CINXE.COM

Digital Twins in Clinical Trials: How They Work & How They Don’t

<!DOCTYPE html><!-- Last Published: Fri Nov 22 2024 23:43:59 GMT+0000 (Coordinated Universal Time) --><html data-wf-domain="www.unlearn.ai" data-wf-page="66fc2ff3074bb309fb4d57dd" data-wf-site="66fc2ff3074bb309fb4d56fc" lang="en" data-wf-collection="66fc2ff3074bb309fb4d5812" data-wf-item-slug="digital-twins-in-clinical-trials-how-they-work-and-how-they-dont"><head><meta charset="utf-8"/><title>Digital Twins in Clinical Trials: How They Work &amp; How They Don’t</title><meta content="Learn more about the concept of using patients’ digital twins to improve clinical trials - what it really means and common misconceptions." name="description"/><meta content="Digital Twins in Clinical Trials: How They Work &amp; How They Don’t" property="og:title"/><meta content="Learn more about the concept of using patients’ digital twins to improve clinical trials - what it really means and common misconceptions." property="og:description"/><meta content="https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d571e/66fc2ff3074bb309fb4d5b39_Mask%20group-19.png" property="og:image"/><meta content="Digital Twins in Clinical Trials: How They Work &amp; How They Don’t" property="twitter:title"/><meta content="Learn more about the concept of using patients’ digital twins to improve clinical trials - what it really means and common misconceptions." property="twitter:description"/><meta content="https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d571e/66fc2ff3074bb309fb4d5b39_Mask%20group-19.png" property="twitter:image"/><meta property="og:type" content="website"/><meta content="summary_large_image" name="twitter:card"/><meta content="width=device-width, initial-scale=1" name="viewport"/><meta content="0Z2TEFoQeSYjTu1LA_67kRsg4hborRnL-EFB8kcwuOM" name="google-site-verification"/><link href="https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/css/unlearn-staging.5e6249a6e.min.css" rel="stylesheet" type="text/css"/><link href="https://fonts.googleapis.com" rel="preconnect"/><link href="https://fonts.gstatic.com" rel="preconnect" crossorigin="anonymous"/><script src="https://ajax.googleapis.com/ajax/libs/webfont/1.6.26/webfont.js" type="text/javascript"></script><script type="text/javascript">WebFont.load({ google: { families: ["Inter:regular,500,600,700,800"] }});</script><script type="text/javascript">!function(o,c){var n=c.documentElement,t=" w-mod-";n.className+=t+"js",("ontouchstart"in o||o.DocumentTouch&&c instanceof DocumentTouch)&&(n.className+=t+"touch")}(window,document);</script><link href="https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/6741172dd8ecdc007f9869e1_Favicon-3.png" rel="shortcut icon" type="image/x-icon"/><link href="https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/674115766b4cce6ad90c15ae_Substack-3.png" rel="apple-touch-icon"/><script async="" src="https://www.googletagmanager.com/gtag/js?id=G-6D3XF12FV2"></script><script type="text/javascript">window.dataLayer = window.dataLayer || [];function gtag(){dataLayer.push(arguments);}gtag('js', new Date());gtag('set', 'developer_id.dZGVlNj', true);gtag('config', 'G-6D3XF12FV2');</script><!-- Please keep this css code to improve the font quality--> <style> * { -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; text-rendering: geometricPrecision; } </style> <style> html { font-size: 1.125rem; } @media screen and (max-width:1920px) { html { font-size: calc(0.625rem + 0.41666666666666674vw); } } @media screen and (max-width:1440px) { html { font-size: calc(0.8126951092611863rem + 0.20811654526534862vw); } } @media screen and (max-width:479px) { html { font-size: calc(0.7494769874476988rem + 0.8368200836820083vw); } } .footer-bottom_link { opacity: 1; transition: opacity 0.3s ease; } .footer-bottom_link:hover { opacity: 1; } /* When hovering over any .footer-bottom_link, fade all other links */ .footer-bottom_link:hover ~ .footer-bottom_link, .footer-bottom_link:hover + .footer-bottom_link, .footer-bottom_link:not(:hover) { opacity: 0.5; } </style> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-TMZ5GBF" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- [Attributes by Finsweet] Disable scrolling --> <script defer src="https://cdn.jsdelivr.net/npm/@finsweet/attributes-scrolldisable@1/scrolldisable.js"></script> <!-- Banner closing --> <script src="https://cdn.jsdelivr.net/npm/js-cookie@2/src/js.cookie.min.js"></script> <script> var cookieName = 'cookieClosed'; if(typeof Cookies.get(cookieName) !== 'undefined') { $('.banner_component').remove(); } $('.banner_close-btn').on('click', function(){ Cookies.set(cookieName, 'ok', { expires: 1 }); }) </script> <!-- Propensity tag (propensity_analytics.js) --> <script src="https://cdn.propensity.com/propensity/propensity_analytics.js" crossorigin="anonymous"></script> <script type="text/javascript"> propensity("propensity-001601"); </script> <!-- SiteSpeakAI - Add ChatGPT to your website --> <script type="text/javascript">(function(){d=document;s=d.createElement("script");s.src="https://sitespeak.ai/chatbots/cc7a0d81-1480-49bf-8842-07006147a920.js";s.async=1;d.getElementsByTagName("head")[0].appendChild(s);})();</script> <!-- / SiteSpeakAI --></head><body><div class="page-wrapper"><div class="global-styles w-embed"><style> body { -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; font-smoothing: antialiased; text-rendering: optimizeLegibility; } /* Get rid of top margin on first element in any rich text element */ .w-richtext > :not(div):first-child, .w-richtext > div:first-child > :first-child { margin-top: 0 !important; } /* Get rid of bottom margin on last element in any rich text element */ .w-richtext>:last-child, .w-richtext ol li:last-child, .w-richtext ul li:last-child { margin-bottom: 0 !important; } /* Make the following elements inherit typography styles from the parent and not have hardcoded values. Important: You will not be able to style for example "All Links" in Designer with this CSS applied. Uncomment this CSS to use it in the project. Leave this message for future hand-off. */ /* a, .w-input, .w-select, .w-tab-link, .w-nav-link, .w-dropdown-btn, .w-dropdown-toggle, .w-dropdown-link { color: inherit; text-decoration: inherit; font-size: inherit; } */ /* Prevent all click and hover interaction with an element */ .pointer-events-off { pointer-events: none; } [pe0] { pointer-events: none; } /* Enables all click and hover interaction with an element */ .pointer-events-on { pointer-events: auto; } /* Snippet enables you to add class of div-square which creates and maintains a 1:1 dimension of a div.*/ .div-square::after { content: ""; display: block; padding-bottom: 100%; } /*Hide focus outline for main content element*/ main:focus-visible { outline: -webkit-focus-ring-color auto 0px; } /* Make sure containers never lose their center alignment*/ .container-medium, .container-small, .container-large { margin-right: auto !important; margin-left: auto !important; } /*Reset selects, buttons, and links styles*/ .w-input, .w-select, a { color: inherit; text-decoration: inherit; font-size: inherit; } /*Apply "..." after 3 lines of text */ .text-style-3lines { display: -webkit-box; overflow: hidden; -webkit-line-clamp: 3; -webkit-box-orient: vertical; } /* Apply "..." after 2 lines of text */ .text-style-2lines { display: -webkit-box; overflow: hidden; -webkit-line-clamp: 2; -webkit-box-orient: vertical; } /* Apply "..." at 100% width */ .truncate-width { width: 100%; white-space: nowrap; overflow: hidden; text-overflow: ellipsis; } /* Removes native scrollbar */ .no-scrollbar { -ms-overflow-style: none; // IE 10+ overflow: -moz-scrollbars-none; // Firefox } .no-scrollbar::-webkit-scrollbar { display: none; // Safari and Chrome } /* Adds inline flex display */ .display-inlineflex { display: inline-flex; } /* These classes are never overwritten */ .hide { display: none !important; } @media screen and (max-width: 991px) { .hide, .hide-tablet { display: none !important; } } @media screen and (max-width: 767px) { .hide-mobile-landscape{ display: none !important; } } @media screen and (max-width: 479px) { .hide-mobile{ display: none !important; } } .margin-0 { margin: 0rem !important; } .padding-0 { padding: 0rem !important; } .spacing-clean { padding: 0rem !important; margin: 0rem !important; } .margin-top { margin-right: 0rem !important; margin-bottom: 0rem !important; margin-left: 0rem !important; } .padding-top { padding-right: 0rem !important; padding-bottom: 0rem !important; padding-left: 0rem !important; } .margin-right { margin-top: 0rem !important; margin-bottom: 0rem !important; margin-left: 0rem !important; } .padding-right { padding-top: 0rem !important; padding-bottom: 0rem !important; padding-left: 0rem !important; } .margin-bottom { margin-top: 0rem !important; margin-right: 0rem !important; margin-left: 0rem !important; } .padding-bottom { padding-top: 0rem !important; padding-right: 0rem !important; padding-left: 0rem !important; } .margin-left { margin-top: 0rem !important; margin-right: 0rem !important; margin-bottom: 0rem !important; } .padding-left { padding-top: 0rem !important; padding-right: 0rem !important; padding-bottom: 0rem !important; } .margin-horizontal { margin-top: 0rem !important; margin-bottom: 0rem !important; } .padding-horizontal { padding-top: 0rem !important; padding-bottom: 0rem !important; } .margin-vertical { margin-right: 0rem !important; margin-left: 0rem !important; } .padding-vertical { padding-right: 0rem !important; padding-left: 0rem !important; } .navbar_component.is-open { transform: translatey(0%); } .navbar_component.is-on-hero { transform: translatey(0%); } @media (min-width: 1024px) { .team_margin { margin-top: 1.5rem; } .lil-gui.autoPlace { display:none; } .form-field-wrapper:focus-within label { color: #2d4fff; } .no-scroll { overflow: hidden; } </style> <style> textarea, input.text, input[type="text"], input[type="button"], input[type="submit"], .is-select-input { -webkit-appearance: none; } .transitionfix() { -webkit-backface-visibility: hidden; -moz-backface-visibility: hidden; -webkit-transform: translate3d(0, 0, 0); -moz-transform: translate3d(0, 0, 0) } </style> <style> *:focus { outline: none; } .purpose_background-video { -webkit-mask-image: -webkit-radial-gradient(white, black); } </style> <style> /* Dropdown active */ .w-dropdown-link.w--current { color: #2d4fff; } /* Accordion */ [accordion-item_body] { opacity: 0; transition: max-height 300ms ease-in-out, opacity 300ms ease-in-out; } .accordion-item_header.is-open ~ .accordion-item_body, [accordion-item_header].is-open ~ [accordion-item_body] { max-height: 100rem; opacity: 1; } .accordion-item_header-toggle.is-arrow img, [accordion-item_header-toggle].is-arrow img { transition: transform 300ms ease-in-out; } .accordion-item_header.is-open .accordion-item_header-toggle.is-arrow img, [accordion-item_header].is-open [accordion-item_header-toggle].is-arrow img { transform: rotateZ(-180deg); } [modal].is-open { visibility: visible; opacity: 1; } [modal] { opacity: 0; visibility: hidden; transition: 0.4s; } .button.is-gradient { padding: calc(0.7rem + 2px) calc(1.5rem + 2px); } </style></div><div class="custom-styles"><div class="custom-styles w-embed"><style> .rich-text_component p + h3, .rich-text_component p + h4, .rich-text_component p + h5, .rich-text_component p + h6 { margin-top: 2.5rem; } .rich-text_component p + h2 { margin-top: 3rem; } .rich-text_component p + p { margin-top: 2rem; } @media screen and (max-width: 478px) { .rich-text_component p + h3, .rich-text_component p + h4, .rich-text_component p + h5, .rich-text_component p + h6 { margin-top: 2rem; } .rich-text_component p + h2 { margin-top: 2.5rem; } .rich-text_component p + p { margin-top: 1.5rem; } } </style></div></div><main class="main-wrapper"><div class="navbar_wrapper--new"><div class="navbar_wrapper"><div class="w-layout-blockcontainer nav_container w-container"><div class="nav-content_wrapper"><div class="menu-open_container"><div class="menu_container"><div class="menu-line-container top"><div class="menu-line top"></div></div><div class="menu-line-container bottom"><div class="menu-line bottom"></div></div></div></div><a href="/" class="homepage_logo w-inline-block"><div class="homepage-logo-container"><div class="logo-badge_container"><svg xmlns="http://www.w3.org/2000/svg" width="100%" viewBox="0 0 241 236"><g clip-path="url(#clip0_2_206)"><mask id="mask0_2_206" STYLE="mask-type:alpha" maskUnits="userSpaceOnUse" x="0" y="0" width="242" height="236"><path d="M241.995 0H0V118H0.0186757C0.74236 184.473 54.6265 236 121.005 236C187.383 236 241.267 184.473 241.991 118H242V0H241.995Z" fill="currentColor"></path></mask><g mask="url(#mask0_2_206)"><path d="M241.377 13.48H241.692V-0.376465H-259V13.48H147.4L146.573 13.5186C147.78 18.1032 148.855 22.7134 149.865 27.375H241.692V13.5186L241.377 13.48Z" fill="currentColor" class="logo-line_path"></path><path d="M241.692 55.1483V41.3047H-259V55.1483H155.334L154.599 55.1998C155.19 59.7843 155.662 64.3945 156.055 69.0434H241.692V55.1998L241.246 55.1483H241.692Z" fill="currentColor" class="logo-line_path"></path><path d="M-259 96.8519H157.406L157.235 96.9034C157.235 101.539 157.104 106.15 156.921 110.747H241.692V96.9034L241.246 96.8519H241.692V83.0083H-259V96.8519Z" fill="currentColor" class="logo-line_path"></path><path d="M-259 138.848L154.616 138.5V138.552C154.026 143.188 153.318 147.811 152.544 152.395H236.397C237.814 147.888 238.968 143.265 239.834 138.552L239.388 138.5H239.834C240.659 133.967 241.21 129.344 241.486 124.657L-259 125.004V132.5V138.848Z" fill="currentColor" class="logo-line_path"></path><path d="M-259 180.213H146.753L146.569 180.265C145.35 184.914 144.025 189.524 142.622 194.109H213.007C216.809 189.768 220.259 185.132 223.367 180.265L223.184 180.213H223.393C226.239 175.783 228.771 171.16 231.001 166.37H-259V180.213Z" fill="currentColor" class="logo-line_path"></path><path d="M-259 221.884H132.665L132.587 221.937C130.685 226.572 128.692 231.143 126.607 235.676C144.993 234.816 162.304 229.95 177.648 221.937L177.451 221.884H177.753C185.215 217.981 192.205 213.332 198.631 208.04H-259V221.884Z" fill="currentColor" class="logo-line_path"></path></g></g></svg></div><div class="logo_container"><svg xmlns="http://www.w3.org/2000/svg" width="100%" viewBox="0 0 846 134" fill="none"><mask id="mask0_61_329" STYLE="mask-type:alpha" maskUnits="userSpaceOnUse" x="0" y="0" width="846" height="134"><rect width="846" height="134" fill="currentColor"></rect></mask><g mask="url(#mask0_61_329)"><path d="M286.177 113.536H352.176V131.229H265.941V0H286.177V113.536Z" fill="currentColor" class="logo-learn-text"></path><path d="M463.371 17.693H387.541V54.7336H456.184V72.0609H387.541V113.527H462.798V131.219H367.305V0H463.371V17.693Z" fill="currentColor" class="logo-learn-text"></path><path d="M581.924 131.229L568.686 97.1325H508.175L495.125 131.229H474.139L526.712 0H549.97L603.294 131.229H581.924ZM514.602 79.9882H562.062L559.229 72.8014C552.044 55.2914 545.044 37.2327 538.243 18.9822C533.515 31.326 526.704 49.2109 517.444 72.8014L514.611 79.9882H514.602Z" fill="currentColor" class="logo-learn-text"></path><path d="M698.408 131.229L661.725 79.8054H634.304V131.229H614.068V0H671.745C686.305 0 697.459 3.68485 705.594 11.0547C713.728 18.4244 717.695 28.0068 717.695 39.6192C717.695 59.525 705.406 74.4565 684.034 78.3242L721.852 131.219H698.408V131.229ZM634.304 16.9705V63.2281H671.182C687.825 63.2281 697.085 54.0113 697.085 40.0033C697.085 25.9953 687.815 16.9614 671.182 16.9614H634.304V16.9705Z" fill="currentColor" class="logo-learn-text"></path><path d="M826.254 0H845.732V131.229H822.474L781.064 67.6445C768.774 48.8452 760.077 34.8371 754.777 25.4375C755.339 41.8411 755.536 63.9596 755.536 91.4177V131.229H735.873V0H759.129L800.737 63.5846C811.142 79.6225 820.026 93.8134 827.024 105.974C826.461 89.3878 826.264 67.2695 826.264 39.8113V0H826.254Z" fill="currentColor" class="logo-learn-text"></path><path fill-rule="evenodd" clip-rule="evenodd" d="M1.93213 0H22.1681L22.1681 75.4769V82.3896C22.1681 105.249 34.4572 116.669 56.392 116.669C78.3269 116.669 90.6159 105.239 90.6159 82.3896V75.4999H90.6056V0H110.842V75.4769H110.852V82.2067C110.852 115.38 90.6159 133.997 56.392 133.997C22.1681 133.997 1.93213 115.38 1.93213 82.2067V75.4999V75.4769V0ZM151.959 131C151.916 126.937 151.865 113.862 151.804 98.2052L151.804 98.1975C151.691 69.0683 151.544 31.0095 151.349 25.4375C154.158 30.4156 181.106 71.7144 200.584 101.566L200.588 101.571C209.658 115.472 217.108 126.889 219.746 131H222.857H242H242.296V0H222.828V39.8114C222.828 43.2936 222.828 76.5041 222.835 101.908L155.701 0H132.445L132.444 131H151.959Z" fill="currentColor" class="un-logo-text"></path><rect x="-3" y="55" width="249" height="21" fill="#ffffff" class="overlay-line"></rect></g></svg></div></div></a><div class="menu-wrapper_container"><div class="navigation_menu"><div class="menu_wrapper"><div class="menu-block platform"><div class="menu_heading">Platform</div><div class="menu-links_wrapper"><a href="/the-unlearn-platform" class="menu-link_wrapper w-inline-block"><svg xmlns="http://www.w3.org/2000/svg" width="100%" viewBox="0 0 10 10" fill="none" class="button_arrow-icon menu_item platform"><path fill-rule="evenodd" clip-rule="evenodd" d="M9.85943 0.546897C9.8231 0.45909 9.76938 0.376785 9.69826 0.305247C9.69773 0.304716 9.6972 0.304185 9.69667 0.303654C9.69614 0.303124 9.69561 0.302595 9.69508 0.302066C9.55948 0.167276 9.37264 0.0839844 9.16634 0.0839844H0.833008C0.418794 0.0839844 0.0830078 0.419771 0.0830078 0.833984C0.0830078 1.2482 0.418794 1.58398 0.833008 1.58398H7.35568L0.302678 8.63699C0.0097845 8.92988 0.0097845 9.40475 0.302678 9.69765C0.595571 9.99054 1.07044 9.99054 1.36334 9.69765L8.41634 2.64464V9.16732C8.41634 9.58153 8.75213 9.91732 9.16634 9.91732C9.58055 9.91732 9.91634 9.58153 9.91634 9.16732V0.833984C9.91634 0.732292 9.8961 0.635327 9.85943 0.546897Z" fill="currentColor"></path></svg><div class="navigation-link">The Unlearn Platform</div></a><a href="/digital-twin-generators" class="menu-link_wrapper w-inline-block"><svg xmlns="http://www.w3.org/2000/svg" width="100%" viewBox="0 0 10 10" fill="none" class="button_arrow-icon menu_item platform"><path fill-rule="evenodd" clip-rule="evenodd" d="M9.85943 0.546897C9.8231 0.45909 9.76938 0.376785 9.69826 0.305247C9.69773 0.304716 9.6972 0.304185 9.69667 0.303654C9.69614 0.303124 9.69561 0.302595 9.69508 0.302066C9.55948 0.167276 9.37264 0.0839844 9.16634 0.0839844H0.833008C0.418794 0.0839844 0.0830078 0.419771 0.0830078 0.833984C0.0830078 1.2482 0.418794 1.58398 0.833008 1.58398H7.35568L0.302678 8.63699C0.0097845 8.92988 0.0097845 9.40475 0.302678 9.69765C0.595571 9.99054 1.07044 9.99054 1.36334 9.69765L8.41634 2.64464V9.16732C8.41634 9.58153 8.75213 9.91732 9.16634 9.91732C9.58055 9.91732 9.91634 9.58153 9.91634 9.16732V0.833984C9.91634 0.732292 9.8961 0.635327 9.85943 0.546897Z" fill="currentColor"></path></svg><div class="navigation-link">Digital Twin Generators</div></a></div></div><div class="menu-block research"><div class="menu_heading">Research</div><div class="menu-links_wrapper"><a href="/ai-research" class="menu-link_wrapper w-inline-block"><svg xmlns="http://www.w3.org/2000/svg" width="100%" viewBox="0 0 10 10" fill="none" class="button_arrow-icon menu_item research"><path fill-rule="evenodd" clip-rule="evenodd" d="M9.85943 0.546897C9.8231 0.45909 9.76938 0.376785 9.69826 0.305247C9.69773 0.304716 9.6972 0.304185 9.69667 0.303654C9.69614 0.303124 9.69561 0.302595 9.69508 0.302066C9.55948 0.167276 9.37264 0.0839844 9.16634 0.0839844H0.833008C0.418794 0.0839844 0.0830078 0.419771 0.0830078 0.833984C0.0830078 1.2482 0.418794 1.58398 0.833008 1.58398H7.35568L0.302678 8.63699C0.0097845 8.92988 0.0097845 9.40475 0.302678 9.69765C0.595571 9.99054 1.07044 9.99054 1.36334 9.69765L8.41634 2.64464V9.16732C8.41634 9.58153 8.75213 9.91732 9.16634 9.91732C9.58055 9.91732 9.91634 9.58153 9.91634 9.16732V0.833984C9.91634 0.732292 9.8961 0.635327 9.85943 0.546897Z" fill="currentColor"></path></svg><div class="navigation-link">Artificial Intelligence</div></a><a href="/clinical-research" class="menu-link_wrapper w-inline-block"><svg xmlns="http://www.w3.org/2000/svg" width="100%" viewBox="0 0 10 10" fill="none" class="button_arrow-icon menu_item research"><path fill-rule="evenodd" clip-rule="evenodd" d="M9.85943 0.546897C9.8231 0.45909 9.76938 0.376785 9.69826 0.305247C9.69773 0.304716 9.6972 0.304185 9.69667 0.303654C9.69614 0.303124 9.69561 0.302595 9.69508 0.302066C9.55948 0.167276 9.37264 0.0839844 9.16634 0.0839844H0.833008C0.418794 0.0839844 0.0830078 0.419771 0.0830078 0.833984C0.0830078 1.2482 0.418794 1.58398 0.833008 1.58398H7.35568L0.302678 8.63699C0.0097845 8.92988 0.0097845 9.40475 0.302678 9.69765C0.595571 9.99054 1.07044 9.99054 1.36334 9.69765L8.41634 2.64464V9.16732C8.41634 9.58153 8.75213 9.91732 9.16634 9.91732C9.58055 9.91732 9.91634 9.58153 9.91634 9.16732V0.833984C9.91634 0.732292 9.8961 0.635327 9.85943 0.546897Z" fill="currentColor"></path></svg><div class="navigation-link">Clinical Research</div></a></div></div><div class="menu-block company"><div class="menu_heading">Company</div><div class="menu-links_wrapper"><a href="/about" class="menu-link_wrapper w-inline-block"><svg xmlns="http://www.w3.org/2000/svg" width="100%" viewBox="0 0 10 10" fill="none" class="button_arrow-icon menu_item company"><path fill-rule="evenodd" clip-rule="evenodd" d="M9.85943 0.546897C9.8231 0.45909 9.76938 0.376785 9.69826 0.305247C9.69773 0.304716 9.6972 0.304185 9.69667 0.303654C9.69614 0.303124 9.69561 0.302595 9.69508 0.302066C9.55948 0.167276 9.37264 0.0839844 9.16634 0.0839844H0.833008C0.418794 0.0839844 0.0830078 0.419771 0.0830078 0.833984C0.0830078 1.2482 0.418794 1.58398 0.833008 1.58398H7.35568L0.302678 8.63699C0.0097845 8.92988 0.0097845 9.40475 0.302678 9.69765C0.595571 9.99054 1.07044 9.99054 1.36334 9.69765L8.41634 2.64464V9.16732C8.41634 9.58153 8.75213 9.91732 9.16634 9.91732C9.58055 9.91732 9.91634 9.58153 9.91634 9.16732V0.833984C9.91634 0.732292 9.8961 0.635327 9.85943 0.546897Z" fill="currentColor"></path></svg><div class="navigation-link">About</div></a><a href="/careers" class="menu-link_wrapper w-inline-block"><svg xmlns="http://www.w3.org/2000/svg" width="100%" viewBox="0 0 10 10" fill="none" class="button_arrow-icon menu_item company"><path fill-rule="evenodd" clip-rule="evenodd" d="M9.85943 0.546897C9.8231 0.45909 9.76938 0.376785 9.69826 0.305247C9.69773 0.304716 9.6972 0.304185 9.69667 0.303654C9.69614 0.303124 9.69561 0.302595 9.69508 0.302066C9.55948 0.167276 9.37264 0.0839844 9.16634 0.0839844H0.833008C0.418794 0.0839844 0.0830078 0.419771 0.0830078 0.833984C0.0830078 1.2482 0.418794 1.58398 0.833008 1.58398H7.35568L0.302678 8.63699C0.0097845 8.92988 0.0097845 9.40475 0.302678 9.69765C0.595571 9.99054 1.07044 9.99054 1.36334 9.69765L8.41634 2.64464V9.16732C8.41634 9.58153 8.75213 9.91732 9.16634 9.91732C9.58055 9.91732 9.91634 9.58153 9.91634 9.16732V0.833984C9.91634 0.732292 9.8961 0.635327 9.85943 0.546897Z" fill="currentColor"></path></svg><div class="navigation-link">Careers</div></a><a href="/blog" class="menu-link_wrapper w-inline-block"><svg xmlns="http://www.w3.org/2000/svg" width="100%" viewBox="0 0 10 10" fill="none" class="button_arrow-icon menu_item company"><path fill-rule="evenodd" clip-rule="evenodd" d="M9.85943 0.546897C9.8231 0.45909 9.76938 0.376785 9.69826 0.305247C9.69773 0.304716 9.6972 0.304185 9.69667 0.303654C9.69614 0.303124 9.69561 0.302595 9.69508 0.302066C9.55948 0.167276 9.37264 0.0839844 9.16634 0.0839844H0.833008C0.418794 0.0839844 0.0830078 0.419771 0.0830078 0.833984C0.0830078 1.2482 0.418794 1.58398 0.833008 1.58398H7.35568L0.302678 8.63699C0.0097845 8.92988 0.0097845 9.40475 0.302678 9.69765C0.595571 9.99054 1.07044 9.99054 1.36334 9.69765L8.41634 2.64464V9.16732C8.41634 9.58153 8.75213 9.91732 9.16634 9.91732C9.58055 9.91732 9.91634 9.58153 9.91634 9.16732V0.833984C9.91634 0.732292 9.8961 0.635327 9.85943 0.546897Z" fill="currentColor"></path></svg><div class="navigation-link">Blog</div></a><a href="/press" class="menu-link_wrapper w-inline-block"><svg xmlns="http://www.w3.org/2000/svg" width="100%" viewBox="0 0 10 10" fill="none" class="button_arrow-icon menu_item company"><path fill-rule="evenodd" clip-rule="evenodd" d="M9.85943 0.546897C9.8231 0.45909 9.76938 0.376785 9.69826 0.305247C9.69773 0.304716 9.6972 0.304185 9.69667 0.303654C9.69614 0.303124 9.69561 0.302595 9.69508 0.302066C9.55948 0.167276 9.37264 0.0839844 9.16634 0.0839844H0.833008C0.418794 0.0839844 0.0830078 0.419771 0.0830078 0.833984C0.0830078 1.2482 0.418794 1.58398 0.833008 1.58398H7.35568L0.302678 8.63699C0.0097845 8.92988 0.0097845 9.40475 0.302678 9.69765C0.595571 9.99054 1.07044 9.99054 1.36334 9.69765L8.41634 2.64464V9.16732C8.41634 9.58153 8.75213 9.91732 9.16634 9.91732C9.58055 9.91732 9.91634 9.58153 9.91634 9.16732V0.833984C9.91634 0.732292 9.8961 0.635327 9.85943 0.546897Z" fill="currentColor"></path></svg><div class="navigation-link">Press</div></a></div></div></div></div></div><a href="/forms/contact-us" class="cta_wrapper nav w-inline-block"><div class="cta_text">Book a Demo</div><div class="button-icon"><div class="icon-container"><svg xmlns="http://www.w3.org/2000/svg" width="100%" viewBox="0 0 10 10" fill="none" class="button_arrow-icon menu-cta"><path fill-rule="evenodd" clip-rule="evenodd" d="M9.85943 0.546897C9.8231 0.45909 9.76938 0.376785 9.69826 0.305247C9.69773 0.304716 9.6972 0.304185 9.69667 0.303654C9.69614 0.303124 9.69561 0.302595 9.69508 0.302066C9.55948 0.167276 9.37264 0.0839844 9.16634 0.0839844H0.833008C0.418794 0.0839844 0.0830078 0.419771 0.0830078 0.833984C0.0830078 1.2482 0.418794 1.58398 0.833008 1.58398H7.35568L0.302678 8.63699C0.0097845 8.92988 0.0097845 9.40475 0.302678 9.69765C0.595571 9.99054 1.07044 9.99054 1.36334 9.69765L8.41634 2.64464V9.16732C8.41634 9.58153 8.75213 9.91732 9.16634 9.91732C9.58055 9.91732 9.91634 9.58153 9.91634 9.16732V0.833984C9.91634 0.732292 9.8961 0.635327 9.85943 0.546897Z" fill="currentColor"></path></svg></div><div class="second-icon_container"><svg xmlns="http://www.w3.org/2000/svg" width="100%" viewBox="0 0 10 10" fill="none" class="button_arrow-icon menu-cta"><path fill-rule="evenodd" clip-rule="evenodd" d="M9.85943 0.546897C9.8231 0.45909 9.76938 0.376785 9.69826 0.305247C9.69773 0.304716 9.6972 0.304185 9.69667 0.303654C9.69614 0.303124 9.69561 0.302595 9.69508 0.302066C9.55948 0.167276 9.37264 0.0839844 9.16634 0.0839844H0.833008C0.418794 0.0839844 0.0830078 0.419771 0.0830078 0.833984C0.0830078 1.2482 0.418794 1.58398 0.833008 1.58398H7.35568L0.302678 8.63699C0.0097845 8.92988 0.0097845 9.40475 0.302678 9.69765C0.595571 9.99054 1.07044 9.99054 1.36334 9.69765L8.41634 2.64464V9.16732C8.41634 9.58153 8.75213 9.91732 9.16634 9.91732C9.58055 9.91732 9.91634 9.58153 9.91634 9.16732V0.833984C9.91634 0.732292 9.8961 0.635327 9.85943 0.546897Z" fill="currentColor"></path></svg></div></div></a></div></div></div></div><section class="section_blog-post-hero"><div class="padding-global"><div class="container-large"><div class="interior-hero_content"><div class="blog-post-hero_layout"><div class="blog-post-hero_copy"><h1 class="heading-style-h5">Blog</h1><div class="padding-bottom padding-medium"></div><h2>Digital twins in clinical trials: How they work, and how they don’t.</h2><div class="padding-bottom padding-large"></div><div class="blog-post-hero_author-wrapper"><div class="heading-style-h6">By</div><div class="heading-style-h6">Charles K. Fisher</div></div></div><div class="blog-post-hero_image-wrapper hide-mobile-landscape"><img src="https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/66fc2ff3074bb309fb4d59a1_placeholder-image.png" loading="lazy" sizes="100vw" srcset="https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/66fc2ff3074bb309fb4d59a1_placeholder-image-p-500.png 500w, https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/66fc2ff3074bb309fb4d59a1_placeholder-image-p-800.png 800w, https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/66fc2ff3074bb309fb4d59a1_placeholder-image-p-1080.png 1080w, https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/66fc2ff3074bb309fb4d59a1_placeholder-image-p-1600.png 1600w, https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/66fc2ff3074bb309fb4d59a1_placeholder-image.png 1920w" alt="" class="blog-post-hero_image is-default w-condition-invisible"/><img src="https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d571e/66fc2ff3074bb309fb4d5b39_Mask%20group-19.png" loading="lazy" alt="" sizes="(max-width: 767px) 100vw, (max-width: 1919px) 28vw, 20vw" srcset="https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d571e/66fc2ff3074bb309fb4d5b39_Mask%2520group-19-p-500.png 500w, https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d571e/66fc2ff3074bb309fb4d5b39_Mask%2520group-19-p-800.png 800w, https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d571e/66fc2ff3074bb309fb4d5b39_Mask%20group-19.png 1201w" class="blog-post-hero_image"/></div></div></div></div></div></section><div data-w-id="4974ceb1-0f5a-b925-48f0-d2092206a403" class="sections-wrapper"><section id="technology" class="section_blog-post-body"><div class="padding-global"><div class="container-large"><div class="padding-section-large"><div class="w-layout-grid blog-post_grid"><div class="blog-post_grid-header"><h2 class="text-style-label">November 6, 2023</h2><div class="share_component"><ul role="list" class="share_list"><li class="share_list-item"><a fs-socialshare-element="twitter" href="#" class="share_link-item w-inline-block"><div class="share_link-icon w-embed"><svg xmlns="http://www.w3.org/2000/svg" width="28" height="28" viewBox="0 0 28 28" fill="currentColor"> <path fill-rule="evenodd" clip-rule="evenodd" d="M1.98035 0.987549C0.886635 0.987549 0 1.84511 0 2.90297V26.0574C0 27.1152 0.886636 27.9728 1.98036 27.9728H25.9197C27.0134 27.9728 27.9001 27.1152 27.9001 26.0574V2.90297C27.9001 1.84511 27.0134 0.987549 25.9197 0.987549H1.98035Z" fill="currentColor"/> <g clip-path="url(#clip0_7480_21150)"> <path d="M22.5634 21.9474L15.862 12.4333L15.1043 11.3573L10.3106 4.55155L9.91341 3.98755H4.02295L5.45958 6.02771L11.8334 15.0778L12.591 16.1527L17.7123 23.4242L18.1096 23.9877H24.0001L22.5634 21.9476V21.9474ZM18.8096 22.6855L13.4891 15.1311L12.7314 14.0557L6.55746 5.28963H9.2132L14.2061 12.3789L14.9638 13.4542L21.4654 22.6853H18.8096V22.6855Z" fill="white"/> <path d="M12.7316 14.0557L13.4892 15.131L12.591 16.1526L5.69944 23.9876H4L11.8334 15.0777L12.7316 14.0557Z" fill="white"/> <path d="M23.2907 3.98755L15.8619 12.4333L14.9637 13.4542L14.2061 12.3789L15.1043 11.3573L20.1364 5.6335L21.5912 3.98755H23.2907Z" fill="white"/> </g> <defs> <clipPath id="clip0_7480_21150"> <rect width="20" height="20" fill="white" transform="translate(4 3.98755)"/> </clipPath> </defs> </svg></div><div>X</div></a></li><li class="share_list-item is-last"><a fs-socialshare-element="linkedIn" href="#" class="share_link-item w-inline-block"><div class="share_link-icon w-embed"><svg width=" 100%" height=" 100%" viewBox="0 0 24 24" fill="none" xmlns="http://www.w3.org/2000/svg"> <path fill-rule="evenodd" clip-rule="evenodd" d="M1.70353 0.212891C0.762697 0.212891 0 0.95058 0 1.86057V21.7783C0 22.6883 0.762698 23.426 1.70353 23.426H22.2965C23.2374 23.426 24.0001 22.6883 24.0001 21.7783V1.86057C24.0001 0.950581 23.2374 0.212891 22.2965 0.212891H1.70353ZM5.38691 7.42175C6.53677 7.42175 7.46891 6.52017 7.46891 5.40802C7.46891 4.29586 6.53677 3.39428 5.38691 3.39428C4.23706 3.39428 3.30491 4.29586 3.30491 5.40802C3.30491 6.52017 4.23706 7.42175 5.38691 7.42175ZM9.37567 8.90996H12.8262V10.4389C12.8262 10.4389 13.7626 8.62754 16.3103 8.62754C18.5829 8.62754 20.4655 9.71039 20.4655 13.011V19.9711H16.8898V13.8544C16.8898 11.9073 15.8151 11.6932 14.9961 11.6932C13.2965 11.6932 13.0055 13.1111 13.0055 14.1084V19.9711H9.37567V8.90996ZM7.20185 8.90998H3.57198V19.9711H7.20185V8.90998Z" fill="currentColor"/> </svg></div><div>LinkedIn</div></a></li></ul></div></div><div class="blog-post_grid-body"><div class="max-width-large"><div class="rich-text_component w-richtext"><figure style="max-width:1024px" class="w-richtext-align-fullwidth w-richtext-figure-type-image"><a target="_blank" href="https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fe2f80311-288b-47dc-a6b3-18734d6f865f_1024x1024.png"><div><img src="https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d571e/66fc2ff3074bb309fb4d5aba_65f2381e4ade1793699fa282_https%25253A%25252F%25252Fsubstack-post-media.s3.amazonaws.com%25252Fpublic%25252Fimages%25252Fe2f80311-288b-47dc-a6b3-18734d6f865f_1024x1024.jpeg" alt="" loading="lazy"/></div></a></figure><p>At Unlearn, we invented the concept of using patients’ digital twins to improve clinical trials. Not only have we invented numerous machine learning and statistical methodologies, we’ve also blazed the trail for applying these methods in late stage clinical trials in ways that regulators will accept—even going through a two year process to obtain a novel methodologies <a href="https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/qualification-opinion-prognostic-covariate-adjustment-procovatm_en.pdf">qualification opinion</a> from the European Medicines Agency. Nevertheless, we continue to encounter some common misconceptions about how we actually use trial participants’ digital twins to improve clinical trials. That’s one of the inevitable downsides of inventing products based on sophisticated mathematics, I suppose. Let’s see if we can clear up some of those misconceptions in this post.</p><p>First and foremost, when we refer to a patient’s digital twin we mean that we’re using a model to forecast that individual person’s health in the future. These models are trained on historical patient data then applied to generate forecasts for new patients. In the context of a clinical trial, we start with a pre-specified model trained on historical data, then we collect data from a participant in the trial at their first visit as usual (their “baseline variables”), and input their baseline variables into the pre-specified model so that it can forecast their future clinical outcomes over the course of the trial. Since our models are trained on historical data from patients in the control groups of previous clinical trials and similar observational studies, a participant’s digital twin forecasts what their clinical outcomes would be if they were assigned to the control group.</p><p>So, a participant’s digital twin is <strong>not</strong> data from a matched patient in the historical dataset. In fact, it is <strong>not</strong> like a new patient at all; rather it is a model based forecast for the future clinical outcomes of a specific trial participant. However, it does <strong>not</strong> forcast how that specific participant will respond to the experimental treatment, only how they would likely respond if assigned to the control group. The models that we use to create these forecasts are based on deep neural networks, they are <strong>not </strong>mechanistic models that aim to describe all of the complexity of the human body. This coarse graining means there must be uncertainty in the model’s forecasts, and we <strong>do</strong> calculate prediction intervals to estimate that uncertainty.</p><p>“Okay. Okay. A patient’s digital twin is a forecast. We get it. Stop beating a dead horse. But, what I really care about is clinical trials. How do you actually use forecasts like this to make clinical trials better?” </p><p>Alright, I got you. </p><p>In short, the forecast clinical outcomes are included as covariates in an adjusted analysis to estimate the treatment effect. Why do it this way? To quote from the FDA’s <a href="https://www.fda.gov/media/148910/download">guidance on covariate adjustment</a>, “Covariate adjustment leads to efficiency gains when the covariates are prognostic for the outcome of interest in the trial. Therefore, FDA recommends that sponsors adjust for covariates that are anticipated to be most strongly associated with the outcome of interest.” Guess what variable <em>maximizes</em> the correlation with the outcome of interest—a forecast for the outcome! That’s why some authors have started referring to our work as using “<a href="https://onlinelibrary.wiley.com/doi/abs/10.1002/pst.2329#:~:text=%E2%80%9CSuper%2Dcovariates%E2%80%9D%3A%20Using,covariate%20in%20randomized%20clinical%20trials">super covariates</a>”.</p><p>Although covariate adjustment is widely used in clinical trials—e.g., adjusting for variables that are used in stratification—it’s not particularly easy to explain how it works without using some math. I’m going to give it a try, but first I’d like to debunk another common misconception that is <strong>not</strong> how it works.</p><p>To set the stage, imagine that you are planning a clinical trial with 1000 participants and 1-to-1 randomization so that 500 participants will be randomly assigned to the treatment group and 500 participants will be randomly assigned to the control group. But, then you come across this incredible company Unlearn.AI and learn that by applying their digital twin technologies you could run a trial with the same power that only needs to enroll 800 participants—500 participants will be randomly assigned to the treatment group (just like the original plan) but only 300 participants will be randomly assigned to the control group. The trial that uses participants’ digital twins can reach the target enrollment much faster because it doesn’t need to enroll as many participants to reach the designed power, and it does this in a patient-centric way by reducing the fraction of participants who are randomized to the control group. Note that I’m just using round numbers here for the example; the actual design for a given trial requires some calculations. </p><p>Now, almost everybody hears that story above and thinks we add 200 digital twins into the control arm somehow. But that is <strong>not</strong> how it works.</p><p>I understand why this misconception is appealing. You started with 500 participants on treatment and 500 on control, and now you have 500 on treatment and 300 on control. It’s like there are two glasses of water, one representing the treatment group and the other representing the control group. The glass representing the treatment group is full, but the glass representing the control group is only partly full. So, naturally one constructs a picture in which we somehow fill it up with digital twins.</p><figure style="max-width:1024px" class="w-richtext-align-fullwidth w-richtext-figure-type-image"><a target="_blank" href="https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Ffba34a37-d223-4561-9f86-22d8b3e16e45_1024x1024.png"><div><img src="https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d571e/66fc2ff3074bb309fb4d5abb_65f2381e9c7171ef0145e02d_https%25253A%25252F%25252Fsubstack-post-media.s3.amazonaws.com%25252Fpublic%25252Fimages%25252Ffba34a37-d223-4561-9f86-22d8b3e16e45_1024x1024.jpeg" alt="" loading="lazy"/></div></a></figure><p>This picture is too appealing! And it’s wrong! Wrong. Wrong. Wrong.</p><p>To understand why this picture is wrong, I’ll need to try to explain how prognostic covariate adjustment works in randomized trials. I think I can do this without any math, so stick with me.</p><p>Randomized trials are used to assess causality. Does taking this treatment cause a change in the outcome? We can evaluate questions like this using a framework known as “potential outcomes”.</p><p>Imagine a participant in a clinical trial as a contestant on a game show. There are two doors, one labeled “treatment” and the other labeled “control”. Behind each door is a “potential outcome”. If the participant is assigned to the treatment group, then we will open the door labeled treatment to reveal their potential treatment outcome. On the other hand, if they are assigned to the control group, then we will open the door labeled control to reveal their potential control outcome. It’s important to note that we can only open one door for each participant; the outcome behind the other door remains hidden. So, we can’t say whether or not the outcome behind the door labeled treatment was better than the outcome behind the door labeled control, because we never get to see behind both doors. But, if we enroll enough participants in the trial, and we randomly decide which door to open for each participant, then we can estimate the average difference between the treatment and control outcomes in the population eligible for our trial. That’s roughly how randomization works in clinical trials.</p><figure style="max-width:1024px" class="w-richtext-align-fullwidth w-richtext-figure-type-image"><a target="_blank" href="https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F03ee26aa-4b96-4ac9-9b72-e62c90abef86_1024x1024.png"><div><img src="https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d571e/66fc2ff3074bb309fb4d5ab9_65f2381ef3ff6290b1bb631f_https%25253A%25252F%25252Fsubstack-post-media.s3.amazonaws.com%25252Fpublic%25252Fimages%25252F03ee26aa-4b96-4ac9-9b72-e62c90abef86_1024x1024.jpeg" alt="" loading="lazy"/></div></a></figure><p>The outcome behind each door changes for each participant. Some participants’ would have a poor outcome if we opened the door labeled control, but others would have a good outcome. We can’t know for sure, but we can use a model to predict what outcome is behind the door labeled control for each participant. That’s what their digital twin provides. </p><p>For comparison, imagine that we changed the rules of the game show so that we always open the door labeled treatment for every participant. Everybody gets the treatment! But, we never get to see what’s behind any of the doors labeled control. So, how do we know if the treatment is actually better than the control? One possibility would be to use each participant’s digital twin to predict the outcome behind the door labeled control, and then compare those predicted control outcomes to the observed treatment outcomes. </p><p>The problem with this “single arm” design is that our estimate for the treatment effect would be equal to the true treatment effect <em>plus the bias in the model’s predictions</em>. How do we know that the model isn’t biased, you ask? We don’t. So, then how can you trust the estimate for the treatment effect, you say? Well, to be honest, you really can’t.</p><p>But, in a randomized trial, you do open the door labeled control for some of the participants which means you can compare their observed control outcome with what their digital twin predicted. This makes it possible to measure the bias in the model’s predictions, and correct for it when we estimate the treatment effect. That’s what prognostic covariate adjustment does.</p><p>I know I said I wasn’t going to use any math … but I lied. Don’t worry though, it’s simple math. In the single arm trial, we tried to estimate the treatment effect by looking at the mean difference between the observed treatment outcome and the predicted control outcome for the participants who received the treatment, but found that this included bias from the prediction model:</p><p>treatment effect + bias = mean_{treated} (treatment outcome - predicted control outcome)</p><p>With prognostic covariate adjustment, we use all of the data from the randomized study to debias our predictions for the control outcomes and then compute,</p><p>treatment effect = mean_{treated} (treatment outcome - debiased predicted control outcome)</p><p>The bias in the estimate for the treatment effect goes away! </p><p>Let’s reconsider our hypothetical 1000 participant clinical trial. However, since you’re working with Unlearn you only need to enroll 800 participants to achieve the same power. 500 of the participants are randomly assigned to the treatment group, and 300 participants are randomly to the control group. And, Unlearn uses data collected from each participant at their first visit to create 800 digital twins—one for each participant in the study. We use the participants’ digital twins to forecast their control outcomes. At the end of the study, after the data are unblinded, we perform a covariate adjusted analysis with <em>all of the participants</em> in order to debias the predicted control outcomes. Then, we estimate the average treatment effect as the mean difference between the observed treatment outcomes and the debiased predicted control outcomes for the participants in the treatment group. </p><p>The above description of covariate adjustment in randomized trials is pretty different from what you’ll read in many textbooks, but it is mathematically equivalent. And, as FDA says, “incorporating prognostic baseline covariates in the design and analysis of clinical trial data can result in a more efficient use of data to demonstrate and quantify the effects of treatment. Moreover, this can be done with minimal impact on bias or the Type I error rate.” So, you should be doing this. It makes your trial better.</p><p>Now, there is one remaining question that we always get asked at this point. You’re probably thinking, “I understand now that each participant gets a digital twin when they enroll. That their digital twin uses their baseline data to forecast what would happen if they got the control. And, we need to randomly assign <em>some</em> of the participants to the control group so that we can debias the predicted control outcomes at the end of the study in order to get an unbiased estimate of the treatment effect. But, how many participants need to be assigned to the control group to do this?”</p><p>It depends on how well one can forecast control outcomes in that indication. If the model used to forecast participants’ potential control outcomes has a high correlation with observed control outcomes, then we won’t need many observations to debias it. On the other hand, if the model used to forecast participants’ potential control outcomes has a low correlation with observed control outcomes, then we will need many observations to debias it. So the more correlated the forecast is with observed control outcomes, the fewer participants need to be assigned to the control group. We’ve derived a formula to calculate this precisely. </p><p>And, what if you already know something about how biased the model is? For example, based on its performance on some test data. Could you then design a study using even fewer participants? Yes! That’s how our Bayesian methods work. But that’s a topic for another blog post.</p></div><div class="rich-text_component hide w-richtext"><h1>Heading 1</h1><h2>Heading 2</h2><h3>Heading 3</h3><h4>Heading 4</h4><h5>Heading 5</h5><h6>Heading 6</h6><p>Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.</p><figure style="max-width:1920px" class="w-richtext-align-fullwidth w-richtext-figure-type-image"><div><img src="https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/66fc2ff3074bb309fb4d59a1_placeholder-image.png" loading="lazy" alt=""/></div><figcaption>Example of a caption</figcaption></figure><blockquote>Block quote that is a longer piece of text and wraps lines.</blockquote><p>Ordered list</p><ol role="list"><li>Item 1</li><li>Item 2</li><li>Item 3</li></ol><p>Unordered list</p><ul role="list"><li>Item A</li><li>Item B</li><li>Item C</li></ul><p><a href="https://university.webflow.com/lesson/add-and-nest-text-links-in-webflow">Text link</a></p><p><strong>Bold text</strong></p><p><em>Emphasis</em></p><p><sup>Superscript</sup></p><p><sub>Subscript</sub></p></div></div></div></div></div></div></div></section><section id="technology" class="section_blog-post-more"><div class="padding-global"><div class="container-large"><div class="padding-section-large"><div class="ai-blog_content"><div class="ai-blog_header"><h2 class="text-style-label is-more">Blog</h2><div class="padding-bottom padding-medium"></div><h3 class="is-more">Our perspectives</h3><div class="padding-bottom padding-large"></div><a href="/blog" class="text-size-large text-style-link is-more">View all</a></div><div class="padding-bottom padding-section-large"></div><div class="ai-blog_body"><ul id="w-node-f0a1b82c-ba01-e24f-cee5-d8dc6b327675-fb4d57dd" role="list" class="ai-blog_list"><li class="ai-blog_list-item"><div class="blog-card_component"><div class="blog-card_header"><div class="blog-card_image-wrapper"><img src="https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/66fc2ff3074bb309fb4d598a_blog-card-thumbnail_creating-patients-digital-twins.webp" loading="lazy" sizes="(max-width: 479px) 100vw, (max-width: 767px) 92vw, (max-width: 991px) 45vw, (max-width: 1919px) 29vw, 410.66668701171875px" srcset="https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/66fc2ff3074bb309fb4d598a_blog-card-thumbnail_creating-patients-digital-twins-p-500.webp 500w, https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/66fc2ff3074bb309fb4d598a_blog-card-thumbnail_creating-patients-digital-twins-p-800.webp 800w, https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/66fc2ff3074bb309fb4d598a_blog-card-thumbnail_creating-patients-digital-twins.webp 970w" alt="" class="blog-card_image"/></div></div><div class="blog-card_body is-blue-background_card"><a href="https://www.unlearn.ai/blog/creating-patients-digital-twins-with-neural-boltzmann-machines-for-clinical-timeseries" class="blog-card_heading-wrapper w-inline-block"><div class="heading-style-h6">Creating Patients’ Digital Twins with Neural Boltzmann Machines for Clinical Time series</div></a><div class="padding-bottom padding-xsmall"></div><div class="blog-card_footer"><div class="blog-card_meta"><div id="w-node-f0a1b82c-ba01-e24f-cee5-d8dc6b327682-fb4d57dd" class="blog-card_meta-title">Date</div><div id="w-node-f0a1b82c-ba01-e24f-cee5-d8dc6b327684-fb4d57dd" class="blog-card_meta-value">January 2, 2024</div></div><div class="blog-card_button-wrapper"><a href="https://www.unlearn.ai/blog/creating-patients-digital-twins-with-neural-boltzmann-machines-for-clinical-timeseries" class="card_button w-inline-block"><div class="blog-card_button-icon w-embed"><svg xmlns="http://www.w3.org/2000/svg" width="20" viewBox="0 0 20 20" fill="none"> <path d="M20 9.96938C19.9993 9.68567 19.9384 9.40533 19.8213 9.14682C19.7043 8.88831 19.5338 8.6575 19.321 8.46957L9.99541 0.271417C9.75452 0.0744488 9.44648 -0.0214162 9.13621 0.00402553C8.82594 0.0294672 8.53767 0.174228 8.33217 0.4078C8.12666 0.641373 8.01997 0.945512 8.03456 1.25612C8.04916 1.56673 8.18392 1.85955 8.41043 2.07286L15.6154 8.40541C15.647 8.43341 15.6694 8.47034 15.6795 8.5113C15.6896 8.55227 15.687 8.59534 15.6721 8.63481C15.6572 8.67428 15.6306 8.7083 15.5959 8.73236C15.5612 8.75641 15.52 8.76938 15.4778 8.76953H1.20125C0.88266 8.76953 0.577117 8.89595 0.351838 9.12096C0.12656 9.34598 0 9.65116 0 9.96938C0 10.2876 0.12656 10.5928 0.351838 10.8178C0.577117 11.0428 0.88266 11.1692 1.20125 11.1692H15.4753C15.5175 11.1696 15.5586 11.1828 15.5932 11.207C15.6278 11.2311 15.6543 11.2652 15.6692 11.3046C15.6841 11.3441 15.6867 11.3872 15.6766 11.4281C15.6666 11.4691 15.6444 11.5061 15.6129 11.5342L8.40792 17.8667C8.28192 17.9684 8.1778 18.0945 8.10182 18.2373C8.02584 18.3802 7.97958 18.537 7.96582 18.6982C7.95205 18.8594 7.97107 19.0217 8.02173 19.1754C8.07238 19.3291 8.15363 19.4709 8.26058 19.5924C8.36753 19.7139 8.49798 19.8126 8.64408 19.8824C8.79019 19.9523 8.94892 19.9919 9.11074 19.9989C9.27257 20.0059 9.43414 19.9801 9.58574 19.9231C9.73734 19.8662 9.87584 19.7792 9.99291 19.6674L19.3201 11.4692C19.5332 11.2814 19.7039 11.0506 19.8211 10.7921C19.9383 10.5336 19.9993 10.2532 20 9.96938Z" fill="currentColor"/> </svg></div></a></div></div></div></div></li><li class="ai-blog_list-item"><div class="blog-card_component"><div class="blog-card_header"><div class="blog-card_image-wrapper"><img src="https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/66fc2ff3074bb309fb4d598c_blog-card-thumbnail_digital-twin-generation-architecture.webp" loading="lazy" sizes="(max-width: 479px) 100vw, (max-width: 767px) 92vw, (max-width: 991px) 45vw, (max-width: 1919px) 29vw, 410.6666564941406px" srcset="https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/66fc2ff3074bb309fb4d598c_blog-card-thumbnail_digital-twin-generation-architecture-p-500.webp 500w, https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/66fc2ff3074bb309fb4d598c_blog-card-thumbnail_digital-twin-generation-architecture-p-800.webp 800w, https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/66fc2ff3074bb309fb4d598c_blog-card-thumbnail_digital-twin-generation-architecture.webp 972w" alt="" class="blog-card_image"/></div></div><div class="blog-card_body is-blue-background_card"><a href="https://www.unlearn.ai/blog/introducing-unlearns-new-digital-twin-generation-architecture" class="blog-card_heading-wrapper w-inline-block"><div class="heading-style-h6">Introducing Unlearn&#x27;s new Digital Twin Generation Architecture</div></a><div class="padding-bottom padding-xsmall"></div><div class="blog-card_footer"><div class="blog-card_meta"><div id="w-node-f0a1b82c-ba01-e24f-cee5-d8dc6b327695-fb4d57dd" class="blog-card_meta-title">Date</div><div id="w-node-f0a1b82c-ba01-e24f-cee5-d8dc6b327697-fb4d57dd" class="blog-card_meta-value">May 30, 2023</div></div><div class="blog-card_button-wrapper"><a href="https://www.unlearn.ai/blog/introducing-unlearns-new-digital-twin-generation-architecture" class="card_button w-inline-block"><div class="blog-card_button-icon w-embed"><svg xmlns="http://www.w3.org/2000/svg" width="20" viewBox="0 0 20 20" fill="none"> <path d="M20 9.96938C19.9993 9.68567 19.9384 9.40533 19.8213 9.14682C19.7043 8.88831 19.5338 8.6575 19.321 8.46957L9.99541 0.271417C9.75452 0.0744488 9.44648 -0.0214162 9.13621 0.00402553C8.82594 0.0294672 8.53767 0.174228 8.33217 0.4078C8.12666 0.641373 8.01997 0.945512 8.03456 1.25612C8.04916 1.56673 8.18392 1.85955 8.41043 2.07286L15.6154 8.40541C15.647 8.43341 15.6694 8.47034 15.6795 8.5113C15.6896 8.55227 15.687 8.59534 15.6721 8.63481C15.6572 8.67428 15.6306 8.7083 15.5959 8.73236C15.5612 8.75641 15.52 8.76938 15.4778 8.76953H1.20125C0.88266 8.76953 0.577117 8.89595 0.351838 9.12096C0.12656 9.34598 0 9.65116 0 9.96938C0 10.2876 0.12656 10.5928 0.351838 10.8178C0.577117 11.0428 0.88266 11.1692 1.20125 11.1692H15.4753C15.5175 11.1696 15.5586 11.1828 15.5932 11.207C15.6278 11.2311 15.6543 11.2652 15.6692 11.3046C15.6841 11.3441 15.6867 11.3872 15.6766 11.4281C15.6666 11.4691 15.6444 11.5061 15.6129 11.5342L8.40792 17.8667C8.28192 17.9684 8.1778 18.0945 8.10182 18.2373C8.02584 18.3802 7.97958 18.537 7.96582 18.6982C7.95205 18.8594 7.97107 19.0217 8.02173 19.1754C8.07238 19.3291 8.15363 19.4709 8.26058 19.5924C8.36753 19.7139 8.49798 19.8126 8.64408 19.8824C8.79019 19.9523 8.94892 19.9919 9.11074 19.9989C9.27257 20.0059 9.43414 19.9801 9.58574 19.9231C9.73734 19.8662 9.87584 19.7792 9.99291 19.6674L19.3201 11.4692C19.5332 11.2814 19.7039 11.0506 19.8211 10.7921C19.9383 10.5336 19.9993 10.2532 20 9.96938Z" fill="currentColor"/> </svg></div></a></div></div></div></div></li><li class="ai-blog_list-item"><div class="blog-card_component"><div class="blog-card_header"><div class="blog-card_image-wrapper"><img src="https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/66fc2ff3074bb309fb4d598b_blog-card-thumbnail_neural-boltzmann-machines.webp" loading="lazy" sizes="(max-width: 479px) 100vw, (max-width: 767px) 92vw, (max-width: 991px) 45vw, (max-width: 1919px) 29vw, 410.66668701171875px" srcset="https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/66fc2ff3074bb309fb4d598b_blog-card-thumbnail_neural-boltzmann-machines-p-500.webp 500w, https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/66fc2ff3074bb309fb4d598b_blog-card-thumbnail_neural-boltzmann-machines-p-800.webp 800w, https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/66fc2ff3074bb309fb4d598b_blog-card-thumbnail_neural-boltzmann-machines.webp 972w" alt="" class="blog-card_image"/></div></div><div class="blog-card_body is-blue-background_card"><a href="https://www.unlearn.ai/blog/introducing-neural-boltzmann-machines" class="blog-card_heading-wrapper w-inline-block"><div class="heading-style-h6">Introducing Neural Boltzmann Machines</div></a><div class="padding-bottom padding-xsmall"></div><div class="blog-card_footer"><div class="blog-card_meta"><div id="w-node-f0a1b82c-ba01-e24f-cee5-d8dc6b3276a8-fb4d57dd" class="blog-card_meta-title">Date</div><div id="w-node-f0a1b82c-ba01-e24f-cee5-d8dc6b3276aa-fb4d57dd" class="blog-card_meta-value">March 31, 2022</div></div><div class="blog-card_button-wrapper"><a href="https://www.unlearn.ai/blog/introducing-neural-boltzmann-machines" class="card_button w-inline-block"><div class="blog-card_button-icon w-embed"><svg xmlns="http://www.w3.org/2000/svg" width="20" viewBox="0 0 20 20" fill="none"> <path d="M20 9.96938C19.9993 9.68567 19.9384 9.40533 19.8213 9.14682C19.7043 8.88831 19.5338 8.6575 19.321 8.46957L9.99541 0.271417C9.75452 0.0744488 9.44648 -0.0214162 9.13621 0.00402553C8.82594 0.0294672 8.53767 0.174228 8.33217 0.4078C8.12666 0.641373 8.01997 0.945512 8.03456 1.25612C8.04916 1.56673 8.18392 1.85955 8.41043 2.07286L15.6154 8.40541C15.647 8.43341 15.6694 8.47034 15.6795 8.5113C15.6896 8.55227 15.687 8.59534 15.6721 8.63481C15.6572 8.67428 15.6306 8.7083 15.5959 8.73236C15.5612 8.75641 15.52 8.76938 15.4778 8.76953H1.20125C0.88266 8.76953 0.577117 8.89595 0.351838 9.12096C0.12656 9.34598 0 9.65116 0 9.96938C0 10.2876 0.12656 10.5928 0.351838 10.8178C0.577117 11.0428 0.88266 11.1692 1.20125 11.1692H15.4753C15.5175 11.1696 15.5586 11.1828 15.5932 11.207C15.6278 11.2311 15.6543 11.2652 15.6692 11.3046C15.6841 11.3441 15.6867 11.3872 15.6766 11.4281C15.6666 11.4691 15.6444 11.5061 15.6129 11.5342L8.40792 17.8667C8.28192 17.9684 8.1778 18.0945 8.10182 18.2373C8.02584 18.3802 7.97958 18.537 7.96582 18.6982C7.95205 18.8594 7.97107 19.0217 8.02173 19.1754C8.07238 19.3291 8.15363 19.4709 8.26058 19.5924C8.36753 19.7139 8.49798 19.8126 8.64408 19.8824C8.79019 19.9523 8.94892 19.9919 9.11074 19.9989C9.27257 20.0059 9.43414 19.9801 9.58574 19.9231C9.73734 19.8662 9.87584 19.7792 9.99291 19.6674L19.3201 11.4692C19.5332 11.2814 19.7039 11.0506 19.8211 10.7921C19.9383 10.5336 19.9993 10.2532 20 9.96938Z" fill="currentColor"/> </svg></div></a></div></div></div></div></li></ul></div></div></div></div></div></section><section class="main-content_section dark"><div class="background green"></div><div class="footer_wrapper"><div class="footer-content_wrapper"><div class="footer-content_grid"><div id="w-node-_62056541-13be-fd76-d899-d0fde99eb0d3-e99eb0cf" class="footer-logo_wrapper top"><div class="logo-badge_container footer"><svg xmlns="http://www.w3.org/2000/svg" width="100%" viewBox="0 0 241 236"><g clip-path="url(#clip0_2_206)"><mask id="mask0_2_206" STYLE="mask-type:alpha" maskUnits="userSpaceOnUse" x="0" y="0" width="242" height="236"><path d="M241.995 0H0V118H0.0186757C0.74236 184.473 54.6265 236 121.005 236C187.383 236 241.267 184.473 241.991 118H242V0H241.995Z" fill="currentColor"></path></mask><g mask="url(#mask0_2_206)"><path d="M241.377 13.48H241.692V-0.376465H-259V13.48H147.4L146.573 13.5186C147.78 18.1032 148.855 22.7134 149.865 27.375H241.692V13.5186L241.377 13.48Z" fill="currentColor" class="logo-line_path"></path><path d="M241.692 55.1483V41.3047H-259V55.1483H155.334L154.599 55.1998C155.19 59.7843 155.662 64.3945 156.055 69.0434H241.692V55.1998L241.246 55.1483H241.692Z" fill="currentColor" class="logo-line_path"></path><path d="M-259 96.8519H157.406L157.235 96.9034C157.235 101.539 157.104 106.15 156.921 110.747H241.692V96.9034L241.246 96.8519H241.692V83.0083H-259V96.8519Z" fill="currentColor" class="logo-line_path"></path><path d="M-259 138.848L154.616 138.5V138.552C154.026 143.188 153.318 147.811 152.544 152.395H236.397C237.814 147.888 238.968 143.265 239.834 138.552L239.388 138.5H239.834C240.659 133.967 241.21 129.344 241.486 124.657L-259 125.004V132.5V138.848Z" fill="currentColor" class="logo-line_path"></path><path d="M-259 180.213H146.753L146.569 180.265C145.35 184.914 144.025 189.524 142.622 194.109H213.007C216.809 189.768 220.259 185.132 223.367 180.265L223.184 180.213H223.393C226.239 175.783 228.771 171.16 231.001 166.37H-259V180.213Z" fill="currentColor" class="logo-line_path"></path><path d="M-259 221.884H132.665L132.587 221.937C130.685 226.572 128.692 231.143 126.607 235.676C144.993 234.816 162.304 229.95 177.648 221.937L177.451 221.884H177.753C185.215 217.981 192.205 213.332 198.631 208.04H-259V221.884Z" fill="currentColor" class="logo-line_path"></path></g></g></svg></div></div><div id="w-node-_62056541-13be-fd76-d899-d0fde99eb0e0-e99eb0cf" class="footer-headline_wrapper"><div class="footer-headline-content_wrapper"><div class="footer-headline">Discover the power of the <span class="serif">Unlearn Platform</span></div><div class="padding-small"></div><a href="/forms/contact-us" class="cta_wrapper w-inline-block"><div class="cta_text">Book a Demo</div><div class="button-icon footer"><div class="icon-container"><svg xmlns="http://www.w3.org/2000/svg" width="100%" viewBox="0 0 10 10" fill="none" class="button_arrow-icon menu-cta"><path fill-rule="evenodd" clip-rule="evenodd" d="M9.85943 0.546897C9.8231 0.45909 9.76938 0.376785 9.69826 0.305247C9.69773 0.304716 9.6972 0.304185 9.69667 0.303654C9.69614 0.303124 9.69561 0.302595 9.69508 0.302066C9.55948 0.167276 9.37264 0.0839844 9.16634 0.0839844H0.833008C0.418794 0.0839844 0.0830078 0.419771 0.0830078 0.833984C0.0830078 1.2482 0.418794 1.58398 0.833008 1.58398H7.35568L0.302678 8.63699C0.0097845 8.92988 0.0097845 9.40475 0.302678 9.69765C0.595571 9.99054 1.07044 9.99054 1.36334 9.69765L8.41634 2.64464V9.16732C8.41634 9.58153 8.75213 9.91732 9.16634 9.91732C9.58055 9.91732 9.91634 9.58153 9.91634 9.16732V0.833984C9.91634 0.732292 9.8961 0.635327 9.85943 0.546897Z" fill="currentColor"></path></svg></div><div class="second-icon_container"><svg xmlns="http://www.w3.org/2000/svg" width="100%" viewBox="0 0 10 10" fill="none" class="button_arrow-icon menu-cta"><path fill-rule="evenodd" clip-rule="evenodd" d="M9.85943 0.546897C9.8231 0.45909 9.76938 0.376785 9.69826 0.305247C9.69773 0.304716 9.6972 0.304185 9.69667 0.303654C9.69614 0.303124 9.69561 0.302595 9.69508 0.302066C9.55948 0.167276 9.37264 0.0839844 9.16634 0.0839844H0.833008C0.418794 0.0839844 0.0830078 0.419771 0.0830078 0.833984C0.0830078 1.2482 0.418794 1.58398 0.833008 1.58398H7.35568L0.302678 8.63699C0.0097845 8.92988 0.0097845 9.40475 0.302678 9.69765C0.595571 9.99054 1.07044 9.99054 1.36334 9.69765L8.41634 2.64464V9.16732C8.41634 9.58153 8.75213 9.91732 9.16634 9.91732C9.58055 9.91732 9.91634 9.58153 9.91634 9.16732V0.833984C9.91634 0.732292 9.8961 0.635327 9.85943 0.546897Z" fill="currentColor"></path></svg></div></div></a></div></div></div><div class="footer-content"><div class="footer-content_wrapper"><div class="div-block-12"><div class="footer-content_grid"><div id="w-node-_62056541-13be-fd76-d899-d0fde99eb0f5-e99eb0cf" class="footer-logo_wrapper last"><a href="/" class="homepage-logo-container footer w-inline-block"><div class="logo-badge_container"><svg xmlns="http://www.w3.org/2000/svg" width="100%" viewBox="0 0 241 236"><g clip-path="url(#clip0_2_206)"><mask id="mask0_2_206" STYLE="mask-type:alpha" maskUnits="userSpaceOnUse" x="0" y="0" width="242" height="236"><path d="M241.995 0H0V118H0.0186757C0.74236 184.473 54.6265 236 121.005 236C187.383 236 241.267 184.473 241.991 118H242V0H241.995Z" fill="currentColor"></path></mask><g mask="url(#mask0_2_206)"><path d="M241.377 13.48H241.692V-0.376465H-259V13.48H147.4L146.573 13.5186C147.78 18.1032 148.855 22.7134 149.865 27.375H241.692V13.5186L241.377 13.48Z" fill="currentColor" class="logo-line_path"></path><path d="M241.692 55.1483V41.3047H-259V55.1483H155.334L154.599 55.1998C155.19 59.7843 155.662 64.3945 156.055 69.0434H241.692V55.1998L241.246 55.1483H241.692Z" fill="currentColor" class="logo-line_path"></path><path d="M-259 96.8519H157.406L157.235 96.9034C157.235 101.539 157.104 106.15 156.921 110.747H241.692V96.9034L241.246 96.8519H241.692V83.0083H-259V96.8519Z" fill="currentColor" class="logo-line_path"></path><path d="M-259 138.848L154.616 138.5V138.552C154.026 143.188 153.318 147.811 152.544 152.395H236.397C237.814 147.888 238.968 143.265 239.834 138.552L239.388 138.5H239.834C240.659 133.967 241.21 129.344 241.486 124.657L-259 125.004V132.5V138.848Z" fill="currentColor" class="logo-line_path"></path><path d="M-259 180.213H146.753L146.569 180.265C145.35 184.914 144.025 189.524 142.622 194.109H213.007C216.809 189.768 220.259 185.132 223.367 180.265L223.184 180.213H223.393C226.239 175.783 228.771 171.16 231.001 166.37H-259V180.213Z" fill="currentColor" class="logo-line_path"></path><path d="M-259 221.884H132.665L132.587 221.937C130.685 226.572 128.692 231.143 126.607 235.676C144.993 234.816 162.304 229.95 177.648 221.937L177.451 221.884H177.753C185.215 217.981 192.205 213.332 198.631 208.04H-259V221.884Z" fill="currentColor" class="logo-line_path"></path></g></g></svg></div><div class="logo_container"><svg xmlns="http://www.w3.org/2000/svg" width="100%" viewBox="0 0 846 134" fill="none"><mask id="mask0_61_329" STYLE="mask-type:alpha" maskUnits="userSpaceOnUse" x="0" y="0" width="846" height="134"><rect width="846" height="134" fill="currentColor"></rect></mask><g mask="url(#mask0_61_329)"><path d="M286.177 113.536H352.176V131.229H265.941V0H286.177V113.536Z" fill="currentColor" class="logo-learn-text"></path><path d="M463.371 17.693H387.541V54.7336H456.184V72.0609H387.541V113.527H462.798V131.219H367.305V0H463.371V17.693Z" fill="currentColor" class="logo-learn-text"></path><path d="M581.924 131.229L568.686 97.1325H508.175L495.125 131.229H474.139L526.712 0H549.97L603.294 131.229H581.924ZM514.602 79.9882H562.062L559.229 72.8014C552.044 55.2914 545.044 37.2327 538.243 18.9822C533.515 31.326 526.704 49.2109 517.444 72.8014L514.611 79.9882H514.602Z" fill="currentColor" class="logo-learn-text"></path><path d="M698.408 131.229L661.725 79.8054H634.304V131.229H614.068V0H671.745C686.305 0 697.459 3.68485 705.594 11.0547C713.728 18.4244 717.695 28.0068 717.695 39.6192C717.695 59.525 705.406 74.4565 684.034 78.3242L721.852 131.219H698.408V131.229ZM634.304 16.9705V63.2281H671.182C687.825 63.2281 697.085 54.0113 697.085 40.0033C697.085 25.9953 687.815 16.9614 671.182 16.9614H634.304V16.9705Z" fill="currentColor" class="logo-learn-text"></path><path d="M826.254 0H845.732V131.229H822.474L781.064 67.6445C768.774 48.8452 760.077 34.8371 754.777 25.4375C755.339 41.8411 755.536 63.9596 755.536 91.4177V131.229H735.873V0H759.129L800.737 63.5846C811.142 79.6225 820.026 93.8134 827.024 105.974C826.461 89.3878 826.264 67.2695 826.264 39.8113V0H826.254Z" fill="currentColor" class="logo-learn-text"></path><path fill-rule="evenodd" clip-rule="evenodd" d="M1.93213 0H22.1681L22.1681 75.4769V82.3896C22.1681 105.249 34.4572 116.669 56.392 116.669C78.3269 116.669 90.6159 105.239 90.6159 82.3896V75.4999H90.6056V0H110.842V75.4769H110.852V82.2067C110.852 115.38 90.6159 133.997 56.392 133.997C22.1681 133.997 1.93213 115.38 1.93213 82.2067V75.4999V75.4769V0ZM151.959 131C151.916 126.937 151.865 113.862 151.804 98.2052L151.804 98.1975C151.691 69.0683 151.544 31.0095 151.349 25.4375C154.158 30.4156 181.106 71.7144 200.584 101.566L200.588 101.571C209.658 115.472 217.108 126.889 219.746 131H222.857H242H242.296V0H222.828V39.8114C222.828 43.2936 222.828 76.5041 222.835 101.908L155.701 0H132.445L132.444 131H151.959Z" fill="currentColor" class="un-logo-text"></path><rect x="-3" y="55" width="249" height="21" fill="#ffffff" class="overlay-line"></rect></g></svg></div></a></div><div id="w-node-_62056541-13be-fd76-d899-d0fde99eb10f-e99eb0cf" class="footer-headline_wrapper last"><div id="w-node-_62056541-13be-fd76-d899-d0fde99eb110-e99eb0cf" class="footer-links"><div class="footer-links-section_headline">Platform</div><div class="footer-top_links"><a href="/the-unlearn-platform" class="footer-bottom_link">The Unlearn Platform</a><a href="/digital-twin-generators" class="footer-bottom_link">Digital Twin Generators</a></div></div><div id="w-node-_62056541-13be-fd76-d899-d0fde99eb118-e99eb0cf" class="footer-links"><div class="footer-links-section_headline">Research</div><div class="footer-top_links"><a href="/ai-research" class="footer-bottom_link">Artificial Intelligence</a><a href="/clinical-research" class="footer-bottom_link">Clinical Research</a></div></div><div id="w-node-_62056541-13be-fd76-d899-d0fde99eb120-e99eb0cf" class="footer-links"><div class="footer-links-section_headline">company</div><div class="footer-top_links"><a href="/about" class="footer-bottom_link">About</a><a href="/careers" class="footer-bottom_link">Careers</a><a href="/blog" class="footer-bottom_link">Blog</a><a href="/press" class="footer-bottom_link">Press</a></div></div><div id="w-node-_62056541-13be-fd76-d899-d0fde99eb12c-e99eb0cf" class="footer-links"><div class="footer-links-section_headline">Connect</div><div class="footer-top_links social"><a href="https://x.com/unlearnai" target="_blank" class="social-link w-inline-block"><img src="https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/6711aada7cd7b4c9af0a57b9_X%20logo.svg" loading="lazy" alt=""/></a><a href="https://www.linkedin.com/company/unlearn-ai/" target="_blank" class="social-link w-inline-block"><img src="https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/6711aada2305b75ad7de9ae2_LinkedIn.svg" loading="lazy" alt=""/></a><a href="https://www.youtube.com/channel/UCJjWFXqy7P9yEfB8GyrZOKA" target="_blank" class="social-link w-inline-block"><img src="https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/6711aadaa235910e6d82115d_YouTube.svg" loading="lazy" alt=""/></a></div></div></div></div><div class="footer-content_grid"><div id="w-node-b41ffe32-ca7e-e13c-eb60-3d692c601339-e99eb0cf" class="footer-logo_wrapper last"><div><div class="foot-text">© 2024 Unlearn.ai, Inc. All rights reserved.</div></div></div><div id="w-node-b41ffe32-ca7e-e13c-eb60-3d692c601353-e99eb0cf" class="footer-headline_wrapper last right"><div id="w-node-a8b653ed-9874-3d25-33cc-808471b301c9-e99eb0cf" class="footer-links footnote"><a href="/terms" class="footer-bottom_link">Terms</a><a href="/privacy" class="footer-bottom_link">Privacy</a><a href="/data-acknowledgements" class="footer-bottom_link">Data Acknowledgements</a></div></div></div></div></div></div></div></div></section></div><div class="banner_component"><div class="banner_layout"><div class="banner_wrapper2"><div class="banner_wrapper1"><img src="https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/66fc2ff3074bb309fb4d58b9_Frame%201171274585.png" loading="lazy" width="24" alt="" class="banner_icon"/><div class="margin-bottom margin-xxsmall"><div class="text-weight-bold text-size-medium">Virtual Event</div></div><div class="banner_text">The next generation of AI powered clinical trials  <br/></div><div class="banner_text date">Tuesday, June 27 2:30pm PDT</div></div><a data-w-id="b3ecc032-3679-7e55-3e2d-cc1e2ae22b46" href="#" class="banner_close-btn w-inline-block"><img src="https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/66fc2ff3074bb309fb4d58d2_Exit%20Icon.svg" loading="lazy" alt="" class="banner_close-icon"/></a></div><div class="button-group"><a href="https://lu.ma/unlearn" target="_blank" class="button is-link is-icon is-white w-inline-block"><div>Register</div><div class="icon-embed-xxsmall w-embed"><svg width=" 100%" height=" 100%" viewBox="0 0 14 15" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M13.9932 6.99896C13.9927 6.80034 13.9501 6.60408 13.8683 6.4231C13.7864 6.24212 13.6672 6.08053 13.5184 5.94896L6.99731 0.209546C6.82886 0.0716518 6.61346 0.00453808 6.3965 0.0223495C6.17953 0.0401609 5.97796 0.141506 5.83425 0.305027C5.69055 0.468548 5.61594 0.681471 5.62615 0.898924C5.63636 1.11638 5.73059 1.32137 5.88898 1.47071L10.9272 5.90405C10.9493 5.92365 10.9649 5.9495 10.972 5.97818C10.9791 6.00686 10.9773 6.03701 10.9669 6.06464C10.9564 6.09228 10.9379 6.11609 10.9136 6.13294C10.8893 6.14978 10.8605 6.15885 10.831 6.15896H0.847813C0.625031 6.15896 0.411373 6.24746 0.253843 6.40499C0.0963123 6.56252 0.0078125 6.77618 0.0078125 6.99896C0.0078125 7.22174 0.0963123 7.4354 0.253843 7.59293C0.411373 7.75046 0.625031 7.83896 0.847813 7.83896H10.8292C10.8588 7.83925 10.8875 7.84845 10.9117 7.86537C10.9359 7.88229 10.9544 7.90613 10.9648 7.93376C10.9752 7.96139 10.9771 7.99152 10.97 8.0202C10.963 8.04888 10.9475 8.07477 10.9255 8.09446L5.88723 12.5278C5.79912 12.599 5.72631 12.6872 5.67318 12.7873C5.62005 12.8873 5.5877 12.997 5.57808 13.1099C5.56845 13.2227 5.58175 13.3364 5.61717 13.444C5.65259 13.5515 5.70941 13.6509 5.7842 13.7359C5.85898 13.821 5.9502 13.89 6.05237 13.9389C6.15453 13.9878 6.26553 14.0156 6.37869 14.0205C6.49185 14.0254 6.60483 14.0073 6.71084 13.9675C6.81685 13.9276 6.9137 13.8667 6.99556 13.7884L13.5178 8.04896C13.6668 7.9175 13.7862 7.75594 13.8681 7.57495C13.9501 7.39396 13.9927 7.19764 13.9932 6.99896Z" fill="currentColor"/> </svg></div></a></div></div></div></main></div><script src="https://d3e54v103j8qbb.cloudfront.net/js/jquery-3.5.1.min.dc5e7f18c8.js?site=66fc2ff3074bb309fb4d56fc" type="text/javascript" integrity="sha256-9/aliU8dGd2tb6OSsuzixeV4y/faTqgFtohetphbbj0=" crossorigin="anonymous"></script><script src="https://cdn.prod.website-files.com/66fc2ff3074bb309fb4d56fc/js/unlearn-staging.0568946e7.js" type="text/javascript"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/gsap/3.11.0/gsap.min.js"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/gsap/3.11.0/ScrollTrigger.min.js"></script> <script src="https://cdn.jsdelivr.net/npm/gsap@3.12.5/dist/CustomEase.min.js"> <script src="https://unpkg.com/split-type"></script> <script src="https://cdn.jsdelivr.net/gh/studio-freight/lenis@1.0.23/bundled/lenis.min.js"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/r134/three.min.js"></script> <script src="https://tkymq2.csb.app/threejstestscene.js"></script> <script src="https://f8fv7c.csb.app/navigation.js"></script> <script src="https://unpkg.com/split-type"></script> <script> // LENIS SMOOTH SCROLL let lenis; // Function to detect Safari browser function isSafari() { return /^((?!chrome|android).)*safari/i.test(navigator.userAgent); } // Run only if not in Webflow editor, viewport is greater than 991px, and browser is not Safari if (typeof Webflow !== "undefined" && Webflow.env("editor") === undefined && window.innerWidth > 991 && !isSafari()) { lenis = new Lenis({ lerp: 0.1, wheelMultiplier: 0.6, gestureOrientation: "vertical", normalizeWheel: false, smoothTouch: false }); function raf(time) { lenis.raf(time); requestAnimationFrame(raf); } requestAnimationFrame(raf); // Event listeners for controlling Lenis (if the buttons exist) $("[data-lenis-start]").on("click", function () { lenis.start(); }); $("[data-lenis-stop]").on("click", function () { lenis.stop(); }); $("[data-lenis-toggle]").on("click", function () { $(this).toggleClass("stop-scroll"); if ($(this).hasClass("stop-scroll")) { lenis.stop(); } else { lenis.start(); } }); } </script> <!-- Banner closing --> <script src="https://cdn.jsdelivr.net/npm/js-cookie@2/src/js.cookie.min.js"></script> <script> var cookieName = 'cookieClosed'; if(typeof Cookies.get(cookieName) !== 'undefined') { $('.banner_component').remove(); } $('.banner_close-btn').on('click', function(){ Cookies.set(cookieName, 'ok', { expires: 1 }); }) </script> <!-- Demandbase Tag --> <script> (function(d,b,a,s,e){ var t = b.createElement(a), fs = b.getElementsByTagName(a)[0]; t.async=1; t.id=e; t.src=s; fs.parentNode.insertBefore(t, fs); }) (window,document,'script','https://tag.demandbase.com/16e1c7bb12b9b3e6.min.js','demandbase_js_lib'); </script> <!-- Pardot Tracking Code --> <script type='text/javascript'> piAId = '1056293'; piCId = ''; piHostname = 'www2.unlearn.ai'; (function() { function async_load(){ var s = document.createElement('script'); s.type = 'text/javascript'; s.src = ('https:' == document.location.protocol ? 'https://' : 'http://') + piHostname + '/pd.js'; var c = document.getElementsByTagName('script')[0]; c.parentNode.insertBefore(s, c); } if(window.attachEvent) { window.attachEvent('onload', async_load); } else { window.addEventListener('load', async_load, false); } })(); </script> <!-- [Attributes by Finsweet] Social Share --> <script defer src="https://cdn.jsdelivr.net/npm/@finsweet/attributes-socialshare@1/socialshare.js"></script></body></html>

Pages: 1 2 3 4 5 6 7 8 9 10