CINXE.COM
Search results for: product life cycle
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: product life cycle</title> <meta name="description" content="Search results for: product life cycle"> <meta name="keywords" content="product life cycle"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="product life cycle" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="product life cycle"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11954</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: product life cycle</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11954</span> Analysis of the Result for the Accelerated Life Cycle Test of the Motor for Washing Machine by Using Acceleration Factor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youn-Sung%20Kim">Youn-Sung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Ho%20Jo"> Jin-Ho Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mi-Sung%20Kim"> Mi-Sung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Kun%20Lee"> Jae-Kun Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accelerated life cycle test is applied to various products or components in order to reduce the time of life cycle test in industry. It must be considered for many test conditions according to the product characteristics for the test and the selection of acceleration parameter is especially very important. We have carried out the general life cycle test and the accelerated life cycle test by applying the acceleration factor (AF) considering the characteristics of brushless DC (BLDC) motor for washing machine. The final purpose of this study is to verify the validity by analyzing the results of the general life cycle test and the accelerated life cycle test. It will make it possible to reduce the life test time through the reasonable accelerated life cycle test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerated%20life%20cycle%20test" title="accelerated life cycle test">accelerated life cycle test</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20test" title=" reliability test"> reliability test</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20for%20washing%20machine" title=" motor for washing machine"> motor for washing machine</a>, <a href="https://publications.waset.org/abstracts/search?q=brushless%20dc%20motor%20test" title=" brushless dc motor test"> brushless dc motor test</a> </p> <a href="https://publications.waset.org/abstracts/68978/analysis-of-the-result-for-the-accelerated-life-cycle-test-of-the-motor-for-washing-machine-by-using-acceleration-factor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">611</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11953</span> New Environmental Culture in Algeria: Eco Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Tireche">S. Tireche</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tairi%20abdelaziz"> A. Tairi abdelaziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental damage has increased steadily in recent decades: Depletion of natural resources, destruction of the ozone layer, greenhouse effect, degradation of the quality of life, land use etc. New terms have emerged as: "Prevention rather than cure" or "polluter pays" falls within the principles of common sense, their practical implementation still remains fragmented. Among the avenues to be explored, one of the most promising is certainly one that focuses on product design. Indeed, where better than during the design phase, can reduce the source of future impacts on the environment? What choices or those of design, they influence more on the environmental characteristics of products? The most currently recognized at the international level is the analysis of the life cycle (LCA) and Life Cycle Assessment, subject to International Standardization (ISO 14040-14043). LCA provides scientific and objective assessment of potential impacts of the product or service, considering its entire life cycle. This approach makes it possible to minimize impacts to the source in pollution prevention. It is widely preferable to curative approach, currently majority in the industrial crops, led mostly by a report of pollution. The "product" is to reduce the environmental impacts of a given product, taking into account all or part of its life cycle. Currently, there are emerging tools, known as eco-design. They are intended to establish an environmental profile of the product to improve its environmental performance. They require a quantity sufficient information on the product for each phase of its life cycle: raw material extraction, manufacturing, distribution, usage, end of life (recycling or incineration or deposit) and all stages of transport. The assessment results indicate the sensitive points of the product studied, points on which the developer must act. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco%20design" title="eco design">eco design</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20analysis%20%28LCA%29" title=" life cycle analysis (LCA)"> life cycle analysis (LCA)</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/22490/new-environmental-culture-in-algeria-eco-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11952</span> Predicting the Product Life Cycle of Songs on Radio - How Record Labels Can Manage Product Portfolio and Prioritise Artists by Using Machine Learning Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Claus%20N.%20Holm">Claus N. Holm</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20F.%20Grooss"> Oliver F. Grooss</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20A.%20Alphinas"> Robert A. Alphinas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research strives to predict the remaining product life cycle of a song on radio after it has been played for one or two months. The best results were achieved using a k-d tree to calculate the most similar songs to the test songs and use a Random Forest model to forecast radio plays. An 82.78% and 83.44% accuracy is achieved for the two time periods, respectively. This explorative research leads to over 4500 test metrics to find the best combination of models and pre-processing techniques. Other algorithms tested are KNN, MLP and CNN. The features only consist of daily radio plays and use no musical features. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hit%20song%20science" title="hit song science">hit song science</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20life%20cycle" title=" product life cycle"> product life cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=radio" title=" radio"> radio</a> </p> <a href="https://publications.waset.org/abstracts/127950/predicting-the-product-life-cycle-of-songs-on-radio-how-record-labels-can-manage-product-portfolio-and-prioritise-artists-by-using-machine-learning-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11951</span> A Conceptual Framework of Strategies for Managing Intellectual Property Rights at Different Stages of Product Life Cycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nithyananda%20K.%20V.">Nithyananda K. V. </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organizations follow various strategies for managing their intellectual property rights, either in the form of securing IP rights or using such IP rights through leveraging, monetizing, and commercializing them. It is well known that organizations adopt different intellectual property strategies in response to other organizations within the industry. But within an organization, and within the products that are being manufactured and sold by it, the strategies for managing its intellectual property rights keep changing at different stages of the product life cycle. Organizations could adopt not only different strategies for managing its intellectual property rights, but could also adopt different kinds of business models to leverage, monetize, and commercial the IP rights. This paper analyzes the various strategies that can be adopted by organizations to manage its IP rights at different stages of the product life cycle and the rationale for adopting such strategies. This would be a secondary research, based solely on the literature of strategic management, new product development, resource-based management, and the intellectual property management. This paper synthesizes the literature from these streams to propose a conceptual framework of strategies that can be adopted by organizations for managing its IP rights in conjunction with the life cycle of the products that it manufactures and sells in the market. This framework could be adopted by organizations in implementing strategies for effectively managing their IP rights. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intellectual%20property%20strategy" title="intellectual property strategy">intellectual property strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20of%20intellectual%20property%20rights" title=" management of intellectual property rights"> management of intellectual property rights</a>, <a href="https://publications.waset.org/abstracts/search?q=New%20product%20development" title=" New product development"> New product development</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20life%20cycle" title=" product life cycle"> product life cycle</a> </p> <a href="https://publications.waset.org/abstracts/87061/a-conceptual-framework-of-strategies-for-managing-intellectual-property-rights-at-different-stages-of-product-life-cycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11950</span> Lean Product Development and Sustainability: A Systematic Literature Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20P.%20E.%20De%20Souza">João P. E. De Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=Rob%20Dekkers"> Rob Dekkers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whereas lean product development aims at maximising customer value whilst optimising product and process design, the question arises whether this approach includes sustainability. A systematic literature review reveals that methods associated with this conceptualisation of product development are suitable for including sustainability, but that the criteria for the triple-bottom line need to be included when using these methods; this is particularly the case for social aspects. Thus, the main finding is that not new methods should be developed, but that existing methods should be more inclusive towards all aspects of sustainability and product life-cycle thinking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20product%20development" title="lean product development">lean product development</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20life-cycle" title=" product life-cycle"> product life-cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=systematic%20literature%20review" title=" systematic literature review"> systematic literature review</a>, <a href="https://publications.waset.org/abstracts/search?q=triple%20bottom-line" title=" triple bottom-line"> triple bottom-line</a> </p> <a href="https://publications.waset.org/abstracts/120085/lean-product-development-and-sustainability-a-systematic-literature-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11949</span> Developing a Rational Database Management System (RDBMS) Supporting Product Life Cycle Appications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yusri%20Yusof">Yusri Yusof</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Wong%20Keong"> Chen Wong Keong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the implementation details of a Relational Database Management System of a STEP-technology product model repository. It is able support the implementation of any EXPRESS language schema, although it has been primarily implemented to support mechanical product life cycle applications. This database support the input of STEP part 21 file format from CAD in geometrical and topological data format and support a range of queries for mechanical product life cycle applications. This proposed relational database management system uses entity-to-table method (R1) rather than type-to-table method (R4). The two mapping methods have their own strengths and drawbacks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RDBMS" title="RDBMS">RDBMS</a>, <a href="https://publications.waset.org/abstracts/search?q=CAD" title=" CAD"> CAD</a>, <a href="https://publications.waset.org/abstracts/search?q=ISO%2010303" title=" ISO 10303"> ISO 10303</a>, <a href="https://publications.waset.org/abstracts/search?q=part-21%20file" title=" part-21 file"> part-21 file</a> </p> <a href="https://publications.waset.org/abstracts/45421/developing-a-rational-database-management-system-rdbms-supporting-product-life-cycle-appications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">536</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11948</span> Quantifying Product Impacts on Biodiversity: The Product Biodiversity Footprint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leveque%20Benjamin">Leveque Benjamin</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabaud%20Suzanne"> Rabaud Suzanne</a>, <a href="https://publications.waset.org/abstracts/search?q=Anest%20Hugo"> Anest Hugo</a>, <a href="https://publications.waset.org/abstracts/search?q=Catalan%20Caroline"> Catalan Caroline</a>, <a href="https://publications.waset.org/abstracts/search?q=Neveux%20Guillaume"> Neveux Guillaume</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human products consumption is one of the main drivers of biodiversity loss. However, few pertinent ecological indicators regarding product life cycle impact on species and ecosystems have been built. Life cycle assessment (LCA) methodologies are well under way to conceive standardized methods to assess this impact, by taking already partially into account three of the Millennium Ecosystem Assessment pressures (land use, pollutions, climate change). Coupling LCA and ecological data and methods is an emerging challenge to develop a product biodiversity footprint. This approach was tested on three case studies from food processing, textile, and cosmetic industries. It allowed first to improve the environmental relevance of the Potential Disappeared Fraction of species, end-point indicator typically used in life cycle analysis methods, and second to introduce new indicators on overexploitation and invasive species. This type of footprint is a major step in helping companies to identify their impacts on biodiversity and to propose potential improvements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title="biodiversity">biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=companies" title=" companies"> companies</a>, <a href="https://publications.waset.org/abstracts/search?q=footprint" title=" footprint"> footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=products" title=" products"> products</a> </p> <a href="https://publications.waset.org/abstracts/61583/quantifying-product-impacts-on-biodiversity-the-product-biodiversity-footprint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11947</span> Beyond Taguchi’s Concept of the Quality Loss Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atul%20Dev">Atul Dev</a>, <a href="https://publications.waset.org/abstracts/search?q=Pankaj%20Jha"> Pankaj Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dr. Genichi Taguchi looked at quality in a broader term and gave an excellent definition of quality in terms of loss to society. However the scope of this definition is limited to the losses imparted by a poor quality product to the customer only and are considered during the useful life of the product and further in a certain situation this loss can even be zero. In this paper, it has been proposed that the scope of quality of a product shall be further enhanced by considering the losses imparted by a poor quality product to society at large, due to associated environmental and safety related factors, over the complete life cycle of the product. Moreover, though these losses can be further minimized with the use of techno-safety interventions, the net losses to society however can never be made zero. This paper proposes an entirely new approach towards defining product quality and is based on Taguchi’s definition of quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=existing%20concept" title="existing concept">existing concept</a>, <a href="https://publications.waset.org/abstracts/search?q=goal%20post%20philosophy" title=" goal post philosophy"> goal post philosophy</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle" title=" life cycle"> life cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=proposed%20concept" title=" proposed concept"> proposed concept</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20loss%20function" title=" quality loss function"> quality loss function</a> </p> <a href="https://publications.waset.org/abstracts/65849/beyond-taguchis-concept-of-the-quality-loss-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11946</span> Reliability-Based Life-Cycle Cost Model for Engineering Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Lotfalian">Reza Lotfalian</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudarshan%20Martins"> Sudarshan Martins</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Radziszewski"> Peter Radziszewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of reliability on life-cycle cost, including initial and maintenance cost of a system is studied. The failure probability of a component is used to calculate the average maintenance cost during the operation cycle of the component. The standard deviation of the life-cycle cost is also calculated as an error measure for the average life-cycle cost. As a numerical example, the model is used to study the average life cycle cost of an electric motor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=initial%20cost" title="initial cost">initial cost</a>, <a href="https://publications.waset.org/abstracts/search?q=life-cycle%20cost" title=" life-cycle cost"> life-cycle cost</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance%20cost" title=" maintenance cost"> maintenance cost</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a> </p> <a href="https://publications.waset.org/abstracts/11947/reliability-based-life-cycle-cost-model-for-engineering-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">605</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11945</span> On the Basis Number and the Minimum Cycle Bases of the Wreath Product of Paths with Wheels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20M.%20Jaradat">M. M. M. Jaradat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For a given graph G, the set Ԑ of all subsets of E(G) forms an |E(G)| dimensional vector space over Z2 with vector addition X⊕Y = (X\Y ) [ (Y \X) and scalar multiplication 1.X = X and 0.X = Ø for all X, Yϵ Ԑ. The cycle space, C(G), of a graph G is the vector subspace of (E; ⊕; .) spanned by the cycles of G. Traditionally there have been two notions of minimality among bases of C(G). First, a basis B of G is called a d-fold if each edge of G occurs in at most d cycles of the basis B. The basis number, b(G), of G is the least non-negative integer d such that C(G) has a d-fold basis; a required basis of C(G) is a basis for which each edge of G belongs to at most b(G) elements of B. Second, a basis B is called a minimum cycle basis (MCB) if its total length Σ BϵB |B| is minimum among all bases of C(G). The lexicographic product GρH has the vertex set V (GρH) = V (G) x V (H) and the edge set E(GρH) = {(u1, v1)(u2, v2)|u1 = u2 and v1 v2 ϵ E(H); or u1u2 ϵ E(G) and there is α ϵ Aut(H) such that α (v1) = v2}. In this work, a construction of a minimum cycle basis for the wreath product of wheels with paths is presented. Also, the length of the longest cycle of a minimum cycle basis is determined. Moreover, the basis number for the wreath product of the same is investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cycle%20space" title="cycle space">cycle space</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20cycle%20basis" title=" minimum cycle basis"> minimum cycle basis</a>, <a href="https://publications.waset.org/abstracts/search?q=basis%20number" title=" basis number"> basis number</a>, <a href="https://publications.waset.org/abstracts/search?q=wreath%20product" title=" wreath product"> wreath product</a> </p> <a href="https://publications.waset.org/abstracts/2144/on-the-basis-number-and-the-minimum-cycle-bases-of-the-wreath-product-of-paths-with-wheels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11944</span> Action Research into including Sustainability in [Lean] Product Development: Cases from the European Space Sector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3O%20Paulo%20Estevam%20De%20Souza">JoãO Paulo Estevam De Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=Rob%20Dekkers"> Rob Dekkers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Particularly for the space sector the inclusion of sustainability in product development poses considerable challenges for practitioners. Outcomes of action research at two companies in this sector demonstrate how this contemporary theme could be included in methods for product and process development; this was supported by wider focus groups involving more companies. The working together with practitioners brought to the fore that holistic product life-cycle thinking needs further development, especially when firms are suppliers to original equipment manufacturers. Furthermore, the findings indicate that the social aspect of the triple-bottom-line causes remains elusive for companies; to this purpose, some pathways based on the action research and focus groups are proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerospace" title="aerospace">aerospace</a>, <a href="https://publications.waset.org/abstracts/search?q=action%20research" title=" action research"> action research</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20development" title=" product development"> product development</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20life-cycle" title=" product life-cycle"> product life-cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=triple%20bottom-line" title=" triple bottom-line"> triple bottom-line</a> </p> <a href="https://publications.waset.org/abstracts/120086/action-research-into-including-sustainability-in-lean-product-development-cases-from-the-european-space-sector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11943</span> Life Cycle Assessment of Residential Buildings: A Case Study in Canada</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Venkatesh%20Kumar">Venkatesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kasun%20Hewage"> Kasun Hewage</a>, <a href="https://publications.waset.org/abstracts/search?q=Rehan%20Sadiq"> Rehan Sadiq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Residential buildings consume significant amounts of energy and produce a large amount of emissions and waste. However, there is a substantial potential for energy savings in this sector which needs to be evaluated over the life cycle of residential buildings. Life Cycle Assessment (LCA) methodology has been employed to study the primary energy uses and associated environmental impacts of different phases (i.e., product, construction, use, end of life, and beyond building life) for residential buildings. Four different alternatives of residential buildings in Vancouver (BC, Canada) with a 50-year lifespan have been evaluated, including High Rise Apartment (HRA), Low Rise Apartment (LRA), Single family Attached House (SAH), and Single family Detached House (SDH). Life cycle performance of the buildings is evaluated for embodied energy, embodied environmental impacts, operational energy, operational environmental impacts, total life-cycle energy, and total life cycle environmental impacts. Estimation of operational energy and LCA are performed using DesignBuilder software and Athena Impact estimator software respectively. The study results revealed that over the life span of the buildings, the relationship between the energy use and the environmental impacts are identical. LRA is found to be the best alternative in terms of embodied energy use and embodied environmental impacts; while, HRA showed the best life-cycle performance in terms of minimum energy use and environmental impacts. Sensitivity analysis has also been carried out to study the influence of building service lifespan over 50, 75, and 100 years on the relative significance of embodied energy and total life cycle energy. The life-cycle energy requirements for SDH is found to be a significant component among the four types of residential buildings. The overall disclose that the primary operations of these buildings accounts for 90% of the total life cycle energy which far outweighs minor differences in embodied effects between the buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20simulation" title="building simulation">building simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impacts" title=" environmental impacts"> environmental impacts</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20energy%20analysis" title=" life cycle energy analysis"> life cycle energy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20buildings" title=" residential buildings"> residential buildings</a> </p> <a href="https://publications.waset.org/abstracts/35021/life-cycle-assessment-of-residential-buildings-a-case-study-in-canada" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11942</span> Defect Management Life Cycle Process for Software Quality Improvement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aedah%20Abd%20Rahman">Aedah Abd Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurdatillah%20Hasim"> Nurdatillah Hasim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software quality issues require special attention especially in view of the demands of quality software product to meet customer satisfaction. Software development projects in most organisations need proper defect management process in order to produce high quality software product and reduce the number of defects. The research question of this study is how to produce high quality software and reducing the number of defects. Therefore, the objective of this paper is to provide a framework for managing software defects by following defined life cycle processes. The methodology starts by reviewing defects, defect models, best practices and standards. A framework for defect management life cycle is proposed. The major contribution of this study is to define a defect management road map in software development. The adoption of an effective defect management process helps to achieve the ultimate goal of producing high quality software products and contributes towards continuous software process improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defects" title="defects">defects</a>, <a href="https://publications.waset.org/abstracts/search?q=defect%20management" title=" defect management"> defect management</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20process" title=" life cycle process"> life cycle process</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20quality" title=" software quality"> software quality</a> </p> <a href="https://publications.waset.org/abstracts/40687/defect-management-life-cycle-process-for-software-quality-improvement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11941</span> Calculate Product Carbon Footprint through the Internet of Things from Network Science</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing%20Zhang">Jing Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To reduce the carbon footprint of mankind and become more sustainable is one of the major challenges in our era. Internet of Things (IoT) mainly resolves three problems: Things to Things (T2T), Human to Things, H2T), and Human to Human (H2H). Borrowing the classification of IoT, we can find carbon prints of industries also can be divided in these three ways. Therefore, monitoring the routes of generation and circulation of products may help calculate product carbon print. This paper does not consider any technique used by IoT itself, but the ideas of it look at the connection of products. Carbon prints are like a gene or mark of a product from raw materials to the final products, which never leave the products. The contribution of this paper is to combine the characteristics of IoT and the methodology of network science to find a way to calculate the product's carbon footprint. Life cycle assessment, LCA is a traditional and main tool to calculate the carbon print of products. LCA is a traditional but main tool, which includes three kinds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=product%20carbon%20footprint" title="product carbon footprint">product carbon footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=Internet%20of%20Things" title=" Internet of Things"> Internet of Things</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20science" title=" network science"> network science</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a> </p> <a href="https://publications.waset.org/abstracts/155253/calculate-product-carbon-footprint-through-the-internet-of-things-from-network-science" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11940</span> Effectiveness with Respect to Time-To-Market and the Impacts of Late-Stage Design Changes in Rapid Development Life Cycles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parth%20Shah">Parth Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The author examines the recent trend where business organizations are significantly reducing their developmental cycle times to stay competitive in today’s global marketspace. The author proposes a rapid systems engineering framework to address late design changes and allow for flexibility (i.e. to react to unexpected or late changes and its impacts) during the product development cycle using a Systems Engineering approach. A System Engineering approach is crucial in today’s product development to deliver complex products into the marketplace. Design changes can occur due to shortened timelines and also based on initial consumer feedback once a product or service is in the marketplace. The ability to react to change and address customer expectations in a responsive and cost-efficient manner is crucial for any organization to succeed. Past literature, research, and methods such as concurrent development, simultaneous engineering, knowledge management, component sharing, rapid product integration, tailored systems engineering processes, and studies on reducing product development cycles all suggest a research gap exist in specifically addressing late design changes due to the shortening of life cycle environments in increasingly competitive markets. The author’s research suggests that 1) product development cycles time scales are now measured in months instead of years, 2) more and more products have interdepended systems and environments that are fast-paced and resource critical, 3) product obsolesce is higher and more organizations are releasing products and services frequently, and 4) increasingly competitive markets are leading to customization based on consumer feedback. The author will quantify effectiveness with respect to success factors such as time-to-market, return-of-investment, life cycle time and flexibility in late design changes by complexity of product or service, number of late changes and ability to react and reduce late design changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=product%20development" title="product development">product development</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20systems%20engineering" title=" rapid systems engineering"> rapid systems engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=scalability" title=" scalability"> scalability</a>, <a href="https://publications.waset.org/abstracts/search?q=systems%20engineering" title=" systems engineering"> systems engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=systems%20integration" title=" systems integration"> systems integration</a>, <a href="https://publications.waset.org/abstracts/search?q=systems%20life%20cycle" title=" systems life cycle"> systems life cycle</a> </p> <a href="https://publications.waset.org/abstracts/76166/effectiveness-with-respect-to-time-to-market-and-the-impacts-of-late-stage-design-changes-in-rapid-development-life-cycles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11939</span> A Study on the Accelerated Life Cycle Test Method of the Motor for Home Appliances by Using Acceleration Factor </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youn-Sung%20Kim">Youn-Sung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mi-Sung%20Kim"> Mi-Sung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Kun%20Lee"> Jae-Kun Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the accelerated life cycle test method of the motor for home appliances that demand high reliability. Life Cycle of parts in home appliances also should be 10 years because life cycle of the home appliances such as washing machine, refrigerator, TV is at least 10 years. In case of washing machine, the life cycle test method of motor is advanced for 3000 cycle test (1cycle = 2hours). However, 3000 cycle test incurs loss for the time and cost. Objectives of this study are to reduce the life cycle test time and the number of test samples, which could be realized by using acceleration factor for the test time and reduction factor for the number of sample. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerated%20life%20cycle%20test" title="accelerated life cycle test">accelerated life cycle test</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20reliability%20test" title=" motor reliability test"> motor reliability test</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20for%20washing%20machine" title=" motor for washing machine"> motor for washing machine</a>, <a href="https://publications.waset.org/abstracts/search?q=BLDC%20motor" title=" BLDC motor"> BLDC motor</a> </p> <a href="https://publications.waset.org/abstracts/46400/a-study-on-the-accelerated-life-cycle-test-method-of-the-motor-for-home-appliances-by-using-acceleration-factor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">635</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11938</span> An Assessment of Financial Viability and Sustainability of Hydroponics Using Reclaimed Water Using LCA and LCC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Abdullah">Muhammad Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Atiq%20Ur%20Rehman%20Tariq"> Muhammad Atiq Ur Rehman Tariq</a>, <a href="https://publications.waset.org/abstracts/search?q=Faraz%20Ul%20Haq"> Faraz Ul Haq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In developed countries, sustainability measures are widely accepted and acknowledged as crucial for addressing environmental concerns. Hydroponics, a soilless cultivation technique, has emerged as a potentially sustainable solution as it can reduce water consumption, land use, and environmental impacts. However, hydroponics may not be economically viable, especially when using reclaimed water, which may entail additional costs and risks. This study aims to address the critical question of whether hydroponics using reclaimed water can achieve a balance between sustainability and financial viability. Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) will be integrated to assess the potential of hydroponics whether it is environmentally sustainable and economically viable. Life cycle assessment, or LCA, is a methodology for assessing environmental impacts associated with all the stages of the life cycle of a commercial product, process, or service. While Life Cycle Cost (LCC) is an approach that assesses the total cost of an asset over its life cycle, including initial capital costs and maintenance costs. The expected benefits of this study include supporting evidence-based decision-making for policymakers, farmers, and stakeholders involved in agriculture. By quantifying environmental impacts and economic costs, this research will facilitate informed choices regarding the adoption of hydroponics with reclaimed water. It is believed that the outcomes of this research work will help to achieve a sustainable approach to agricultural production, aligning with sustainability goals while considering economic factors by adopting hydroponic technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydroponic" title="hydroponic">hydroponic</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20cost" title=" life cycle cost"> life cycle cost</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/168520/an-assessment-of-financial-viability-and-sustainability-of-hydroponics-using-reclaimed-water-using-lca-and-lcc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11937</span> Integrated Design in Additive Manufacturing Based on Design for Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Asadollahi-Yazdi">E. Asadollahi-Yazdi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Gardan"> J. Gardan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Lafon"> P. Lafon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, manufactures are encountered with production of different version of products due to quality, cost and time constraints. On the other hand, Additive Manufacturing (AM) as a production method based on CAD model disrupts the design and manufacturing cycle with new parameters. To consider these issues, the researchers utilized Design For Manufacturing (DFM) approach for AM but until now there is no integrated approach for design and manufacturing of product through the AM. So, this paper aims to provide a general methodology for managing the different production issues, as well as, support the interoperability with AM process and different Product Life Cycle Management tools. The problem is that the models of System Engineering which is used for managing complex systems cannot support the product evolution and its impact on the product life cycle. Therefore, it seems necessary to provide a general methodology for managing the product’s diversities which is created by using AM. This methodology must consider manufacture and assembly during product design as early as possible in the design stage. The latest approach of DFM, as a methodology to analyze the system comprehensively, integrates manufacturing constraints in the numerical model in upstream. So, DFM for AM is used to import the characteristics of AM into the design and manufacturing process of a hybrid product to manage the criteria coming from AM. Also, the research presents an integrated design method in order to take into account the knowledge of layers manufacturing technologies. For this purpose, the interface model based on the skin and skeleton concepts is provided, the usage and manufacturing skins are used to show the functional surface of the product. Also, the material flow and link between the skins are demonstrated by usage and manufacturing skeletons. Therefore, this integrated approach is a helpful methodology for designer and manufacturer in different decisions like material and process selection as well as, evaluation of product manufacturability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20for%20manufacturing" title=" design for manufacturing"> design for manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20design" title=" integrated design"> integrated design</a>, <a href="https://publications.waset.org/abstracts/search?q=interoperability" title=" interoperability"> interoperability</a> </p> <a href="https://publications.waset.org/abstracts/50213/integrated-design-in-additive-manufacturing-based-on-design-for-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11936</span> Environmental Assessment of Roll-to-Roll Printed Smart Label</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Torres">M. Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Moulay"> A. Moulay</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zhuldybina"> M. Zhuldybina</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rozel"> M. Rozel</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20D.%20Trinh"> N. D. Trinh</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Bois"> C. Bois</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Printed electronics are a fast-growing market as their applications cover a large range of industrial needs, their production cost is low, and the additive printing techniques consume less materials than subtractive manufacturing methods used in traditional electronics. With the growing demand for printed electronics, there are concerns about their harmful and irreversible contribution to the environment. Indeed, it is estimated that 80% of the environmental load of a product is determined by the choices made at the conception stage. Therefore, examination through a life cycle approach at the developing stage of a novel product is the best way to identify potential environmental issues and make proactive decisions. Life cycle analysis (LCA) is a comprehensive scientific method to assess the environmental impacts of a product in its different stages of life: extraction of raw materials, manufacture and distribution, use, and end-of-life. Impacts and major hotspots are identified and evaluated through a broad range of environmental impact categories of the ReCiPe (H) middle point method. At the conception stage, the LCA is a tool that provides an environmental point of view on the choice of materials and processes and weights-in on the balance between performance materials and eco-friendly materials. Using the life cycle approach, the current work aims to provide a cradle-to-grave life cycle assessment of a roll-to-roll hybrid printed smart label designed for the food cold chain. Furthermore, this presentation will present the environmental impact of metallic conductive inks, a comparison with promising conductive polymers, evaluation of energy vs. performance of industrial printing processes, a full assessment of the impact from the smart label applied on a cellulosic-based substrate during the recycling process and the possible recovery of precious metals and rare earth elements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eco-design" title="Eco-design">Eco-design</a>, <a href="https://publications.waset.org/abstracts/search?q=label" title=" label"> label</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=printed%20electronics" title=" printed electronics"> printed electronics</a> </p> <a href="https://publications.waset.org/abstracts/142971/environmental-assessment-of-roll-to-roll-printed-smart-label" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11935</span> Impact of Design Choices on the Life Cycle Energy of Modern Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahsa%20Karimpour">Mahsa Karimpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Belusko"> Martin Belusko</a>, <a href="https://publications.waset.org/abstracts/search?q=Ke%20Xing"> Ke Xing</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Bruno"> Frank Bruno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditionally the embodied energy of design choices which reduce operational energy were assumed to have a negligible impact on the life cycle energy of buildings. However with new buildings having considerably lower operational energy, the significance of embodied energy increases. A life cycle assessment of a population of house designs was conducted in a mild and mixed climate zone. It was determined not only that embodied energy dominates life cycle energy, but that the impact on embodied of design choices was of equal significance to the impact on operational energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20life%20cycle%20energy" title="building life cycle energy">building life cycle energy</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied%20energy" title=" embodied energy"> embodied energy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20design%20measures" title=" energy design measures"> energy design measures</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20energy%20buildings" title=" low energy buildings"> low energy buildings</a> </p> <a href="https://publications.waset.org/abstracts/28025/impact-of-design-choices-on-the-life-cycle-energy-of-modern-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">771</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11934</span> A Three-Dimensional Assessment Approach on Sustainable Development Process of Sportswear Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20N.%20Fung">Y. N. Fung</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Liu"> R. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20M.%20Choi"> T. M. Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The life cycle assessment (LCA) is widely applied in the study of the sustainable fashion industry. Through the LCA, the social, environmental, and economic performances of the fashion industry can be assessed, which helps sustainable product developers (designers, retailers, and manufacturers) to address problems in product development. In prior studies, environmental impact, economic performance, and social responsibility are commonly considered separately. Inter-relations between dimensions of sustainability and LCA are rarely reported. The development process of sustainable sportswear products is complicated. Changes in the product components (e.g., materials, manufacturing methods, and product design) of sportswear will correspondingly influence supply chain activities and meanwhile affect environmental, economic, and social performances. In this study, the interrelations between different LCAs and how the interrelated LCAs can help product developers to strike a balance among environmental, economic, and social performances are explored. Based on the findings, a three-dimensional assessment framework on the sustainability life cycle is introduced. To examine the applicability of the developed framework, proof-of-concept sportswear legging products were developed. The developed sportswear legging products were assessed in terms of the interrelated dimensions of environmental, economic, and social performances. The results demonstrate the effects of shifting in desig¬n details and product functions on the environmental, social, and economic performances of sportswear products. The outcome of this study provides insights on the approach to balance sustainability and the development of cost-effective and sustainable sportswear products for sportswear developers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title="sustainable development">sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=sports%20fashion" title=" sports fashion"> sports fashion</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=indicators%20for%20sustainability" title=" indicators for sustainability"> indicators for sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability%20impacts" title=" sustainability impacts"> sustainability impacts</a> </p> <a href="https://publications.waset.org/abstracts/134943/a-three-dimensional-assessment-approach-on-sustainable-development-process-of-sportswear-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11933</span> Using Environmental Life Cycle Assessment to Design Sustainable Packaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timothy%20Francis%20Grant">Timothy Francis Grant</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are conflicting purposes at play with the design of sustainable packaging which include material reduction, recycling compatibility, use of secondary content and performance of the package in protecting and delivering the product. Life Cycle Assessment (LCA) is able to evaluate these different strategies against environmental metrics such as climate change, land and water use and marine litter pollution. However, LCA has traditionally been too time consuming and expensive to be used effectively in packaging design process. To make LCA practical for packaging technologist and designers a simplified tool is needed to make LCA possible for non-environmental specialists. The Packaging Quick Evaluation Tool (PIQET) is a web-based solution for undertaking LCA of new and existing packaging designs considering the global supply chain and impacts from cradle to grave. PIQET is based on a pre-calculated LCA database covering the materials and processes involved in the packaging lifecycle from cradle to grave. This includes both virgin materials and recycled content, conversion of materials into packaging, and the transportation of packaging to the product filling. In addition, PIQET assesses the impacts once the package is filled looking at storage, transport and product loss through the supply chain. When applied to consumer packaging light weight packages which are note recyclable have lower impacts than more recyclable packages which have a higher mass. Its also apparent that for many products the impacts of product failure and product loss are more important environmentally compared to packaging material efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Climate%20change" title="Climate change">Climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=Life%20Cycle%20Assessment" title=" Life Cycle Assessment"> Life Cycle Assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=Marine%20litter" title=" Marine litter"> Marine litter</a>, <a href="https://publications.waset.org/abstracts/search?q=Packaging%20sustainability" title=" Packaging sustainability"> Packaging sustainability</a> </p> <a href="https://publications.waset.org/abstracts/120493/using-environmental-life-cycle-assessment-to-design-sustainable-packaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11932</span> Short Life Cycle Time Series Forecasting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shalaka%20Kadam">Shalaka Kadam</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Apte"> Dinesh Apte</a>, <a href="https://publications.waset.org/abstracts/search?q=Sagar%20Mainkar"> Sagar Mainkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The life cycle of products is becoming shorter and shorter due to increased competition in market, shorter product development time and increased product diversity. Short life cycles are normal in retail industry, style business, entertainment media, and telecom and semiconductor industry. The subject of accurate forecasting for demand of short lifecycle products is of special enthusiasm for many researchers and organizations. Due to short life cycle of products the amount of historical data that is available for forecasting is very minimal or even absent when new or modified products are launched in market. The companies dealing with such products want to increase the accuracy in demand forecasting so that they can utilize the full potential of the market at the same time do not oversupply. This provides the challenge to develop a forecasting model that can forecast accurately while handling large variations in data and consider the complex relationships between various parameters of data. Many statistical models have been proposed in literature for forecasting time series data. Traditional time series forecasting models do not work well for short life cycles due to lack of historical data. Also artificial neural networks (ANN) models are very time consuming to perform forecasting. We have studied the existing models that are used for forecasting and their limitations. This work proposes an effective and powerful forecasting approach for short life cycle time series forecasting. We have proposed an approach which takes into consideration different scenarios related to data availability for short lifecycle products. We then suggest a methodology which combines statistical analysis with structured judgement. Also the defined approach can be applied across domains. We then describe the method of creating a profile from analogous products. This profile can then be used for forecasting products with historical data of analogous products. We have designed an application which combines data, analytics and domain knowledge using point-and-click technology. The forecasting results generated are compared using MAPE, MSE and RMSE error scores. Conclusion: Based on the results it is observed that no one approach is sufficient for short life-cycle forecasting and we need to combine two or more approaches for achieving the desired accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forecast" title="forecast">forecast</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20life%20cycle%20product" title=" short life cycle product"> short life cycle product</a>, <a href="https://publications.waset.org/abstracts/search?q=structured%20judgement" title=" structured judgement"> structured judgement</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series" title=" time series"> time series</a> </p> <a href="https://publications.waset.org/abstracts/33435/short-life-cycle-time-series-forecasting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11931</span> Life Cycle Analysis of the Antibacterial Gel Product Using Iso 14040 and Recipe 2016 Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Andres%20Flores%20Siguenza">Pablo Andres Flores Siguenza</a>, <a href="https://publications.waset.org/abstracts/search?q=Noe%20Rodrigo%20Guaman%20Guachichullca"> Noe Rodrigo Guaman Guachichullca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable practices have received increasing attention from academics and companies in recent decades due to, among many factors, the market advantages they generate, global commitments, and policies aimed at reducing greenhouse gas emissions, addressing resource scarcity, and rethinking waste management. The search for ways to promote sustainability leads industries to abandon classical methods and resort to the use of innovative strategies, which in turn are based on quantitative analysis methods and tools such as life cycle analysis (LCA), which is the basis for sustainable production and consumption, since it is a method that analyzes objectively, methodically, systematically, and scientifically the environmental impact caused by a process/product during its entire life cycle. The objective of this study is to develop an LCA of the antibacterial gel product throughout its entire supply chain (SC) under the methodology of ISO 14044 with the help of Gabi software and the Recipe 2016 method. The selection of the case study product was made based on its relevance in the current context of the COVID-19 pandemic and its exponential increase in production. For the development of the LCA, data from a Mexican company are used, and 3 scenarios are defined to obtain the midpoint and endpoint environmental impacts both by phases and globally. As part of the results, the most outstanding environmental impact categories are climate change, fossil fuel depletion, and terrestrial ecotoxicity, and the stage that generates the most pollution in the entire SC is the extraction of raw materials. The study serves as a basis for the development of different sustainability strategies, demonstrates the usefulness of an LCA, and agrees with different authors on the role and importance of this methodology in sustainable development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainability" title="sustainability">sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20analysis" title=" life cycle analysis"> life cycle analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20gel" title=" antibacterial gel"> antibacterial gel</a> </p> <a href="https://publications.waset.org/abstracts/185827/life-cycle-analysis-of-the-antibacterial-gel-product-using-iso-14040-and-recipe-2016-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">55</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11930</span> Tatak Noy-Pi: The Branding Evolution of Tesoro's Philippine Handicrafts- A Philippines Creative and Cultural Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Regine%20R.%20Villanueva">Regine R. Villanueva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study looks into how a cultural industry such as Tesoro’s Philippine Handicrafts underwent the brand revitalization process throughout its 70 years of existence in the Philippine market. This study uses a historical approach which analyzes the changes in product development and promotional strategies. Similarly, its brand identity was determined as well in terms of its internal processes and archival data such as history, mission – vision, customer relations, products, and promotions. The product life cycle model and the brand identity planning model were used as theoretical framework for the study. The life cycle was used in historically tracing the company’s developments and changes in terms of its branding, more specifically the products, promotions, and identity. Interviews were conducted among informants who included the CEO and the heads of each department in the business. The researcher also utilized textual analysis to have an in-depth understanding of Tesoro’s’ brand identity portrayal through its advertisements. The results showed how the company has undergone a progressive and innovative transition in its life cycle. With the changing markets and increased competition, the brand started active promotions and engaged in product development. In terms of identity, they are branded as pioneers of the handicraft industry in the Philippines. They started their brand revitalization to be able to imbibe this identity to their consumers through advertisement communication and identifying their segmented markets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cultural%20industry" title="cultural industry">cultural industry</a>, <a href="https://publications.waset.org/abstracts/search?q=handicrafts" title=" handicrafts"> handicrafts</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20study" title=" case study"> case study</a>, <a href="https://publications.waset.org/abstracts/search?q=philippines" title=" philippines"> philippines</a> </p> <a href="https://publications.waset.org/abstracts/33785/tatak-noy-pi-the-branding-evolution-of-tesoros-philippine-handicrafts-a-philippines-creative-and-cultural-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">625</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11929</span> Life Cycle Assessment as a Decision Making for Window Performance Comparison in Green Building Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghada%20Elshafei">Ghada Elshafei</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelazim%20Negm"> Abdelazim Negm </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Life cycle assessment is a technique to assess the environmental aspects and potential impacts associated with a product, process, or service, by compiling an inventory of relevant energy and material inputs and environmental releases; evaluating the potential environmental impacts associated with identified inputs and releases; and interpreting the results to help you make a more informed decision. In this paper, the life cycle assessment of aluminum and beech wood as two commonly used materials in Egypt for window frames are heading, highlighting their benefits and weaknesses. Window frames of the two materials have been assessed on the basis of their production, energy consumption and environmental impacts. It has been found that the climate change of the windows made of aluminum and beech wood window, for a reference window (1.2m × 1.2m), are 81.7 mPt and - 52.5 mPt impacts respectively. Among the most important results are: fossil fuel consumption, potential contributions to the green building effect and quantities of solid waste tend to be minor for wood products compared to aluminum products; incineration of wood products can cause higher impacts of acidification and eutrophication than aluminum, whereas thermal energy can be recovered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20window" title="aluminum window">aluminum window</a>, <a href="https://publications.waset.org/abstracts/search?q=beech%20wood%20window" title=" beech wood window"> beech wood window</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20building" title=" green building"> green building</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20analysis" title=" life cycle analysis"> life cycle analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SimaPro%20software" title=" SimaPro software"> SimaPro software</a>, <a href="https://publications.waset.org/abstracts/search?q=window%20frame" title=" window frame"> window frame</a> </p> <a href="https://publications.waset.org/abstracts/34211/life-cycle-assessment-as-a-decision-making-for-window-performance-comparison-in-green-building-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11928</span> Environmental Evaluation of Two Kind of Drug Production (Syrup and Pomade Form) Using Life Cycle Assessment Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Aksas">H. Aksas</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Boughrara"> S. Boughrara</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Louhab"> K. Louhab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this study was the use of life cycle assessment (LCA) methodology to assess the environmental impact of pharmaceutical product (four kinds of syrup form and tree kinds of pomade form), which are produced in one leader manufactory in Algeria town that is SAIDAL Company. The impacts generated have evaluated using SimpaPro7.1 with CML92 Method for syrup form and EPD 2007 for pomade form. All impacts evaluated have compared between them, with determination of the compound contributing to each impacts in each case. Data needed to conduct Life Cycle Inventory (LCI) came from this factory, by the collection of theoretical data near the responsible technicians and engineers of the company, the practical data are resulting from the assay of pharmaceutical liquid, obtained at the laboratories of the university. This data represent different raw material imported from European and Asian country necessarily to formulate the drug. Energy used is coming from Algerian resource for the input. Outputs are the result of effluent analysis of this factory with different form (liquid, solid and gas form). All this data (input and output) represent the ecobalance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical%20product" title="pharmaceutical product">pharmaceutical product</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20residues" title=" drug residues"> drug residues</a>, <a href="https://publications.waset.org/abstracts/search?q=LCA%20methodology" title=" LCA methodology"> LCA methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impacts" title=" environmental impacts"> environmental impacts</a> </p> <a href="https://publications.waset.org/abstracts/39550/environmental-evaluation-of-two-kind-of-drug-production-syrup-and-pomade-form-using-life-cycle-assessment-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11927</span> Characteristics and Feature Analysis of PCF Labeling among Construction Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung-mo%20Seo">Sung-mo Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-u%20Chae"> Chang-u Chae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Product Carbon Footprint Labeling has been run for more than four years by the Ministry of Environment and there are number of products labeled by KEITI, as for declaring products with their carbon emission during life cycle stages. There are several categories for certifying products by the characteristics of usage. Building products which are applied to a building as combined components. In this paper, current status of PCF labeling has been compared with LCI DB for data composition. By this comparative analysis, we suggest carbon labeling development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20labeling" title="carbon labeling">carbon labeling</a>, <a href="https://publications.waset.org/abstracts/search?q=LCI%20DB" title=" LCI DB"> LCI DB</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title=" building materials"> building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a> </p> <a href="https://publications.waset.org/abstracts/26699/characteristics-and-feature-analysis-of-pcf-labeling-among-construction-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11926</span> Environmental Performance of Olive Oil Production in Greece</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Tsarouhas">P. Tsarouhas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ch.%20Achillas"> Ch. Achillas</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Aidonis"> D. Aidonis</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Folinas"> D. Folinas</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Maslis"> V. Maslis</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Moussiopoulos"> N. Moussiopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agricultural production is a sector with high socioeconomic significance and key implications on employment and nutritional security. However, the impacts of agrifood production and consumption patterns on the environment are considerable, mainly due to the demand of large inputs of resources. This paper presents a case study of olive oil production in Greece, an important agri-product especially for countries in the Mediterranean basin. Life Cycle Analysis has been used to quantify the environmental performance of olive oil production. All key parameters that are associated with the life cycle of olive oil production are studied and environmental “hotspots” are diagnosed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LCA" title="LCA">LCA</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20oil%20production" title=" olive oil production"> olive oil production</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20study" title=" case study"> case study</a>, <a href="https://publications.waset.org/abstracts/search?q=Greece" title=" Greece"> Greece</a> </p> <a href="https://publications.waset.org/abstracts/14486/environmental-performance-of-olive-oil-production-in-greece" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11925</span> Application of Life Cycle Assessment “LCA” Approach for a Sustainable Building Design under Specific Climate Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djeffal%20Asma">Djeffal Asma</a>, <a href="https://publications.waset.org/abstracts/search?q=Zemmouri%20Noureddine"> Zemmouri Noureddine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order for building designer to be able to balance environmental concerns with other performance requirements, they need clear and concise information. For certain decisions during the design process, qualitative guidance, such as design checklists or guidelines information may not be sufficient for evaluating the environmental benefits between different building materials, products and designs. In this case, quantitative information, such as that generated through a life cycle assessment, provides the most value. LCA provides a systematic approach to evaluating the environmental impacts of a product or system over its entire life. In the case of buildings life cycle includes the extraction of raw materials, manufacturing, transporting and installing building components or products, operating and maintaining the building. By integrating LCA into building design process, designers can evaluate the life cycle impacts of building design, materials, components and systems and choose the combinations that reduce the building life cycle environmental impact. This article attempts to give an overview of the integration of LCA methodology in the context of building design, and focuses on the use of this methodology for environmental considerations concerning process design and optimization. A multiple case study was conducted in order to assess the benefits of the LCA as a decision making aid tool during the first stages of the building design under specific climate conditions of the North East region of Algeria. It is clear that the LCA methodology can help to assess and reduce the impact of a building design and components on the environment even if the process implementation is rather long and complicated and lacks of global approach including human factors. It is also demonstrated that using LCA as a multi objective optimization of building process will certainly facilitates the improvement in design and decision making for both new design and retrofit projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=buildings" title=" buildings"> buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=elementary%20schools" title=" elementary schools"> elementary schools</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impacts" title=" environmental impacts"> environmental impacts</a> </p> <a href="https://publications.waset.org/abstracts/23027/application-of-life-cycle-assessment-lca-approach-for-a-sustainable-building-design-under-specific-climate-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">546</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=product%20life%20cycle&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=product%20life%20cycle&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=product%20life%20cycle&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=product%20life%20cycle&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=product%20life%20cycle&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=product%20life%20cycle&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=product%20life%20cycle&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=product%20life%20cycle&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=product%20life%20cycle&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=product%20life%20cycle&page=398">398</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=product%20life%20cycle&page=399">399</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=product%20life%20cycle&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>