CINXE.COM

Search results for: octree

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: octree</title> <meta name="description" content="Search results for: octree"> <meta name="keywords" content="octree"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="octree" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="octree"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: octree</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> A Simple Algorithm for Real-Time 3D Capturing of an Interior Scene Using a Linear Voxel Octree and a Floating Origin Camera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vangelis%20Drosos">Vangelis Drosos</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20Tsoukalos"> Dimitrios Tsoukalos</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20Tsolis"> Dimitrios Tsolis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a simple algorithm for capturing a 3D scene (focused on the usage of mobile device cameras in the context of augmented/mixed reality) by using a floating origin camera solution and storing the resulting information in a linear voxel octree. Data is derived from cloud points captured by a mobile device camera. For the purposes of this paper, we assume a scene of fixed size (known to us or determined beforehand) and a fixed voxel resolution. The resulting data is stored in a linear voxel octree using a hashtable. We commence by briefly discussing the logic behind floating origin approaches and the usage of linear voxel octrees for efficient storage. Following that, we present the algorithm for translating captured feature points into voxel data in the context of a fixed origin world and storing them. Finally, we discuss potential applications and areas of future development and improvement to the efficiency of our solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=voxel" title="voxel">voxel</a>, <a href="https://publications.waset.org/abstracts/search?q=octree" title=" octree"> octree</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=XR" title=" XR"> XR</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20origin" title=" floating origin"> floating origin</a> </p> <a href="https://publications.waset.org/abstracts/136753/a-simple-algorithm-for-real-time-3d-capturing-of-an-interior-scene-using-a-linear-voxel-octree-and-a-floating-origin-camera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Multi-Modal Film Boiling Simulations on Adaptive Octree Grids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Wasy%20Akhtar">M. Wasy Akhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multi-modal film boiling simulations are carried out on adaptive octree grids. The liquid-vapor interface is captured using the volume-of-fluid framework adjusted to account for exchanges of mass, momentum, and energy across the interface. Surface tension effects are included using a volumetric source term in the momentum equations. The phase change calculations are conducted based on the exact location and orientation of the interface; however, the source terms are calculated using the mixture variables to be consistent with the one field formulation used to represent the entire fluid domain. The numerical model on octree representation of the computational grid is first verified using test cases including advection tests in severely deforming velocity fields, gravity-based instabilities and bubble growth in uniformly superheated liquid under zero gravity. The model is then used to simulate both single and multi-modal film boiling simulations. The octree grid is dynamically adapted in order to maintain the highest grid resolution on the instability fronts using markers of interface location, volume fraction, and thermal gradients. The method thus provides an efficient platform to simulate fluid instabilities with or without phase change in the presence of body forces like gravity or shear layer instabilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boiling%20flows" title="boiling flows">boiling flows</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20octree%20grids" title=" dynamic octree grids"> dynamic octree grids</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20capturing" title=" interface capturing"> interface capturing</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change" title=" phase change"> phase change</a> </p> <a href="https://publications.waset.org/abstracts/81547/multi-modal-film-boiling-simulations-on-adaptive-octree-grids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Shape Management Method of Large Structure Based on Octree Space Partitioning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gichun%20Cha">Gichun Cha</a>, <a href="https://publications.waset.org/abstracts/search?q=Changgil%20Lee"> Changgil Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghee%20Park"> Seunghee Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the study is to construct the shape management method contributing to the safety of the large structure. In Korea, the research of the shape management is lack because of the new attempted technology. Terrestrial Laser Scanning (TLS) is used for measurements of large structures. TLS provides an efficient way to actively acquire accurate the point clouds of object surfaces or environments. The point clouds provide a basis for rapid modeling in the industrial automation, architecture, construction or maintenance of the civil infrastructures. TLS produce a huge amount of point clouds. Registration, Extraction and Visualization of data require the processing of a massive amount of scan data. The octree can be applied to the shape management of the large structure because the scan data is reduced in the size but, the data attributes are maintained. The octree space partitioning generates the voxel of 3D space, and the voxel is recursively subdivided into eight sub-voxels. The point cloud of scan data was converted to voxel and sampled. The experimental site is located at Sungkyunkwan University. The scanned structure is the steel-frame bridge. The used TLS is Leica ScanStation C10/C5. The scan data was condensed 92%, and the octree model was constructed with 2 millimeter in resolution. This study presents octree space partitioning for handling the point clouds. The basis is created by shape management of the large structures such as double-deck tunnel, building and bridge. The research will be expected to improve the efficiency of structural health monitoring and maintenance. "This work is financially supported by 'U-City Master and Doctor Course Grant Program' and the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIP) (NRF- 2015R1D1A1A01059291)." <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20scan%20data" title="3D scan data">3D scan data</a>, <a href="https://publications.waset.org/abstracts/search?q=octree%20space%20partitioning" title=" octree space partitioning"> octree space partitioning</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20management" title=" shape management"> shape management</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title=" structural health monitoring"> structural health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=terrestrial%20laser%20scanning" title=" terrestrial laser scanning"> terrestrial laser scanning</a> </p> <a href="https://publications.waset.org/abstracts/57257/shape-management-method-of-large-structure-based-on-octree-space-partitioning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Fast Transient Workflow for External Automotive Aerodynamic Simulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christina%20Peristeri">Christina Peristeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Tobias%20Berg"> Tobias Berg</a>, <a href="https://publications.waset.org/abstracts/search?q=Domenico%20Caridi"> Domenico Caridi</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Hutcheson"> Paul Hutcheson</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Winstanley"> Robert Winstanley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years the demand for rapid innovations in the automotive industry has led to the need for accelerated simulation procedures while retaining a detailed representation of the simulated phenomena. The project鈥檚 aim is to create a fast transient workflow for external aerodynamic CFD simulations of road vehicles. The geometry used was the SAE Notchback Closed Cooling DrivAer model, and the simulation results were compared with data from wind tunnel tests. The meshes generated for this study were of two types. One was a mix of polyhedral cells near the surface and hexahedral cells away from the surface. The other was an octree hex mesh with a rapid method of fitting to the surface. Three different grid refinement levels were used for each mesh type, with the biggest total cell count for the octree mesh being close to 1 billion. A series of steady-state solutions were obtained on three different grid levels using a pseudo-transient coupled solver and a k-omega-based RANS turbulence model. A mesh-independent solution was found in all cases with a medium level of refinement with 200 million cells. Stress-Blended Eddy Simulation (SBES) was chosen for the transient simulations, which uses a shielding function to explicitly switch between RANS and LES mode. A converged pseudo-transient steady-state solution was used to initialize the transient SBES run that was set up with the SIMPLEC pressure-velocity coupling scheme to reach the fastest solution (on both CPU & GPU solvers). An important part of this project was the use of FLUENT鈥檚 Multi-GPU solver. Tesla A100 GPU has been shown to be 8x faster than an Intel 48-core Sky Lake CPU system, leading to significant simulation speed-up compared to the traditional CPU solver. The current study used 4 Tesla A100 GPUs and 192 CPU cores. The combination of rapid octree meshing and GPU computing shows significant promise in reducing time and hardware costs for industrial strength aerodynamic simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=DrivAer" title=" DrivAer"> DrivAer</a>, <a href="https://publications.waset.org/abstracts/search?q=LES" title=" LES"> LES</a>, <a href="https://publications.waset.org/abstracts/search?q=Multi-GPU%20solver" title=" Multi-GPU solver"> Multi-GPU solver</a>, <a href="https://publications.waset.org/abstracts/search?q=octree%20mesh" title=" octree mesh"> octree mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=RANS" title=" RANS"> RANS</a> </p> <a href="https://publications.waset.org/abstracts/155211/fast-transient-workflow-for-external-automotive-aerodynamic-simulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Map Matching Performance under Various Similarity Metrics for Heterogeneous Robot Teams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Akay">M. C. Akay</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aybakan"> A. Aybakan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Temeltas"> H. Temeltas </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aerial and ground robots have various advantages of usage in different missions. Aerial robots can move quickly and get a different sight of view of the area, but those vehicles cannot carry heavy payloads. On the other hand, unmanned ground vehicles (UGVs) are slow moving vehicles, since those can carry heavier payloads than unmanned aerial vehicles (UAVs). In this context, we investigate the performances of various Similarity Metrics to provide a common map for Heterogeneous Robot Team (HRT) in complex environments. Within the usage of Lidar Odometry and Octree Mapping technique, the local 3D maps of the environment are gathered. &nbsp;In order to obtain a common map for HRT, informative theoretic similarity metrics are exploited. All types of these similarity metrics gave adequate as allowable simulation time and accurate results that can be used in different types of applications. For the heterogeneous multi robot team, those methods can be used to match different types of maps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=common%20maps" title="common maps">common maps</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20robot%20team" title=" heterogeneous robot team"> heterogeneous robot team</a>, <a href="https://publications.waset.org/abstracts/search?q=map%20matching" title=" map matching"> map matching</a>, <a href="https://publications.waset.org/abstracts/search?q=informative%20theoretic%20similarity%20metrics" title=" informative theoretic similarity metrics"> informative theoretic similarity metrics</a> </p> <a href="https://publications.waset.org/abstracts/99098/map-matching-performance-under-various-similarity-metrics-for-heterogeneous-robot-teams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Development of a Shape Based Estimation Technology Using Terrestrial Laser Scanning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gichun%20Cha">Gichun Cha</a>, <a href="https://publications.waset.org/abstracts/search?q=Byoungjoon%20Yu"> Byoungjoon Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jihwan%20Park"> Jihwan Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Minsoo%20Park"> Minsoo Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Junghyun%20Im"> Junghyun Im</a>, <a href="https://publications.waset.org/abstracts/search?q=Sehwan%20Park"> Sehwan Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujung%20Sin"> Sujung Sin</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghee%20Park"> Seunghee Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this research is to estimate a structural shape change using terrestrial laser scanning. This study proceeds with development of data reduction and shape change estimation algorithm for large-capacity scan data. The point cloud of scan data was converted to voxel and sampled. Technique of shape estimation is studied to detect changes in structure patterns, such as skyscrapers, bridges, and tunnels based on large point cloud data. The point cloud analysis applies the octree data structure to speed up the post-processing process for change detection. The point cloud data is the relative representative value of shape information, and it used as a model for detecting point cloud changes in a data structure. Shape estimation model is to develop a technology that can detect not only normal but also immediate structural changes in the event of disasters such as earthquakes, typhoons, and fires, thereby preventing major accidents caused by aging and disasters. The study will be expected to improve the efficiency of structural health monitoring and maintenance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=terrestrial%20laser%20scanning" title="terrestrial laser scanning">terrestrial laser scanning</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20cloud" title=" point cloud"> point cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20information%20model" title=" shape information model"> shape information model</a>, <a href="https://publications.waset.org/abstracts/search?q=displacement%20measurement" title=" displacement measurement"> displacement measurement</a> </p> <a href="https://publications.waset.org/abstracts/92768/development-of-a-shape-based-estimation-technology-using-terrestrial-laser-scanning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Unsteady Three-Dimensional Adaptive Spatial-Temporal Multi-Scale Direct Simulation Monte Carlo Solver to Simulate Rarefied Gas Flows in Micro/Nano Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirvat%20Shamseddine">Mirvat Shamseddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Issam%20Lakkis"> Issam Lakkis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present an efficient, three-dimensional parallel multi-scale Direct Simulation Monte Carlo (DSMC) algorithm for the simulation of unsteady rarefied gas flows in micro/nanosystems. The algorithm employs a novel spatiotemporal adaptivity scheme. The scheme performs a fully dynamic multi-level grid adaption based on the gradients of flow macro-parameters and an automatic temporal adaptation. The computational domain consists of a hierarchical octree-based Cartesian grid representation of the flow domain and a triangular mesh for the solid object surfaces. The hybrid mesh, combined with the spatiotemporal adaptivity scheme, allows for increased flexibility and efficient data management, rendering the framework suitable for efficient particle-tracing and dynamic grid refinement and coarsening. The parallel algorithm is optimized to run DSMC simulations of strongly unsteady, non-equilibrium flows over multiple cores. The presented method is validated by comparing with benchmark studies and then employed to improve the design of micro-scale hotwire thermal sensors in rarefied gas flows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DSMC" title="DSMC">DSMC</a>, <a href="https://publications.waset.org/abstracts/search?q=oct-tree%20hierarchical%20grid" title=" oct-tree hierarchical grid"> oct-tree hierarchical grid</a>, <a href="https://publications.waset.org/abstracts/search?q=ray%20tracing" title=" ray tracing"> ray tracing</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial-temporal%20adaptivity%20scheme" title=" spatial-temporal adaptivity scheme"> spatial-temporal adaptivity scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20rarefied%20gas%20flows" title=" unsteady rarefied gas flows"> unsteady rarefied gas flows</a> </p> <a href="https://publications.waset.org/abstracts/96192/unsteady-three-dimensional-adaptive-spatial-temporal-multi-scale-direct-simulation-monte-carlo-solver-to-simulate-rarefied-gas-flows-in-micronano-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Optimization of the Mechanical Performance of Fused Filament Fabrication Parts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iv%C3%A1n%20Rivet">Iv谩n Rivet</a>, <a href="https://publications.waset.org/abstracts/search?q=Narges%20Dialami"> Narges Dialami</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Cervera"> Miguel Cervera</a>, <a href="https://publications.waset.org/abstracts/search?q=Michele%20Chiumenti"> Michele Chiumenti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Process parameters in Additive Manufacturing (AM) play a critical role in the mechanical performance of the final component. In order to find the input configuration that guarantees the optimal performance of the printed part, the process-performance relationship must be found. Fused Filament Fabrication (FFF) is the selected demonstrative AM technology due to its great popularity in the industrial manufacturing world. A material model that considers the different printing patterns present in a FFF part is used. A voxelized mesh is built from the manufacturing toolpaths described in the G-Code file. An Adaptive Mesh Refinement (AMR) based on the octree strategy is used in order to reduce the complexity of the mesh while maintaining its accuracy. High-fidelity and cost-efficient Finite Element (FE) simulations are performed and the influence of key process parameters in the mechanical performance of the component is analyzed. A robust optimization process based on appropriate failure criteria is developed to find the printing direction that leads to the optimal mechanical performance of the component. The Tsai-Wu failure criterion is implemented due to the orthotropy and heterogeneity constitutive nature of FFF components and because of the differences between the strengths in tension and compression. The optimization loop implements a modified version of an Anomaly Detection (AD) algorithm and uses the computed metrics to obtain the optimal printing direction. The developed methodology is verified with a case study on an industrial demonstrator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=printing%20direction" title=" printing direction"> printing direction</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20performance" title=" mechanical performance"> mechanical performance</a>, <a href="https://publications.waset.org/abstracts/search?q=voxelization" title=" voxelization"> voxelization</a> </p> <a href="https://publications.waset.org/abstracts/150804/optimization-of-the-mechanical-performance-of-fused-filament-fabrication-parts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10