CINXE.COM
Search results for: Bayesian approach
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Bayesian approach</title> <meta name="description" content="Search results for: Bayesian approach"> <meta name="keywords" content="Bayesian approach"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Bayesian approach" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Bayesian approach"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5128</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Bayesian approach</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5128</span> Scaling up Detection Rates and Reducing False Positives in Intrusion Detection using NBTree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dewan%20Md.%20Farid">Dewan Md. Farid</a>, <a href="https://publications.waset.org/search?q=Nguyen%20Huu%20Hoa"> Nguyen Huu Hoa</a>, <a href="https://publications.waset.org/search?q=Jerome%20Darmont"> Jerome Darmont</a>, <a href="https://publications.waset.org/search?q=Nouria%20Harbi"> Nouria Harbi</a>, <a href="https://publications.waset.org/search?q=Mohammad%20Zahidur%20Rahman"> Mohammad Zahidur Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a new learning algorithm for anomaly based network intrusion detection using improved self adaptive na茂ve Bayesian tree (NBTree), which induces a hybrid of decision tree and na茂ve Bayesian classifier. The proposed approach scales up the balance detections for different attack types and keeps the false positives at acceptable level in intrusion detection. In complex and dynamic large intrusion detection dataset, the detection accuracy of na茂ve Bayesian classifier does not scale up as well as decision tree. It has been successfully tested in other problem domains that na茂ve Bayesian tree improves the classification rates in large dataset. In na茂ve Bayesian tree nodes contain and split as regular decision-trees, but the leaves contain na茂ve Bayesian classifiers. The experimental results on KDD99 benchmark network intrusion detection dataset demonstrate that this new approach scales up the detection rates for different attack types and reduces false positives in network intrusion detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Detection%20rates" title="Detection rates">Detection rates</a>, <a href="https://publications.waset.org/search?q=false%20positives" title=" false positives"> false positives</a>, <a href="https://publications.waset.org/search?q=network%20intrusiondetection" title=" network intrusiondetection"> network intrusiondetection</a>, <a href="https://publications.waset.org/search?q=na%C3%AFve%20Bayesian%20tree." title=" na茂ve Bayesian tree."> na茂ve Bayesian tree.</a> </p> <a href="https://publications.waset.org/1750/scaling-up-detection-rates-and-reducing-false-positives-in-intrusion-detection-using-nbtree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1750/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1750/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1750/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1750/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1750/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1750/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1750/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1750/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1750/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1750/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2281</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5127</span> Data-organization Before Learning Multi-Entity Bayesian Networks Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20Bouhamed">H. Bouhamed</a>, <a href="https://publications.waset.org/search?q=A.%20Rebai"> A. Rebai</a>, <a href="https://publications.waset.org/search?q=T.%20Lecroq"> T. Lecroq</a>, <a href="https://publications.waset.org/search?q=M.%20Jaoua"> M. Jaoua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The objective of our work is to develop a new approach for discovering knowledge from a large mass of data, the result of applying this approach will be an expert system that will serve as diagnostic tools of a phenomenon related to a huge information system. We first recall the general problem of learning Bayesian network structure from data and suggest a solution for optimizing the complexity by using organizational and optimization methods of data. Afterward we proposed a new heuristic of learning a Multi-Entities Bayesian Networks structures. We have applied our approach to biological facts concerning hereditary complex illnesses where the literatures in biology identify the responsible variables for those diseases. Finally we conclude on the limits arched by this work.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Data-organization" title="Data-organization">Data-organization</a>, <a href="https://publications.waset.org/search?q=data-optimization" title=" data-optimization"> data-optimization</a>, <a href="https://publications.waset.org/search?q=automatic%20knowledge%20discovery" title=" automatic knowledge discovery"> automatic knowledge discovery</a>, <a href="https://publications.waset.org/search?q=Multi-Entities%20Bayesian%20networks" title=" Multi-Entities Bayesian networks"> Multi-Entities Bayesian networks</a>, <a href="https://publications.waset.org/search?q=score%20merging." title=" score merging."> score merging.</a> </p> <a href="https://publications.waset.org/7210/data-organization-before-learning-multi-entity-bayesian-networks-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7210/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7210/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7210/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7210/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7210/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7210/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7210/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7210/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7210/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7210/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1611</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5126</span> Design of Bayesian MDS Sampling Plan Based on the Process Capability Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Davood%20Shishebori">Davood Shishebori</a>, <a href="https://publications.waset.org/search?q=Mohammad%20Saber%20Fallah%20Nezhad"> Mohammad Saber Fallah Nezhad</a>, <a href="https://publications.waset.org/search?q=Sina%20Seifi"> Sina Seifi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, a variable multiple dependent state (MDS) sampling plan is developed based on the process capability index using Bayesian approach. The optimal parameters of the developed sampling plan with respect to constraints related to the risk of consumer and producer are presented. Two comparison studies have been done. First, the methods of double sampling model, sampling plan for resubmitted lots and repetitive group sampling (RGS) plan are elaborated and average sample numbers of the developed MDS plan and other classical methods are compared. A comparison study between the developed MDS plan based on Bayesian approach and the exact probability distribution is carried out.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=MDS%20sampling%20plan" title="MDS sampling plan">MDS sampling plan</a>, <a href="https://publications.waset.org/search?q=RGS%20plan" title=" RGS plan"> RGS plan</a>, <a href="https://publications.waset.org/search?q=sampling%20plan%20for%20resubmitted%20lots" title=" sampling plan for resubmitted lots"> sampling plan for resubmitted lots</a>, <a href="https://publications.waset.org/search?q=process%20capability%20index" title=" process capability index"> process capability index</a>, <a href="https://publications.waset.org/search?q=average%20sample%20number" title=" average sample number"> average sample number</a>, <a href="https://publications.waset.org/search?q=Bayesian%20approach." title=" Bayesian approach."> Bayesian approach.</a> </p> <a href="https://publications.waset.org/10007986/design-of-bayesian-mds-sampling-plan-based-on-the-process-capability-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007986/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007986/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007986/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007986/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007986/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007986/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007986/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007986/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007986/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007986/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1009</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5125</span> Bayesian Decision Approach to Protection on the Flood Event in Upper Ayeyarwady River, Myanmar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Min%20Min%20Swe%20Zin">Min Min Swe Zin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper introduces the foundations of Bayesian probability theory and Bayesian decision method. The main goal of Bayesian decision theory is to minimize the expected loss of a decision or minimize the expected risk. The purposes of this study are to review the decision process on the issue of flood occurrences and to suggest possible process for decision improvement. This study examines the problem structure of flood occurrences and theoretically explicates the decision-analytic approach based on Bayesian decision theory and application to flood occurrences in Environmental Engineering. In this study, we will discuss about the flood occurrences upon an annual maximum water level in cm, 43-year record available from 1965 to 2007 at the gauging station of Sagaing on the Ayeyarwady River with the drainage area - 120193 sq km by using Bayesian decision method. As a result, we will discuss the loss and risk of vast areas of agricultural land whether which will be inundated or not in the coming year based on the two standard maximum water levels during 43 years. And also we forecast about that lands will be safe from flood water during the next 10 years.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bayesian%20decision%20method" title="Bayesian decision method">Bayesian decision method</a>, <a href="https://publications.waset.org/search?q=conditional%20binomial%20distribution" title=" conditional binomial distribution"> conditional binomial distribution</a>, <a href="https://publications.waset.org/search?q=minimax%20rules" title=" minimax rules"> minimax rules</a>, <a href="https://publications.waset.org/search?q=prior%20beta%20distribution." title=" prior beta distribution."> prior beta distribution.</a> </p> <a href="https://publications.waset.org/13886/bayesian-decision-approach-to-protection-on-the-flood-event-in-upper-ayeyarwady-river-myanmar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13886/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13886/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13886/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13886/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13886/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13886/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13886/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13886/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13886/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13886/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1579</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5124</span> Mining Implicit Knowledge to Predict Political Risk by Providing Novel Framework with Using Bayesian Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Siavash%20Asadi%20Ghajarloo">Siavash Asadi Ghajarloo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays predicting political risk level of country has become a critical issue for investors who intend to achieve accurate information concerning stability of the business environments. Since, most of the times investors are layman and nonprofessional IT personnel; this paper aims to propose a framework named GECR in order to help nonexpert persons to discover political risk stability across time based on the political news and events. To achieve this goal, the Bayesian Networks approach was utilized for 186 political news of Pakistan as sample dataset. Bayesian Networks as an artificial intelligence approach has been employed in presented framework, since this is a powerful technique that can be applied to model uncertain domains. The results showed that our framework along with Bayesian Networks as decision support tool, predicted the political risk level with a high degree of accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bayesian%20Networks" title="Bayesian Networks">Bayesian Networks</a>, <a href="https://publications.waset.org/search?q=Data%20mining" title=" Data mining"> Data mining</a>, <a href="https://publications.waset.org/search?q=GECRframework" title=" GECRframework"> GECRframework</a>, <a href="https://publications.waset.org/search?q=Predicting%20political%20risk." title=" Predicting political risk."> Predicting political risk.</a> </p> <a href="https://publications.waset.org/1291/mining-implicit-knowledge-to-predict-political-risk-by-providing-novel-framework-with-using-bayesian-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1291/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1291/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1291/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1291/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1291/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1291/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1291/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1291/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1291/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1291/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2174</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5123</span> Optimal Bayesian Control of the Proportion of Defectives in a Manufacturing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Viliam%20Makis">Viliam Makis</a>, <a href="https://publications.waset.org/search?q=Farnoosh%20Naderkhani"> Farnoosh Naderkhani</a>, <a href="https://publications.waset.org/search?q=Leila%20Jafari"> Leila Jafari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a model and an algorithm for the calculation of the optimal control limit, average cost, sample size, and the sampling interval for an optimal Bayesian chart to control the proportion of defective items produced using a semi-Markov decision process approach. Traditional p-chart has been widely used for controlling the proportion of defectives in various kinds of production processes for many years. It is well known that traditional non-Bayesian charts are not optimal, but very few optimal Bayesian control charts have been developed in the literature, mostly considering finite horizon. The objective of this paper is to develop a fast computational algorithm to obtain the optimal parameters of a Bayesian p-chart. The decision problem is formulated in the partially observable framework and the developed algorithm is illustrated by a numerical example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bayesian%20control%20chart" title="Bayesian control chart">Bayesian control chart</a>, <a href="https://publications.waset.org/search?q=semi-Markov%20decision%20process" title=" semi-Markov decision process"> semi-Markov decision process</a>, <a href="https://publications.waset.org/search?q=quality%20control" title=" quality control"> quality control</a>, <a href="https://publications.waset.org/search?q=partially%20observable%20process." title=" partially observable process."> partially observable process.</a> </p> <a href="https://publications.waset.org/10005955/optimal-bayesian-control-of-the-proportion-of-defectives-in-a-manufacturing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005955/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005955/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005955/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005955/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005955/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005955/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005955/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005955/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005955/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005955/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1169</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5122</span> Pragati Node Popularity (PNP) Approach to Identify Congestion Hot Spots in MPLS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=E.%20Ramaraj">E. Ramaraj</a>, <a href="https://publications.waset.org/search?q=A.%20Padmapriya"> A. Padmapriya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In large Internet backbones, Service Providers typically have to explicitly manage the traffic flows in order to optimize the use of network resources. This process is often referred to as Traffic Engineering (TE). Common objectives of traffic engineering include balance traffic distribution across the network and avoiding congestion hot spots. Raj P H and SVK Raja designed the Bayesian network approach to identify congestion hors pots in MPLS. In this approach for every node in the network the Conditional Probability Distribution (CPD) is specified. Based on the CPD the congestion hot spots are identified. Then the traffic can be distributed so that no link in the network is either over utilized or under utilized. Although the Bayesian network approach has been implemented in operational networks, it has a number of well known scaling issues. This paper proposes a new approach, which we call the Pragati (means Progress) Node Popularity (PNP) approach to identify the congestion hot spots with the network topology alone. In the new Pragati Node Popularity approach, IP routing runs natively over the physical topology rather than depending on the CPD of each node as in Bayesian network. We first illustrate our approach with a simple network, then present a formal analysis of the Pragati Node Popularity approach. Our PNP approach shows that for any given network of Bayesian approach, it exactly identifies the same result with minimum efforts. We further extend the result to a more generic one: for any network topology and even though the network is loopy. A theoretical insight of our result is that the optimal routing is always shortest path routing with respect to some considerations of hot spots in the networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Conditional%20Probability%20Distribution" title="Conditional Probability Distribution">Conditional Probability Distribution</a>, <a href="https://publications.waset.org/search?q=Congestion%20hotspots" title=" Congestion hotspots"> Congestion hotspots</a>, <a href="https://publications.waset.org/search?q=Operational%20Networks" title=" Operational Networks"> Operational Networks</a>, <a href="https://publications.waset.org/search?q=Traffic%20Engineering." title=" Traffic Engineering."> Traffic Engineering.</a> </p> <a href="https://publications.waset.org/4158/pragati-node-popularity-pnp-approach-to-identify-congestion-hot-spots-in-mpls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4158/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4158/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4158/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4158/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4158/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4158/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4158/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4158/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4158/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4158/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1987</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5121</span> Internal Migration and Poverty Dynamic Analysis Using a Bayesian Approach: The Tunisian Case</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Amal%20Jmaii">Amal Jmaii</a>, <a href="https://publications.waset.org/search?q=Damien%20Rousseliere"> Damien Rousseliere</a>, <a href="https://publications.waset.org/search?q=Besma%20Belhadj"> Besma Belhadj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We explore the relationship between internal migration and poverty in Tunisia. We present a methodology combining potential outcomes approach with multiple imputation to highlight the effect of internal migration on poverty states. We find that probability of being poor decreases when leaving the poorest regions (the west areas) to the richer regions (greater Tunis and the east regions). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Internal%20migration" title="Internal migration">Internal migration</a>, <a href="https://publications.waset.org/search?q=Bayesian%20approach" title=" Bayesian approach"> Bayesian approach</a>, <a href="https://publications.waset.org/search?q=poverty%0D%0Adynamics" title=" poverty dynamics"> poverty dynamics</a>, <a href="https://publications.waset.org/search?q=Tunisia." title=" Tunisia."> Tunisia.</a> </p> <a href="https://publications.waset.org/10006297/internal-migration-and-poverty-dynamic-analysis-using-a-bayesian-approach-the-tunisian-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006297/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006297/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006297/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006297/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006297/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006297/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006297/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006297/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006297/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006297/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">934</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5120</span> Probabilistic Bayesian Framework for Infrared Face Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Moulay%20A.%20Akhloufi">Moulay A. Akhloufi</a>, <a href="https://publications.waset.org/search?q=Abdelhakim%20Bendada"> Abdelhakim Bendada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Face recognition in the infrared spectrum has attracted a lot of interest in recent years. Many of the techniques used in infrared are based on their visible counterpart, especially linear techniques like PCA and LDA. In this work, we introduce a probabilistic Bayesian framework for face recognition in the infrared spectrum. In the infrared spectrum, variations can occur between face images of the same individual due to pose, metabolic, time changes, etc. Bayesian approaches permit to reduce intrapersonal variation, thus making them very interesting for infrared face recognition. This framework is compared with classical linear techniques. Non linear techniques we developed recently for infrared face recognition are also presented and compared to the Bayesian face recognition framework. A new approach for infrared face extraction based on SVM is introduced. Experimental results show that the Bayesian technique is promising and lead to interesting results in the infrared spectrum when a sufficient number of face images is used in an intrapersonal learning process.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Face%20recognition" title="Face recognition">Face recognition</a>, <a href="https://publications.waset.org/search?q=biometrics" title=" biometrics"> biometrics</a>, <a href="https://publications.waset.org/search?q=probabilistic%20imageprocessing" title=" probabilistic imageprocessing"> probabilistic imageprocessing</a>, <a href="https://publications.waset.org/search?q=infrared%20imaging." title=" infrared imaging."> infrared imaging.</a> </p> <a href="https://publications.waset.org/12837/probabilistic-bayesian-framework-for-infrared-face-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12837/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12837/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12837/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12837/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12837/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12837/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12837/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12837/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12837/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12837/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1877</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5119</span> Adaptive Kalman Filter for Noise Estimation and Identification with Bayesian Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Farhad%20Asadi">Farhad Asadi</a>, <a href="https://publications.waset.org/search?q=S.%20Hossein%20Sadati"> S. Hossein Sadati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Bayesian approach can be used for parameter identification and extraction in state space models and its ability for analyzing sequence of data in dynamical system is proved in different literatures. In this paper, adaptive Kalman filter with Bayesian approach for identification of variances in measurement parameter noise is developed. Next, it is applied for estimation of the dynamical state and measurement data in discrete linear dynamical system. This algorithm at each step time estimates noise variance in measurement noise and state of system with Kalman filter. Next, approximation is designed at each step separately and consequently sufficient statistics of the state and noise variances are computed with a fixed-point iteration of an adaptive Kalman filter. Different simulations are applied for showing the influence of noise variance in measurement data on algorithm. Firstly, the effect of noise variance and its distribution on detection and identification performance is simulated in Kalman filter without Bayesian formulation. Then, simulation is applied to adaptive Kalman filter with the ability of noise variance tracking in measurement data. In these simulations, the influence of noise distribution of measurement data in each step is estimated, and true variance of data is obtained by algorithm and is compared in different scenarios. Afterwards, one typical modeling of nonlinear state space model with inducing noise measurement is simulated by this approach. Finally, the performance and the important limitations of this algorithm in these simulations are explained. </p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=adaptive%20filtering" title="adaptive filtering">adaptive filtering</a>, <a href="https://publications.waset.org/search?q=Bayesian%20approach%20Kalman%20filtering%20approach" title=" Bayesian approach Kalman filtering approach"> Bayesian approach Kalman filtering approach</a>, <a href="https://publications.waset.org/search?q=variance%20tracking" title=" variance tracking"> variance tracking</a> </p> <a href="https://publications.waset.org/10012298/adaptive-kalman-filter-for-noise-estimation-and-identification-with-bayesian-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012298/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012298/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012298/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012298/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012298/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012298/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012298/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012298/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012298/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012298/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">619</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5118</span> Choosing Search Algorithms in Bayesian Optimization Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hao%20Wu">Hao Wu</a>, <a href="https://publications.waset.org/search?q=Jonathan%20L.%20Shapiro"> Jonathan L. Shapiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The Bayesian Optimization Algorithm (BOA) is an algorithm based on the estimation of distributions. It uses techniques from modeling data by Bayesian networks to estimating the joint distribution of promising solutions. To obtain the structure of Bayesian network, different search algorithms can be used. The key point that BOA addresses is whether the constructed Bayesian network could generate new and useful solutions (strings), which could lead the algorithm in the right direction to solve the problem. Undoubtedly, this ability is a crucial factor of the efficiency of BOA. Varied search algorithms can be used in BOA, but their performances are different. For choosing better ones, certain suitable method to present their ability difference is needed. In this paper, a greedy search algorithm and a stochastic search algorithm are used in BOA to solve certain optimization problem. A method using Kullback-Leibler (KL) Divergence to reflect their difference is described.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bayesian%20optimization%20algorithm" title="Bayesian optimization algorithm">Bayesian optimization algorithm</a>, <a href="https://publications.waset.org/search?q=greedy%20search" title=" greedy search"> greedy search</a>, <a href="https://publications.waset.org/search?q=KL%20divergence" title=" KL divergence"> KL divergence</a>, <a href="https://publications.waset.org/search?q=stochastic%20search." title=" stochastic search."> stochastic search.</a> </p> <a href="https://publications.waset.org/3338/choosing-search-algorithms-in-bayesian-optimization-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3338/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3338/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3338/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3338/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3338/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3338/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3338/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3338/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3338/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3338/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1698</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5117</span> Improving Flash Flood Forecasting with a Bayesian Probabilistic Approach: A Case Study on the Posina Basin in Italy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Zviad%20Ghadua">Zviad Ghadua</a>, <a href="https://publications.waset.org/search?q=Biswa%20Bhattacharya"> Biswa Bhattacharya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The Flash Flood Guidance (FFG) provides the rainfall amount of a given duration necessary to cause flooding. The approach is based on the development of rainfall-runoff curves, which helps us to find out the rainfall amount that would cause flooding. An alternative approach, mostly experimented with Italian Alpine catchments, is based on determining threshold discharges from past events and on finding whether or not an oncoming flood has its magnitude more than some critical discharge thresholds found beforehand. Both approaches suffer from large uncertainties in forecasting flash floods as, due to the simplistic approach followed, the same rainfall amount may or may not cause flooding. This uncertainty leads to the question whether a probabilistic model is preferable over a deterministic one in forecasting flash floods. We propose the use of a Bayesian probabilistic approach in flash flood forecasting. A prior probability of flooding is derived based on historical data. Additional information, such as antecedent moisture condition (AMC) and rainfall amount over any rainfall thresholds are used in computing the likelihood of observing these conditions given a flash flood has occurred. Finally, the posterior probability of flooding is computed using the prior probability and the likelihood. The variation of the computed posterior probability with rainfall amount and AMC presents the suitability of the approach in decision making in an uncertain environment. The methodology has been applied to the Posina basin in Italy. From the promising results obtained, we can conclude that the Bayesian approach in flash flood forecasting provides more realistic forecasting over the FFG.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Flash%20flood" title="Flash flood">Flash flood</a>, <a href="https://publications.waset.org/search?q=Bayesian" title=" Bayesian"> Bayesian</a>, <a href="https://publications.waset.org/search?q=flash%20flood%20guidance" title=" flash flood guidance"> flash flood guidance</a>, <a href="https://publications.waset.org/search?q=FFG" title=" FFG"> FFG</a>, <a href="https://publications.waset.org/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/search?q=Posina." title=" Posina. "> Posina. </a> </p> <a href="https://publications.waset.org/10010337/improving-flash-flood-forecasting-with-a-bayesian-probabilistic-approach-a-case-study-on-the-posina-basin-in-italy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010337/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010337/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010337/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010337/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010337/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010337/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010337/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010337/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010337/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010337/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">748</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5116</span> An Integrative Bayesian Approach to Supporting the Prediction of Protein-Protein Interactions: A Case Study in Human Heart Failure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Fiona%20Browne">Fiona Browne</a>, <a href="https://publications.waset.org/search?q=Huiru%20Zheng"> Huiru Zheng</a>, <a href="https://publications.waset.org/search?q=Haiying%20Wang"> Haiying Wang</a>, <a href="https://publications.waset.org/search?q=Francisco%20Azuaje"> Francisco Azuaje</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent years have seen a growing trend towards the integration of multiple information sources to support large-scale prediction of protein-protein interaction (PPI) networks in model organisms. Despite advances in computational approaches, the combination of multiple 鈥渙mic" datasets representing the same type of data, e.g. different gene expression datasets, has not been rigorously studied. Furthermore, there is a need to further investigate the inference capability of powerful approaches, such as fullyconnected Bayesian networks, in the context of the prediction of PPI networks. This paper addresses these limitations by proposing a Bayesian approach to integrate multiple datasets, some of which encode the same type of 鈥渙mic" data to support the identification of PPI networks. The case study reported involved the combination of three gene expression datasets relevant to human heart failure (HF). In comparison with two traditional methods, Naive Bayesian and maximum likelihood ratio approaches, the proposed technique can accurately identify known PPI and can be applied to infer potentially novel interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bayesian%20network" title="Bayesian network">Bayesian network</a>, <a href="https://publications.waset.org/search?q=Classification" title=" Classification"> Classification</a>, <a href="https://publications.waset.org/search?q=Data%20integration" title=" Data integration"> Data integration</a>, <a href="https://publications.waset.org/search?q=Protein%20interaction%20networks." title=" Protein interaction networks."> Protein interaction networks.</a> </p> <a href="https://publications.waset.org/7161/an-integrative-bayesian-approach-to-supporting-the-prediction-of-protein-protein-interactions-a-case-study-in-human-heart-failure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7161/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7161/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7161/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7161/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7161/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7161/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7161/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7161/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7161/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7161/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1616</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5115</span> Human Body Configuration using Bayesian Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rui.%20Zhang">Rui. Zhang</a>, <a href="https://publications.waset.org/search?q=Yiming.%20Pi"> Yiming. Pi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we present a novel approach for human Body configuration based on the Silhouette. We propose to address this problem under the Bayesian framework. We use an effective Model based MCMC (Markov Chain Monte Carlo) method to solve the configuration problem, in which the best configuration could be defined as MAP (maximize a posteriori probability) in Bayesian model. This model based MCMC utilizes the human body model to drive the MCMC sampling from the solution space. It converses the original high dimension space into a restricted sub-space constructed by the human model and uses a hybrid sampling algorithm. We choose an explicit human model and carefully select the likelihood functions to represent the best configuration solution. The experiments show that this method could get an accurate configuration and timesaving for different human from multi-views. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bayesian%20framework" title="Bayesian framework">Bayesian framework</a>, <a href="https://publications.waset.org/search?q=MCMC" title=" MCMC"> MCMC</a>, <a href="https://publications.waset.org/search?q=model%20based" title=" model based"> model based</a>, <a href="https://publications.waset.org/search?q=human%0Abody%20configuration." title=" human body configuration."> human body configuration.</a> </p> <a href="https://publications.waset.org/7193/human-body-configuration-using-bayesian-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7193/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7193/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7193/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7193/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7193/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7193/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7193/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7193/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7193/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7193/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1316</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5114</span> An Adaptive Model for Blind Image Restoration using Bayesian Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.K.%20Satpathy">S.K. Satpathy</a>, <a href="https://publications.waset.org/search?q=S.K.%20Nayak"> S.K. Nayak</a>, <a href="https://publications.waset.org/search?q=K.%20K.%20Nagwanshi"> K. K. Nagwanshi</a>, <a href="https://publications.waset.org/search?q=S.%20Panda"> S. Panda</a>, <a href="https://publications.waset.org/search?q=C.%20Ardil"> C. Ardil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image restoration involves elimination of noise. Filtering techniques were adopted so far to restore images since last five decades. In this paper, we consider the problem of image restoration degraded by a blur function and corrupted by random noise. A method for reducing additive noise in images by explicit analysis of local image statistics is introduced and compared to other noise reduction methods. The proposed method, which makes use of an a priori noise model, has been evaluated on various types of images. Bayesian based algorithms and technique of image processing have been described and substantiated with experimentation using MATLAB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20Restoration" title="Image Restoration">Image Restoration</a>, <a href="https://publications.waset.org/search?q=Probability%20DensityFunction%20%28PDF%29" title=" Probability DensityFunction (PDF)"> Probability DensityFunction (PDF)</a>, <a href="https://publications.waset.org/search?q=Neural%20Networks" title=" Neural Networks"> Neural Networks</a>, <a href="https://publications.waset.org/search?q=Bayesian%20Classifier." title=" Bayesian Classifier."> Bayesian Classifier.</a> </p> <a href="https://publications.waset.org/14145/an-adaptive-model-for-blind-image-restoration-using-bayesian-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14145/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14145/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14145/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14145/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14145/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14145/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14145/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14145/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14145/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14145/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2247</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5113</span> A New Damage Identification Strategy for SHM Based On FBGs and Bayesian Model Updating Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yanhui%20Zhang">Yanhui Zhang</a>, <a href="https://publications.waset.org/search?q=Wenyu%20Yang"> Wenyu Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>One of the difficulties of the vibration-based damage identification methods is the nonuniqueness of the results of damage identification. The different damage locations and severity may cause the identical response signal, which is even more severe for detection of the multiple damage. This paper proposes a new strategy for damage detection to avoid this nonuniqueness. This strategy firstly determines the approximates damage area based on the statistical pattern recognition method using the dynamic strain signal measured by the distributed fiber Bragg grating, and then accurately evaluates the damage information based on the Bayesian model updating method using the experimental modal data. The stochastic simulation method is then used to compute the high-dimensional integral in the Bayesian problem. Finally, an experiment of the plate structure, simulating one part of mechanical structure, is used to verify the effectiveness of this approach.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bayesian%20method" title="Bayesian method">Bayesian method</a>, <a href="https://publications.waset.org/search?q=damage%20detection" title=" damage detection"> damage detection</a>, <a href="https://publications.waset.org/search?q=fiber%20Bragg%0D%0Agrating" title=" fiber Bragg grating"> fiber Bragg grating</a>, <a href="https://publications.waset.org/search?q=structural%20health%20monitoring." title=" structural health monitoring."> structural health monitoring.</a> </p> <a href="https://publications.waset.org/4002/a-new-damage-identification-strategy-for-shm-based-on-fbgs-and-bayesian-model-updating-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4002/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4002/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4002/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4002/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4002/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4002/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4002/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4002/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4002/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4002/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1906</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5112</span> Bayesian Meta-Analysis to Account for Heterogeneity in Studies Relating Life Events to Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Elizabeth%20Stojanovski">Elizabeth Stojanovski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Associations between life events and various forms of cancers have been identified. The purpose of a recent random-effects meta-analysis was to identify studies that examined the association between adverse events associated with changes to financial status including decreased income and breast cancer risk. The same association was studied in four separate studies which displayed traits that were not consistent between studies such as the study design, location, and time frame. It was of interest to pool information from various studies to help identify characteristics that differentiated study results. Two random-effects Bayesian meta-analysis models are proposed to combine the reported estimates of the described studies. The proposed models allow major sources of variation to be taken into account, including study level characteristics, between study variance and within study variance, and illustrate the ease with which uncertainty can be incorporated using a hierarchical Bayesian modelling approach.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Random-effects" title="Random-effects">Random-effects</a>, <a href="https://publications.waset.org/search?q=meta-analysis" title=" meta-analysis"> meta-analysis</a>, <a href="https://publications.waset.org/search?q=Bayesian" title=" Bayesian"> Bayesian</a>, <a href="https://publications.waset.org/search?q=variation." title=" variation."> variation.</a> </p> <a href="https://publications.waset.org/10009797/bayesian-meta-analysis-to-account-for-heterogeneity-in-studies-relating-life-events-to-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009797/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009797/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009797/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009797/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009797/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009797/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009797/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009797/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009797/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009797/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">659</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5111</span> Probabilistic Approach of Dealing with Uncertainties in Distributed Constraint Optimization Problems and Situation Awareness for Multi-agent Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sagir%20M.%20Yusuf">Sagir M. Yusuf</a>, <a href="https://publications.waset.org/search?q=Chris%20Baber"> Chris Baber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, we describe how Bayesian inferential reasoning will contributes in obtaining a well-satisfied prediction for Distributed Constraint Optimization Problems (DCOPs) with uncertainties. We also demonstrate how DCOPs could be merged to multi-agent knowledge understand and prediction (i.e. Situation Awareness). The DCOPs functions were merged with Bayesian Belief Network (BBN) in the form of situation, awareness, and utility nodes. We describe how the uncertainties can be represented to the BBN and make an effective prediction using the expectation-maximization algorithm or conjugate gradient descent algorithm. The idea of variable prediction using Bayesian inference may reduce the number of variables in agents’ sampling domain and also allow missing variables estimations. Experiment results proved that the BBN perform compelling predictions with samples containing uncertainties than the perfect samples. That is, Bayesian inference can help in handling uncertainties and dynamism of DCOPs, which is the current issue in the DCOPs community. We show how Bayesian inference could be formalized with Distributed Situation Awareness (DSA) using uncertain and missing agents’ data. The whole framework was tested on multi-UAV mission for forest fire searching. Future work focuses on augmenting existing architecture to deal with dynamic DCOPs algorithms and multi-agent information merging.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=DCOP" title="DCOP">DCOP</a>, <a href="https://publications.waset.org/search?q=multi-agent%20reasoning" title=" multi-agent reasoning"> multi-agent reasoning</a>, <a href="https://publications.waset.org/search?q=Bayesian%20reasoning" title=" Bayesian reasoning"> Bayesian reasoning</a>, <a href="https://publications.waset.org/search?q=swarm%20intelligence." title=" swarm intelligence. "> swarm intelligence. </a> </p> <a href="https://publications.waset.org/10011563/probabilistic-approach-of-dealing-with-uncertainties-in-distributed-constraint-optimization-problems-and-situation-awareness-for-multi-agent-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011563/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011563/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011563/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011563/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011563/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011563/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011563/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011563/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011563/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011563/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1010</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5110</span> Bayesian Belief Networks for Test Driven Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Vijayalakshmy%20Periaswamy%20S.">Vijayalakshmy Periaswamy S.</a>, <a href="https://publications.waset.org/search?q=Kevin%20McDaid"> Kevin McDaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Testing accounts for the major percentage of technical contribution in the software development process. Typically, it consumes more than 50 percent of the total cost of developing a piece of software. The selection of software tests is a very important activity within this process to ensure the software reliability requirements are met. Generally tests are run to achieve maximum coverage of the software code and very little attention is given to the achieved reliability of the software. Using an existing methodology, this paper describes how to use Bayesian Belief Networks (BBNs) to select unit tests based on their contribution to the reliability of the module under consideration. In particular the work examines how the approach can enhance test-first development by assessing the quality of test suites resulting from this development methodology and providing insight into additional tests that can significantly reduce the achieved reliability. In this way the method can produce an optimal selection of inputs and the order in which the tests are executed to maximize the software reliability. To illustrate this approach, a belief network is constructed for a modern software system incorporating the expert opinion, expressed through probabilities of the relative quality of the elements of the software, and the potential effectiveness of the software tests. The steps involved in constructing the Bayesian Network are explained as is a method to allow for the test suite resulting from test-driven development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Software%20testing" title="Software testing">Software testing</a>, <a href="https://publications.waset.org/search?q=Test%20Driven%20Development" title=" Test Driven Development"> Test Driven Development</a>, <a href="https://publications.waset.org/search?q=Bayesian%20Belief%20Networks." title=" Bayesian Belief Networks."> Bayesian Belief Networks.</a> </p> <a href="https://publications.waset.org/817/bayesian-belief-networks-for-test-driven-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/817/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/817/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/817/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/817/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/817/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/817/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/817/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/817/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/817/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/817/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1887</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5109</span> A Bayesian Kernel for the Prediction of Protein- Protein Interactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hany%20Alashwal">Hany Alashwal</a>, <a href="https://publications.waset.org/search?q=Safaai%20Deris"> Safaai Deris</a>, <a href="https://publications.waset.org/search?q=Razib%20M.%20Othman"> Razib M. Othman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding proteins functions is a major goal in the post-genomic era. Proteins usually work in context of other proteins and rarely function alone. Therefore, it is highly relevant to study the interaction partners of a protein in order to understand its function. Machine learning techniques have been widely applied to predict protein-protein interactions. Kernel functions play an important role for a successful machine learning technique. Choosing the appropriate kernel function can lead to a better accuracy in a binary classifier such as the support vector machines. In this paper, we describe a Bayesian kernel for the support vector machine to predict protein-protein interactions. The use of Bayesian kernel can improve the classifier performance by incorporating the probability characteristic of the available experimental protein-protein interactions data that were compiled from different sources. In addition, the probabilistic output from the Bayesian kernel can assist biologists to conduct more research on the highly predicted interactions. The results show that the accuracy of the classifier has been improved using the Bayesian kernel compared to the standard SVM kernels. These results imply that protein-protein interaction can be predicted using Bayesian kernel with better accuracy compared to the standard SVM kernels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bioinformatics" title="Bioinformatics">Bioinformatics</a>, <a href="https://publications.waset.org/search?q=Protein-protein%20interactions" title=" Protein-protein interactions"> Protein-protein interactions</a>, <a href="https://publications.waset.org/search?q=Bayesian%20Kernel" title=" Bayesian Kernel"> Bayesian Kernel</a>, <a href="https://publications.waset.org/search?q=Support%20Vector%20Machines." title=" Support Vector Machines."> Support Vector Machines.</a> </p> <a href="https://publications.waset.org/3698/a-bayesian-kernel-for-the-prediction-of-protein-protein-interactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3698/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3698/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3698/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3698/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3698/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3698/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3698/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3698/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3698/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3698/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2164</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5108</span> Production Throughput Modeling under Five Uncertain Variables Using Bayesian Inference</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Amir%20Azizi">Amir Azizi</a>, <a href="https://publications.waset.org/search?q=Amir%20Yazid%20B.%20Ali"> Amir Yazid B. Ali</a>, <a href="https://publications.waset.org/search?q=Loh%20Wei%20Ping"> Loh Wei Ping</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Throughput is an important measure of performance of production system. Analyzing and modeling of production throughput is complex in today-s dynamic production systems due to uncertainties of production system. The main reasons are that uncertainties are materialized when the production line faces changes in setup time, machinery break down, lead time of manufacturing, and scraps. Besides, demand changes are fluctuating from time to time for each product type. These uncertainties affect the production performance. This paper proposes Bayesian inference for throughput modeling under five production uncertainties. Bayesian model utilized prior distributions related to previous information about the uncertainties where likelihood distributions are associated to the observed data. Gibbs sampling algorithm as the robust procedure of Monte Carlo Markov chain was employed for sampling unknown parameters and estimating the posterior mean of uncertainties. The Bayesian model was validated with respect to convergence and efficiency of its outputs. The results presented that the proposed Bayesian models were capable to predict the production throughput with accuracy of 98.3%.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bayesian%20inference" title="Bayesian inference">Bayesian inference</a>, <a href="https://publications.waset.org/search?q=Uncertainty%20modeling" title=" Uncertainty modeling"> Uncertainty modeling</a>, <a href="https://publications.waset.org/search?q=Monte%0D%0ACarlo%20Markov%20chain" title=" Monte Carlo Markov chain"> Monte Carlo Markov chain</a>, <a href="https://publications.waset.org/search?q=Gibbs%20sampling" title=" Gibbs sampling"> Gibbs sampling</a>, <a href="https://publications.waset.org/search?q=Production%20throughput" title=" Production throughput"> Production throughput</a> </p> <a href="https://publications.waset.org/7551/production-throughput-modeling-under-five-uncertain-variables-using-bayesian-inference" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7551/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7551/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7551/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7551/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7551/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7551/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7551/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7551/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7551/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7551/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2145</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5107</span> On the EM Algorithm and Bootstrap Approach Combination for Improving Satellite Image Fusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tijani%20Delleji">Tijani Delleji</a>, <a href="https://publications.waset.org/search?q=Mourad%20Zribi"> Mourad Zribi</a>, <a href="https://publications.waset.org/search?q=Ahmed%20Ben%20Hamida"> Ahmed Ben Hamida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses EM algorithm and Bootstrap approach combination applied for the improvement of the satellite image fusion process. This novel satellite image fusion method based on estimation theory EM algorithm and reinforced by Bootstrap approach was successfully implemented and tested. The sensor images are firstly split by a Bayesian segmentation method to determine a joint region map for the fused image. Then, we use the EM algorithm in conjunction with the Bootstrap approach to develop the bootstrap EM fusion algorithm, hence producing the fused targeted image. We proposed in this research to estimate the statistical parameters from some iterative equations of the EM algorithm relying on a reference of representative Bootstrap samples of images. Sizes of those samples are determined from a new criterion called 'hybrid criterion'. Consequently, the obtained results of our work show that using the Bootstrap EM (BEM) in image fusion improve performances of estimated parameters which involve amelioration of the fused image quality; and reduce the computing time during the fusion process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Satellite%20image%20fusion" title="Satellite image fusion">Satellite image fusion</a>, <a href="https://publications.waset.org/search?q=Bayesian%20segmentation" title=" Bayesian segmentation"> Bayesian segmentation</a>, <a href="https://publications.waset.org/search?q=Bootstrap%20approach" title=" Bootstrap approach"> Bootstrap approach</a>, <a href="https://publications.waset.org/search?q=EM%20algorithm." title=" EM algorithm."> EM algorithm.</a> </p> <a href="https://publications.waset.org/3474/on-the-em-algorithm-and-bootstrap-approach-combination-for-improving-satellite-image-fusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3474/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3474/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3474/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3474/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3474/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3474/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3474/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3474/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3474/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3474/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2260</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5106</span> Bayesian Deep Learning Algorithms for Classifying COVID-19 Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=I.%20Oloyede">I. Oloyede</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study investigates the accuracy and loss of deep learning algorithms with the set of coronavirus (COVID-19) images dataset by comparing Bayesian convolutional neural network and traditional convolutional neural network in low dimensional dataset. 50 sets of X-ray images out of which 25 were COVID-19 and the remaining 20 were normal, twenty images were set as training while five were set as validation that were used to ascertained the accuracy of the model. The study found out that Bayesian convolution neural network outperformed conventional neural network at low dimensional dataset that could have exhibited under fitting. The study therefore recommended Bayesian Convolutional neural network (BCNN) for android apps in computer vision for image detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=BCNN" title="BCNN">BCNN</a>, <a href="https://publications.waset.org/search?q=CNN" title=" CNN"> CNN</a>, <a href="https://publications.waset.org/search?q=Images" title=" Images"> Images</a>, <a href="https://publications.waset.org/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/search?q=Deep%20Learning." title=" Deep Learning. "> Deep Learning. </a> </p> <a href="https://publications.waset.org/10011862/bayesian-deep-learning-algorithms-for-classifying-covid-19-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011862/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011862/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011862/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011862/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011862/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011862/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011862/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011862/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011862/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011862/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">871</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5105</span> Scenario and Decision Analysis for Solar Energy in Egypt by 2035 Using Dynamic Bayesian Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rawaa%20H.%20El-Bidweihy">Rawaa H. El-Bidweihy</a>, <a href="https://publications.waset.org/search?q=Hisham%20M.%20Abdelsalam"> Hisham M. Abdelsalam</a>, <a href="https://publications.waset.org/search?q=Ihab%20A.%20El-Khodary"> Ihab A. El-Khodary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Bayesian networks are now considered to be a promising tool in the field of energy with different applications. In this study, the aim was to indicate the states of a previous constructed Bayesian network related to the solar energy in Egypt and the factors affecting its market share, depending on the followed data distribution type for each factor, and using either the Z-distribution approach or the Chebyshev鈥檚 inequality theorem. Later on, the separate and the conditional probabilities of the states of each factor in the Bayesian network were derived, either from the collected and scrapped historical data or from estimations and past studies. Results showed that we could use the constructed model for scenario and decision analysis concerning forecasting the total percentage of the market share of the solar energy in Egypt by 2035 and using it as a stable renewable source for generating any type of energy needed. Also, it proved that whenever the use of the solar energy increases, the total costs decreases. Furthermore, we have identified different scenarios, such as the best, worst, 50/50, and most likely one, in terms of the expected changes in the percentage of the solar energy market share. The best scenario showed an 85% probability that the market share of the solar energy in Egypt will exceed 10% of the total energy market, while the worst scenario showed only a 24% probability that the market share of the solar energy in Egypt will exceed 10% of the total energy market. Furthermore, we applied policy analysis to check the effect of changing the controllable (decision) variable鈥檚 states acting as different scenarios, to show how it would affect the target nodes in the model. Additionally, the best environmental and economical scenarios were developed to show how other factors are expected to be, in order to affect the model positively. Additional evidence and derived probabilities were added for the weather dynamic nodes whose states depend on time, during the process of converting the Bayesian network into a dynamic Bayesian network.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bayesian%20network" title="Bayesian network">Bayesian network</a>, <a href="https://publications.waset.org/search?q=Chebyshev" title=" Chebyshev"> Chebyshev</a>, <a href="https://publications.waset.org/search?q=decision%20variable" title=" decision variable"> decision variable</a>, <a href="https://publications.waset.org/search?q=dynamic%20Bayesian%20network" title=" dynamic Bayesian network"> dynamic Bayesian network</a>, <a href="https://publications.waset.org/search?q=Z-distribution" title=" Z-distribution"> Z-distribution</a> </p> <a href="https://publications.waset.org/10012227/scenario-and-decision-analysis-for-solar-energy-in-egypt-by-2035-using-dynamic-bayesian-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012227/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012227/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012227/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012227/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012227/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012227/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012227/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012227/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012227/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012227/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5104</span> A Bayesian Hierarchical 13COBT to Correct Estimates Associated with a Delayed Gastric Emptying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Leslie%20J.C.Bluck">Leslie J.C.Bluck</a>, <a href="https://publications.waset.org/search?q=Sarah%20J.Jackson"> Sarah J.Jackson</a>, <a href="https://publications.waset.org/search?q=Georgios%20Vlasakakis"> Georgios Vlasakakis</a>, <a href="https://publications.waset.org/search?q=Adrian%20Mander"> Adrian Mander</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The use of a Bayesian Hierarchical Model (BHM) to interpret breath measurements obtained during a 13C Octanoic Breath Test (13COBT) is demonstrated. The statistical analysis was implemented using WinBUGS, a commercially available computer package for Bayesian inference. A hierarchical setting was adopted where poorly defined parameters associated with a delayed Gastric Emptying (GE) were able to "borrow" strength from global distributions. This is proved to be a sufficient tool to correct model's failures and data inconsistencies apparent in conventional analyses employing a Non-linear least squares technique (NLS). Direct comparison of two parameters describing gastric emptying ng ( tlag -lag phase, t1/ 2 -half emptying time) revealed a strong correlation between the two methods. Despite our large dataset ( n = 164 ), Bayesian modeling was fast and provided a successful fitting for all subjects. On the contrary, NLS failed to return acceptable estimates in cases where GE was delayed.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bayesian%20hierarchical%20analysis" title="Bayesian hierarchical analysis">Bayesian hierarchical analysis</a>, <a href="https://publications.waset.org/search?q=13COBT" title=" 13COBT"> 13COBT</a>, <a href="https://publications.waset.org/search?q=Gastricemptying" title=" Gastricemptying"> Gastricemptying</a>, <a href="https://publications.waset.org/search?q=WinBUGS." title=" WinBUGS."> WinBUGS.</a> </p> <a href="https://publications.waset.org/3809/a-bayesian-hierarchical-13cobt-to-correct-estimates-associated-with-a-delayed-gastric-emptying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3809/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3809/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3809/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3809/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3809/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3809/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3809/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3809/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3809/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3809/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1455</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5103</span> On the Parameter of the Burr Type X under Bayesian Principles </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=T.%20N.%20Sindhu">T. N. Sindhu</a>, <a href="https://publications.waset.org/search?q=M.%20Aslam"> M. Aslam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A comprehensive Bayesian analysis has been carried out in the context of informative and non-informative priors for the shape parameter of the Burr type X distribution under different symmetric and asymmetric loss functions. Elicitation of hyperparameter through prior predictive approach is also discussed. Also we derive the expression for posterior predictive distributions, predictive intervals and the credible Intervals. As an illustration, comparisons of these estimators are made through simulation study.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Credible%20Intervals" title="Credible Intervals">Credible Intervals</a>, <a href="https://publications.waset.org/search?q=Loss%20Functions" title=" Loss Functions"> Loss Functions</a>, <a href="https://publications.waset.org/search?q=Posterior%20Predictive%20Distributions" title=" Posterior Predictive Distributions"> Posterior Predictive Distributions</a>, <a href="https://publications.waset.org/search?q=Predictive%20Intervals." title=" Predictive Intervals. "> Predictive Intervals. </a> </p> <a href="https://publications.waset.org/9997677/on-the-parameter-of-the-burr-type-x-under-bayesian-principles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997677/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997677/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997677/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997677/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997677/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997677/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997677/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997677/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997677/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997677/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1506</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5102</span> Bayesian Geostatistical Modelling of COVID-19 Datasets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=I.%20Oloyede">I. Oloyede</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The COVID-19 dataset is obtained by extracting weather, longitude, latitude, ISO3666, cases and death of coronavirus patients across the globe. The data were extracted for a period of eight day choosing uniform time within the specified period. Then mapping of cases and deaths with reverence to continents were obtained. Bayesian Geostastical modelling was carried out on the dataset. The study found out that countries in the tropical region suffered less deaths/attacks compared to countries in the temperate region, this is due to high temperature in the tropical region.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=COVID-19" title="COVID-19">COVID-19</a>, <a href="https://publications.waset.org/search?q=Bayesian" title=" Bayesian"> Bayesian</a>, <a href="https://publications.waset.org/search?q=geostastical%20modelling" title=" geostastical modelling"> geostastical modelling</a>, <a href="https://publications.waset.org/search?q=prior" title=" prior"> prior</a>, <a href="https://publications.waset.org/search?q=posterior." title=" posterior. "> posterior. </a> </p> <a href="https://publications.waset.org/10012054/bayesian-geostatistical-modelling-of-covid-19-datasets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012054/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012054/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012054/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012054/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012054/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012054/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012054/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012054/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012054/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012054/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5101</span> Bayesian Network Model for Students- Laboratory Work Performance Assessment: An Empirical Investigation of the Optimal Construction Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ifeyinwa%20E.%20Achumba">Ifeyinwa E. Achumba</a>, <a href="https://publications.waset.org/search?q=Djamel%20Azzi"> Djamel Azzi</a>, <a href="https://publications.waset.org/search?q=Rinat%20Khusainov"> Rinat Khusainov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are three approaches to complete Bayesian Network (BN) model construction: total expert-centred, total datacentred, and semi data-centred. These three approaches constitute the basis of the empirical investigation undertaken and reported in this paper. The objective is to determine, amongst these three approaches, which is the optimal approach for the construction of a BN-based model for the performance assessment of students- laboratory work in a virtual electronic laboratory environment. BN models were constructed using all three approaches, with respect to the focus domain, and compared using a set of optimality criteria. In addition, the impact of the size and source of the training, on the performance of total data-centred and semi data-centred models was investigated. The results of the investigation provide additional insight for BN model constructors and contribute to literature providing supportive evidence for the conceptual feasibility and efficiency of structure and parameter learning from data. In addition, the results highlight other interesting themes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bayesian%20networks" title="Bayesian networks">Bayesian networks</a>, <a href="https://publications.waset.org/search?q=model%20construction" title=" model construction"> model construction</a>, <a href="https://publications.waset.org/search?q=parameterlearning" title=" parameterlearning"> parameterlearning</a>, <a href="https://publications.waset.org/search?q=structure%20learning" title=" structure learning"> structure learning</a>, <a href="https://publications.waset.org/search?q=performance%20index" title=" performance index"> performance index</a>, <a href="https://publications.waset.org/search?q=model%20comparison." title=" model comparison."> model comparison.</a> </p> <a href="https://publications.waset.org/685/bayesian-network-model-for-students-laboratory-work-performance-assessment-an-empirical-investigation-of-the-optimal-construction-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/685/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/685/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/685/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/685/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/685/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/685/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/685/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/685/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/685/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/685/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1727</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5100</span> Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Wanhyun%20Cho">Wanhyun Cho</a>, <a href="https://publications.waset.org/search?q=Soonja%20Kang"> Soonja Kang</a>, <a href="https://publications.waset.org/search?q=Sangkyoon%20Kim"> Sangkyoon Kim</a>, <a href="https://publications.waset.org/search?q=Soonyoung%20Park"> Soonyoung Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Human%20action%20recognition" title="Human action recognition">Human action recognition</a>, <a href="https://publications.waset.org/search?q=Bayesian%20HMM" title=" Bayesian HMM"> Bayesian HMM</a>, <a href="https://publications.waset.org/search?q=Dirichlet%20process%20mixture%20model" title=" Dirichlet process mixture model"> Dirichlet process mixture model</a>, <a href="https://publications.waset.org/search?q=Gaussian-Wishart%20emission%20model" title=" Gaussian-Wishart emission model"> Gaussian-Wishart emission model</a>, <a href="https://publications.waset.org/search?q=Variational%20Bayesian%20inference" title=" Variational Bayesian inference"> Variational Bayesian inference</a>, <a href="https://publications.waset.org/search?q=Prior%20distribution%20and%20approximate%20posterior%20distribution" title=" Prior distribution and approximate posterior distribution"> Prior distribution and approximate posterior distribution</a>, <a href="https://publications.waset.org/search?q=KTH%20dataset." title=" KTH dataset."> KTH dataset.</a> </p> <a href="https://publications.waset.org/10005884/human-action-recognition-using-variational-bayesian-hmm-with-dirichlet-process-mixture-of-gaussian-wishart-emission-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005884/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005884/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005884/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005884/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005884/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005884/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005884/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005884/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005884/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005884/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1005</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5099</span> Improving Classification in Bayesian Networks using Structural Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hong%20Choon%20Ong">Hong Choon Ong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Na茂ve Bayes classifiers are simple probabilistic classifiers. Classification extracts patterns by using data file with a set of labeled training examples and is currently one of the most significant areas in data mining. However, Na茂ve Bayes assumes the independence among the features. Structural learning among the features thus helps in the classification problem. In this study, the use of structural learning in Bayesian Network is proposed to be applied where there are relationships between the features when using the Na茂ve Bayes. The improvement in the classification using structural learning is shown if there exist relationship between the features or when they are not independent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Bayesian%20Network" title="Bayesian Network">Bayesian Network</a>, <a href="https://publications.waset.org/search?q=Classification" title=" Classification"> Classification</a>, <a href="https://publications.waset.org/search?q=Na%C3%AFve%20Bayes" title=" Na茂ve Bayes"> Na茂ve Bayes</a>, <a href="https://publications.waset.org/search?q=Structural%20Learning." title="Structural Learning.">Structural Learning.</a> </p> <a href="https://publications.waset.org/15047/improving-classification-in-bayesian-networks-using-structural-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15047/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15047/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15047/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15047/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15047/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15047/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15047/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15047/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15047/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15047/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2599</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Bayesian%20approach&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Bayesian%20approach&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Bayesian%20approach&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Bayesian%20approach&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Bayesian%20approach&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Bayesian%20approach&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Bayesian%20approach&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Bayesian%20approach&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Bayesian%20approach&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Bayesian%20approach&page=170">170</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Bayesian%20approach&page=171">171</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Bayesian%20approach&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>