CINXE.COM
Search results for: metal organic frameworks (MOFs)
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: metal organic frameworks (MOFs)</title> <meta name="description" content="Search results for: metal organic frameworks (MOFs)"> <meta name="keywords" content="metal organic frameworks (MOFs)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="metal organic frameworks (MOFs)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="metal organic frameworks (MOFs)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5291</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: metal organic frameworks (MOFs)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5291</span> Temperature Effects on CO₂ Intake of MIL-101 and ZIF-301</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ba-Shammakh">M. Ba-Shammakh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal-organic frameworks (MOFs) are promising materials for CO₂ capture and they have high adsorption capacity towards CO₂. In this study, two different metal organic frameworks (i.e. MIL-101 and ZIF-301) were tested for different flue gases that have different CO₂ fractions. In addition, the effect of temperature was investigated for MIL-101 and ZIF-301. The results show that MIL-101 performs well for pure CO₂ stream while its intake decreases dramatically for other flue gases that have variable CO₂ fraction ranging from 5 to 15 %. The second material (ZIF-301) showed a better result in all flue gases and higher CO₂ intake compared to MIL-101 even at high temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20capture" title="CO₂ capture">CO₂ capture</a>, <a href="https://publications.waset.org/abstracts/search?q=Metal%20Organic%20Frameworks%20%28MOFs%29" title=" Metal Organic Frameworks (MOFs)"> Metal Organic Frameworks (MOFs)</a>, <a href="https://publications.waset.org/abstracts/search?q=MIL-101" title=" MIL-101"> MIL-101</a>, <a href="https://publications.waset.org/abstracts/search?q=ZIF-301" title=" ZIF-301"> ZIF-301</a> </p> <a href="https://publications.waset.org/abstracts/73035/temperature-effects-on-co2-intake-of-mil-101-and-zif-301" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5290</span> The shaping of Metal-Organic Frameworks for Water Vapor Adsorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tsung-Lin%20Hsieh">Tsung-Lin Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiun-Jen%20Chen"> Jiun-Jen Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuhao%20Kang"> Yuhao Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal-organic frameworks (MOFs) have drawn scientists’ attention for decades due to its high specific surface area, tunable pore size, and relatively low temperature for regeneration. Bearing with those mentioned properties, MOFs has been widely used in various applications, such as adsorption/separation and catalysis. However, the current challenge for practical use of MOFs is to effectively shape these crystalline powder material into controllable forms such as pellets, granules, and monoliths with sufficient mechanical and chemical stability, while maintaining the excellent properties of MOFs powders. Herein, we have successfully synthesized an Al-based MOF powder which exhibits a high water capacity at relatively low humidity conditions and relatively low temperature for regeneration. Then the synthesized Al-MOF was shaped into granules with particle size of 2-4 mm by (1) tumbling granulation, (2) High shear mixing granulation, and (3) Extrusion techniques. Finally, the water vapor adsorption rate and crush strength of Al-MOF granules by different shaping techniques were measured and compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=granulation" title="granulation">granulation</a>, <a href="https://publications.waset.org/abstracts/search?q=granules" title=" granules"> granules</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-organic%20frameworks" title=" metal-organic frameworks"> metal-organic frameworks</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20vapor%20adsorption" title=" water vapor adsorption"> water vapor adsorption</a> </p> <a href="https://publications.waset.org/abstracts/127112/the-shaping-of-metal-organic-frameworks-for-water-vapor-adsorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5289</span> Catalytic Applications of Metal-Organic Frameworks for Organic Pollutant Removal in Wastewater Treatment: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Ndubuisi%20Abonyi">Matthew Ndubuisi Abonyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Chiedozie%20Obi"> Christopher Chiedozie Obi</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Tagbo%20Nwabanne"> Joseph Tagbo Nwabanne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This review focuses on the application of Metal-Organic Frameworks (MOF)-based catalysts in the degradation of organic pollutants in wastewater. The degradation of organic pollutants in wastewater remains a critical environmental challenge, necessitating innovative solutions for effective treatment. MOFs have garnered significant attention as promising catalysts for this purpose, owing to their exceptional surface area, tunable porosity, and diverse chemical functionalities. It explores various catalytic mechanisms, including photocatalysis, Fenton-like reactions, and other advanced oxidation processes facilitated by MOFs. The review also explores the design strategies that enhance the catalytic performance of MOFs, such as structural modifications, composite formation, and post-synthetic modifications. Furthermore, real-world case studies are presented, highlighting the practical applications and environmental impact of MOF-based catalysts in wastewater treatment. Challenges associated with the scalability and stability of these materials are discussed, along with future directions for research and development. This review highlights the significant potential of MOF-based catalysts in addressing the pressing issue of water pollution and advocates for continued innovation to optimize their application in wastewater treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal-organic%20frameworks%20%28MOFs%29" title="metal-organic frameworks (MOFs)">metal-organic frameworks (MOFs)</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysis" title=" catalysis"> catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20pollutant%20degradation" title=" organic pollutant degradation"> organic pollutant degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a> </p> <a href="https://publications.waset.org/abstracts/190018/catalytic-applications-of-metal-organic-frameworks-for-organic-pollutant-removal-in-wastewater-treatment-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5288</span> Microporous 3D Aluminium Metal-Organic Frameworks in Chitosan Based Mixed Matrix Membrane for Ethanol/Water Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhan%20Vinu">Madhan Vinu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yue-Chun%20Jiang"> Yue-Chun Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Feng%20Lin"> Yi-Feng Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Her%20Lin"> Chia-Her Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An effective approach to enhance the ethanol/water pervaporation of mixed matrix membranes prepared from three microporous aluminium based metal-organic frameworks (MOFs), [Al(OH)(BPDC)] (DUT-5), [Al(OH)(NDC)] (DUT-4) and [Al(OH)(BzPDC)] (CAU-8) have been synthesized by employing solvothermal reactions. Interestingly, all Al-MOFs showed attractive surface area with microporous 12.3, 10.2 and 8.0 Å for DUT-5, DUT-4 and CAU-8 MOFs which are confirmed through N₂ gas sorption measurements. All the microporous compounds are highly stable as confirmed by thermogravimetric analysis and temperature-dependent powder X-ray diffraction measurements. Furthermore, the synthesized microporous MOF particles of DUT-5, DUT-4, and CAU-8 were successfully incorporated into biological chitosan (CS) membranes to form DUT-5@CS, DUT-4@CS, and CAU-8@CS membranes. The different MOF loadings such as 0.1, 0.15, and 0.2 wt% in CS networks have been prepared, and the same were used to separate mixtures of water and ethanol at 25ºC in the pervaporation process. In particular, when 0.15 wt% of DUT-5 was loaded, MOF@CS membrane displayed excellent permeability and selectivity in ethanol/water separation than that of the previous literature. These CS based membranes separation through functionalized microporous MOFs reveals the key governing factors that are essential for designing novel MOF membranes for bioethanol purification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal-organic%20framework" title="metal-organic framework">metal-organic framework</a>, <a href="https://publications.waset.org/abstracts/search?q=microporous%20materials" title=" microporous materials"> microporous materials</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan%20membranes" title=" chitosan membranes"> chitosan membranes</a> </p> <a href="https://publications.waset.org/abstracts/85380/microporous-3d-aluminium-metal-organic-frameworks-in-chitosan-based-mixed-matrix-membrane-for-ethanolwater-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5287</span> Metal-Organic Frameworks for Innovative Functional Textiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossam%20E.%20Emam">Hossam E. Emam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal–organic frameworks (MOFs) are new hybrid materials investigated from 15 years ago; they synthesized from metals as inorganic center joined with multidentate organic linkers to form a 1D, 2D or 3D network structure. MOFs have unique properties such as pore crystalline structure, large surface area, chemical tenability and luminescent characters. These significant properties enable MOFs to be applied in many fields such like gas storage, adsorption/separation, drug delivery/biomedicine, catalysis, polymerization, magnetism and luminescence applications. Recently, many of published reports interested in superiority of MOFs for functionalization of textiles to exploit the unique properties of MOFs. Incorporation of MOFs is found to acquire the textiles some additional formidable functions to be used in considerable fields such like water treatment and fuel purification. Modification of textiles with MOFs could be easily performed by two main techniques; Ex-situ (preparation of MOFs then applied onto textiles) and in-situ (ingrowth of MOFs within textiles networks). Uniqueness of MOFs could be assimilated in acquirement of decorative color, antimicrobial character, anti-mosquitos character, ultraviolet radiation protective, self-clean, photo-luminescent and sensor character. Additionally, textiles treatment with MOFs make it applicable as filter in the adsorption of toxic gases, hazardous materials (such as pesticides, dyes and aromatics molecules) and fuel purification (such as removal of oxygenated, nitrogenated and sulfur compounds). Also, the porous structure of MOFs make it mostly utilized in control release of insecticides from the surface of the textile. Moreover, MOF@textiles as recyclable materials lead it applicable as photo-catalyst composites for photo-degradation of different dyes in the day light. Therefore, MOFs is extensively considered for imparting textiles with formidable properties as ingeniousness way for textile functionalization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MOF" title="MOF">MOF</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20textiles" title=" functional textiles"> functional textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20purification" title=" fuel purification"> fuel purification</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20applications" title=" environmental applications"> environmental applications</a> </p> <a href="https://publications.waset.org/abstracts/123054/metal-organic-frameworks-for-innovative-functional-textiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5286</span> Bimetallic MOFs Based Membrane for the Removal of Heavy Metal Ions from the Industrial Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Umar%20Mushtaq">Muhammad Umar Mushtaq</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Bilal%20Khan%20Niazi"> Muhammad Bilal Khan Niazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nouman%20Ahmad"> Nouman Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Dooa%20Arif"> Dooa Arif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Apart from organic dyes, heavy metals such as Pb, Ni, Cr, and Cu are present in textile effluent and pose a threat to humans and the environment. Many studies on removing heavy metallic ions from textile wastewater have been conducted in recent decades using metal-organic frameworks (MOFs). In this study new polyether sulfone ultrafiltration membrane, modified with Cu/Co and Cu/Zn-based bimetal-organic frameworks (MOFs), was produced. Phase inversion was used to produce the membrane, and atomic force microscopy (AFM), scanning electron microscopy (SEM) were used to characterize it. The bimetallic MOFs-based membrane structure is complex and can be comprehended using characterization techniques. The bimetallic MOF-based filtration membranes are designed to selectively adsorb specific contaminants while allowing the passage of water molecules, improving the ultrafiltration efficiency. MOFs' adsorption capacity and selectivity are enhanced by functionalizing them with particular chemical groups or incorporating them into composite membranes with other materials, such as polymers. The morphology and performance of the bimetallic MOF-based membrane were investigated regarding pure water flux and metal ion rejection. The advantages of developed bimetallic MOFs based membranes for wastewater treatment include enhanced adsorption capacity because of the presence of two metals in their structure, which provides additional binding sites for contaminants, leading to a higher adsorption capacity and more efficient removal of pollutants from wastewater. Based on the experimental findings, bimetallic MOF-based membranes are more capable of rejecting metal ions from industrial wastewater than conventional membranes that have already been developed. Furthermore, the difficulties associated with operational parameters, including pressure gradients and velocity profiles, are simulated using Ansys Fluent software. The simulation results obtained for the operating parameters are in complete agreement with the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bimetallic%20MOFs" title="bimetallic MOFs">bimetallic MOFs</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20ions" title=" heavy metal ions"> heavy metal ions</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20wastewater%20treatment" title=" industrial wastewater treatment"> industrial wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafiltration." title=" ultrafiltration."> ultrafiltration.</a> </p> <a href="https://publications.waset.org/abstracts/165343/bimetallic-mofs-based-membrane-for-the-removal-of-heavy-metal-ions-from-the-industrial-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5285</span> Mixed Matrix Membranes Based on [M₂(DOBDC)] (M = Mg, Co, Ni) and Polydimethylsiloxane for CO₂/N₂ Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyunuk%20Kim">Hyunuk Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20No%20Yun"> Yang No Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sohail"> Muhammad Sohail</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Ho%20Moon"> Jong-Ho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Cheol%20Park"> Young Cheol Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal-organic frameworks (MOFs), which are emerging absorbents assembled from metal ions and organic ligands, have attracted attention for their permanent porosity and design of tunable pore size. These microporous materials showed interesting properties for CO₂ storage and separation. In particular, MOFs with high surface area and open metal sites showed the remarkable adsorption capacity and selectivity for CO₂. [Mg₂ (DOBDC)] (DOBDC = 2,5-dioxidobenzene-1,4-dicarboxylate) (MOF-74 or CPO-27) is a well-known absorbent showing an exceptionally high CO₂ sorption capacity at low partial pressure and room temperature. In this work, we synthesized [M₂(DOBDC)(DMF)₂] (M = Mg, Co, Ni) and determined their single-crystal structures by X-ray crystallography. The removal of coordinated guest molecules generates Lewis acidic sites and showed high CO₂ adsorption affinity. Both CO₂ adsorption capacity and surface area are much higher than reported values in literature. To fabricate MMMs, microcrystalline [M₂ (DOBDC)(DMF)₂] was synthesized by microwave reaction and dispersed in PDMS solution. The MMMs with a various amount of [M₂ (DOBDC)(DMF) ₂] in PDMS were fabricated by a solution casting method. [M₂ (DOBDC)(DMF)₂]@PDMS membrane showed higher CO2 permeability and CO₂/N₂ selectivity than those of PDMS. Therefore, we believe that MMMs combining polymer and MOFs provide new materials for CO₂ separation technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal-organic%20frameworks" title="metal-organic frameworks">metal-organic frameworks</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20matrix%20membrane" title=" mixed matrix membrane"> mixed matrix membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%2FN2%20separation" title=" CO2/N2 separation"> CO2/N2 separation</a>, <a href="https://publications.waset.org/abstracts/search?q=polydimethylsiloxane%20%28PDMS%29" title=" polydimethylsiloxane (PDMS)"> polydimethylsiloxane (PDMS)</a> </p> <a href="https://publications.waset.org/abstracts/72483/mixed-matrix-membranes-based-on-m2dobdc-m-mg-co-ni-and-polydimethylsiloxane-for-co2n2-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5284</span> DFT Insights into CO₂ Capture Mechanisms and Kinetics in Diamine-Appended Grafted Mg₂ (dobpdc) Metal- Organic Frameworks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mao-Sheng%20Su">Mao-Sheng Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Santhanamoorthi%20Nachimuthu"> Santhanamoorthi Nachimuthu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyh-Chiang%20Jiang"> Jyh-Chiang Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change is widely recognized as a global crisis, with anthropogenic CO₂ emissions from fossil fuel combustion and industrial processes being major contributors. To address this challenge, carbon capture and sequestration (CCS) technology has emerged as a key strategy for selectively capturing CO₂ from flue gas streams. Among the various solid adsorbents, metal–organic frameworks (MOFs) are notable for their extensive surface area and controllable pore chemistry. The porous MOF structure is comprised of metal ions or clusters coordinated to organic linker compounds. In particular, the pore parameters of MOFs are readily tunable, making them promising materials for CO₂ capture applications. Among these, amine-functionalized MOFs have demonstrated exceptional CO₂ capture abilities because their high uptake capacity and selectivity. In this study, we have investigated the CO₂ capture abilities and adsorption mechanisms of the diamine-appended framework N-Ethylethylenediamine-Mg₂(4,4’-dioxidobiphenyl-3,3’-dicarboxylate) (e-2-Mg₂(dobpdc)) using density functional theory (DFT) calculations. Previous studies have suggested that CO₂ can be captured via both outer- and inner-amine binding sites. Our findings reveal that CO₂ adsorption at the outer amine site is kinetically more favorable compared to the inner amine site, with a lower energy barrier of 1.34 eV for CO₂ physisorption to chemisorption compared to the inner amine, which has an activation barrier of 1.60 eV. Furthermore, we find that CO₂ adsorption is significantly enhanced in an alkaline environment, as deprotonation of the diamine molecule reduces the energy barrier to 0.24 eV. This theoretical study provides detailed insights into CO₂ adsorption in diamine-appended e-2-Mg₂(dobpdc) MOF, offering a deeper understanding of CO₂ capture mechanisms and valuable information for the advancement of effective CO₂ sequestration technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=MOFs" title=" MOFs"> MOFs</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20capture" title=" CO₂ capture"> CO₂ capture</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a> </p> <a href="https://publications.waset.org/abstracts/192123/dft-insights-into-co2-capture-mechanisms-and-kinetics-in-diamine-appended-grafted-mg2-dobpdc-metal-organic-frameworks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">28</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5283</span> High Temperature and High Pressure Purification of Hydrogen from Syngas Using Metal Organic Framework Adsorbent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Rostom">Samira Rostom</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Symonds"> Robert Symonds</a>, <a href="https://publications.waset.org/abstracts/search?q=Robin%20W.%20Hughes"> Robin W. Hughes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen is considered as one of the most important clean and renewable energy carriers for a sustainable energy future. However, its efficient and cost-effective purification remains challenging. This paper presents the potential of using metal–organic frameworks (MOFs) in combination with pressure swing adsorption (PSA) technology for syngas based H2 purification. PSA process analysis is done considering high pressure and elevated temperature process conditions, it reduces the demand for off-gas recycle to the fuel reactor and simultaneously permits higher desorption pressure, thereby reducing the parasitic load on the hydrogen compressor. The elevated pressure and temperature adsorption we present here is beneficial to minimizing overall process heating and cooling demand compared to existing processes. Here, we report the comparative performance of zeolite-5A, Cu-BTC, and the mix of zeolite-5A/Cu-BTC for H2 purification from syngas typical of those exiting water-gas-shift reactors. The MOFs were synthesized hydrothermally and then mixed systematically at different weight ratios to find the optimum composition based on the adsorption performance. The formation of different compounds were characterized by XRD, N2 adsorption and desorption, SEM, FT-IR, TG, and water vapor adsorption technologies. Single-component adsorption isotherms of CO2, CO, CH4, N2, and H2 over single materials and composites were measured at elevated pressures and different temperatures to determine their equilibrium adsorption capacity. The examination of the stability and regeneration performance of metal–organic frameworks was carried out using a gravimetric system at temperature ranges of 25-150℃ for a pressure range of 0-30 bar. The studies of adsorption/desorption on the MOFs showed selective adsorption of CO2, CH4, CO, and N2 over H2. Overall, the findings of this study suggest that the Ni-MOF-74/Cu-BTC composites are promising candidates for industrial H2 purification processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MOF" title="MOF">MOF</a>, <a href="https://publications.waset.org/abstracts/search?q=H2%20purification" title=" H2 purification"> H2 purification</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20T" title=" high T"> high T</a>, <a href="https://publications.waset.org/abstracts/search?q=PSA" title=" PSA"> PSA</a> </p> <a href="https://publications.waset.org/abstracts/160618/high-temperature-and-high-pressure-purification-of-hydrogen-from-syngas-using-metal-organic-framework-adsorbent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5282</span> Selective Guest Accommodation in Zn(II) Bimetallic: Organic Coordination Frameworks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bukunola%20K.%20Oguntade">Bukunola K. Oguntade</a>, <a href="https://publications.waset.org/abstracts/search?q=Gareth%20M.%20Watkins"> Gareth M. Watkins</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synthesis and characterization of metal-organic frameworks (MOFs) is an area of coordination chemistry which has grown rapidly in recent years. Worldwide there has been growing concerns about future energy supplies, and its environmental impacts. A good number of MOFs have been tested for the adsorption of small molecules in the vapour phase. An important issue for potential applications of MOFs for gas adsorption and storage materials is the stability of their structure upon sorption. Therefore, study on the thermal stability of MOFs upon adsorption is important. The incorporation of two or more transition metals in a coordination polymer is a current challenge for designed synthesis. This work focused on the synthesis, characterization and small molecule adsorption properties of three microporous (one zinc monometal and two bimetallics) complexes involving Cu(II), Zn(II) and 1,2,4,5-benzenetetracarboxylic acid using the ambient precipitation and solvothermal method. The complexes were characterized by elemental analysis, Infrared spectroscopy, Scanning Electron microscopy, Thermogravimetry analysis and X-ray Powder diffraction. The N2-adsorption Isotherm showed the complexes to be of TYPE III in reference to IUPAC classification, with very small pores only capable for small molecule sorption. All the synthesized compounds were observed to contain water as guest. Investigations of their inclusion properties for small molecules in the vapour phase showed water and methanol as the only possible inclusion candidates with 10.25H2O in the monometal complex [Zn4(H2B4C)2.5(OH)3(H2O)]·10H2O but not reusable after a complete structural collapse. The ambient precipitation bimetallic; [(CuZnB4C(H2O)2]·5H2O, was found to be reusable and recoverable from structure collapse after adsorption of 5.75H2O. In addition, Solvo-[CuZnB4C(H2O)2.5]·2H2O obtained from solvothermal method show two cycles of rehydration with 1.75H2O and 0.75MeOH inclusion while structure remains unaltered upon dehydration and adsorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20-organic%20frameworks" title=" metal -organic frameworks"> metal -organic frameworks</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a> </p> <a href="https://publications.waset.org/abstracts/96381/selective-guest-accommodation-in-znii-bimetallic-organic-coordination-frameworks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5281</span> Ionic Liquids as Substrates for Metal-Organic Framework Synthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Julian%20Mehler">Julian Mehler</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcus%20Fischer"> Marcus Fischer</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Hartmann"> Martin Hartmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20S.%20Schulz"> Peter S. Schulz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the last two decades, the synthesis of metal-organic frameworks (MOFs) has gained ever increasing attention. Based on their pore size and shape as well as host-guest interactions, they are of interest for numerous fields related to porous materials, like catalysis and gas separation. Usually, MOF-synthesis takes place in an organic solvent between room temperature and approximately 220 °C, with mixtures of polyfunctional organic linker molecules and metal precursors as substrates. Reaction temperatures above the boiling point of the solvent, i.e. solvothermal reactions, are run in autoclaves or sealed glass vessels under autogenous pressures. A relatively new approach for the synthesis of MOFs is the so-called ionothermal synthesis route. It applies an ionic liquid as a solvent, which can serve as a structure-directing template and/or a charge-compensating agent in the final coordination polymer structure. Furthermore, this method often allows for less harsh reaction conditions than the solvothermal route. Here a variation of the ionothermal approach is reported, where the ionic liquid also serves as an organic linker source. By using 1-ethyl-3-methylimidazolium terephthalates ([EMIM][Hbdc] and [EMIM]₂[bdc]), the one-step synthesis of MIL-53(Al)/Boehemite composites with interesting features is possible. The resulting material is already formed at moderate temperatures (90-130 °C) and is stabilized in the usually unfavored ht-phase. Additionally, in contrast to already published procedures for MIL-53(Al) synthesis, no further activation at high temperatures is mandatory. A full characterization of this novel composite material is provided, including XRD, SS-NMR, El-Al., SEM as well as sorption measurements and its interesting features are compared to MIL-53(Al) samples produced by the classical solvothermal route. Furthermore, the syntheses of the applied ionic liquids and salts is discussed. The influence of the degree of ionicity of the linker source [EMIM]x[H(2-x)bdc] on the crystal structure and the achievable synthesis temperature are investigated and give insight into the role of the IL during synthesis. Aside from the synthesis of MIL-53 from EMIM terephthalates, the use of the phosphonium cation in this approach is discussed as well. Additionally, the employment of ILs in the preparation of other MOFs is presented briefly. This includes the ZIF-4 framework from the respective imidazolate ILs and chiral camphorate based frameworks from their imidazolium precursors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title="ionic liquids">ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=ionothermal%20synthesis" title=" ionothermal synthesis"> ionothermal synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20synthesis" title=" material synthesis"> material synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=MIL-53" title=" MIL-53"> MIL-53</a>, <a href="https://publications.waset.org/abstracts/search?q=MOFs" title=" MOFs"> MOFs</a> </p> <a href="https://publications.waset.org/abstracts/76567/ionic-liquids-as-substrates-for-metal-organic-framework-synthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5280</span> The Effect of Metal-Organic Framework Pore Size to Hydrogen Generation of Ammonia Borane via Nanoconfinement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing-Yang%20Chung">Jing-Yang Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Wei%20Liao"> Chi-Wei Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Li"> Jing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Bor%20Kae%20Chang"> Bor Kae Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Yu%20Wang"> Cheng-Yu Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical hydride ammonia borane (AB, NH3BH3) draws attentions to hydrogen energy researches for its high theoretical gravimetrical capacity (19.6 wt%). Nevertheless, the elevated AB decomposition temperatures (Td) and unwanted byproducts are main hurdles in practical application. It was reported that the byproducts and Td can be reduced with nanoconfinement technique, in which AB molecules are confined in porous materials, such as porous carbon, zeolite, metal-organic frameworks (MOFs), etc. Although nanoconfinement empirically shows effectiveness on hydrogen generation temperature reduction in AB, the theoretical mechanism is debatable. Low Td was reported in AB@IRMOF-1 (Zn4O(BDC)3, BDC = benzenedicarboxylate), where Zn atoms form closed metal clusters secondary building unit (SBU) with no exposed active sites. Other than nanosized hydride, it was also observed that catalyst addition facilitates AB decomposition in the composite of Li-catalyzed carbon CMK-3, MOF JUC-32-Y with exposed Y3+, etc. It is believed that nanosized AB is critical for lowering Td, while active sites eliminate byproducts. Nonetheless, some researchers claimed that it is the catalytic sites that are the critical factor to reduce Td, instead of the hydride size. The group physically ground AB with ZIF-8 (zeolitic imidazolate frameworks, (Zn(2-methylimidazolate)2)), and found similar reduced Td phenomenon, even though AB molecules were not ‘confined’ or forming nanoparticles by physical hand grinding. It shows the catalytic reaction, not nanoconfinement, leads to AB dehydrogenation promotion. In this research, we explored the possible criteria of hydrogen production temperature from nanoconfined AB in MOFs with different pore sizes and active sites. MOFs with metal SBU such as Zn (IRMOF), Zr (UiO), and Al (MIL-53), accompanying with various organic ligands (BDC and BPDC; BPDC = biphenyldicarboxylate) were modified with AB. Excess MOFs were used for AB size constrained in micropores estimated by revisiting Horvath-Kawazoe model. AB dissolved in methanol was added to MOFs crystalline with MOF pore volume to AB ratio 4:1, and the slurry was dried under vacuum to collect AB@MOF powders. With TPD-MS (temperature programmed desorption with mass spectroscopy), we observed Td was reduced with smaller MOF pores. For example, it was reduced from 100°C to 64°C when MOF micropore ~1 nm, while ~90°C with pore size up to 5 nm. The behavior of Td as a function of AB crystalline radius obeys thermodynamics when the Gibbs free energy of AB decomposition is zero, and no obvious correlation with metal type was observed. In conclusion, we discovered Td of AB is proportional to the reciprocal of MOF pore size, possibly stronger than the effect of active sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonia%20borane" title="ammonia borane">ammonia borane</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20hydride" title=" chemical hydride"> chemical hydride</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-organic%20framework" title=" metal-organic framework"> metal-organic framework</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoconfinement" title=" nanoconfinement"> nanoconfinement</a> </p> <a href="https://publications.waset.org/abstracts/72206/the-effect-of-metal-organic-framework-pore-size-to-hydrogen-generation-of-ammonia-borane-via-nanoconfinement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5279</span> Tailoring Structural, Thermal and Luminescent Properties of Solid-State MIL-53(Al) MOF via Fe³⁺ Cation Exchange</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Ul%20Rehman">T. Ul Rehman</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Agnello"> S. Agnello</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20M.%20Gelardi"> F. M. Gelardi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Calvino"> M. M. Calvino</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Lazzara"> G. Lazzara</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Buscarino"> G. Buscarino</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Cannas"> M. Cannas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal-Organic Frameworks (MOFs) have emerged as promising candidates for detecting metal ions owing to their large surface area, customizable porosity, and diverse functionalities. In recent years, there has been a surge in research focused on MOFs with luminescent properties. These frameworks are constructed through coordinated bonding between metal ions and multi-dentate ligands, resulting in inherent fluorescent structures. Their luminescent behavior is influenced by factors like structural composition, surface morphology, pore volume, and interactions with target analytes, particularly metal ions. MOFs exhibit various sensing mechanisms, including photo-induced electron transfer (PET) and charge transfer processes such as ligand-to-metal (LMCT) and metal-to-ligand (MLCT) transitions. Among these, MIL-53(Al) stands out due to its flexibility, stability, and specific affinity towards certain metal ions, making it a promising platform for selective metal ion sensing. This study investigates the structural, thermal, and luminescent properties of MIL-53(Al) metal-organic framework (MOF) upon Fe3+ cation exchange. Two separate sets of samples were prepared to activate the MOF powder at different temperatures. The first set of samples, referred to as MIL-53(Al), activated (120°C), was prepared by activating the raw powder in a glass tube at 120°C for 12 hours and then sealing it. The second set of samples, referred to as MIL-53(Al), activated (300°C), was prepared by activating the MIL-53(Al) powder in a glass tube at 300°C for 70 hours. Additionally, 25 mg of MIL-53(Al) powder was dispersed in 5 mL of Fe3+ solution at various concentrations (0.1-100 mM) for the cation exchange experiment. The suspension was centrifuged for five minutes at 10,000 rpm to extract MIL-53(Al) powder. After three rounds of washing with ultrapure water, MIL-53(Al) powder was heated at 120°C for 12 hours. For PXRD and TGA analyses, a sample of the obtained MIL-53(Al) was used. We also activated the cation-exchanged samples for time-resolved photoluminescence (TRPL) measurements at two distinct temperatures (120 and 300°C) for comparative analysis. Powder X-ray diffraction patterns reveal amorphization in samples with higher Fe3+ concentrations, attributed to alterations in coordination environments and ion exchange dynamics. Thermal decomposition analysis shows reduced weight loss in Fe3+-exchanged MOFs, indicating enhanced stability due to stronger metal-ligand bonds and altered decomposition pathways. Raman spectroscopy demonstrates intensity decrease, shape disruption, and frequency shifts, indicative of structural perturbations induced by cation exchange. Photoluminescence spectra exhibit ligand-based emission (π-π* or n-π*) and ligand-to-metal charge transfer (LMCT), influenced by activation temperature and Fe3+ incorporation. Quenching of luminescence intensity and shorter lifetimes upon Fe3+ exchange result from structural distortions and Fe3+ binding to organic linkers. In a nutshell, this research underscores the complex interplay between composition, structure, and properties in MOFs, offering insights into their potential for diverse applications in catalysis, gas storage, and luminescent devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fe%C2%B3%E2%81%BA%20cation%20exchange" title="Fe³⁺ cation exchange">Fe³⁺ cation exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescent%20metal-organic%20frameworks%20%28LMOFs%29" title=" luminescent metal-organic frameworks (LMOFs)"> luminescent metal-organic frameworks (LMOFs)</a>, <a href="https://publications.waset.org/abstracts/search?q=MIL-53%28Al%29" title=" MIL-53(Al)"> MIL-53(Al)</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-state%20analysis" title=" solid-state analysis"> solid-state analysis</a> </p> <a href="https://publications.waset.org/abstracts/184892/tailoring-structural-thermal-and-luminescent-properties-of-solid-state-mil-53al-mof-via-fe3-cation-exchange" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5278</span> Study of Lanthanoide Organic Frameworks Properties and Synthesis: Multicomponent Ligands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayla%20Roberta%20Galaco">Ayla Roberta Galaco</a>, <a href="https://publications.waset.org/abstracts/search?q=Juliana%20Fonseca%20De%20Lima"> Juliana Fonseca De Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Osvaldo%20Antonio%20Serra"> Osvaldo Antonio Serra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coordination polymers, also known as metal-organic frameworks (MOFs) or lanthanoide organic frameworks (LOFs) have been reported due of their promising applications in gas storage, separation, catalysis, luminescence, magnetism, drug delivery, and so on. As a type of organic–inorganic hybrid materials, the properties of coordination polymers could be chosen by deliberately selecting the organic and inorganic components. LOFs have received considerable attention because of their properties such as porosity, luminescence, and magnetism. Methods such as solvothermal synthesis are important as a strategy to control the structural and morphological properties as well as the composition of the target compounds. In this work the first solvothermal synthesis was employed to obtain the compound [Y0.4,Yb0.4,Er0.2(dmf)(for)(H2O)(tft)], by using terephthalic acid (tft) and oxalic acid, decomposed in formate (for), as ligands; Yttrium, Ytterbium and, Erbium as metal centers, in DMF and water for 4 days under 160 °C. The semi-rigid terephthalic acid (dicarboxylic) coordinates with Ln3+ ions and also is possible to form a polyfunctional bridge. On the other hand, oxalate anion has no high-energy vibrational groups, which benefits the excitation of Yb3+ in upconversion process. It was observed that the compounds with water molecules in the coordination sphere of the lanthanoide ions cause lower crystalline properties and change the structure of the LOF (1D, 2D, 3D). In the FTIR, the bands at 1589 and 1500 cm-1 correspond to the asymmetric stretching vibration of –COO. The band at 1383 cm-1 is assigned to the symmetric stretching vibration of –COO. Single crystal X-ray diffraction study reveals an infinite 3D coordination framework that crystalizes in space group P21/c. The other three products, [TR(chel)(ofd)0,5(H2O)2], where TR= Eu3+, Y3, and Yb3+/Er3+ were obtained by using 1, 2-phenylenedioxydiacetic acid (ofd) and chelidonic acid (chel) as organic ligands. Thermal analysis shows that the lanthanoide organic frameworks do not collapse at temperatures below 250 °C. By the polycrystalline X-ray diffraction patterns (PXRD) it was observed that the compounds with Eu3+, Y3+, and Yb3+/Er3+ ions are isostructural. From PXRD patterns, high crystallinity can be noticed for the complexes. The final products were characterized by single X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS) and thermogravimetric analysis (TGA). The X-ray diffraction (XRD) is an effective method to investigate crystalline properties of synthesized materials. The solid crystal obtained in the synthesis show peaks at 2θ < 10°, indicating the MOF formation. The chemical composition of LOFs was also confirmed by EDS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isostructural" title="isostructural">isostructural</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthanoids" title=" lanthanoids"> lanthanoids</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthanoids%20organic%20frameworks%20%28LOFs%29" title=" lanthanoids organic frameworks (LOFs)"> lanthanoids organic frameworks (LOFs)</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20organic%20frameworks%20%20%28MOFs%29" title=" metal organic frameworks (MOFs)"> metal organic frameworks (MOFs)</a>, <a href="https://publications.waset.org/abstracts/search?q=thermogravimetry" title=" thermogravimetry"> thermogravimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=X-Ray%20diffraction" title=" X-Ray diffraction"> X-Ray diffraction</a> </p> <a href="https://publications.waset.org/abstracts/65646/study-of-lanthanoide-organic-frameworks-properties-and-synthesis-multicomponent-ligands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5277</span> Iron-Metal-Organic Frameworks: Potential Application as Theranostics for Inhalable Therapy of Tuberculosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriela%20Wyszogrodzka">Gabriela Wyszogrodzka</a>, <a href="https://publications.waset.org/abstracts/search?q=Przemyslaw%20Dorozynski"> Przemyslaw Dorozynski</a>, <a href="https://publications.waset.org/abstracts/search?q=Barbara%20Gil"> Barbara Gil</a>, <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Strzempek"> Maciej Strzempek</a>, <a href="https://publications.waset.org/abstracts/search?q=Bartosz%20Marszalek"> Bartosz Marszalek</a>, <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Kulinowski"> Piotr Kulinowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Wladyslaw%20Piotr%20Weglarz"> Wladyslaw Piotr Weglarz</a>, <a href="https://publications.waset.org/abstracts/search?q=Elzbieta%20Menaszek"> Elzbieta Menaszek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MOFs (Metal-Organic Frameworks) belong to a new group of porous materials with a hybrid organic-inorganic construction. Their structure is a network consisting of metal cations or clusters (acting as metallic centers, nodes) and the organic linkers between nodes. The interest in MOFs is primarily associated with the use of their well-developed surface and large porous. Possibility to build MOFs of biocompatible components let to use them as potential drug carriers. Furthermore, forming MOFs structure from cations possessing paramagnetic properties (e.g. iron cations) allows to use them as MRI (Magnetic Resonance Imaging) contrast agents. The concept of formation of particles that combine the ability to transfer active substance with imaging properties has been called theranostic (from words combination therapy and diagnostics). By building MOF structure from iron cations it is possible to use them as theranostic agents and monitoring the distribution of the active substance after administration in real time. In the study iron-MOF: Fe-MIL-101-NH2 was chosen, consisting of iron cluster in nodes of the structure and amino-terephthalic acid as a linker. The aim of the study was to investigate the possibility of applying Fe-MIL-101-NH2 as inhalable theranostic particulate system for the first-line anti-tuberculosis antibiotic – isoniazid. The drug content incorporated into Fe-MIL-101-NH2 was evaluated by dissolution study using spectrophotometric method. Results showed isoniazid encapsulation efficiency – ca. 12.5% wt. Possibility of Fe-MIL-101-NH2 application as the MRI contrast agent was demonstrated by magnetic resonance tomography. FeMIL-101-NH2 effectively shortening T1 and T2 relaxation times (increasing R1 and R2 relaxation rates) linearly with the concentrations of suspended material. Images obtained using multi-echo magnetic resonance imaging sequence revealed possibility to use FeMIL-101-NH2 as positive and negative contrasts depending on applied repetition time. MOFs micronization via ultrasound was evaluated by XRD, nitrogen adsorption, FTIR, SEM imaging and did not influence their crystal shape and size. Ultrasonication let to break the aggregates and achieve very homogeneously looking SEM images. MOFs cytotoxicity was evaluated in in vitro test with a highly sensitive resazurin based reagent PrestoBlue™ on L929 fibroblast cell line. After 24h no inhibition of cell proliferation was observed. All results proved potential possibility of application of ironMOFs as an isoniazid carrier and as MRI contrast agent in inhalatory treatment of tuberculosis. Acknowledgments: Authors gratefully acknowledge the National Science Center Poland for providing financial support, grant no 2014/15/B/ST5/04498. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=imaging%20agents" title="imaging agents">imaging agents</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-organic%20frameworks" title=" metal-organic frameworks"> metal-organic frameworks</a>, <a href="https://publications.waset.org/abstracts/search?q=theranostics" title=" theranostics"> theranostics</a>, <a href="https://publications.waset.org/abstracts/search?q=tuberculosis" title=" tuberculosis"> tuberculosis</a> </p> <a href="https://publications.waset.org/abstracts/58754/iron-metal-organic-frameworks-potential-application-as-theranostics-for-inhalable-therapy-of-tuberculosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5276</span> Moisture Resistant K-loaded ZIF-8 Catalyst for Glycerol Carbonate Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anshu%20Tyagi">Anshu Tyagi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zeolitic imidazolate frameworks (ZIFs), a subclass of metal-organic frameworks (MOFs) with structures resembling aluminosilicate zeolites, are gaining significant attention due to their unique properties. ZIF-8, in particular, has shown high surface area and enhanced hydrophobicity, making it a promising candidate for catalytic applications. In this study, ZIF-8 was synthesized in an aqueous medium by mixing 2-methylimidazole (mIm) with zinc nitrate hexahydrate (Zn) in deionized water. To improve the basicity and catalytic performance of ZIF-8, a series of K-loaded ZIF-8 catalysts (K/ZIF-8) were prepared by varying the KOH content from 5 to 10 wt%. Characterization of the synthesized catalysts was conducted using powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and temperature-programmed desorption (TPD) techniques. The ZIF-8 and K/ZIF-8 catalysts were applied in the transesterification of glycerol (GL) and dimethyl carbonate (DMC) to form glycerol carbonate (GLC). Various reaction parameters, including DMC/GL molar ratio, KOH loading, catalyst amount, and reaction temperature, were systematically studied to optimize the GLC yield. Under optimized conditions, the 10 wt% KOH-loaded ZIF-8 catalyst (10-K/ZIF-8) demonstrated excellent catalytic activity, achieving up to 95% GLC yield at a DMC/GL molar ratio of 3:1 within 0.5 hours. Remarkably, despite the hygroscopic nature of potassium, the catalyst exhibited significant water resistance, maintaining performance with up to 5 wt% water in relation to GL. Furthermore, the catalyst retained its activity after three recycling cycles without any notable loss in catalytic efficiency. This study highlights the potential of K/ZIF-8 as an efficient, water-tolerant catalyst for the transesterification of GL with DMC, offering high GLC yields and recyclability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal-organic%20frameworks%20%28MOFs%29" title="metal-organic frameworks (MOFs)">metal-organic frameworks (MOFs)</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolitic%20imidazolate%20frameworks%20%28ZIFs%29" title=" zeolitic imidazolate frameworks (ZIFs)"> zeolitic imidazolate frameworks (ZIFs)</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20catalytic" title=" sustainable catalytic"> sustainable catalytic</a> </p> <a href="https://publications.waset.org/abstracts/195202/moisture-resistant-k-loaded-zif-8-catalyst-for-glycerol-carbonate-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/195202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5275</span> Theoretical and Experimental Investigation of Fe and Ni-TCNQ on Graphene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Shahsavar">A. Shahsavar</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Jakub"> Z. Jakub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the outstanding properties of the 2D metal-organic frameworks (MOF), intensive computational and experimental studies have been done. However, the lack of fundamental studies of MOFs on the graphene backbone is observed. This work studies Fe and Ni as metal and tetracyanoquinodimethane (TCNQ) with a high electron affinity as an organic linker functionalized on graphene. Here we present DFT calculations results to unveil the electronic and magnetic properties of iron and nickel-TCNQ physisorbed on graphene. Adsorption and Fermi energies, structural, and magnetic properties will be reported. Our experimental observations prove Fe- and NiTCNQ@Gr/Ir(111) are thermally highly stable up to 500 and 250°C, respectively, making them promising materials for single-atom catalysts or high-density storage media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=MTCNQ" title=" MTCNQ"> MTCNQ</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assembly" title=" self-assembly"> self-assembly</a> </p> <a href="https://publications.waset.org/abstracts/151583/theoretical-and-experimental-investigation-of-fe-and-ni-tcnq-on-graphene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5274</span> Adsorptive Membrane for Hemodialysis: Potential, Future Prospection and Limitation of MOF as Nanofillers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Musawira%20Iftikhar">Musawira Iftikhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The field of membrane materials is the most dynamic due to the constantly evolving requirements advancement of materials, to address challenges such as biocompatibility, protein-bound uremic toxins, blood coagulation, auto-immune responses, oxidative stress, and poor clearance of uremic toxins. Hemodialysis is a membrane filtration processes that is currently necessary for daily living of the patients with ESRD. Tens of millions of people with ESRD have benefited from hemodialysis over the past 60–70 years, both in terms of safeguarding life and a longer lifespan. Beyond challenges associated with the efficiency and separative properties of the membranes, ensuring hemocompatibility, or the safe circulation of blood outside the body for four hours every two days, remains a persistent challenge. This review explores the ongoing field of metal–Organic Frameworks (MOFs) and their applications in hemodialysis, offering a comprehensive examination of various MOFs employed to address challenges inherent in traditional hemodialysis methodologies. this This review included includes the experimental work done with various MOFs as a filler such as UiO-66, HKUST-1, MIL-101, and ZIF-8, which together lead to improved adsorption capacities for a range of uremic toxins and proteins. Furthermore, this review highlights how effectively MOF-based hemodialysis membranes remove a variety of uremic toxins, including p-cresol, urea, creatinine, and indoxyl sulfate and potential filler choices for the future. Future research efforts should focus on refining synthesis techniques, enhancing toxin selectivity, and investigating the long-term durability of MOF-based membranes. With these considerations, MOFs emerge as transformative materials in the quest to develop advanced and efficient hemodialysis technologies, holding the promise to significantly enhance patient outcomes and redefine the landscape of renal therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane" title="membrane">membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=hemodailysis" title=" hemodailysis"> hemodailysis</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20organic%20frameworks" title=" metal organic frameworks"> metal organic frameworks</a>, <a href="https://publications.waset.org/abstracts/search?q=seperation" title=" seperation"> seperation</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20adsorbtion" title=" protein adsorbtion"> protein adsorbtion</a> </p> <a href="https://publications.waset.org/abstracts/184962/adsorptive-membrane-for-hemodialysis-potential-future-prospection-and-limitation-of-mof-as-nanofillers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5273</span> Metal-Organic Frameworks-Based Materials for Volatile Organic Compounds Sensing Applications: Strategies to Improve Sensing Performances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Claudio%20Clemente">Claudio Clemente</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Gargiulo"> Valentina Gargiulo</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessio%20Occhicone"> Alessio Occhicone</a>, <a href="https://publications.waset.org/abstracts/search?q=Giovanni%20Piero%20Pepe"> Giovanni Piero Pepe</a>, <a href="https://publications.waset.org/abstracts/search?q=Giovanni%20Ausanio"> Giovanni Ausanio</a>, <a href="https://publications.waset.org/abstracts/search?q=Michela%20Alf%C3%A8"> Michela Alfè</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Volatile organic compound (VOC) emissions represent a serious risk to human health and the integrity of the ecosystems, especially at high concentrations. For this reason, it is very important to continuously monitor environmental quality and develop fast and reliable portable sensors to allow analysis on site. Chemiresistors have become promising candidates for VOC sensing as their ease of fabrication, variety of suitable sensitive materials, and simple sensing data. A chemoresistive gas sensor is a transducer that allows to measure the concentration of an analyte in the gas phase because the changes in resistance are proportional to the amount of the analyte present. The selection of the sensitive material, which interacts with the target analyte, is very important for the sensor performance. The most used VOC detection materials are metal oxides (MOx) for their rapid recovery, high sensitivity to various gas molecules, easy fabrication. Their sensing performance can be improved in terms of operating temperature, selectivity, and detection limit. Metal-organic frameworks (MOFs) have attracted a lot of attention also in the field of gas sensing due to their high porosity, high surface area, tunable morphologies, structural variety. MOFs are generated by the self-assembly of multidentate organic ligands connecting with adjacent multivalent metal nodes via strong coordination interactions, producing stable and highly ordered crystalline porous materials with well-designed structures. However, most MOFs intrinsically exhibit low electrical conductivity. To improve this property, MOFs can be combined with organic and inorganic materials in a hybrid fashion to produce composite materials or can be transformed into more stable structures. MOFs, indeed, can be employed as the precursors of metal oxides with well-designed architectures via the calcination method. The MOF-derived MOx partially preserved the original structure with high surface area and intrinsic open pores, which act as trapping centers for gas molecules, and showed a higher electrical conductivity. Core-shell heterostructures, in which the surface of a metal oxide core is completely coated by a MOF shell, forming a junction at the core-shell heterointerface, can also be synthesized. Also, nanocomposite in which MOF structures are intercalated with graphene related materials can also be produced, and the conductivity increases thanks to the high mobility of electrons of carbon materials. As MOF structures, zinc-based MOFs belonging to the ZIF family were selected in this work. Several Zn-based materials based and/or derived from MOFs were produced, structurally characterized, and arranged in a chemo resistive architecture, also exploring the potentiality of different approaches of sensing layer deposition based on PLD (pulsed laser deposition) and, in case of thermally labile materials, MAPLE (Matrix Assisted Pulsed Laser Evaporation) to enhance the adhesion to the support. The sensors were tested in a controlled humidity chamber, allowing for the possibility of varying the concentration of ethanol, a typical analyte chosen among the VOCs for a first survey. The effect of heating the chemiresistor to improve sensing performances was also explored. Future research will focus on exploring new manufacturing processes for MOF-based gas sensors with the aim to improve sensitivity, selectivity and reduce operating temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemiresistors" title="chemiresistors">chemiresistors</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensors" title=" gas sensors"> gas sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20related%20materials" title=" graphene related materials"> graphene related materials</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20deposition" title=" laser deposition"> laser deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=MAPLE" title=" MAPLE"> MAPLE</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-organic%20frameworks" title=" metal-organic frameworks"> metal-organic frameworks</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20oxides" title=" metal oxides"> metal oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=sensing%20performance" title=" sensing performance"> sensing performance</a>, <a href="https://publications.waset.org/abstracts/search?q=transduction%20mechanism" title=" transduction mechanism"> transduction mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20organic%20compounds" title=" volatile organic compounds"> volatile organic compounds</a> </p> <a href="https://publications.waset.org/abstracts/184645/metal-organic-frameworks-based-materials-for-volatile-organic-compounds-sensing-applications-strategies-to-improve-sensing-performances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5272</span> Layer by Layer Coating of Zinc Oxide/Metal Organic Framework Nanocomposite on Ceramic Support for Solvent/Solvent Separation Using Pervaporation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20A.%20Nabeela%20Nasreen">S. A. A. Nabeela Nasreen</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sundarrajan"> S. Sundarrajan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Syed%20Nizar"> S. A. Syed Nizar</a>, <a href="https://publications.waset.org/abstracts/search?q=Seeram%20Ramakrishna"> Seeram Ramakrishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal-organic frameworks (MOFs) have attracted considerable interest due to its diverse pore size tunability, fascinating topologies and extensive uses in fields such as catalysis, membrane separation, chemical sensing, etc. Zeolitic imidazolate frameworks (ZIFs) are a class of MOF with porous crystals containing extended three-dimensional structures of tetrahedral metal ions (e.g., Zn) bridged by Imidazolate (Im). Selected ZIFs are used to separate solvent/solvent mixtures. A layer by layer formation of the nanocomposite of Zinc oxide (ZnO) and ZIF on a ceramic support using a solvothermal method was engaged and tested for target solvent/solvent separation. Metal oxide layer was characterized by XRD, SEM, and TEM to confirm the smooth and continuous coating for the separation process. The chemical composition of ZIF films was studied by using X-Ray absorption near-edge structure (XANES) spectroscopy. The obtained ceramic tube with metal oxide and ZIF layer coating were tested for its packing density, thickness, distribution of seed layers and variation of permeation rate of solvent mixture (isopropyl alcohol (IPA)/methyl isobutyl ketone (MIBK). Pervaporation technique was used for the separation to achieve a high permeation rate with separation ratio of > 99.5% of the solvent mixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20oxide" title="metal oxide">metal oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=pervaporation" title=" pervaporation"> pervaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=solvothermal" title=" solvothermal"> solvothermal</a>, <a href="https://publications.waset.org/abstracts/search?q=ZIF" title=" ZIF"> ZIF</a> </p> <a href="https://publications.waset.org/abstracts/97314/layer-by-layer-coating-of-zinc-oxidemetal-organic-framework-nanocomposite-on-ceramic-support-for-solventsolvent-separation-using-pervaporation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5271</span> Optimization of Cobalt Oxide Conversion to Co-Based Metal-Organic Frameworks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksander%20Ejsmont">Aleksander Ejsmont</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Wuttke"> Stefan Wuttke</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Goscianska"> Joanna Goscianska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gaining control over particle shape, size and crystallinity is an ongoing challenge for many materials. Especially metalorganic frameworks (MOFs) are recently widely studied. Besides their remarkable porosity and interesting topologies, morphology has proven to be a significant feature. It can affect the further material application. Thus seeking new approaches that enable MOF morphology modulation is important. MOFs are reticular structures, where building blocks are made up of organic linkers and metallic nodes. The most common strategy of ensuring metal source is using salts, which usually exhibit high solubility and hinder morphology control. However, there has been a growing interest in using metal oxides as structure-directing agents towards MOFs due to their very low solubility and shape preservation. Metal oxides can be treated as a metal reservoir during MOF synthesis. Up to now, reports in which receiving MOFs from metal oxides mostly present ZnO conversion to ZIF-8. However, there are other oxides, for instance, Co₃O₄, which often is overlooked due to their structural stability and insolubility in aqueous solutions. Cobalt-based materials are famed for catalytic activity. Therefore the development of their efficient synthesis is worth attention. In the presented work, an optimized Co₃O₄transition to Co-MOFviaa solvothermal approach was proposed. The starting point of the research was the synthesis of Co₃O₄ flower petals and needles under hydrothermal conditions using different cobalt salts (e.g., cobalt(II) chloride and cobalt(II) nitrate), in the presence of urea, and hexadecyltrimethylammonium bromide (CTAB) surfactant as a capping agent. After receiving cobalt hydroxide, the calcination process was performed at various temperatures (300–500 °C). Then cobalt oxides as a source of cobalt cations were subjected to reaction with trimesic acid in solvothermal environment and temperature of 120 °C leading to Co-MOF fabrication. The solution maintained in the system was a mixture of water, dimethylformamide, and ethanol, with the addition of strong acids (HF and HNO₃). To establish how solvents affect metal oxide conversion, several different solvent ratios were also applied. The materials received were characterized with analytical techniques, including X-ray powder diffraction, energy dispersive spectroscopy,low-temperature nitrogen adsorption/desorption, scanning, and transmission electron microscopy. It was confirmed that the synthetic routes have led to the formation of Co₃O₄ and Co-based MOF varied in shape and size of particles. The diffractograms showed receiving crystalline phase for Co₃O₄, and also for Co-MOF. The Co₃O₄ obtained from nitrates and with using low-temperature calcination resulted in smaller particles. The study indicated that cobalt oxide particles of different size influence the efficiency of conversion and morphology of Co-MOF. The highest conversion was achieved using metal oxides with small crystallites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Co-MOF" title="Co-MOF">Co-MOF</a>, <a href="https://publications.waset.org/abstracts/search?q=solvothermal%20synthesis" title=" solvothermal synthesis"> solvothermal synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology%20control" title=" morphology control"> morphology control</a>, <a href="https://publications.waset.org/abstracts/search?q=core-shell" title=" core-shell"> core-shell</a> </p> <a href="https://publications.waset.org/abstracts/138028/optimization-of-cobalt-oxide-conversion-to-co-based-metal-organic-frameworks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5270</span> Development of Metal-Organic Frameworks-Type Hybrid Functionalized Materials for Selective Uranium Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Damien%20Rinsant">Damien Rinsant</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugen%20Andreiadis"> Eugen Andreiadis</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Carboni"> Michael Carboni</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Meyer"> Daniel Meyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different types of materials have been developed for the solid/liquid uranium extraction processes, such as functionalized organic polymers, hybrid silica or inorganic adsorbents. In general, these materials exhibit a moderate affinity for uranyl ions and poor selectivity against impurities like iron, vanadium or molybdenum. Moreover, the structural organization deficiency of these materials generates ion diffusion issues inside the material. Therefore, the aim of our study is to developed efficient and organized materials, stable in the acid media encountered in uranium extraction processes. Metal organic frameworks (MOFs) are hybrid crystalline materials consisting of an inorganic part (cluster or metal ions) and tailored organic linkers connected via coordination bonds. These hierarchical materials have exceptional surface area, thermal stability and a large variety of tunable structures. However, due to the reversibility of constitutive coordination bonds, MOFs have moderate stability in strongly complexing or acidic media. Only few of them are known to be stable in aqueous media and only one example is described in strong acidic media. However, these conditions are very often encountered in the environmental pollution remediation of mine wastewaters. To tackle the challenge of developing MOFs adapted for uranium extraction from acid mine waters, we have investigated the stability of several materials. To ensure a good stability we have synthetized and characterized different materials based on highly coordinated metal clusters, such as LnOFs and Zirconium based materials. Among the latter, the UiO family shows a great stability in sulfuric acid media even in the presence of 1.4 M sodium sulfate at pH 2. However, the stability in phosphoric media is reduced due to the high affinity between zirconium and phosphate ligand. Based on these results, we have developed a tertiary amine functionalized MOF denoted UiO-68-NMe2 particularly adapted for the extraction of anionic uranyl (VI) sulfate complexes mainly present in the acid mine solutions. The adsorption capacity of the material has been determined upon varying total sulfate concentration, contact time and uranium concentration. The extraction tests put in evidence different phenomena due to the complexity of the extraction media and the interaction between the MOF and sulfate anion. Finally, the extraction mechanisms and the interaction between uranyl and the MOF structure have been investigated. The functionalized material UiO-68-NMe2 has been characterized in the presence and absence of uranium by FT-IR, UV and Raman techniques. Moreover, the stability of the protonated amino functionalized MOF has been evaluated. The synthesis, characterization and evaluation of this type of hybrid material, particularly adapted for uranium extraction in sulfuric acid media by an anionic exchange mechanism, paved the way for the development of metal organic frameworks functionalized by different other chelating motifs, such as bifunctional ligands showing an enhanced affinity and selectivity for uranium in acid and complexing media. Work in this direction is currently in progress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extraction" title="extraction">extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=MOF" title=" MOF"> MOF</a>, <a href="https://publications.waset.org/abstracts/search?q=ligand" title=" ligand"> ligand</a>, <a href="https://publications.waset.org/abstracts/search?q=uranium" title=" uranium"> uranium</a> </p> <a href="https://publications.waset.org/abstracts/97172/development-of-metal-organic-frameworks-type-hybrid-functionalized-materials-for-selective-uranium-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5269</span> Dimensionality Control of Li Transport by MOFs Based Quasi-Solid to Solid Electrolyte</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Salado">Manuel Salado</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikel%20Rinc%C3%B3n"> Mikel Rincón</a>, <a href="https://publications.waset.org/abstracts/search?q=Arkaitz%20Fidalgo"> Arkaitz Fidalgo</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberto%20Fernandez"> Roberto Fernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Senentxu%20Lanceros-M%C3%A9ndez"> Senentxu Lanceros-Méndez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lithium-ion batteries (LIBs) are a promising technology for energy storage, but they suffer from safety concerns due to the use of flammable organic solvents in their liquid electrolytes. Solid-state electrolytes (SSEs) offer a potential solution to this problem, but they have their own limitations, such as poor ionic conductivity and high interfacial resistance. The aim of this research was to develop a new type of SSE based on metal-organic frameworks (MOFs) and ionic liquids (ILs). MOFs are porous materials with high surface area and tunable electronic properties, making them ideal for use in SSEs. ILs are liquid electrolytes that are non-flammable and have high ionic conductivity. A series of MOFs were synthesized, and their electrochemical properties were evaluated. The MOFs were then infiltrated with ILs to form a quasi-solid gel and solid xerogel SSEs. The ionic conductivity, interfacial resistance, and electrochemical performance of the SSEs were characterized. The results showed that the MOF-IL SSEs had significantly higher ionic conductivity and lower interfacial resistance than conventional SSEs. The SSEs also exhibited excellent electrochemical performance, with high discharge capacity and long cycle life. The development of MOF-IL SSEs represents a significant advance in the field of solid-state electrolytes. The high ionic conductivity and low interfacial resistance of the SSEs make them promising candidates for use in next-generation LIBs. The data for this research was collected using a variety of methods, including X-ray diffraction, scanning electron microscopy, and electrochemical impedance spectroscopy. The data was analyzed using a variety of statistical and computational methods, including principal component analysis, density functional theory, and molecular dynamics simulations. The main question addressed by this research was whether MOF-IL SSEs could be developed that have high ionic conductivity, low interfacial resistance, and excellent electrochemical performance. The results of this research demonstrate that MOF-IL SSEs are a promising new type of solid-state electrolyte for use in LIBs. The SSEs have high ionic conductivity, low interfacial resistance, and excellent electrochemical performance. These properties make them promising candidates for use in next-generation LIBs that are safer and have higher energy densities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title="energy storage">energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-electrolyte" title=" solid-electrolyte"> solid-electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title=" ionic liquid"> ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-organic-framework" title=" metal-organic-framework"> metal-organic-framework</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemistry" title=" electrochemistry"> electrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20inorganic%20plastic%20crystal" title=" organic inorganic plastic crystal"> organic inorganic plastic crystal</a> </p> <a href="https://publications.waset.org/abstracts/167633/dimensionality-control-of-li-transport-by-mofs-based-quasi-solid-to-solid-electrolyte" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5268</span> Unlocking the Potential of Phosphatic Wastes: Sustainable Valorization Pathways for Synthesizing Functional Metal-Organic Frameworks and Zeolites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mohammed%20Yimer">Ali Mohammed Yimer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayalew%20H.%20Assen"> Ayalew H. Assen</a>, <a href="https://publications.waset.org/abstracts/search?q=Youssef%20Belmabkhout"> Youssef Belmabkhout</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study delves into sustainable approaches for valorizing phosphatic wastes, specifically phosphate mining wastes and phosphogypsum, which are byproducts of phosphate industries and pose significant environmental challenges due to their accumulation. We propose a unified strategic synthesis method aimed at converting these wastes into hetero-functional porous materials. Our approach involves isolating the primary components of phosphatic wastes, such as CaO, SiO2 and Al2O3 to fabricate functional porous materials falling into two distinct classes. Firstly, alumina and silica components are extracted or isolated to produce zeolites (including CAN, GIS, SOD, FAU, and LTA), characterized by a Si/Al ratio of less than 5. Secondly, residual calcium is utilized to synthesize calcium-based metal–organic frameworks (Ca-MOFs) employing various organic linkers like Ca-BDC, Ca-BTC and Ca-TCPB (SBMOF-2), thereby providing flexibility in material design. Characterization techniques including XRD, SEM-EDX, FTIR, and TGA-MS affirm successful material assembly, while sorption analyses using N2, CO2, and H2O demonstrate the porosity of the materials. Particularly noteworthy is the water/alcohol separation potential exhibited by the Ca-BTC MOF, owing to its optimal pore aperture size (∼3.4 Å). To enhance replicability and scalability, detailed protocols for each synthesis step and specific conditions for each process are provided, ensuring that the methodology can be easily reproduced and scaled up for industrial applications. This synthetic transformation approach represents a valorization route for converting phosphatic wastes into extended porous structures, promising significant environmental and economic benefits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium-based%20metal-organic%20frameworks" title="calcium-based metal-organic frameworks">calcium-based metal-organic frameworks</a>, <a href="https://publications.waset.org/abstracts/search?q=low-silica%20zeolites" title=" low-silica zeolites"> low-silica zeolites</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20materials" title=" porous materials"> porous materials</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20synthesis" title=" sustainable synthesis"> sustainable synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=valorization" title=" valorization"> valorization</a> </p> <a href="https://publications.waset.org/abstracts/188791/unlocking-the-potential-of-phosphatic-wastes-sustainable-valorization-pathways-for-synthesizing-functional-metal-organic-frameworks-and-zeolites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">38</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5267</span> Adsorption of Dyes and Iodine: Reaching Outstanding Kinetics with CuII-Based Metal–Organic Nanoballs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eder%20Amayuelas">Eder Amayuelas</a>, <a href="https://publications.waset.org/abstracts/search?q=Bego%C3%B1a%20Baz%C3%A1n"> Begoña Bazán</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Karmele%20Urtiaga"> M. Karmele Urtiaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Gotzone%20Barandika"> Gotzone Barandika</a>, <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADa%20I.%20Arriortua"> María I. Arriortua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal Organic Frameworks (MOFs) have attracted great interest in recent years, taking a lead role in the field of catalysis, drug delivery, sensors and absorption. In the past decade, promising results have been reported specifically in the field of adsorption, based on the topology and chemical features of this type of porous material. Thus, its application in industry and environment for the adsorption of pollutants is presented as a response to an increasingly important need. In this area, organic dyes are nowadays widely used in many industries including medicine, textile, leather, printing and plastics. The consequence of this fact is that dyes are present as emerging pollutants in soils and water where they remain for long periods of time due to their high stability, with a potential risk of toxicity in wildlife and in humans. On the other hand, the presence of iodine in soils, water and gas as a nuclear activity pollutant product or its extended use as a germicide is still a problem in many countries, which indicates the imperative need for its removal. In this context, this work presents the characterization as an adsorbent of the activated compound αMOP@Ei2-1 obtained from the already reported [Cu₂₄(m-BDC)₂₄(DMF)₂₀(H₂O)₄]•24DMF•40H₂O (MOP@Ei2-1), where m-BDC is the 1,3-benzenedicarboxylic ligand and DMF is N,N′-dimethylformamide. The structure of MOP@Ei2-1 consists of Cu24 clusters arranged in such a way that 12 paddle-wheels are connected through m-BDC ligands. The clusters exhibit an internal cavity where crystallization molecules of DMF and water are located. Adsorption of dyes and iodine as pollutant examples has been carried out, focusing attention on the kinetics of the rapid process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20dyes" title=" organic dyes"> organic dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=iodine" title=" iodine"> iodine</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20organic%20frameworks" title=" metal organic frameworks"> metal organic frameworks</a> </p> <a href="https://publications.waset.org/abstracts/48201/adsorption-of-dyes-and-iodine-reaching-outstanding-kinetics-with-cuii-based-metal-organic-nanoballs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5266</span> Quantum Sieving for Hydrogen Isotope Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyunchul%20Oh">Hyunchul Oh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the challenges in modern separation science and technology is the separation of hydrogen isotopes mixtures since D2 and H2 consist of almost identical size, shape and thermodynamic properties. Recently, quantum sieving of isotopes by confinement in narrow space has been proposed as an alternative technique. Despite many theoretical suggestions, however, it has been difficult to discover a feasible microporous material up to now. Among various porous materials, the novel class of microporous framework materials (COFs, ZIFs and MOFs) is considered as a promising material class for isotope sieving due to ultra-high porosity and uniform pore size which can be tailored. Hence, we investigate experimentally the fundamental correlation between D2/H2 molar ratio and pore size at optimized operating conditions by using different ultramicroporous frameworks. The D2/H2 molar ratio is strongly depending on pore size, pressure and temperature. An experimentally determined optimum pore diameter for quantum sieving lies between 3.0 and 3.4 Å which can be an important guideline for designing and developing feasible microporous frameworks for isotope separation. Afterwards, we report a novel strategy for efficient hydrogen isotope separation at technologically relevant operating pressure through the development of quantum sieving exploited by the pore aperture engineering. The strategy involves installation of flexible components in the pores of the framework to tune the pore surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20adsorption" title="gas adsorption">gas adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20isotope" title=" hydrogen isotope"> hydrogen isotope</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20organic%20frameworks%28MOFs%29" title=" metal organic frameworks(MOFs)"> metal organic frameworks(MOFs)</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20sieving" title=" quantum sieving"> quantum sieving</a> </p> <a href="https://publications.waset.org/abstracts/41208/quantum-sieving-for-hydrogen-isotope-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5265</span> Cellulose Containing Metal Organic Frameworks in Environmental Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossam%20El-Sayed%20Emam">Hossam El-Sayed Emam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As an essential issue for life, water while it’s important for all living organisms. However, the world is dangerously facing the serious problem for the deficiency of the sources of drinking water. Within the aquatic systems, there are various gases, microbes, and other toxic ingredients (chemical compounds and heavy metals) occurred owing to the draining of agricultural and industrial wastewater, resulting in water pollution. On the other hand, fuel (gaseous, liquid, or in solid phase) is one of the extensively consumable energy sources, and owing to its origin from fossil, it contains some sulfur-, nitrogen- and oxygen-based compounds that cause serious problems (toxicity, catalyst poisoning, corrosion, and gum formation andcarcinogenic effects), to be ascribed as undesirable pollutants.MOFs as porous coordinating polymers are superiorly exploited in the adsorption and separationof contaminants for wastewater treatment and fuel purification. The inclusion of highly adsorbent materials like MOFs to be immobilized within cellulosic materialscould be investigated as a new challenge for the separation of contaminants with high efficiency and opportunity for recyclability. Therefore, the current approach ascribes the exploitation of different MOFsimmobilized within cellulose (powder, films, and fabrics)for applications in environmental. Herein, using cellulose containing MOFs in dye removal (degradation and adsorption), pharmaceutical intermediates removal, and fuel purification were summarized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose" title="cellulose">cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=MOFs" title=" MOFs"> MOFs</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20removal" title=" dye removal"> dye removal</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical%20intermediates" title=" pharmaceutical intermediates"> pharmaceutical intermediates</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20purification" title=" fuel purification"> fuel purification</a> </p> <a href="https://publications.waset.org/abstracts/149635/cellulose-containing-metal-organic-frameworks-in-environmental-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5264</span> A Near Ambient Pressure X-Ray Photoelectron Spectroscopy Study on Platinum Nanoparticles Supported on Zr-Based Metal Organic Frameworks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Vakili">Reza Vakili</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaolei%20Fan"> Xiaolei Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Walton"> Alex Walton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The first near ambient pressure (NAP)-XPS study of CO oxidation over Pt nanoparticles (NPs) incorporated into Zr-based UiO (UiO for Universitetet i Oslo) MOFs was carried out. For this purpose, the MOF-based Catalysts were prepared by wetness impregnation (WI-PtNPs@UiO-67) and linker design (LD-PtNPs@UiO-67) methods along with PtNPs@ZrO₂ as the control catalyst. Firstly, the as-synthesized catalysts were reduced in situ prior to the operando XPS analysis. The existence of Pt(II) species was proved in UiO-67 by observing Pt 4f core level peaks at a high binding energy of 72.6 ± 0.1 eV. However, by heating the WI-PtNPs@UiO-67 catalyst in situ to 200 °C under vacuum, the higher BE components disappear, leaving only the metallic Pt 4f doublet, confirming the formation of Pt NPs. The complete reduction of LD-PtNPs@UiO-67 is achieved at 250 °C and 1 mbar H₂. To understand the chemical state of Pt NPs in UiO-67 during catalytic turnover, we analyzed the Pt 4f region using operando NAP-XPS in the temperature-programmed measurements (100-260 °C) with reference to PtNPs@ZrO₂ catalyst. CO conversion during NAP-XPS experiments with the stoichiometric mixture shows that LD-PtNPs@UiO-67 has a better CO turnover frequency (TOF, 0.066 s⁻¹ at 260 °C) than the other two (ca. 0.055 s⁻¹). Pt 4f peaks only show one chemical species present at all temperatures, but the core level BE shifts change as a function of reaction temperature, i.e., Pt 4f peak from 71.8 eV at T < 200 °C to 71.2 eV at T > 200 °C. As this higher BE state of 71.8 eV was not observed after in situ reductions of the catalysts and only once the CO/O₂ mixture was introduced, we attribute it to the surface saturation of Pt NPs with adsorbed CO. In general, the quantitative analysis of Pt 4f data from the operando NAP-XPS experiments shows that the surface chemistry of the Pt active phase in the two PtNPs@UiO-67 catalysts is the same, comparable to that of PtNPs@ZrO₂. The observed difference in the catalytic activity can be attributed to the particle sizes of Pt NPs, as well as the dispersion of active phase in the support, which are different in the three catalysts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO%20oxidation" title="CO oxidation">CO oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20catalysis" title=" heterogeneous catalysis"> heterogeneous catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=MOFs" title=" MOFs"> MOFs</a>, <a href="https://publications.waset.org/abstracts/search?q=Metal%20Organic%20Frameworks" title=" Metal Organic Frameworks"> Metal Organic Frameworks</a>, <a href="https://publications.waset.org/abstracts/search?q=NAP-XPS" title=" NAP-XPS"> NAP-XPS</a>, <a href="https://publications.waset.org/abstracts/search?q=Near%20Ambient%20Pressure%20X-ray%20Photoelectron%20Spectroscopy" title=" Near Ambient Pressure X-ray Photoelectron Spectroscopy "> Near Ambient Pressure X-ray Photoelectron Spectroscopy </a> </p> <a href="https://publications.waset.org/abstracts/94508/a-near-ambient-pressure-x-ray-photoelectron-spectroscopy-study-on-platinum-nanoparticles-supported-on-zr-based-metal-organic-frameworks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5263</span> Exploring the Gas Sensing Performance of Cu-Doped Iron Oxide Derived from Metal-Organic Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annu%20Sheokand">Annu Sheokand</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Kumar"> Vinay Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogen sulfide (H₂S) detection is essential for environmental monitoring and industrial safety due to its high toxicity, even at low concentrations. This study explores the H₂S gas sensing properties of Cu-doped Fe₂O₃ materials derived from metal-organic frameworks (MOFs), which offer high surface area and controlled porosity for optimized gas sensing. The structural and morphological characteristics of the synthesized material were thoroughly analyzed using techniques such as X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), and UV-Vis Spectroscopy. The resulting sensor exhibited remarkable sensitivity and selectivity, achieving a detection limit at the ppb level for H₂S. The study indicates that Cu doping significantly enhances the gas sensing performance of Fe₂O₃ by introducing abundant active sites within the material. These enhanced sensing properties emphasize the potential of MOF-derived Cu-doped Fe₂O₃ as a highly effective material for H₂S gas sensors in various applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=detection%20limit" title="detection limit">detection limit</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping"> doping</a>, <a href="https://publications.waset.org/abstracts/search?q=MOF" title=" MOF"> MOF</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a> </p> <a href="https://publications.waset.org/abstracts/193481/exploring-the-gas-sensing-performance-of-cu-doped-iron-oxide-derived-from-metal-organic-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5262</span> Synthesis and Optimization of Bio Metal-Organic Framework with Permanent Porosity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tia%20Kristian%20Tajn%C5%A1ek">Tia Kristian Tajnšek</a>, <a href="https://publications.waset.org/abstracts/search?q=Matja%C5%BE%20Mazaj"> Matjaž Mazaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Nata%C5%A1a%20Zabukovec%20Logar"> Nataša Zabukovec Logar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal-organic frameworks (MOFs) with their specific properties and the possibility of tuning the structure represent excellent candidates for use in the biomedical field. Their advantage lies in large pore surfaces and volumes, as well as the possibility of using bio-friendly or bioactive constituents. So-called bioMOFs are representatives of MOFs, which are constructed from at least one biomolecule (metal, a small bioactive molecule in metal clusters and/or linker) and are intended for bio-application (usually in the field of medicine; most commonly drug delivery). When designing a bioMOF for biomedical applications, we should adhere to some guidelines for an improved toxicological profile of the material. Such as (i) choosing an endogenous/nontoxic metal, (ii) GRAS (generally recognized as safe) linker, and (iii) nontoxic solvents. Design and synthesis of bioNICS-1 (bioMOF of National Institute of Chemistry Slovenia – 1) consider all these guidelines. Zinc (Zn) was chosen as an endogenous metal with an agreeable recommended daily intake (RDI) and LD50 value, and ascorbic acid (Vitamin C) was chosen as a GRAS and active linker. With these building blocks, we have synthesized a bioNICS-1 material. The synthesis was done in ethanol using a solvothermal method. The synthesis protocol was further optimized in three separate ways. Optimization of (i) synthesis parameters to improve the yield of the synthesis, (ii) input reactant ratio and addition of specific modulators for production of larger crystals, and (iii) differing of the heating source (conventional, microwave and ultrasound) to produce nano-crystals. With optimization strategies, the synthesis yield was increased. Larger crystals were prepared for structural analysis with the use of a proper species and amount of modulator. Synthesis protocol was adjusted to different heating sources, resulting in the production of nano-crystals of bioNICS-1 material. BioNICS-1 was further activated in ethanol and structurally characterized, resolving the crystal structure of new material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ascorbic%20acid" title="ascorbic acid">ascorbic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=bioMOF" title=" bioMOF"> bioMOF</a>, <a href="https://publications.waset.org/abstracts/search?q=MOF" title=" MOF"> MOF</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20ascorbate" title=" zinc ascorbate"> zinc ascorbate</a> </p> <a href="https://publications.waset.org/abstracts/131631/synthesis-and-optimization-of-bio-metal-organic-framework-with-permanent-porosity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20organic%20frameworks%20%20%28MOFs%29&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20organic%20frameworks%20%20%28MOFs%29&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20organic%20frameworks%20%20%28MOFs%29&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20organic%20frameworks%20%20%28MOFs%29&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20organic%20frameworks%20%20%28MOFs%29&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20organic%20frameworks%20%20%28MOFs%29&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20organic%20frameworks%20%20%28MOFs%29&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20organic%20frameworks%20%20%28MOFs%29&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20organic%20frameworks%20%20%28MOFs%29&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20organic%20frameworks%20%20%28MOFs%29&page=176">176</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20organic%20frameworks%20%20%28MOFs%29&page=177">177</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=metal%20organic%20frameworks%20%20%28MOFs%29&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>