254 (UV₂₅₄)"> ultraviolet 254 (UV₂₅₄)</a> </p> <a href="https://publications.waset.org/abstracts/185367/removal-of-bulk-parameters-and-chromophoric-fractions-of-natural-organic-matter-by-porous-kaolinfly-ash-ceramic-membrane-at-south-african-drinking-water-treatment-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1445</span> Layer-by-Layer Modified Ceramic Membranes for Micropollutant Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jenny%20Radeva">Jenny Radeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Anke-Gundula%20Roth"> Anke-Gundula Roth</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Goebbert"> Christian Goebbert</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Niestroj-Pahl"> Robert Niestroj-Pahl</a>, <a href="https://publications.waset.org/abstracts/search?q=Lars%20Daehne"> Lars Daehne</a>, <a href="https://publications.waset.org/abstracts/search?q=Axel%20Wolfram"> Axel Wolfram</a>, <a href="https://publications.waset.org/abstracts/search?q=Juergen%20Wiese"> Juergen Wiese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ceramic membranes for water purification combine excellent stability with long-life characteristics and high chemical resistance. Layer-by-Layer coating is a well-known technique for customization and optimization of filtration properties of membranes but is mostly used on polymeric membranes. Ceramic membranes comprising a metal oxide filtration layer of Al2O3 or TiO2 are charged and therefore highly suitable for polyelectrolyte adsorption. The high stability of the membrane support allows efficient backwash and chemical cleaning of the membrane. The presented study reports metal oxide/organic composite membrane with an increased rejection of bivalent salts like MgSO4 and the organic micropollutant Diclofenac. A self-build apparatus was used for applying the polyelectrolyte multilayers on the ceramic membrane. The device controls the flow and timing of the polyelectrolytes and washing solutions. As support for the Layer-by-Layer coat, ceramic mono-channel membranes were used with an inner capillary of 8 mm diameter, which is connected to the coating device. The inner wall of the capillary is coated subsequently with polycat- and anions. The filtration experiments were performed with a feed solution of MgSO4 and Diclofenac. The salt content of the permeate was detected conductometrically and Diclofenac was measured with UV-Adsorption. The concluded results show retention values of magnesium sulfate of 70% and diclofenac retention of 60%. Further experimental research studied various parameters of the composite membrane-like Molecular Weight Cut Off and pore size, Zeta potential and its mechanical and chemical robustness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20purification" title="water purification">water purification</a>, <a href="https://publications.waset.org/abstracts/search?q=polyelectrolytes" title=" polyelectrolytes"> polyelectrolytes</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20modification" title=" membrane modification"> membrane modification</a>, <a href="https://publications.waset.org/abstracts/search?q=layer-by-layer%20coating" title=" layer-by-layer coating"> layer-by-layer coating</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membranes" title=" ceramic membranes"> ceramic membranes</a> </p> <a href="https://publications.waset.org/abstracts/138651/layer-by-layer-modified-ceramic-membranes-for-micropollutant-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1444</span> Micro-Filtration with an Inorganic Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benyamina">Benyamina</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouldabess"> Ouldabess</a>, <a href="https://publications.waset.org/abstracts/search?q=Bensalah"> Bensalah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to use membrane technique for filtration of a coloring solution. the preparation of the micro-filtration membranes is based on a natural clay powder with a low cost, deposited on macro-porous ceramic supports. The micro-filtration membrane provided a very large permeation flow. Indeed, the filtration effectiveness of membrane was proved by the total discoloration of bromothymol blue solution with initial concentration of 10-3 mg/L after the first minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20inorganic%20membrane" title="the inorganic membrane">the inorganic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-filtration" title=" micro-filtration"> micro-filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=coloring%20solution" title=" coloring solution"> coloring solution</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20clay%20powder" title=" natural clay powder"> natural clay powder</a> </p> <a href="https://publications.waset.org/abstracts/25743/micro-filtration-with-an-inorganic-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1443</span> Performance Evaluation of an Inventive Co2 Gas Separation Inorganic Ceramic Membrane System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ngozi%20Claribelle%20Nwogu">Ngozi Claribelle Nwogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Nasir%20Kajama"> Mohammed Nasir Kajama</a>, <a href="https://publications.waset.org/abstracts/search?q=Oyoh%20Kechinyere"> Oyoh Kechinyere</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Gobina"> Edward Gobina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atmospheric carbon dioxide emissions are considered as the greatest environmental challenge the world is facing today. The challenges to control the emissions include the recovery of CO2 from flue gas. This concern has been improved due to recent advances in materials process engineering resulting in the development of inorganic gas separation membranes with excellent thermal and mechanical stability required for most gas separations. This paper therefore evaluates the performance of a highly selective inorganic membrane for CO2 recovery applications. Analysis of results obtained is in agreement with experimental literature data. Further results show the prediction performance of the membranes for gas separation and the future direction of research. The materials selection and the membrane preparation techniques are discussed. Method of improving the interface defects in the membrane and its effect on the separation performance has also been reviewed and in addition advances to totally exploit the potential usage of this innovative membrane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title="carbon dioxide">carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20separation" title=" gas separation"> gas separation</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic%20ceramic%20membrane" title=" inorganic ceramic membrane"> inorganic ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=permselectivity" title=" permselectivity"> permselectivity</a> </p> <a href="https://publications.waset.org/abstracts/25961/performance-evaluation-of-an-inventive-co2-gas-separation-inorganic-ceramic-membrane-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1442</span> Microfiltration of the Sugar Refinery Wastewater Using Ceramic Membrane with Kenics Static Mixer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zita%20%C5%A0ere%C5%A1">Zita Šereš</a>, <a href="https://publications.waset.org/abstracts/search?q=Ljubica%20Doki%C4%87"> Ljubica Dokić</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikola%20Maravi%C4%87"> Nikola Maravić</a>, <a href="https://publications.waset.org/abstracts/search?q=Dragana%20%20%C5%A0oronja%20Simovi%C4%87"> Dragana Šoronja Simović</a>, <a href="https://publications.waset.org/abstracts/search?q=Cecilia%20Hodur"> Cecilia Hodur</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Nikoli%C4%87"> Ivana Nikolić</a>, <a href="https://publications.waset.org/abstracts/search?q=Biljana%20Pajin"> Biljana Pajin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New environmental regulations and the increasing market preference for companies that respect the ecosystem had encouraged the industry to look after new treatments for its effluents. The sugar industry, one of the largest emitter of environmental pollutants, follows this tendency. Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present in a wastewater from the sugar industry. The idea is to microfilter the wastewater, where the permeate passes through the membrane and becomes available for recycle and re-use in the sugar manufacturing process. For microfiltration of this effluent a tubular ceramic membrane was used with a pore size of 200 nm at transmembrane pressure in range of 1 – 3 bars and in range of flow rate of 50 – 150 l/h. Kenics static mixer was used for permeate flux enhancement. Turbidity and suspended solids were removed and the permeate flux was continuously monitored during the microfiltration process. The flux achieved after 90 minutes of microfiltration was in a range of 50-70 L/m2h. The obtained turbidity decrease was in the range of 50-99% and the total amount of suspended solids was removed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title="ceramic membrane">ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=microfiltration" title=" microfiltration"> microfiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=permeate%20flux" title=" permeate flux"> permeate flux</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20industry" title=" sugar industry"> sugar industry</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/28798/microfiltration-of-the-sugar-refinery-wastewater-using-ceramic-membrane-with-kenics-static-mixer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1441</span> Treatment of High Concentration Cutting Fluid Wastewater by Ceramic Membrane Bioreactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai-Shiang%20Chang">Kai-Shiang Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiao-Shing%20Chen"> Shiao-Shing Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Saikat%20Sinha%20Ray"> Saikat Sinha Ray</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Te%20Hsu"> Hung-Te Hsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, membrane bioreactors (MBR) have been widely utilized as it can effectively replace conventional activated sludge process (CAS). Membrane bioreactor (MBR) is found to be more effective technology compared to other conventional activated sludge process and advanced membrane separation technique. Additionally, as far as the MBR is concerned, it is having excellent control of sludge retention time (SRT) and hydraulic retention time (HRT) and conducive to the retention of high concentration of sludge biomass. The membrane bioreactor (MBR) can effectively reduce footprint in terms of area and omit the secondary processing procedures in the conventional activated sludge process (CAS). Currently, as per the membrane technology, the ceramic membrane is found to have highly strong anti-acid-base properties, and it is more suitable than polymeric membrane while using for backwash and chemical cleaning. This study is based upon the treatment of Cutting Fluid wastewater, as the Cutting Fluid is widely used in the cutting equipment. However, the Cutting Fluid wastewater is very difficult to treat. In this study, the ceramic membrane was used and combine with of MBR system to treat the Cutting Fluid wastewater. In this present study, different kind of chemical coagulants have been utilized for pretreatment purpose in order to get the supernatant and simultaneously this wastewater (supernatant) was treated by MBR process. Nevertheless, ceramic membrane has three advantages such as high mechanical strength, drug resistance and reuse. During the experiment, the backwash technique was used for every interval of 10 minutes in order to avoid fouling of the membrane. In this study, during pretreatment the Chemical Oxygen Demand (COD) removal efficiency was found to be 71-86% and oil removal efficiency was analyzed to be 83-92%. This pretreatment study suggests that it is quiet effective methodology to reduce COD and oil concentration. Finally, In the MBR system when the HRT is more than 7.5 hour, the COD removal efficiency was found to be 87-93% and could achieve 100% oil removal efficiency. Coagulation test series were seen in Refs coagulants for the treatment of wastewater containing cutting oil with better oil and COD removal efficiency. The results also showed that the oil removal efficiency in the MBR system could reduce the oil content to less than 1 mg / L when the oil quality was 126 mg / L. Therefore, in this paper, the performance of membrane bioreactor by utilizing ceramic membrane has been demonstrated for treatment of Cutting Fluid wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor" title="membrane bioreactor">membrane bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20fluid" title=" cutting fluid"> cutting fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=oil" title=" oil"> oil</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxygen%20demand" title=" chemical oxygen demand"> chemical oxygen demand</a> </p> <a href="https://publications.waset.org/abstracts/62949/treatment-of-high-concentration-cutting-fluid-wastewater-by-ceramic-membrane-bioreactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1440</span> Preparation and Characterizations of Natural Material Based Ceramic Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=In-Hyuck%20Song">In-Hyuck Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Jang-Hoon%20Ha"> Jang-Hoon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, porous ceramic membranes have attracted great interest due to their outstanding thermal and chemical stability. In this paper, we report the results of our efforts to determine whether we could prepare a diatomite-kaolin composite coating to be deposited over a sintered diatomite support layer that could reduce the largest pore size of the sintered diatomite membrane while retaining an acceptable level of permeability. We determined under what conditions such a composite coating over a support layer could be prepared without the generation of micro-cracks during drying and sintering. The pore characteristics of the sintered diatomite membranes were studied by scanning electron microscopy and capillary flow porosimetry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title="ceramic membrane">ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=diatomite" title=" diatomite"> diatomite</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=sintering" title=" sintering"> sintering</a> </p> <a href="https://publications.waset.org/abstracts/23363/preparation-and-characterizations-of-natural-material-based-ceramic-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1439</span> Edible Oil Industry Wastewater Treatment by Microfiltration with Ceramic Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zita%20%C5%A0ere%C5%A1">Zita Šereš</a>, <a href="https://publications.waset.org/abstracts/search?q=Dragana%20%C5%A0oronja%20Simovi%C4%87"> Dragana Šoronja Simović</a>, <a href="https://publications.waset.org/abstracts/search?q=Ljubica%20Doki%C4%87"> Ljubica Dokić</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidietta%20Giorno"> Lidietta Giorno</a>, <a href="https://publications.waset.org/abstracts/search?q=Biljana%20Pajin"> Biljana Pajin</a>, <a href="https://publications.waset.org/abstracts/search?q=Cecilia%20Hodur"> Cecilia Hodur</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikola%20Maravi%C4%87"> Nikola Maravić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present. The idea is that the waste stream from edible oil industry, after the separation of oil by using skimmers is subjected to microfiltration and the obtained permeate can be used again in the production process. The wastewater from edible oil industry was used for the microfiltration. For the microfiltration of this effluent a tubular membrane was used with a pore size of 200 nm at transmembrane pressure in range up to 3 bar and in range of flow rate up to 300 L/h. Box–Behnken design was selected for the experimental work and the responses considered were permeate flux and chemical oxygen demand (COD) reduction. The reduction of the permeate COD was in the range 40-60% according to the feed. The highest permeate flux achieved during the process of microfiltration was 160 L/m<sup>2</sup>h. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title="ceramic membrane">ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20oil" title=" edible oil"> edible oil</a>, <a href="https://publications.waset.org/abstracts/search?q=microfiltration" title=" microfiltration"> microfiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/40236/edible-oil-industry-wastewater-treatment-by-microfiltration-with-ceramic-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1438</span> Gas Permeation Behavior of Single and Mixed Gas Components Using an Asymmetric Ceramic Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ngozi%20Claribelle%20Nwogu">Ngozi Claribelle Nwogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Nasir%20Kajama"> Mohammed Nasir Kajama</a>, <a href="https://publications.waset.org/abstracts/search?q=Godson%20Osueke"> Godson Osueke</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Gobina"> Edward Gobina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A unique sol–gel dip-coating process to form an asymmetric silica membrane with improved membrane performance and reproducibility has been reported. First, we deposited repeatedly a silica solution on top of a commercial alumina membrane support to improve its structural make up. The coated membrane is further processed under clean room conditions to avoid dust impurity and subsequent drying in an oven for high thermal, chemical and physical stability. The resulting asymmetric membrane exhibits a gradual change in the membrane layer thickness. Compared to a single-layer process using only the membrane support, the dual-layer process improves both flux and selectivity. For the scientifically significant difficulties of natural gas purification, collective CO2, CH4 and H2 gas fluxes and separation factors obtained gave reasonably excellent values. In addition, the membrane selectively separated hydrogen as demonstrated by a high concentration of hydrogen recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20permeation" title="gas permeation">gas permeation</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20membrane" title=" silica membrane"> silica membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20factor" title=" separation factor"> separation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20layer%20thickness" title=" membrane layer thickness"> membrane layer thickness</a> </p> <a href="https://publications.waset.org/abstracts/25963/gas-permeation-behavior-of-single-and-mixed-gas-components-using-an-asymmetric-ceramic-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1437</span> Treatment of Greywater at Household by Using Ceramic Tablet Membranes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20T.%20Ahmed">Abdelkader T. Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Greywater is any wastewater draining from a household including kitchen sinks and bathroom tubs, except toilet wastes. Although this used water may contain grease, food particles, hair, and any number of other impurities, it may still be suitable for reuse after treatment. Greywater reusing serves two purposes including reduction the amount of freshwater needed to supply a household, and reduction the amount of wastewater entering sewer systems. This study aims to investigate and design a simple and cheap unit to treat the greywater in household via using ceramic membranes and reuse it in supplying water for toilet flushing. The study include an experimental program for manufacturing several tablet ceramic membranes from clay and sawdust with three different mixtures. The productivity and efficiency of these ceramic membranes were investigated by chemical and physical tests for greywater before and after filtration through these membranes. Then a treatment unit from this ceramic membrane was designed based on the experimental results of lab tests. Results showed that increase sawdust percent with the mixture increase the flow rate and productivity of treated water but decrease in the same time the water quality. The efficiency of the new ceramic membrane reached 95%. The treatment unit save 0.3 m3/day water for toilet flushing without need to consume them from the fresh water supply network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membranes" title="ceramic membranes">ceramic membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=greywater" title=" greywater"> greywater</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment "> wastewater treatment </a> </p> <a href="https://publications.waset.org/abstracts/39192/treatment-of-greywater-at-household-by-using-ceramic-tablet-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1436</span> Hybrid Treatment Method for Decolorization of Mixed Dyes: Rhodamine-B, Brilliant Green and Congo Red</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Naresh%20Yadav">D. Naresh Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Anand%20Kishore"> K. Anand Kishore</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhaskar%20Bethi"> Bhaskar Bethi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shirish%20H.%20Sonawane"> Shirish H. Sonawane</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Bhagawan"> D. Bhagawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The untreated industrial wastewater discharged into the environment causes the contamination of soil, water and air. Advanced treatment methods for enhanced wastewater treatment are attracting substantial interest among the currently employed unit processes in wastewater treatment. The textile industry is one of the predominant in wastewater production at current industrialized situation. The refused dyes at textile industry need to be treated in proper manner before its discharge into water bodies. In the present investigation, hybrid treatment process has been developed for the treatment of synthetic mixed dye wastewater. Photocatalysis and ceramic nanoporous membrane are mainly used for process integration to minimize the fouling and increase the flux. Commercial semiconducting powders (TiO2 and ZnO) has used as a nano photocatalyst for the degradation of mixed dye in the hybrid system. Commercial ceramic nanoporous tubular membranes have been used for the rejection of dye and suspended catalysts. Photocatalysis with catalyst has shown the average of 34% of decolorization (RB-32%, BG-34% and CR-36%), whereas ceramic nanofiltration has shown the 56% (RB-54%, BG-56% and CR-58%) of decolorization. Integration of photocatalysis and ceramic nanofiltration has shown 96% (RB-94%, BG-96% and CR-98%) of dye decolorization over 90 min of operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title="photocatalysis">photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20nanoporous%20membrane" title=" ceramic nanoporous membrane"> ceramic nanoporous membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20oxidation%20process" title=" advanced oxidation process"> advanced oxidation process</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20integration" title=" process integration"> process integration</a> </p> <a href="https://publications.waset.org/abstracts/76768/hybrid-treatment-method-for-decolorization-of-mixed-dyes-rhodamine-b-brilliant-green-and-congo-red" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1435</span> Unconventional Composite Inorganic Membrane Fabrication for Carbon Emissions Mitigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ngozi%20Nwogu">Ngozi Nwogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Godson%20Osueke"> Godson Osueke</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamdud%20Hossain"> Mamdud Hossain</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Gobina"> Edward Gobina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An unconventional composite inorganic ceramic membrane capable in carbon dioxide emission decline was fabricated and tested at laboratory scale to develop in conformism to various environmental guidelines to mitigate the effect of global warming. A review of the existing membrane technologies for carbon capture including the relevant gas transport mechanisms are presented and discussed. Single gas separation experiments using silica modified ceramic membrane with internal diameter 20mm, outside diameter 25mm and length of 368mm deposited on a macro porous supported reactor.was carried out to investigate individual gas permeation behaviours at different pressures and membrane efficiency after a dip coating method. Nitrogen, Carbon dioxide, Argon, Oxygen and Methane pure gases were used to investigate their individual permeation rates at various pressures. Results show that the gas flow rate increases with pressure drop. However at above a pressure of 3bar, CO2 permeability ratio to than the other gases indicated control of a more selective surface adsorptive transport mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title="carbon dioxide">carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20membranes" title=" composite membranes"> composite membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20mechanisms" title=" transport mechanisms"> transport mechanisms</a> </p> <a href="https://publications.waset.org/abstracts/26683/unconventional-composite-inorganic-membrane-fabrication-for-carbon-emissions-mitigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1434</span> Functionalized Nano porous Ceramic Membranes for Electrodialysis Treatment of Harsh Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emily%20Rabe">Emily Rabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20Candelaria"> Stephanie Candelaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachel%20Malone"> Rachel Malone</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivia%20Lenz"> Olivia Lenz</a>, <a href="https://publications.waset.org/abstracts/search?q=Greg%20Newbloom"> Greg Newbloom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrodialysis (ED) is a well-developed technology for ion removal in a variety of applications. However, many industries generate harsh wastewater streams that are incompatible with traditional ion exchange membranes. Membrion® has developed novel ceramic-based ion exchange membranes (IEMs) offering several advantages over traditional polymer membranes: high performance in low pH, chemical resistance to oxidizers, and a rigid structure that minimizes swelling. These membranes are synthesized with our patented silane-based sol-gel techniques. The pore size, shape, and network structure are engineered through a molecular self-assembly process where thermodynamic driving forces are used to direct where and how pores form. Either cationic or anionic groups can be added within the membrane nanopore structure to create cation- and anion-exchange membranes. The ceramic IEMs are produced on a roll-to-roll manufacturing line with low-temperature processing. Membrane performance testing is conducted using in-house permselectivity, area-specific resistance, and ED stack testing setups. Ceramic-based IEMs show comparable performance to traditional IEMs and offer some unique advantages. Long exposure to highly acidic solutions has a negligible impact on ED performance. Additionally, we have observed stable performance in the presence of strong oxidizing agents such as hydrogen peroxide. This stability is expected, as the ceramic backbone of these materials is already in a fully oxidized state. This data suggests ceramic membranes, made using sol-gel chemistry, could be an ideal solution for acidic and/or oxidizing wastewater streams from processes such as semiconductor manufacturing and mining. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ion%20exchange" title="ion exchange">ion exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=silane%20chemistry" title=" silane chemistry"> silane chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/163226/functionalized-nano-porous-ceramic-membranes-for-electrodialysis-treatment-of-harsh-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1433</span> Multi-Layer Silica Alumina Membrane Performance for Flue Gas Separation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ngozi%20Nwogu">Ngozi Nwogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Kajama"> Mohammed Kajama</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Anyanwu"> Emmanuel Anyanwu</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Gobina"> Edward Gobina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the objective to create technologically advanced materials to be scientifically applicable, multi-layer silica alumina membranes were molecularly fabricated by continuous surface coating silica layers containing hybrid material onto a ceramic porous substrate for flue gas separation applications. The multi-layer silica alumina membrane was prepared by dip coating technique before further drying in an oven at elevated temperature. The effects of substrate physical appearance, coating quantity, the cross-linking agent, a number of coatings and testing conditions on the gas separation performance of the membrane have been investigated. Scanning electron microscope was used to investigate the development of coating thickness. The membrane shows impressive perm selectivity especially for CO2 and N2 binary mixture representing a stimulated flue gas stream <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20separation" title="gas separation">gas separation</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20membrane" title=" silica membrane"> silica membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20factor" title=" separation factor"> separation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20layer%20thickness" title=" membrane layer thickness"> membrane layer thickness</a> </p> <a href="https://publications.waset.org/abstracts/29152/multi-layer-silica-alumina-membrane-performance-for-flue-gas-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1432</span> Removal of Pharmaceuticals from Aquarius Solutions Using Hybrid Ceramic Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jenny%20Radeva">Jenny Radeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Anke-Gundula%20Roth"> Anke-Gundula Roth</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Goebbert"> Christian Goebbert</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Niestroj-Pahl"> Robert Niestroj-Pahl</a>, <a href="https://publications.waset.org/abstracts/search?q=Lars%20Daehne"> Lars Daehne</a>, <a href="https://publications.waset.org/abstracts/search?q=Axel%20Wolfram"> Axel Wolfram</a>, <a href="https://publications.waset.org/abstracts/search?q=Juergen%20Wiese"> Juergen Wiese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The technological advantages of ceramic filtration elements were combined with polyelectrolyte films in the development process of hybrid membrane for the elimination of pharmaceuticals from Aquarius solutions. Previously extruded alumina ceramic membranes were coated with nanosized polyelectrolyte films using Layer-by-Layer technology. The polyelectrolyte chains form a network with nano-pores on the ceramic surface and promote the retention of small molecules like pharmaceuticals and microplastics, which cannot be eliminated using standard ultrafiltration methods. Additionally, the polyelectrolyte coat contributes with its adjustable (based on application) Zeta Potential for repulsion of contaminant molecules with opposite charges. Properties like permeability, bubble point, pore size distribution and Zeta Potential of ceramic and hybrid membranes were characterized using various laboratory and pilot tests and compared with each other. The most significant role for the membrane characterization played the filtration behavior investigation, during which retention against widely used pharmaceuticals like Diclofenac, Ibuprofen and Sulfamethoxazol was subjected to series of filtration tests. The presented study offers a new perspective on nanosized molecules removal from aqueous solutions and shows the importance of combined techniques application for the elimination of pharmaceutical contaminants from drinking water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title="water treatment">water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20membranes" title=" hybrid membranes"> hybrid membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=layer-by-layer%20coating" title=" layer-by-layer coating"> layer-by-layer coating</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=polyelectrolytes" title=" polyelectrolytes"> polyelectrolytes</a> </p> <a href="https://publications.waset.org/abstracts/138646/removal-of-pharmaceuticals-from-aquarius-solutions-using-hybrid-ceramic-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1431</span> Preparation of Ceramic Membranes from Syrian Sand Loaded with Silver Nanoparticles for Water Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrazzaq%20Hammal">Abdulrazzaq Hammal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Syrian sand was used to create ceramic membranes. The process of preparing the membranes involved several steps, starting with the purification of the studied sand using hydrochloric acid, sorting according to granular size, and mixing the sand with liquid sodium silicates as a binder. Next, the effects of binder ratio, pressure formation, treatment temperature, and sand grain size were studied. Further, nanoparticles of silver were added to the formed membranes to improve their ability to purify bacterially polluted water. Prepared membranes were quite successful in removing bacteria and chemicals from water, and the water's requirements were brought up to level with Syrian drinking water standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic" title="ceramic">ceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/173567/preparation-of-ceramic-membranes-from-syrian-sand-loaded-with-silver-nanoparticles-for-water-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1430</span> Influence of Layer-by-Layer Coating Parameters on the Properties of Hybrid Membrane for Water Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jenny%20Radeva">Jenny Radeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Anke-Gundula%20Roth"> Anke-Gundula Roth</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Goebbert"> Christian Goebbert</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Niestroj-Pahl"> Robert Niestroj-Pahl</a>, <a href="https://publications.waset.org/abstracts/search?q=Lars%20Daehne"> Lars Daehne</a>, <a href="https://publications.waset.org/abstracts/search?q=Axel%20Wolfram"> Axel Wolfram</a>, <a href="https://publications.waset.org/abstracts/search?q=Juergen%20WIese"> Juergen WIese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presented investigation studies the correlation between the process parameters of Layer-by-Layer (LbL) coatings and properties of the produced hybrid membranes for water treatment. The coating of alumina ceramic support membrane with polyelectrolyte multilayers on top results in hybrid membranes with increased fouling resistant behavior, high retention (up to 90%) of salt ions and various pharmaceuticals, selectivity to various organic molecules as known from LbL coated polyether sulfone membranes and the possibility of pH response control. Chosen polyelectrolytes were added to the support using the LbL-coating process. Parameters like the type of polyelectrolyte, ionic strength, and pH were varied in order to find the most suitable process conditions and to study how they influence the properties of the final product. The applied LbL-films was investigated in respect to its homogeneity and penetration depth. The analysis of the layer buildup was performed using fluorescence labeled polyelectrolyte molecules and Confocal Laser Scanning Microscopy as well as Scanning and Transmission Electron Microscopy. Furthermore, the influence of the coating parameters on the porosity, surface potential, retention, and permeability of the developed hybrid membranes were estimated. In conclusion, a comparison was drawn between the filtration performance of the uncoated alumina ceramic membrane and modified hybrid membranes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title="water treatment">water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=membranes" title=" membranes"> membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membranes" title=" ceramic membranes"> ceramic membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20membranes" title=" hybrid membranes"> hybrid membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=layer-by-layer%20modification" title=" layer-by-layer modification"> layer-by-layer modification</a> </p> <a href="https://publications.waset.org/abstracts/138613/influence-of-layer-by-layer-coating-parameters-on-the-properties-of-hybrid-membrane-for-water-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1429</span> Using Nanofiber-Like Attapulgite Microfiltration Membranes to Treat Oily Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shouyong%20Zhou">Shouyong Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Meisheng%20Li"> Meisheng Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yijiang%20Zhao"> Yijiang Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The environmentally acceptable disposal of oily wastewater is a current challenge to many industries. The membrane separation technologies, which is no phase change, without pharmaceutical dosing, reprocessing costs low, less energy consumption, etc., have been widely applied in oily wastewater treatment. In our lab, a kind of low cost ceramic microfiltration membranes with a separation layer of attapulgite nanofibers (attapulgite nanofiber-like microfiltration membranes) has been prepared and applied in the purification of cellulase fermentation broth and TiO2 nanoparticles system successfully. In this paper, this new attapulgite nanofiber-like microfiltration membrane was selected to try to separate water from oily wastewater. The oil-in water emulsion was obtained from mixing 1 g/L engine oil, 0.5 g/L Tween-80, 0.5 g/L Span-80 and distilled water at mild speed in blender for 2 min. The particle size distribution of the oil-in-water emulsion was controlled. The maximum steady flux and COD rejection for a 0.2 um attapulgite nanofiber-like microfiltration membrane can reach about 450 L. m-2. h-1 and 98% at 0.2 MPa. The results obtained in this work indicated that the attapulgite microfiltration membrane may represent a feasible pretreatment for oily wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attapulgite" title="attapulgite">attapulgite</a>, <a href="https://publications.waset.org/abstracts/search?q=microfiltration%20membrane" title=" microfiltration membrane"> microfiltration membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=oily%20wastewater" title=" oily wastewater"> oily wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-flow%20filtration" title=" cross-flow filtration"> cross-flow filtration</a> </p> <a href="https://publications.waset.org/abstracts/62228/using-nanofiber-like-attapulgite-microfiltration-membranes-to-treat-oily-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1428</span> Kinetics of Cu(II) Transport through Bulk Liquid Membrane with Different Membrane Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siu%20Hua%20Chang">Siu Hua Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayub%20Md%20Som"> Ayub Md Som</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagannathan%20Krishnan"> Jagannathan Krishnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The kinetics of Cu(II) transport through a bulk liquid membrane with different membrane materials was investigated in this work. Three types of membrane materials were used: Fresh cooking oil, waste cooking oil, and kerosene each of which was mixed with di-2-ethylhexylphosphoric acid (carrier) and tributylphosphate (modifier). Kinetic models derived from the kinetic laws of two consecutive irreversible first-order reactions were used to study the facilitated transport of Cu(II) across the source, membrane, and receiving phases of bulk liquid membrane. It was found that the transport kinetics of Cu(II) across the source phase was not affected by different types of membrane materials but decreased considerably when the membrane materials changed from kerosene, waste cooking oil to fresh cooking oil. The rate constants of Cu(II) removal and recovery processes through the bulk liquid membrane were also determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transport%20kinetics" title="transport kinetics">transport kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu%28II%29" title=" Cu(II)"> Cu(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20liquid%20membrane" title=" bulk liquid membrane"> bulk liquid membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20cooking%20oil" title=" waste cooking oil "> waste cooking oil </a> </p> <a href="https://publications.waset.org/abstracts/2082/kinetics-of-cuii-transport-through-bulk-liquid-membrane-with-different-membrane-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1427</span> Layer by Layer Coating of Zinc Oxide/Metal Organic Framework Nanocomposite on Ceramic Support for Solvent/Solvent Separation Using Pervaporation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20A.%20Nabeela%20Nasreen">S. A. A. Nabeela Nasreen</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sundarrajan"> S. Sundarrajan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Syed%20Nizar"> S. A. Syed Nizar</a>, <a href="https://publications.waset.org/abstracts/search?q=Seeram%20Ramakrishna"> Seeram Ramakrishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal-organic frameworks (MOFs) have attracted considerable interest due to its diverse pore size tunability, fascinating topologies and extensive uses in fields such as catalysis, membrane separation, chemical sensing, etc. Zeolitic imidazolate frameworks (ZIFs) are a class of MOF with porous crystals containing extended three-dimensional structures of tetrahedral metal ions (e.g., Zn) bridged by Imidazolate (Im). Selected ZIFs are used to separate solvent/solvent mixtures. A layer by layer formation of the nanocomposite of Zinc oxide (ZnO) and ZIF on a ceramic support using a solvothermal method was engaged and tested for target solvent/solvent separation. Metal oxide layer was characterized by XRD, SEM, and TEM to confirm the smooth and continuous coating for the separation process. The chemical composition of ZIF films was studied by using X-Ray absorption near-edge structure (XANES) spectroscopy. The obtained ceramic tube with metal oxide and ZIF layer coating were tested for its packing density, thickness, distribution of seed layers and variation of permeation rate of solvent mixture (isopropyl alcohol (IPA)/methyl isobutyl ketone (MIBK). Pervaporation technique was used for the separation to achieve a high permeation rate with separation ratio of > 99.5% of the solvent mixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20oxide" title="metal oxide">metal oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=pervaporation" title=" pervaporation"> pervaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=solvothermal" title=" solvothermal"> solvothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=ZIF" title=" ZIF"> ZIF</a> </p> <a href="https://publications.waset.org/abstracts/97314/layer-by-layer-coating-of-zinc-oxidemetal-organic-framework-nanocomposite-on-ceramic-support-for-solventsolvent-separation-using-pervaporation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1426</span> Study of a Developed Model Describing a Vacuum Membrane Distillation Unit Coupled to Solar Energy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Khaled">Fatma Khaled</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaoula%20Hidouri"> Khaoula Hidouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Bechir%20Chaouachi"> Bechir Chaouachi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Desalination using solar energy coupled with membrane techniques such as vacuum membrane distillation (VMD) is considered as an interesting alternative for the production of pure water. During this work, a developed model of a polytetrafluoroethylene (PTFE) hollow fiber membrane module of a VMD unit of seawater was carried out. This simulation leads to establishing a comparison between the effects of two different equations of the vaporization latent heat on the membrane surface temperature and on the unit productivity. Besides, in order to study the effect of putting membrane modules in series on the outlet fluid temperature and on the productivity of the process, a simulation was executed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vacuum%20membrane%20distillation" title="vacuum membrane distillation">vacuum membrane distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20module" title=" membrane module"> membrane module</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20temperature" title=" membrane temperature"> membrane temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a> </p> <a href="https://publications.waset.org/abstracts/107225/study-of-a-developed-model-describing-a-vacuum-membrane-distillation-unit-coupled-to-solar-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane&page=48">48</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane&page=49">49</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>