CINXE.COM

Search results for: tc-99m labeled radio-pharmaceutical

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: tc-99m labeled radio-pharmaceutical</title> <meta name="description" content="Search results for: tc-99m labeled radio-pharmaceutical"> <meta name="keywords" content="tc-99m labeled radio-pharmaceutical"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="tc-99m labeled radio-pharmaceutical" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="tc-99m labeled radio-pharmaceutical"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 269</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: tc-99m labeled radio-pharmaceutical</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">269</span> Radio Labeling and Characterization of Cysteine and Its Derivatives with Tc99m and Their Bio-Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabia%20Ashfaq">Rabia Ashfaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Iqbal"> Saeed Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Atiq%20ur%20Rehman"> Atiq ur Rehman</a>, <a href="https://publications.waset.org/abstracts/search?q=Irfanullah%20Khan"> Irfanullah Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An extensive series of radiopharmaceuticals have been explored in order to discover a better brain tumour diagnostic agent. Tc99m labelling with cysteine and its derivatives in liposomes shows effective tagging of about 70% to 80 %. Due to microscopic size it successfully crossed the brain barrier in 2 minutes which gradually decreases in 5 to 15 minutes. HMPAO labelled with Tc99m is another important radiopharmaceutical used to study brain perfusion but it comes with a flaw that it’s only functional during epilepsy. 1, 1 ECD is purely used in Tc99m ECD formulation; because it not only tends to cross the blood brain barrier but it can be metabolized which can be easily entrapped in human brain. Radio labelling of Cysteine with Tc99m at room temperature was performed which yielded no good results. Hence cysteine derivatives with salicylaldehyde were prepared that produced about 75 % yield for ligand. In order to perform it’s radio labelling a suitable solvent DMSO was selected and physical parameters were performed. Elemental analyser produced remarkably similar results for ligand as reported in literature. IR spectra of Ligand in DMSO concluded in the absence of SH stretch and presence of N-H vibration. Thermal analysis of the ligand further suggested its decomposition pattern with no distinct curve for a melting point. Radio labelling of ligand was performed which produced excellent results giving up to 88% labelling at pH 5.0. Clinical trials using Rabbit were performed after validating the products reproducibility. The radiopharmaceutical prepared was injected into the rabbit. Dynamic as well as static study was performed under the SPECT. It showed considerable uptake in the kidneys and liver considering it suitable for the Hypatobilliary study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marcapto%20compounds" title="marcapto compounds">marcapto compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=99mTc%20-%20radiolabeling" title=" 99mTc - radiolabeling"> 99mTc - radiolabeling</a>, <a href="https://publications.waset.org/abstracts/search?q=salicylaldicysteine" title=" salicylaldicysteine"> salicylaldicysteine</a>, <a href="https://publications.waset.org/abstracts/search?q=thiozolidine" title=" thiozolidine"> thiozolidine</a> </p> <a href="https://publications.waset.org/abstracts/44640/radio-labeling-and-characterization-of-cysteine-and-its-derivatives-with-tc99m-and-their-bio-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">268</span> Modeling the Time Dependent Biodistribution of a 177Lu Labeled Somatostatin Analogues for Targeted Radiotherapy of Neuroendocrine Tumors Using Compartmental Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdieh%20Jajroudi">Mahdieh Jajroudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Developing a pharmacokinetic model for the neuroendocrine tumors therapy agent 177Lu-DOTATATE in nude mice bearing AR42J rat pancreatic tumor to investigate and evaluate the behavior of the complex was the main purpose of this study. The utilization of compartmental analysis permits the mathematical differencing of tissues and organs to become acquainted with the concentration of activity in each fraction of interest. Biodistribution studies are onerous and troublesome to perform in humans, but such data can be obtained facilely in rodents. A physiologically based pharmacokinetic model for scaling up activity concentration in particular organs versus time was developed. The mathematical model exerts physiological parameters including organ volumes, blood flow rates, and vascular permabilities; the compartments (organs) are connected anatomically. This allows the use of scale-up techniques to forecast new complex distribution in humans' each organ. The concentration of the radiopharmaceutical in various organs was measured at different times. The temporal behavior of biodistribution of 177Lu labeled somatostatin analogues was modeled and drawn as function of time. Conclusion: The variation of pharmaceutical concentration in all organs is characterized with summation of six to nine exponential terms and it approximates our experimental data with precision better than 1%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodistribution%20modeling" title="biodistribution modeling">biodistribution modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=compartmental%20analysis" title=" compartmental analysis"> compartmental analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=177Lu%20labeled%20somatostatin%20analogues" title=" 177Lu labeled somatostatin analogues"> 177Lu labeled somatostatin analogues</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroendocrine%20tumors" title=" neuroendocrine tumors"> neuroendocrine tumors</a> </p> <a href="https://publications.waset.org/abstracts/32538/modeling-the-time-dependent-biodistribution-of-a-177lu-labeled-somatostatin-analogues-for-targeted-radiotherapy-of-neuroendocrine-tumors-using-compartmental-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">267</span> Novel Liposomal Nanocarriers For Long-term Tumor Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Ahrari">Mohamad Ahrari</a>, <a href="https://publications.waset.org/abstracts/search?q=Kayvan%20Sadri"> Kayvan Sadri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Reza%20Jafari"> Mahmoud Reza Jafari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> PEGylated liposomes have a smaller volume of distribution and decreased clearance, consequently, due to their more prolonged presence in bloodstream and maintaining their stability during this period, these liposomes can be applied for imaging tumoral sites. The purpose of this study is to develop an appropriate radiopharmaceutical agent in long-term imaging for improved diagnosis and evaluation of tumors. In this study, liposomal formulations encapsulating albumin is synthesized by solvent evaporation method along with homogenization, and their characteristics were assessed. Then these liposomes labeled by Philips method and the rate of stability of labeled liposomes in serum, and ultimately the rate of biodistribution and gamma scintigraphy in C26-colon carcinoma tumor-bearing mice, were studied. The result of the study of liposomal characteristics displayed that capable of accumulating in tumor sites based of EPR phenomenon. these liposomes also have high stability for maintaining encapsulated albumin in a long time. In the study of biodistribution of these liposomes in mice, they accumulated more in the kidney, liver, spleen, and tumor sites, which, even after clearing formulations in the bloodstream, they existed in high levels in these organs up to 96 hours. In gamma scintigraphy also, organs with high activity accumulation from early hours up to 96 hours were visible in the form of hot spots. concluded that PEGylated liposomal formulation encapsulating albumin can be labeled with In-Oxine, and obtained stabilized formulation for long-term imaging, that have more favorable conditions for the evaluation of tumors and it will cause early diagnosis of tumors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano%20liposome" title="nano liposome">nano liposome</a>, <a href="https://publications.waset.org/abstracts/search?q=111In-oxine" title=" 111In-oxine"> 111In-oxine</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=biodistribution" title=" biodistribution"> biodistribution</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor" title=" tumor"> tumor</a> </p> <a href="https://publications.waset.org/abstracts/162894/novel-liposomal-nanocarriers-for-long-term-tumor-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">266</span> Developing an Intonation Labeled Dataset for Hindi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esha%20Banerjee">Esha Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Atul%20Kumar%20Ojha"> Atul Kumar Ojha</a>, <a href="https://publications.waset.org/abstracts/search?q=Girish%20Nath%20Jha"> Girish Nath Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to develop an intonation labeled database for Hindi. Although no single standard for prosody labeling exists in Hindi, researchers in the past have employed perceptual and statistical methods in literature to draw inferences about the behavior of prosody patterns in Hindi. Based on such existing research and largely agreed upon intonational theories in Hindi, this study attempts to develop a manually annotated prosodic corpus of Hindi speech data, which can be used for training speech models for natural-sounding speech in the future. 100 sentences ( 500 words) each for declarative and interrogative types have been labeled using Praat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=speech%20dataset" title="speech dataset">speech dataset</a>, <a href="https://publications.waset.org/abstracts/search?q=Hindi" title=" Hindi"> Hindi</a>, <a href="https://publications.waset.org/abstracts/search?q=intonation" title=" intonation"> intonation</a>, <a href="https://publications.waset.org/abstracts/search?q=labeled%20corpus" title=" labeled corpus"> labeled corpus</a> </p> <a href="https://publications.waset.org/abstracts/142503/developing-an-intonation-labeled-dataset-for-hindi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">265</span> Method Optimisation for [¹⁸F]-FDG Rodent Imaging Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Visser">J. Visser</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Driver"> C. Driver</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Ebenhan"> T. Ebenhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> [¹⁸F]-FDG (fluorodeoxyglucose) is a radiopharmaceutical compound that is used for non-invasive cancer tumor imaging through positron emission tomography (PET). This radiopharmaceutical is used to visualise the metabolic processes in tumour tissues, which can be applied for the diagnosis and prognosis of various types of cancer. [¹⁸F]-FDG has widespread use in both clinical and pre-clinical research settings. Imaging using [¹⁸F]-FDG results in representative normal tissue distribution as well as visualisation of hypermetabolic lesions ([¹⁸F]-FDG avid foci). The metabolic tissue concentration of these lesions following [¹⁸F]-FDG administration can be quantified using Standard Uptake Values (SUV). Standard uptake values of [¹⁸F]-FDG-based Positron Emission Tomography can be influenced by various biological and technical handling factors. Biological factors that affect [¹⁸F]-FDG uptake include the blood glucose levels of subjects, normal physiological variants between subjects and administration of certain pharmaceutical agents. Technical factors that can have an effect include the route of radiopharmaceutical or pharmaceutical agents administered and environmental conditions such as ambient temperature and lighting. These factors influencing tracer uptake need to be investigated to improve the robustness of the imaging protocol, which will achieve reproducible image acquisition across various research projects, optimised tumor visualisation and increased data validity and reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluorodeoxyglucose" title="fluorodeoxyglucose">fluorodeoxyglucose</a>, <a href="https://publications.waset.org/abstracts/search?q=tumour%20imaging" title=" tumour imaging"> tumour imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodent" title=" Rodent"> Rodent</a>, <a href="https://publications.waset.org/abstracts/search?q=Blood%20Glucose" title=" Blood Glucose"> Blood Glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=PET%2FCT%20Imaging" title=" PET/CT Imaging"> PET/CT Imaging</a> </p> <a href="https://publications.waset.org/abstracts/193486/method-optimisation-for-18f-fdg-rodent-imaging-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">264</span> Additional Method for the Purification of Lanthanide-Labeled Peptide Compounds Pre-Purified by Weak Cation Exchange Cartridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Eryilmaz">K. Eryilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Mercanoglu"> G. Mercanoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: Purification of the final product, which is the last step in the synthesis of lanthanide-labeled peptide compounds, can be accomplished by different methods. Among these methods, the two most commonly used methods are C18 solid phase extraction (SPE) and weak cation exchanger cartridge elution. SPE C18 solid phase extraction method yields high purity final product, while elution from the weak cation exchanger cartridge is pH dependent and ineffective in removing colloidal impurities. The aim of this work is to develop an additional purification method for the lanthanide-labeled peptide compound in cases where the desired radionuclidic and radiochemical purity of the final product can not be achieved because of pH problem or colloidal impurity. Material and Methods: For colloidal impurity formation, 3 mL of water for injection (WFI) was added to 30 mCi of 177LuCl3 solution and allowed to stand for 1 day. 177Lu-DOTATATE was synthesized using EZAG ML-EAZY module (10 mCi/mL). After synthesis, the final product was mixed with the colloidal impurity solution (total volume:13 mL, total activity: 40 mCi). The resulting mixture was trapped in SPE-C18 cartridge. The cartridge was washed with 10 ml saline to remove impurities to the waste vial. The product trapped in the cartridge was eluted with 2 ml of 50% ethanol and collected to the final product vial via passing through a 0.22μm filter. The final product was diluted with 10 mL of saline. Radiochemical purity before and after purification was analysed by HPLC method. (column: ACE C18-100A. 3µm. 150 x 3.0mm, mobile phase: Water-Acetonitrile-Trifluoro acetic acid (75:25:1), flow rate: 0.6 mL/min). Results: UV and radioactivity detector results in HPLC analysis showed that colloidal impurities were completely removed from the 177Lu-DOTATATE/ colloidal impurity mixture by purification method. Conclusion: The improved purification method can be used as an additional method to remove impurities that may result from the lanthanide-peptide synthesis in which the weak cation exchange purification technique is used as the last step. The purification of the final product and the GMP compliance (the final aseptic filtration and the sterile disposable system components) are two major advantages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lanthanide" title="lanthanide">lanthanide</a>, <a href="https://publications.waset.org/abstracts/search?q=peptide" title=" peptide"> peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=labeling" title=" labeling"> labeling</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification"> purification</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclide" title=" radionuclide"> radionuclide</a>, <a href="https://publications.waset.org/abstracts/search?q=radiopharmaceutical" title=" radiopharmaceutical"> radiopharmaceutical</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/96095/additional-method-for-the-purification-of-lanthanide-labeled-peptide-compounds-pre-purified-by-weak-cation-exchange-cartridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">263</span> Particle Swarm Optimization Based Method for Minimum Initial Marking in Labeled Petri Nets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hichem%20Kmimech">Hichem Kmimech</a>, <a href="https://publications.waset.org/abstracts/search?q=Achref%20Jabeur%20Telmoudi"> Achref Jabeur Telmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lotfi%20Nabli"> Lotfi Nabli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The estimation of the initial marking minimum (MIM) is a crucial problem in labeled Petri nets. In the case of multiple choices, the search for the initial marking leads to a problem of optimization of the minimum allocation of resources with two constraints. The first concerns the firing sequence that could be legal on the initial marking with respect to the firing vector. The second deals with the total number of tokens that can be minimal. In this article, the MIM problem is solved by the meta-heuristic particle swarm optimization (PSO). The proposed approach presents the advantages of PSO to satisfy the two previous constraints and find all possible combinations of minimum initial marking with the best computing time. This method, more efficient than conventional ones, has an excellent impact on the resolution of the MIM problem. We prove through a set of definitions, lemmas, and examples, the effectiveness of our approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marking" title="marking">marking</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20system" title=" production system"> production system</a>, <a href="https://publications.waset.org/abstracts/search?q=labeled%20Petri%20nets" title=" labeled Petri nets"> labeled Petri nets</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a> </p> <a href="https://publications.waset.org/abstracts/98499/particle-swarm-optimization-based-method-for-minimum-initial-marking-in-labeled-petri-nets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">262</span> A Meta Regression Analysis to Detect Price Premium Threshold for Eco-Labeled Seafood </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cristina%20Giosu%C3%A8">Cristina Giosuè</a>, <a href="https://publications.waset.org/abstracts/search?q=Federica%20Biondo"> Federica Biondo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Vitale"> Sergio Vitale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last years, the consumers' awareness for environmental concerns has been increasing, and seafood eco-labels are considered as a possible instrument to improve both seafood markets and sustainable fishing management. In this direction, the aim of this study was to carry out a meta-analysis on consumers’ willingness to pay (WTP) for eco-labeled wild seafood, by a meta-regression. Therefore, only papers published on ISI journals were searched on “Web of Knowledge” and “SciVerse Scopus” platforms, using the combinations of the following key words: seafood, ecolabel, eco-label, willingness, WTP and premium. The dataset was built considering: paper’s and survey’s codes, year of publication, first author’s nationality, species’ taxa and family, sample size, survey’s continent and country, data collection (where and how), gender and age of consumers, brand and ΔWTP. From analysis the interest on eco labeled seafood emerged clearly, in particular in developed countries. In general, consumers declared greater willingness to pay than that actually applied for eco-label products, with difference related to taxa and brand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco%20label" title="eco label">eco label</a>, <a href="https://publications.waset.org/abstracts/search?q=meta%20regression" title=" meta regression"> meta regression</a>, <a href="https://publications.waset.org/abstracts/search?q=seafood" title=" seafood"> seafood</a>, <a href="https://publications.waset.org/abstracts/search?q=willingness%20to%20pay" title=" willingness to pay"> willingness to pay</a> </p> <a href="https://publications.waset.org/abstracts/122921/a-meta-regression-analysis-to-detect-price-premium-threshold-for-eco-labeled-seafood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">261</span> Quality Control of 99mTc-Labeled Radiopharmaceuticals Using the Chromatography Strips</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasuyuki%20Takahashi">Yasuyuki Takahashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Akemi%20Yoshida"> Akemi Yoshida</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirotaka%20Shimada"> Hirotaka Shimada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 99mTc-2-methoxy-isobutyl-isonitrile (MIBI) and 99mTcmercaptoacetylgylcylglycyl-glycine (MAG3 ) are heat to 368-372K and are labeled with 99mTc-pertechnetate. Quality control (QC) of 99mTc-labeled radiopharmaceuticals is performed at hospitals, using liquid chromatography, which is difficult to perform in general hospitals. We used chromatography strips to simplify QC and investigated the effects of the test procedures on quality control. In this study is 99mTc- MAG3. Solvent using chloroform + acetone + tetrahydrofuran, and the gamma counter was ARC-380CL. The changed conditions are as follows; heating temperature, resting time after labeled, and expiration year for use: which were 293, 313, 333, 353 and 372K; 15 min (293K and 372K) and 1 hour (293K); and 2011, 2012, 2013, 2014 and 2015 respectively were tested. Measurement time using the gamma counter was one minute. A nuclear medical clinician decided the quality of the preparation in judging the usability of the retest agent. Two people conducted the test procedure twice, in order to compare reproducibility. The percentage of radiochemical purity (% RCP) was approximately 50% under insufficient heat treatment, which improved as the temperature and heating time increased. Moreover, the % RCP improved with time even under low temperatures. Furthermore, there was no deterioration with time after the expiration date. The objective of these tests was to determine soluble 99mTc impurities, including 99mTc-pertechnetate and the hydrolyzed-reduced 99mTc. Therefore, we assumed that insufficient heating and heating to operational errors in the labeling. It is concluded that quality control is a necessary procedure in nuclear medicine to ensure safe scanning. It is suggested that labeling is necessary to identify specifications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title="quality control">quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=tc-99m%20labeled%20radio-pharmaceutical" title=" tc-99m labeled radio-pharmaceutical"> tc-99m labeled radio-pharmaceutical</a>, <a href="https://publications.waset.org/abstracts/search?q=chromatography%20strip" title=" chromatography strip"> chromatography strip</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20medicine" title=" nuclear medicine"> nuclear medicine</a> </p> <a href="https://publications.waset.org/abstracts/51516/quality-control-of-99mtc-labeled-radiopharmaceuticals-using-the-chromatography-strips" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">260</span> Experiments on Weakly-Supervised Learning on Imperfect Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yan%20Cheng">Yan Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yijun%20Shao"> Yijun Shao</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Rudolph"> James Rudolph</a>, <a href="https://publications.waset.org/abstracts/search?q=Charlene%20R.%20Weir"> Charlene R. Weir</a>, <a href="https://publications.waset.org/abstracts/search?q=Beth%20Sahlmann"> Beth Sahlmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Qing%20Zeng-Treitler"> Qing Zeng-Treitler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supervised predictive models require labeled data for training purposes. Complete and accurate labeled data, i.e., a ‘gold standard’, is not always available, and imperfectly labeled data may need to serve as an alternative. An important question is if the accuracy of the labeled data creates a performance ceiling for the trained model. In this study, we trained several models to recognize the presence of delirium in clinical documents using data with annotations that are not completely accurate (i.e., weakly-supervised learning). In the external evaluation, the support vector machine model with a linear kernel performed best, achieving an area under the curve of 89.3% and accuracy of 88%, surpassing the 80% accuracy of the training sample. We then generated a set of simulated data and carried out a series of experiments which demonstrated that models trained on imperfect data can (but do not always) outperform the accuracy of the training data, e.g., the area under the curve for some models is higher than 80% when trained on the data with an error rate of 40%. Our experiments also showed that the error resistance of linear modeling is associated with larger sample size, error type, and linearity of the data (all p-values < 0.001). In conclusion, this study sheds light on the usefulness of imperfect data in clinical research via weakly-supervised learning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=weakly-supervised%20learning" title="weakly-supervised learning">weakly-supervised learning</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=delirium" title=" delirium"> delirium</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/99362/experiments-on-weakly-supervised-learning-on-imperfect-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">259</span> Predictors of Post-marketing Regulatory Actions Concerning Hepatotoxicity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salwa%20M.%20Almomen">Salwa M. Almomen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20A.%20Almaghrabi"> Mona A. Almaghrabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Saja%20M.%20Alhabardi"> Saja M. Alhabardi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20A.%20Alrwisan"> Adel A. Alrwisan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Hepatotoxicity is a major reason for medication withdrawal from the markets. Unfortunately, serious adverse hepatic effects can occur after marketing with limited indicators during clinical development. Therefore, finding possible predictors for hepatotoxicity might guide the monitoring program of various stakeholders. Methods: We examined the clinical review documents for drugs approved in the US from 2011 to 2016 to evaluate their hepatic safety profile. Predictors: we assessed whether these medications meet Hy’s Law with hepatotoxicity grade ≥ 3, labeled hepatic adverse effects at approval, or accelerated approval status. Outcome: post-marketing regulatory action related to hepatotoxicity, including product withdrawal or updates to warning, precaution, or adverse effects sections. Statistical analysis: drugs were included in the analysis from the time of approval until the end of 2019 or the first post-marketing regulatory action related to hepatotoxicity, whichever occurred first. The hazard ratio (HR) was estimated using Cox-regression analysis. Results: We included 192 medications in the study. We classified 48 drugs as having grade ≥ 3 hepatotoxicities, 43 had accelerated approval status, and 74 had labeled information about hepatotoxicity prior to marketing. The adjusted HRs for post-marketing regulatory action for products with grade ≥ 3 hepatotoxicity was 0.61 (95% confidence interval [CI], 0.17-2.23), 0.92 (95%CI, 0.29-2.93) for a drug approved via accelerated approval program, and was 0.91 (95%CI, 0.33-2.56) for drugs with labeled hepatotoxicity information at approval time. Conclusion: This study does not provide conclusive evidence on the association between post-marketing regulatory action and grade ≥ 3 hepatotoxicity, accelerated approval status, or availability of labeled information at approval due to sampling size and channeling bias. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerated%20approvals" title="accelerated approvals">accelerated approvals</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatic%20adverse%20effects" title=" hepatic adverse effects"> hepatic adverse effects</a>, <a href="https://publications.waset.org/abstracts/search?q=drug-induced%20liver%20injury" title=" drug-induced liver injury"> drug-induced liver injury</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatotoxicity%20predictors" title=" hepatotoxicity predictors"> hepatotoxicity predictors</a>, <a href="https://publications.waset.org/abstracts/search?q=post-marketing%20withdrawal" title=" post-marketing withdrawal"> post-marketing withdrawal</a> </p> <a href="https://publications.waset.org/abstracts/135389/predictors-of-post-marketing-regulatory-actions-concerning-hepatotoxicity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">258</span> Regulation Aspects for a Radioisotope Production Installation in Brazil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rian%20O.%20Miranda">Rian O. Miranda</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidia%20V.%20de%20Sa"> Lidia V. de Sa</a>, <a href="https://publications.waset.org/abstracts/search?q=Julio%20C.%20Suita"> Julio C. Suita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Brazilian Nuclear Energy Commission (CNEN) is the main manufacturer of radiopharmaceuticals in Brazil. The Nuclear Engineering Institute (IEN), located at Rio de Janeiro, is one of its main centers of research and production, attending public and private hospitals in the state. This radiopharmaceutical production is used in diagnostic and therapy procedures and allows one and a half million nuclear medicine procedures annually. Despite this, the country is not self-sufficient to meet national demand, creating the need for importation and consequent dependence on other countries. However, IEN facilities were designed in the 60's, and today its structure is inadequate in relation to the good manufacturing practices established by sanitary regulator (ANVISA) and radiological protection leading to the need for a new project. In order to adapt and increase production in the country, a new plant will be built and integrated to the existing facilities with a new 30 MeV Cyclotron that is actually in project detailing process. Thus, it is proposed to survey current CNEN and ANVISA standards for radiopharmaceutical production facilities, as well as the radiological protection analysis of each area of the plant, following good manufacturing practices recommendations adopted nationally besides licensing exigencies for radioactive facilities. In this way, the main requirements for proper operation, equipment location, building materials, area classification, and maintenance program have been implemented. The access controls, interlocks, segregation zones and pass-through boxes integrated into the project were also analyzed. As a result, IEN will in future have the flexibility to produce all necessary radioisotopes for nuclear medicine application, more efficiently by simultaneously bombarding two targets, allowing the simultaneous production of two different radioisotopes, minimizing radiation exposure and saving operating costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclotron" title="cyclotron">cyclotron</a>, <a href="https://publications.waset.org/abstracts/search?q=legislation" title=" legislation"> legislation</a>, <a href="https://publications.waset.org/abstracts/search?q=norms" title=" norms"> norms</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/abstracts/search?q=radiopharmaceuticals" title=" radiopharmaceuticals"> radiopharmaceuticals</a> </p> <a href="https://publications.waset.org/abstracts/101053/regulation-aspects-for-a-radioisotope-production-installation-in-brazil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">257</span> Facial Recognition on the Basis of Facial Fragments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tetyana%20Baydyk">Tetyana Baydyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernst%20Kussul"> Ernst Kussul</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Bonilla%20Meza"> Sandra Bonilla Meza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are many articles that attempt to establish the role of different facial fragments in face recognition. Various approaches are used to estimate this role. Frequently, authors calculate the entropy corresponding to the fragment. This approach can only give approximate estimation. In this paper, we propose to use a more direct measure of the importance of different fragments for face recognition. We propose to select a recognition method and a face database and experimentally investigate the recognition rate using different fragments of faces. We present two such experiments in the paper. We selected the PCNC neural classifier as a method for face recognition and parts of the LFW (Labeled Faces in the Wild<em>) </em>face database as training and testing sets. The recognition rate of the best experiment is comparable with the recognition rate obtained using the whole face. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=face%20recognition" title="face recognition">face recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=labeled%20faces%20in%20the%20wild%20%28LFW%29%20database" title=" labeled faces in the wild (LFW) database"> labeled faces in the wild (LFW) database</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20local%20descriptor%20%28RLD%29" title=" random local descriptor (RLD)"> random local descriptor (RLD)</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20features" title=" random features"> random features</a> </p> <a href="https://publications.waset.org/abstracts/50117/facial-recognition-on-the-basis-of-facial-fragments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">256</span> Unsupervised Learning with Self-Organizing Maps for Named Entity Recognition in the CONLL2003 Dataset</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assel%20Jaxylykova">Assel Jaxylykova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexnder%20Pak"> Alexnder Pak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study utilized a Self-Organizing Map (SOM) for unsupervised learning on the CONLL-2003 dataset for Named Entity Recognition (NER). The process involved encoding words into 300-dimensional vectors using FastText. These vectors were input into a SOM grid, where training adjusted node weights to minimize distances. The SOM provided a topological representation for identifying and clustering named entities, demonstrating its efficacy without labeled examples. Results showed an F1-measure of 0.86, highlighting SOM's viability. Although some methods achieve higher F1 measures, SOM eliminates the need for labeled data, offering a scalable and efficient alternative. The SOM's ability to uncover hidden patterns provides insights that could enhance existing supervised methods. Further investigation into potential limitations and optimization strategies is suggested to maximize benefits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=named%20entity%20recognition" title="named entity recognition">named entity recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=self-organizing%20map" title=" self-organizing map"> self-organizing map</a>, <a href="https://publications.waset.org/abstracts/search?q=CONLL-2003" title=" CONLL-2003"> CONLL-2003</a>, <a href="https://publications.waset.org/abstracts/search?q=semantics" title=" semantics"> semantics</a> </p> <a href="https://publications.waset.org/abstracts/188422/unsupervised-learning-with-self-organizing-maps-for-named-entity-recognition-in-the-conll2003-dataset" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">47</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">255</span> Investigation of Topic Modeling-Based Semi-Supervised Interpretable Document Classifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dasom%20Kim">Dasom Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Xiu%20Shun%20Wong"> William Xiu Shun Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoonjin%20Hyun"> Yoonjin Hyun</a>, <a href="https://publications.waset.org/abstracts/search?q=Donghoon%20Lee"> Donghoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Minji%20Paek"> Minji Paek</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungho%20Byun"> Sungho Byun</a>, <a href="https://publications.waset.org/abstracts/search?q=Namgyu%20Kim"> Namgyu Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There have been many researches on document classification for classifying voluminous documents automatically. Through document classification, we can assign a specific category to each unlabeled document on the basis of various machine learning algorithms. However, providing labeled documents manually requires considerable time and effort. To overcome the limitations, the semi-supervised learning which uses unlabeled document as well as labeled documents has been invented. However, traditional document classifiers, regardless of supervised or semi-supervised ones, cannot sufficiently explain the reason or the process of the classification. Thus, in this paper, we proposed a methodology to visualize major topics and class components of each document. We believe that our methodology for visualizing topics and classes of each document can enhance the reliability and explanatory power of document classifiers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=document%20classifier" title=" document classifier"> document classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=text%20mining" title=" text mining"> text mining</a>, <a href="https://publications.waset.org/abstracts/search?q=topic%20modeling" title=" topic modeling"> topic modeling</a> </p> <a href="https://publications.waset.org/abstracts/48985/investigation-of-topic-modeling-based-semi-supervised-interpretable-document-classifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">254</span> Automated System: Managing the Production and Distribution of Radiopharmaceuticals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shayma%20Mohammed">Shayma Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Trabelsi"> Adel Trabelsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiopharmacy is the art of preparing high-quality, radioactive, medicinal products for use in diagnosis and therapy. Radiopharmaceuticals unlike normal medicines, this dual aspect (radioactive, medical) makes their management highly critical. One of the most convincing applications of modern technologies is the ability to delegate the execution of repetitive tasks to programming scripts. Automation has found its way to the most skilled jobs, to improve the company's overall performance by allowing human workers to focus on more important tasks than document filling. This project aims to contribute to implement a comprehensive system to insure rigorous management of radiopharmaceuticals through the use of a platform that links the Nuclear Medicine Service Management System to the Nuclear Radio-pharmacy Management System in accordance with the recommendations of World Health Organization (WHO) and International Atomic Energy Agency (IAEA). In this project we attempt to build a web application that targets radiopharmacies, the platform is built atop the inherently compatible web stack which allows it to work in virtually any environment. Different technologies are used in this project (PHP, Symfony, MySQL Workbench, Bootstrap, Angular 7, Visual Studio Code and TypeScript). The operating principle of the platform is mainly based on two parts: Radiopharmaceutical Backoffice for the Radiopharmacian, who is responsible for the realization of radiopharmaceutical preparations and their delivery and Medical Backoffice for the Doctor, who holds the authorization for the possession and use of radionuclides and he/she is responsible for ordering radioactive products. The application consists of sven modules: Production, Quality Control/Quality Assurance, Release, General Management, References, Transport and Stock Management. It allows 8 classes of users: The Production Manager (PM), Quality Control Manager (QCM), Stock Manager (SM), General Manager (GM), Client (Doctor), Parking and Transport Manager (PTM), Qualified Person (QP) and Technical and Production Staff. Digital platform bringing together all players involved in the use of radiopharmaceuticals and integrating the stages of preparation, production and distribution, Web technologies, in particular, promise to offer all the benefits of automation while requiring no more than a web browser to act as a user client, which is a strength because the web stack is by nature multi-platform. This platform will provide a traceability system for radiopharmaceuticals products to ensure the safety and radioprotection of actors and of patients. The new integrated platform is an alternative to write all the boilerplate paperwork manually, which is a tedious and error-prone task. It would minimize manual human manipulation, which has proven to be the main source of error in nuclear medicine. A codified electronic transfer of information from radiopharmaceutical preparation to delivery will further reduce the risk of maladministration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20system" title="automated system">automated system</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=radiopharmacy" title=" radiopharmacy"> radiopharmacy</a>, <a href="https://publications.waset.org/abstracts/search?q=technical%20papers" title=" technical papers"> technical papers</a> </p> <a href="https://publications.waset.org/abstracts/124767/automated-system-managing-the-production-and-distribution-of-radiopharmaceuticals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">253</span> Investigation of the Variables Affecting the Use of Charcoal to Delay Fermentation in Wet Beans Slurry Using Chemical and Physical Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anuoluwapo%20O.%20Adewole">Anuoluwapo O. Adewole</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fermentation is the conversion of monomeric sugars into ethanol and carbondioxide in the presence of microorganisms under anaerobic conditions. In line with the aim and objective of this research project, which is to investigate into the variables affecting the use of charcoal to delay fermentation in wet beans slurry, some physical and chemical analysis were carried out on the wet beans slurry using a PH meter in which a thermometer is incorporated in it, and a measuring cylinder was used for the foam level test. About 250 grams of the ground beans slurry was divided into two portions for testing. The sample with charcoal was labeled sample 'A' while the second sample without charcoal was labeled sample 'B' subsequently. The experiment lasted for a period of 41.15 hours (i.e., forty-one hours and nine minutes). During the fourth process, both samples could not be tested as the laboratory had been saturated with foul odor and both samples were packed and sealed in polythene bag for disposal in the trash can. It was generally observed that the sample with the charcoal lasted for a longer time before that without charcoal before total spoilage occurred. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermentation" title="fermentation">fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=monomeric%20sugars" title=" monomeric sugars"> monomeric sugars</a>, <a href="https://publications.waset.org/abstracts/search?q=beans%20slurry" title=" beans slurry"> beans slurry</a>, <a href="https://publications.waset.org/abstracts/search?q=charcoal" title=" charcoal"> charcoal</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20conditions" title=" anaerobic conditions"> anaerobic conditions</a> </p> <a href="https://publications.waset.org/abstracts/72057/investigation-of-the-variables-affecting-the-use-of-charcoal-to-delay-fermentation-in-wet-beans-slurry-using-chemical-and-physical-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">252</span> Hydrodynamics of Dual Hybrid Impeller of Stirred Reactor Using Radiotracer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noraishah%20Othman">Noraishah Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20K.%20Kamarudin"> Siti K. Kamarudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Norinsan%20K.%20Othman"> Norinsan K. Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20S.%20Takriff"> Mohd S. Takriff</a>, <a href="https://publications.waset.org/abstracts/search?q=Masli%20I.%20Rosli"> Masli I. Rosli</a>, <a href="https://publications.waset.org/abstracts/search?q=Engku%20M.%20Fahmi"> Engku M. Fahmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mior%20A.%20Khusaini"> Mior A. Khusaini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work describes hydrodynamics of mixing characteristics of two dual hybrid impeller consisting of, radial and axial impeller using radiotracer technique. Type A mixer, a Rushton turbine is mounted above a Pitched Blade Turbine (PBT) at common shaft and Type B mixer, a Rushton turbine is mounted below PBT. The objectives of this paper are to investigate the residence time distribution (RTD) of two hybrid mixers and to represent the respective mixers by RTD model. Each type of mixer will experience five radiotracer experiments using Tc99m as source of tracer and scintillation detectors NaI(Tl) are used for tracer detection. The results showed that mixer in parallel model and mixers in series with exchange can represent the flow model in mixer A whereas only mixer in parallel model can represent Type B mixer well than other models. In conclusion, Type A impeller, Rushton impeller above PBT, reduced the presence of dead zone in the mixer significantly rather than Type B. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20impeller" title="hybrid impeller">hybrid impeller</a>, <a href="https://publications.waset.org/abstracts/search?q=residence%20time%20distribution%20%28RTD%29" title=" residence time distribution (RTD)"> residence time distribution (RTD)</a>, <a href="https://publications.waset.org/abstracts/search?q=radiotracer%20experiments" title=" radiotracer experiments"> radiotracer experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=RTD%20model" title=" RTD model"> RTD model</a> </p> <a href="https://publications.waset.org/abstracts/37495/hydrodynamics-of-dual-hybrid-impeller-of-stirred-reactor-using-radiotracer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">251</span> Margin-Based Feed-Forward Neural Network Classifiers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaohan%20Bookman">Xiaohan Bookman</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyan%20Zhu"> Xiaoyan Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Margin-Based Principle has been proposed for a long time, it has been proved that this principle could reduce the structural risk and improve the performance in both theoretical and practical aspects. Meanwhile, feed-forward neural network is a traditional classifier, which is very hot at present with a deeper architecture. However, the training algorithm of feed-forward neural network is developed and generated from Widrow-Hoff Principle that means to minimize the squared error. In this paper, we propose a new training algorithm for feed-forward neural networks based on Margin-Based Principle, which could effectively promote the accuracy and generalization ability of neural network classifiers with less labeled samples and flexible network. We have conducted experiments on four UCI open data sets and achieved good results as expected. In conclusion, our model could handle more sparse labeled and more high-dimension data set in a high accuracy while modification from old ANN method to our method is easy and almost free of work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Max-Margin%20Principle" title="Max-Margin Principle">Max-Margin Principle</a>, <a href="https://publications.waset.org/abstracts/search?q=Feed-Forward%20Neural%20Network" title=" Feed-Forward Neural Network"> Feed-Forward Neural Network</a>, <a href="https://publications.waset.org/abstracts/search?q=classifier" title=" classifier"> classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20risk" title=" structural risk"> structural risk</a> </p> <a href="https://publications.waset.org/abstracts/27178/margin-based-feed-forward-neural-network-classifiers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">250</span> Local Boundary Analysis for Generative Theory of Tonal Music: From the Aspect of Classic Music Melody Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Po-Chun%20Wang">Po-Chun Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan-Ru%20Lai"> Yan-Ru Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sophia%20I.%20C.%20Lin"> Sophia I. C. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Alvin%20W.%20Y.%20Su"> Alvin W. Y. Su</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Generative Theory of Tonal Music (GTTM) provides systematic approaches to recognizing local boundaries of music. The rules have been implemented in some automated melody segmentation algorithms. Besides, there are also deep learning methods with GTTM features applied to boundary detection tasks. However, these studies might face constraints such as a lack of or inconsistent label data. The GTTM database is currently the most widely used GTTM database, which includes manually labeled GTTM rules and local boundaries. Even so, we found some problems with these labels. They are sometimes discrepancies with GTTM rules. In addition, since it is labeled at different times by multiple musicians, they are not within the same scope in some cases. Therefore, in this paper, we examine this database with musicians from the aspect of classical music and relabel the scores. The relabeled database - GTTM Database v2.0 - will be released for academic research usage. Despite the experimental and statistical results showing that the relabeled database is more consistent, the improvement in boundary detection is not substantial. It seems that we need more clues than GTTM rules for boundary detection in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dataset" title="dataset">dataset</a>, <a href="https://publications.waset.org/abstracts/search?q=GTTM" title=" GTTM"> GTTM</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20boundary" title=" local boundary"> local boundary</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a> </p> <a href="https://publications.waset.org/abstracts/156472/local-boundary-analysis-for-generative-theory-of-tonal-music-from-the-aspect-of-classic-music-melody-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">249</span> An Energy Transfer Fluorescent Probe System for Glucose Sensor at Biomimetic Membrane Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hoa%20Thi%20Hoang">Hoa Thi Hoang</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephan%20Sass"> Stephan Sass</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20U.%20Kumke"> Michael U. Kumke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concanavalin A (conA) is a protein has been widely used in sensor system based on its specific binding to α-D-Glucose or α-D-Manose. For glucose sensor using conA, either fluoresence based techniques with intensity based or lifetime based are used. In this research, liposomes made from phospholipids were used as a biomimetic membrane system. In a first step, novel building blocks containing perylene labeled glucose units were added to the system and used to decorate the surface of the liposomes. Upon the binding between rhodamine labeled con A to the glucose units at the biomimetic membrane surface, a Förster resonance energy transfer system can be formed which combines unique fluorescence properties of perylene (e.g., high fluorescence quantum yield, no triplet formation) and its high hydrophobicity for efficient anchoring in membranes to form a novel probe for the investigation of sugar-driven binding reactions at biomimetic surfaces. Two glucose-labeled perylene derivatives were synthesized with different spacer length between the perylene and glucose unit in order to probe the binding of conA. The binding interaction was fully characterized by using high-end fluorescence techniques. Steady-state and time-resolved fluorescence techniques (e.g., fluorescence depolarization) in combination with single-molecule fluorescence spectroscopy techniques (fluorescence correlation spectroscopy, FCS) were used to monitor the interaction with conA. Base on the fluorescence depolarization, the rotational correlation times and the alteration in the diffusion coefficient (determined by FCS) the binding of the conA to the liposomes carrying the probe was studied. Moreover, single pair FRET experiments using pulsed interleaved excitation are used to characterize in detail the binding of conA to the liposome on a single molecule level avoiding averaging out effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concanavalin%20A" title="concanavalin A">concanavalin A</a>, <a href="https://publications.waset.org/abstracts/search?q=FRET" title=" FRET"> FRET</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=biomimetic%20membrane" title=" biomimetic membrane"> biomimetic membrane</a> </p> <a href="https://publications.waset.org/abstracts/50468/an-energy-transfer-fluorescent-probe-system-for-glucose-sensor-at-biomimetic-membrane-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">248</span> Semi-Supervised Hierarchical Clustering Given a Reference Tree of Labeled Documents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Zhao">Ying Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xingyan%20Bin"> Xingyan Bin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Semi-supervised clustering algorithms have been shown effective to improve clustering process with even limited supervision. However, semi-supervised hierarchical clustering remains challenging due to the complexities of expressing constraints for agglomerative clustering algorithms. This paper proposes novel semi-supervised agglomerative clustering algorithms to build a hierarchy based on a known reference tree. We prove that by enforcing distance constraints defined by a reference tree during the process of hierarchical clustering, the resultant tree is guaranteed to be consistent with the reference tree. We also propose a framework that allows the hierarchical tree generation be aware of levels of levels of the agglomerative tree under creation, so that metric weights can be learned and adopted at each level in a recursive fashion. The experimental evaluation shows that the additional cost of our contraint-based semi-supervised hierarchical clustering algorithm (HAC) is negligible, and our combined semi-supervised HAC algorithm outperforms the state-of-the-art algorithms on real-world datasets. The experiments also show that our proposed methods can improve clustering performance even with a small number of unevenly distributed labeled data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semi-supervised%20clustering" title="semi-supervised clustering">semi-supervised clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%0D%0Aagglomerative%20clustering" title=" hierarchical agglomerative clustering"> hierarchical agglomerative clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=reference%20trees" title=" reference trees"> reference trees</a>, <a href="https://publications.waset.org/abstracts/search?q=distance%20constraints" title=" distance constraints "> distance constraints </a> </p> <a href="https://publications.waset.org/abstracts/19478/semi-supervised-hierarchical-clustering-given-a-reference-tree-of-labeled-documents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">247</span> Application of extraction chromatography to the separation of Sc, Zr and Sn isotopes from target materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Steffen%20Happel">Steffen Happel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-standard isotopes such as Sc-44/47, Zr-89, and Sn-117mare finding interest is increasing in radiopharmaceutical applications. Methods for the separation of these elements from typical target materials were developed. The methods used in this paper are based on the use of extraction chromatographic resins such as UTEVA, TBP, and DGA resin. Information on the selectivity of the resins (Dw values of selected elements in HCl and HNO3 of varying concentration) will be presented as well as results of the method development such as elution studies, chemical recoveries, and decontamination factors. Developed methods are based on the use of vacuum supported separation allowing for fast and selective separation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elution" title="elution">elution</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction%20chromatography" title=" extraction chromatography"> extraction chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=radiopharmacy" title=" radiopharmacy"> radiopharmacy</a>, <a href="https://publications.waset.org/abstracts/search?q=decontamination%20factors" title=" decontamination factors"> decontamination factors</a> </p> <a href="https://publications.waset.org/abstracts/4334/application-of-extraction-chromatography-to-the-separation-of-sc-zr-and-sn-isotopes-from-target-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">246</span> Anthraquinone Labelled DNA for Direct Detection and Discrimination of Closely Related DNA Targets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20A.%20Goodchild">Sarah A. Goodchild</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachel%20Gao"> Rachel Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Philip%20N.%20Bartlett"> Philip N. Bartlett</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel detection approach using immobilized DNA probes labeled with Anthraquinone (AQ) as an electrochemically active reporter moiety has been successfully developed as a new, simple, reliable method for the detection of DNA. This method represents a step forward in DNA detection as it can discriminate between multiple nucleotide polymorphisms within target DNA strands without the need for any additional reagents, reporters or processes such as melting of DNA strands. The detection approach utilizes single-stranded DNA probes immobilized on gold surfaces labeled at the distal terminus with AQ. The effective immobilization has been monitored using techniques such as AC impedance and Raman spectroscopy. Simple voltammetry techniques (Differential Pulse Voltammetry, Cyclic Voltammetry) are then used to monitor the reduction potential of the AQ before and after the addition of complementary strand of target DNA. A reliable relationship between the shift in reduction potential and the number of base pair mismatch has been established and can be used to discriminate between DNA from highly related pathogenic organisms of clinical importance. This indicates that this approach may have great potential to be exploited within biosensor kits for detection and diagnosis of pathogenic organisms in Point of Care devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anthraquinone" title="Anthraquinone">Anthraquinone</a>, <a href="https://publications.waset.org/abstracts/search?q=discrimination" title=" discrimination"> discrimination</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20detection" title=" DNA detection"> DNA detection</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20biosensor" title=" electrochemical biosensor "> electrochemical biosensor </a> </p> <a href="https://publications.waset.org/abstracts/30840/anthraquinone-labelled-dna-for-direct-detection-and-discrimination-of-closely-related-dna-targets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">245</span> Automating 2D CAD to 3D Model Generation Process: Wall pop-ups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohit%20Gupta">Mohit Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Chialing%20Wei"> Chialing Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Czerniawski"> Thomas Czerniawski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have built a neural network that can detect walls on 2D sheets and subsequently create a 3D model in Revit using Dynamo. The training set includes 3500 labeled images, and the detection algorithm used is YOLO. Typically, engineers/designers make concentrated efforts to convert 2D cad drawings to 3D models. This costs a considerable amount of time and human effort. This paper makes a contribution in automating the task of 3D walls modeling. 1. Detecting Walls in 2D cad and generating 3D pop-ups in Revit. 2. Saving designer his/her modeling time in drafting elements like walls from 2D cad to 3D representation. An object detection algorithm YOLO is used for wall detection and localization. The neural network is trained over 3500 labeled images of size 256x256x3. Then, Dynamo is interfaced with the output of the neural network to pop-up 3D walls in Revit. The research uses modern technological tools like deep learning and artificial intelligence to automate the process of generating 3D walls without needing humans to manually model them. Thus, contributes to saving time, human effort, and money. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title="neural networks">neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=Yolo" title=" Yolo"> Yolo</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%20to%203D%20transformation" title="2D to 3D transformation">2D to 3D transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=CAD%20object%20detection" title=" CAD object detection"> CAD object detection</a> </p> <a href="https://publications.waset.org/abstracts/144132/automating-2d-cad-to-3d-model-generation-process-wall-pop-ups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">244</span> Leveraging Natural Language Processing for Legal Artificial Intelligence: A Longformer Approach for Taiwanese Legal Cases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsin%20Lee">Hsin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsuan%20Lee"> Hsuan Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Legal artificial intelligence (LegalAI) has been increasing applications within legal systems, propelled by advancements in natural language processing (NLP). Compared with general documents, legal case documents are typically long text sequences with intrinsic logical structures. Most existing language models have difficulty understanding the long-distance dependencies between different structures. Another unique challenge is that while the Judiciary of Taiwan has released legal judgments from various levels of courts over the years, there remains a significant obstacle in the lack of labeled datasets. This deficiency makes it difficult to train models with strong generalization capabilities, as well as accurately evaluate model performance. To date, models in Taiwan have yet to be specifically trained on judgment data. Given these challenges, this research proposes a Longformer-based pre-trained language model explicitly devised for retrieving similar judgments in Taiwanese legal documents. This model is trained on a self-constructed dataset, which this research has independently labeled to measure judgment similarities, thereby addressing a void left by the lack of an existing labeled dataset for Taiwanese judgments. This research adopts strategies such as early stopping and gradient clipping to prevent overfitting and manage gradient explosion, respectively, thereby enhancing the model's performance. The model in this research is evaluated using both the dataset and the Average Entropy of Offense-charged Clustering (AEOC) metric, which utilizes the notion of similar case scenarios within the same type of legal cases. Our experimental results illustrate our model's significant advancements in handling similarity comparisons within extensive legal judgments. By enabling more efficient retrieval and analysis of legal case documents, our model holds the potential to facilitate legal research, aid legal decision-making, and contribute to the further development of LegalAI in Taiwan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=legal%20artificial%20intelligence" title="legal artificial intelligence">legal artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=computation%20and%20language" title=" computation and language"> computation and language</a>, <a href="https://publications.waset.org/abstracts/search?q=language%20model" title=" language model"> language model</a>, <a href="https://publications.waset.org/abstracts/search?q=Taiwanese%20legal%20cases" title=" Taiwanese legal cases"> Taiwanese legal cases</a> </p> <a href="https://publications.waset.org/abstracts/169638/leveraging-natural-language-processing-for-legal-artificial-intelligence-a-longformer-approach-for-taiwanese-legal-cases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">243</span> A Comparison of TLD Measurements to MIRD Estimates of the Dose to the Ovaries and Uterus from Tc-99m in Liver </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karim%20Adinehvand">Karim Adinehvand</a>, <a href="https://publications.waset.org/abstracts/search?q=Bakhtiar%20Azadbakht"> Bakhtiar Azadbakht</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Sahebnasagh"> Amin Sahebnasagh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relation to high absorption fraction of Tc SESTAMIBI by internal organs in heart scan, and these organs are near to generation organs (Ovaries and uterus). In this study, Liver is specified as source organ. Method: we have set amount of absorbed fraction radiopharmaceutical in position of Liver in RANDO-phantom in form of elliptical surfaces, then absorbed dose to ovaries and uterus measured by TLD-100 that had set at position of these organs in RANDO-phantom. Calculation had done by MIRD method. Results from direct measurement and MIRD method are too similar. The absorbed dose to uterus and ovaries for Rest are 26.05µGyMBq-1, 17.23µGyMBq-1 and for Stress are 2.04µGyMBq-1, 1.35µGyMBq-1 respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorbed%20dose" title="absorbed dose">absorbed dose</a>, <a href="https://publications.waset.org/abstracts/search?q=TLD" title=" TLD"> TLD</a>, <a href="https://publications.waset.org/abstracts/search?q=MIRD" title=" MIRD"> MIRD</a>, <a href="https://publications.waset.org/abstracts/search?q=RANDO-phantom" title=" RANDO-phantom"> RANDO-phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=Tc-99m" title=" Tc-99m"> Tc-99m</a> </p> <a href="https://publications.waset.org/abstracts/23101/a-comparison-of-tld-measurements-to-mird-estimates-of-the-dose-to-the-ovaries-and-uterus-from-tc-99m-in-liver" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">565</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">242</span> Self-Supervised Learning for Hate-Speech Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shrabani%20Ghosh">Shrabani Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automatic offensive language detection in social media has become a stirring task in today's NLP. Manual Offensive language detection is tedious and laborious work where automatic methods based on machine learning are only alternatives. Previous works have done sentiment analysis over social media in different ways such as supervised, semi-supervised, and unsupervised manner. Domain adaptation in a semi-supervised way has also been explored in NLP, where the source domain and the target domain are different. In domain adaptation, the source domain usually has a large amount of labeled data, while only a limited amount of labeled data is available in the target domain. Pretrained transformers like BERT, RoBERTa models are fine-tuned to perform text classification in an unsupervised manner to perform further pre-train masked language modeling (MLM) tasks. In previous work, hate speech detection has been explored in Gab.ai, which is a free speech platform described as a platform of extremist in varying degrees in online social media. In domain adaptation process, Twitter data is used as the source domain, and Gab data is used as the target domain. The performance of domain adaptation also depends on the cross-domain similarity. Different distance measure methods such as L2 distance, cosine distance, Maximum Mean Discrepancy (MMD), Fisher Linear Discriminant (FLD), and CORAL have been used to estimate domain similarity. Certainly, in-domain distances are small, and between-domain distances are expected to be large. The previous work finding shows that pretrain masked language model (MLM) fine-tuned with a mixture of posts of source and target domain gives higher accuracy. However, in-domain performance of the hate classifier on Twitter data accuracy is 71.78%, and out-of-domain performance of the hate classifier on Gab data goes down to 56.53%. Recently self-supervised learning got a lot of attention as it is more applicable when labeled data are scarce. Few works have already been explored to apply self-supervised learning on NLP tasks such as sentiment classification. Self-supervised language representation model ALBERTA focuses on modeling inter-sentence coherence and helps downstream tasks with multi-sentence inputs. Self-supervised attention learning approach shows better performance as it exploits extracted context word in the training process. In this work, a self-supervised attention mechanism has been proposed to detect hate speech on Gab.ai. This framework initially classifies the Gab dataset in an attention-based self-supervised manner. On the next step, a semi-supervised classifier trained on the combination of labeled data from the first step and unlabeled data. The performance of the proposed framework will be compared with the results described earlier and also with optimized outcomes obtained from different optimization techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attention%20learning" title="attention learning">attention learning</a>, <a href="https://publications.waset.org/abstracts/search?q=language%20model" title=" language model"> language model</a>, <a href="https://publications.waset.org/abstracts/search?q=offensive%20language%20detection" title=" offensive language detection"> offensive language detection</a>, <a href="https://publications.waset.org/abstracts/search?q=self-supervised%20learning" title=" self-supervised learning"> self-supervised learning</a> </p> <a href="https://publications.waset.org/abstracts/147950/self-supervised-learning-for-hate-speech-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">241</span> Evaluation of Real Time PCR Methods for Food Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ergun%20Sakalar">Ergun Sakalar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kubra%20Bilgic"> Kubra Bilgic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decades, real-time PCR has become a reliable tool preferred to use in many laboratories for pathogen detection. This technique allows for monitoring target amplification via fluorescent molecules besides admit of quantitative analysis by enabling of convert outcomes of thermal cycling to digital data. Sensitivity and traceability of real-time PCR are based on measuring of fluorescence that appears only when fluorescent reporter dye bound to specific target DNA.The fluorescent reporter systems developed for this purpose are divided into two groups. The first group consists of intercalator fluorescence dyes such as SYBR Green, EvaGreen which binds to double-stranded DNA. On the other hand, the second group includes fluorophore-labeled oligonucleotide probes that are separated into three subgroups due to differences in mechanism of action; initial primer-probes such as Cyclicons, Angler®, Amplifluor®, LUX™, Scorpions, and the second one hydrolysis probes like TaqMan, Snake assay, finally hybridization probes, for instance, Molecular Beacons, Hybprobe/FRET, HyBeacon™, MGB-Eclipse, ResonSense®, Yin-Yang, MGB-Pleiades. In addition nucleic acid analogues, an increase of probe affinity to target site is also employed with fluorescence-labeled probes. Consequently, abundant real-time PCR detection chemistries are chosen by researcher according to the field of application, mechanism of action, advantages, and proper structures of primer/probes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluorescent%20dye" title="fluorescent dye">fluorescent dye</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20safety" title=" food safety"> food safety</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20probes" title=" molecular probes"> molecular probes</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleic%20acid%20analogues" title=" nucleic acid analogues"> nucleic acid analogues</a> </p> <a href="https://publications.waset.org/abstracts/53082/evaluation-of-real-time-pcr-methods-for-food-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">240</span> Assessment of Aminopolyether on 18F-FDG Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Renata%20L.%20C.%20Le%C3%A3o">Renata L. C. Leão</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20E.%20Nascimento"> João E. Nascimento</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20C.%20E.%20S.%20Nascimento"> Natalia C. E. S. Nascimento</a>, <a href="https://publications.waset.org/abstracts/search?q=Elaine%20S.%20Vasconcelos"> Elaine S. Vasconcelos</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%A9rcia%20L.%20Oliveira"> Mércia L. Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quality control procedures of a radiopharmaceutical include the assessment of its chemical purity. The method suggested by international pharmacopeias consists of a thin layer chromatographic run. In this paper, the method proposed by the United States Pharmacopeia (USP) is compared to a direct method to determine the final concentration of aminopolyether in Fludeoxyglucose (<sup>18</sup>F-FDG) preparations. The approach (no chromatographic run) was achieved by placing the thin-layer chromatography (TLC) plate directly on an iodine vapor chamber. Both methods were validated and they showed adequate results to determine the concentration of aminopolyether in <sup>18</sup>F-FDG preparations. However, the direct method is more sensitive, faster and simpler when compared to the reference method (with chromatographic run), and it may be chosen for use in routine quality control of <sup>18</sup>F-FDG. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20purity" title="chemical purity">chemical purity</a>, <a href="https://publications.waset.org/abstracts/search?q=Kryptofix%20222" title=" Kryptofix 222"> Kryptofix 222</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20layer%20chromatography" title=" thin layer chromatography"> thin layer chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a> </p> <a href="https://publications.waset.org/abstracts/85105/assessment-of-aminopolyether-on-18f-fdg-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tc-99m%20labeled%20radio-pharmaceutical&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tc-99m%20labeled%20radio-pharmaceutical&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tc-99m%20labeled%20radio-pharmaceutical&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tc-99m%20labeled%20radio-pharmaceutical&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tc-99m%20labeled%20radio-pharmaceutical&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tc-99m%20labeled%20radio-pharmaceutical&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tc-99m%20labeled%20radio-pharmaceutical&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tc-99m%20labeled%20radio-pharmaceutical&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tc-99m%20labeled%20radio-pharmaceutical&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10