CINXE.COM
Search results for: food additive
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: food additive</title> <meta name="description" content="Search results for: food additive"> <meta name="keywords" content="food additive"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="food additive" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="food additive"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4220</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: food additive</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4220</span> Logistic Regression Model versus Additive Model for Recurrent Event Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Entisar%20A.%20Elgmati">Entisar A. Elgmati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recurrent infant diarrhea is studied using daily data collected in Salvador, Brazil over one year and three months. A logistic regression model is fitted instead of Aalen's additive model using the same covariates that were used in the analysis with the additive model. The model gives reasonably similar results to that using additive regression model. In addition, the problem with the estimated conditional probabilities not being constrained between zero and one in additive model is solved here. Also martingale residuals that have been used to judge the goodness of fit for the additive model are shown to be useful for judging the goodness of fit of the logistic model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20model" title="additive model">additive model</a>, <a href="https://publications.waset.org/abstracts/search?q=cumulative%20probabilities" title=" cumulative probabilities"> cumulative probabilities</a>, <a href="https://publications.waset.org/abstracts/search?q=infant%20diarrhoea" title=" infant diarrhoea"> infant diarrhoea</a>, <a href="https://publications.waset.org/abstracts/search?q=recurrent%20event" title=" recurrent event"> recurrent event</a> </p> <a href="https://publications.waset.org/abstracts/27829/logistic-regression-model-versus-additive-model-for-recurrent-event-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">635</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4219</span> Obtaining Nutritive Powder from Peel of Mangifera Indica L. (Mango) as a Food Additive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chajira%20Garrote">Chajira Garrote</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Arango"> Laura Arango</a>, <a href="https://publications.waset.org/abstracts/search?q=Lourdes%20Merino"> Lourdes Merino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research explains how to obtain nutritious powder from a variety of ripe mango peels Hilacha (Mangifera indica L.) to use it as a food additive. Also, this study intends to use efficiently the by-products resulting from the operations of mango pulp manufacturing process by processing companies with the aim of giving them an added value. The physical and chemical characteristics of the mango peels and the benefits that may help humans, were studied. Unit operations are explained for the processing of mango peels and the production of nutritive powder as a food additive. Emphasis is placed on the preliminary operations applied to the raw material and on the drying method, which is very important in this project to obtain the suitable characteristics of the nutritive powder. Once the powder was obtained, it was subjected to laboratory tests to determine its functional properties: water retention capacity (WRC) and oil retention capacity (ORC), also a sensory analysis for the powder was performed to determine the product profile. The nutritive powder from the ripe mango peels reported excellent WRC and ORC values: 7.236 g of water / g B.S. and 1.796 g water / g B.S. respectively and the sensory analysis defined a complete profile of color, odor and texture of the nutritive powder, which is suitable to use it in the food industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mango" title="mango">mango</a>, <a href="https://publications.waset.org/abstracts/search?q=peel" title=" peel"> peel</a>, <a href="https://publications.waset.org/abstracts/search?q=powder" title=" powder"> powder</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritive" title=" nutritive"> nutritive</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20properties" title=" functional properties"> functional properties</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20analysis" title=" sensory analysis"> sensory analysis</a> </p> <a href="https://publications.waset.org/abstracts/72515/obtaining-nutritive-powder-from-peel-of-mangifera-indica-l-mango-as-a-food-additive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4218</span> Utilization of Jackfruit Seed Flour (Artocarpus heterophyllus L.) as a Food Additive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20D.%20S.%20Maduwage">C. S. D. S. Maduwage</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20W.%20Jeewanthi"> P. W. Jeewanthi</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20J.%20P.%20Wijesinghe"> W. A. J. P. Wijesinghe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the use of Jackfruit Seed Flour (JSF) as a thickening agent in tomato sauce production. Lye peeled mature jackfruit seeds were used to obtain JSF. Flour was packed in laminated bags and stored for further studies. Three batches of tomato sauce samples were prepared according to the Sri Lankan Standards for tomato sauce by adding JSF, corn flour and without any thickening agent. Samples were stored at room temperature for 8 weeks in glass bottles. The physicochemical properties such as pH, total soluble solids, titratable acidity, and water activity were measured during the storage period. Microbial analysis and sensory evaluation were done to determine the quality of tomato sauce. JSF showed the role of a thickening agent in tomato sauce with lowest serum separation and highest viscosity during the storage period. This study concludes that JSF can be successfully used as a thickening agent in food industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jackfruit%20seed%20flour" title="Jackfruit seed flour">Jackfruit seed flour</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20additive" title=" food additive"> food additive</a>, <a href="https://publications.waset.org/abstracts/search?q=thickening%20agent" title=" thickening agent"> thickening agent</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato%20sauce" title=" tomato sauce"> tomato sauce</a> </p> <a href="https://publications.waset.org/abstracts/105872/utilization-of-jackfruit-seed-flour-artocarpus-heterophyllus-l-as-a-food-additive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4217</span> An Evaluation Model for Enhancing Flexibility in Production Systems through Additive Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angela%20Luft">Angela Luft</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Bremen"> Sebastian Bremen</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolae%20Balc"> Nicolae Balc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing processes have entered large parts of the industry and their range of application have progressed and grown significantly in the course of time. A major advantage of additive manufacturing is the innate flexibility of the machines. This corelates with the ongoing demand of creating highly flexible production environments. However, the potential of additive manufacturing technologies to enhance the flexibility of production systems has not yet been truly considered and quantified in a systematic way. In order to determine the potential of additive manufacturing technologies with regards to the strategic flexibility design in production systems, an integrated evaluation model has been developed, that allows for the simultaneous consideration of both conventional as well as additive production resources. With the described model, an operational scope of action can be identified and quantified in terms of mix and volume flexibility, process complexity, and machine capacity that goes beyond the current cost-oriented approaches and offers a much broader and more holistic view on the potential of additive manufacturing. A respective evaluation model is presented this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20planning" title=" capacity planning"> capacity planning</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20systems" title=" production systems"> production systems</a>, <a href="https://publications.waset.org/abstracts/search?q=strategic%20production%20planning" title=" strategic production planning"> strategic production planning</a>, <a href="https://publications.waset.org/abstracts/search?q=flexibility%20enhancement" title=" flexibility enhancement"> flexibility enhancement</a> </p> <a href="https://publications.waset.org/abstracts/149112/an-evaluation-model-for-enhancing-flexibility-in-production-systems-through-additive-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4216</span> A Comparative Study of Additive and Nonparametric Regression Estimators and Variable Selection Procedures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adriano%20Z.%20Zambom">Adriano Z. Zambom</a>, <a href="https://publications.waset.org/abstracts/search?q=Preethi%20Ravikumar"> Preethi Ravikumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the biggest challenges in nonparametric regression is the curse of dimensionality. Additive models are known to overcome this problem by estimating only the individual additive effects of each covariate. However, if the model is misspecified, the accuracy of the estimator compared to the fully nonparametric one is unknown. In this work the efficiency of completely nonparametric regression estimators such as the Loess is compared to the estimators that assume additivity in several situations, including additive and non-additive regression scenarios. The comparison is done by computing the oracle mean square error of the estimators with regards to the true nonparametric regression function. Then, a backward elimination selection procedure based on the Akaike Information Criteria is proposed, which is computed from either the additive or the nonparametric model. Simulations show that if the additive model is misspecified, the percentage of time it fails to select important variables can be higher than that of the fully nonparametric approach. A dimension reduction step is included when nonparametric estimator cannot be computed due to the curse of dimensionality. Finally, the Boston housing dataset is analyzed using the proposed backward elimination procedure and the selected variables are identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20model" title="additive model">additive model</a>, <a href="https://publications.waset.org/abstracts/search?q=nonparametric%20regression" title=" nonparametric regression"> nonparametric regression</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20selection" title=" variable selection"> variable selection</a>, <a href="https://publications.waset.org/abstracts/search?q=Akaike%20Information%20Criteria" title=" Akaike Information Criteria"> Akaike Information Criteria</a> </p> <a href="https://publications.waset.org/abstracts/56158/a-comparative-study-of-additive-and-nonparametric-regression-estimators-and-variable-selection-procedures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4215</span> Optimization of Surface Roughness in Additive Manufacturing Processes via Taguchi Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjian%20Chen">Anjian Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20C.%20Chen"> Joseph C. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies a case where the targeted surface roughness of fused deposition modeling (FDM) additive manufacturing process is improved. The process is designing to reduce or eliminate the defects and improve the process capability index Cp and Cpk for an FDM additive manufacturing process. The baseline Cp is 0.274 and Cpk is 0.654. This research utilizes the Taguchi methodology, to eliminate defects and improve the process. The Taguchi method is used to optimize the additive manufacturing process and printing parameters that affect the targeted surface roughness of FDM additive manufacturing. The Taguchi L9 orthogonal array is used to organize the parameters' (four controllable parameters and one non-controllable parameter) effectiveness on the FDM additive manufacturing process. The four controllable parameters are nozzle temperature [°C], layer thickness [mm], nozzle speed [mm/s], and extruder speed [%]. The non-controllable parameter is the environmental temperature [°C]. After the optimization of the parameters, a confirmation print was printed to prove that the results can reduce the amount of defects and improve the process capability index Cp from 0.274 to 1.605 and the Cpk from 0.654 to 1.233 for the FDM additive manufacturing process. The final results confirmed that the Taguchi methodology is sufficient to improve the surface roughness of FDM additive manufacturing process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20deposition%20modeling" title=" fused deposition modeling"> fused deposition modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=six-sigma" title=" six-sigma"> six-sigma</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a> </p> <a href="https://publications.waset.org/abstracts/89931/optimization-of-surface-roughness-in-additive-manufacturing-processes-via-taguchi-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4214</span> Industrial Applications of Additive Manufacturing and 3D Printing Technology: A Review from South Africa Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Micheal%20O.%20Alabi">Micheal O. Alabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing (AM) is the official industry standard term (ASTM F2792) for all applications of the technology which is also known as 3D printing technology. It is defined as the process of joining materials to make objects from 3D model data, and it is usually layer upon layer, as opposed to subtractive manufacturing methodologies. This technology has gained significant interest within the academic, research institute and industry because of its ability to create complex geometries with customizable material properties. Despite the late adoption of the technology, additive manufacturing has been active in South Africa for past 21 years and it is predicted that additive manufacturing technology will play a significant and game-changing role in the fourth industrial revolution and in particular it promises to play an ever-growing role in efforts to re-industrialize the economy of South Africa. At the end of 2006, there are approximately ninety 3D printers in South Africa and in 2015 it was estimated that there are 3500 additive manufacturing systems and 3D printers in circulation in South Africa. A reasonable number of these additive manufacturing machines are in the high end of the market, in science councils and higher education institutions and this shows that the future of additive manufacturing in South Africa is very brighter compared to other African countries. This paper reviews the past and current industrial applications of additive manufacturing in South Africa from the academic research and industry perspective and what are the benefits of this technology to manufacturing companies and industrial sectors in the country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing%20technology" title=" 3D printing technology"> 3D printing technology</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20applications" title=" industrial applications"> industrial applications</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/62748/industrial-applications-of-additive-manufacturing-and-3d-printing-technology-a-review-from-south-africa-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4213</span> Laser Additive Manufacturing of Carbon Nanotube-Reinforced Polyamide 12 Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kun%20Zhou">Kun Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing has emerged as a disruptive technology that is capable of manufacturing products with complex geometries through an accumulation of material feedstock in a layer-by-layer fashion. Laser additive manufacturing such as selective laser sintering has excellent printing resolution, high printing speed and robust part strength, and has led to a widespread adoption in the aerospace, automotive and biomedical industries. This talk highlights and discusses the recent work we have undertaken in the development of carbon nanotube-reinforced polyamide 12 (CNT/PA12) composites printed using laser additive manufacturing. Numerical modelling studies have been conducted to simulate various processes within laser additive manufacturing of CNT/PA12 composites, and extensive experimental work has been carried out to investigate the mechanical and functional properties of the printed parts. The results from these studies grant a deeper understanding of the intricate mechanisms occurring within each process and enables an accurate optimization of process parameters for the CNT/PA12 and other polymer composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNT%2FPA12%20composites" title="CNT/PA12 composites">CNT/PA12 composites</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20additive%20manufacturing" title=" laser additive manufacturing"> laser additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20parameter%20optimization" title=" process parameter optimization"> process parameter optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a> </p> <a href="https://publications.waset.org/abstracts/144494/laser-additive-manufacturing-of-carbon-nanotube-reinforced-polyamide-12-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4212</span> Development of Gamma Configuration Stirling Engine Using Polymeric and Metallic Additive Manufacturing for Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Otegui">J. Otegui</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Agirre"> M. Agirre</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Cestau"> M. A. Cestau</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Erauskin"> H. Erauskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing accessibility of mid-priced additive manufacturing (AM) systems offers a chance to incorporate this technology into engineering instruction. Furthermore, AM facilitates the creation of manufacturing designs, enhancing the efficiency of various machines. One example of these machines is the Stirling cycle engine. It encompasses complex thermodynamic machinery, revealing various aspects of mechanical engineering expertise upon closer inspection. In this publication, the application of Stirling Engines fabricated via additive manufacturing techniques will be showcased for the purpose of instructive design and product enhancement. The performance of a Stirling engine's conventional displacer and piston is contrasted. The outcomes of utilizing this instructional tool in teaching are demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20design" title=" mechanical design"> mechanical design</a>, <a href="https://publications.waset.org/abstracts/search?q=stirling%20engine." title=" stirling engine."> stirling engine.</a> </p> <a href="https://publications.waset.org/abstracts/185276/development-of-gamma-configuration-stirling-engine-using-polymeric-and-metallic-additive-manufacturing-for-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4211</span> Exploring Mechanical Properties of Additive Manufacturing Ceramic Components Across Techniques and Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Venkatesan%20Sundaramoorthy">Venkatesan Sundaramoorthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The field of ceramics has undergone a remarkable transformation with the advent of additive manufacturing technologies. This comprehensive review explores the mechanical properties of additively manufactured ceramic components, focusing on key materials such as Alumina, Zirconia, and Silicon Carbide. The study delves into various authors' review technology into the various additive manufacturing techniques, including Stereolithography, Powder Bed Fusion, and Binder Jetting, highlighting their advantages and challenges. It provides a detailed analysis of the mechanical properties of these ceramics, offering insights into their hardness, strength, fracture toughness, and thermal conductivity. Factors affecting mechanical properties, such as microstructure and post-processing, are thoroughly examined. Recent advancements and future directions in 3D-printed ceramics are discussed, showcasing the potential for further optimization and innovation. This review underscores the profound implications of additive manufacturing for ceramics in industries such as aerospace, healthcare, and electronics, ushering in a new era of engineering and design possibilities for ceramic components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title="mechanical properties">mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20materials" title=" ceramic materials"> ceramic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=PBF" title=" PBF"> PBF</a> </p> <a href="https://publications.waset.org/abstracts/177549/exploring-mechanical-properties-of-additive-manufacturing-ceramic-components-across-techniques-and-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4210</span> Silver Nanoparticle Application in Food Packaging and Impacts on Food Safety and Consumer’s Health</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Worku%20Dejene%20Bekele">Worku Dejene Bekele</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A1s%20Marczika%20Csilla%20S%C3%B6r%C3%B6s"> András Marczika Csilla Sörös</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silver nanoparticles are silver metal with a size of 1-100nm. The most common source of silver nanoparticles is inorganic salts. Nanoparticles can be ingested through our foods and constitute nanoparticles and silver ions, whether as an additive or by migrants and, in some cases, as a pollutant. Silver nanoparticles are the most widely applicable engineered nanomaterials, especially for antimicrobial function. Ag nanoparticles give different advantages in the case of food safety, quality, and overall acceptability; however, they affect the health of humans and animals, putting them at risk of health problems and environmental pollution. Silver nanoparticles have been used widely in food packaging technologies, especially in water treatments, meat and meat products, fruit, and many other food products. This is for bio-preservation from food products. The primary goal of this review is to determine the safety and health impact of Ag nanoparticles application in food packaging and analysis of the human organs more affected by this preservative technology, to assess the implications of a nanoparticle on food safety, to determine the effects of nanoparticles on consumers health and to determine the impact of nanotechnology on product acceptability. But currently, much research has demonstrated that there is cause to believe that silver nanoparticles may have toxicological effects on biological organs and systems. The silver nanoparticles affect DNA expression, gastrointestinal barriers, lungs, and other breathing organs illness. Silver particles and molecules are very toxic. During its application in food packaging, food industries used the thinnest particle. This particle can potentially affect the gastrointestinal tracts-it suffers from mucus production, DNA, lungs, and other breezing organs. This review is targeted to demonstrate the knowledge gap that industrials use in the application of silver nanoparticles in food packaging and preservation and its health effects on the consumer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20preservatives" title="food preservatives">food preservatives</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20impact" title=" health impact"> health impact</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title=" nanoparticle"> nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticle" title=" silver nanoparticle"> silver nanoparticle</a> </p> <a href="https://publications.waset.org/abstracts/183084/silver-nanoparticle-application-in-food-packaging-and-impacts-on-food-safety-and-consumers-health" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4209</span> Laser Additive Manufacturing: A Literature Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pranav%20Mohan%20Parki">Pranav Mohan Parki</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Mallika%20Parveen"> C. Mallika Parveen</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahseen%20Ahmad%20Khan"> Tahseen Ahmad Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihika%20Shivkumar"> Mihika Shivkumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing (AM) is one of the several manufacturing processes in use today. AM comprises of techniques such as ‘Selective Laser Sintering’ and ‘Selective Laser Melting’ etc. along with other equipment and materials has been developed way back in 1980s, although major use of these methods has risen during the last decade. AM seems to be the most efficient way when compared to the traditional machining procedures. Still many problems continue to hinder its progress to becoming the most widely used of all. This paper contributes to the better understanding of AM and also aims at providing viable solutions to these problems, which may further help in enabling AM to become the most flaw free production method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing%20%28AM%29" title="additive manufacturing (AM)">additive manufacturing (AM)</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=prototype" title=" prototype"> prototype</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20sintering" title=" laser sintering"> laser sintering</a> </p> <a href="https://publications.waset.org/abstracts/44548/laser-additive-manufacturing-a-literature-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4208</span> Potentials of Additive Manufacturing: An Approach to Increase the Flexibility of Production Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Luft">A. Luft</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bremen"> S. Bremen</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Balc"> N. Balc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The task of flexibility planning and design, just like factory planning, for example, is to create the long-term systemic framework that constitutes the restriction for short-term operational management. This is a strategic challenge since, due to the decision defect character of the underlying flexibility problem, multiple types of flexibility need to be considered over the course of various scenarios, production programs, and production system configurations. In this context, an evaluation model has been developed that integrates both conventional and additive resources on a basic task level and allows the quantification of flexibility enhancement in terms of mix and volume flexibility, complexity reduction, and machine capacity. The model helps companies to decide in early decision-making processes about the potential gains of implementing additive manufacturing technologies on a strategic level. For companies, it is essential to consider both additive and conventional manufacturing beyond pure unit costs. It is necessary to achieve an integrative view of manufacturing that incorporates both additive and conventional manufacturing resources and quantifies their potential with regard to flexibility and manufacturing complexity. This also requires a structured process for the strategic production systems design that spans the design of various scenarios and allows for multi-dimensional and comparative analysis. A respective guideline for the planning of additive resources on a strategic level is being laid out in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20system%20design" title=" production system design"> production system design</a>, <a href="https://publications.waset.org/abstracts/search?q=flexibility%20enhancement" title=" flexibility enhancement"> flexibility enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=strategic%20guideline" title=" strategic guideline"> strategic guideline</a> </p> <a href="https://publications.waset.org/abstracts/149117/potentials-of-additive-manufacturing-an-approach-to-increase-the-flexibility-of-production-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4207</span> Cat Stool as an Additive Aggregate to Garden Bricks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mary%20Joy%20B.%20Amoguis">Mary Joy B. Amoguis</a>, <a href="https://publications.waset.org/abstracts/search?q=Alonah%20Jane%20D.%20Labtic"> Alonah Jane D. Labtic</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyna%20Wary%20Namoca"> Hyna Wary Namoca</a>, <a href="https://publications.waset.org/abstracts/search?q=Aira%20Jane%20V.%20Original"> Aira Jane V. Original</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Animal waste has been rapidly increasing due to the growing animal population and the lack of innovative waste management practices. In a country like the Philippines, animal waste is rampant. This study aims to minimize animal waste by producing garden bricks using cat stool as an additive. The research study analyzes different levels of concentration to determine the most efficient combination in terms of compressive strength and durability of cat stool as an additive to garden bricks. The researcher's first collects the cat stool and incinerates the different concentrations. The first concentration is 25% cat stool and 75% cement mixture. The second concentration is 50% cat stool and 50% cement mixture. And the third concentration is 75% cat stool and 25% cement mixture. The researchers analyze the statistical data using one-way ANOVA, and the statistical analysis revealed a significant difference compared to the controlled variable. The research findings show an inversely proportional relationship: the higher the concentration of cat stool additive, the lower the compressive strength of the bricks, and the lower the concentration of cat stool additive, the higher the compressive strength of the bricks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cat%20stool" title="cat stool">cat stool</a>, <a href="https://publications.waset.org/abstracts/search?q=garden%20bricks" title=" garden bricks"> garden bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=cement" title=" cement"> cement</a>, <a href="https://publications.waset.org/abstracts/search?q=concentrations" title=" concentrations"> concentrations</a>, <a href="https://publications.waset.org/abstracts/search?q=animal%20wastes" title=" animal wastes"> animal wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=one-way%20ANOVA" title=" one-way ANOVA"> one-way ANOVA</a>, <a href="https://publications.waset.org/abstracts/search?q=additive" title=" additive"> additive</a>, <a href="https://publications.waset.org/abstracts/search?q=incineration" title=" incineration"> incineration</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregates" title=" aggregates"> aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=stray%20cats" title=" stray cats"> stray cats</a> </p> <a href="https://publications.waset.org/abstracts/183270/cat-stool-as-an-additive-aggregate-to-garden-bricks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4206</span> Food Package Design To Preserve The Food Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sugiono">Sugiono</a>, <a href="https://publications.waset.org/abstracts/search?q=Wuwus%20Ardiatna">Wuwus Ardiatna</a>, <a href="https://publications.waset.org/abstracts/search?q=Himma%20Firdaus">Himma Firdaus</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanang%20Kusnandar">Nanang Kusnandar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayu%20Utomo">Bayu Utomo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jimmy%20Abdel%20Kadar">Jimmy Abdel Kadar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was aimed to explore the best design of single-used hot food packaging through various package designs. It examined how designed packages keep some local hot food reasonably longer than standard packages. The food packages were realized to consist of the outer and the inner layers of food-grade materials. The packages were evaluated to keep the hot food decreased to the minimum temperature of safe food. This study revealed a significant finding that the transparent plastic box with thin film aluminum foil is the best package. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20food" title="hot food">hot food</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20food" title="local food">local food</a>, <a href="https://publications.waset.org/abstracts/search?q=one%20used" title="one used">one used</a>, <a href="https://publications.waset.org/abstracts/search?q=packaging" title="packaging">packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20foil" title="aluminum foil">aluminum foil</a> </p> <a href="https://publications.waset.org/abstracts/144647/food-package-design-to-preserve-the-food-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4205</span> Wire Arc Additive Manufacturing of Aluminium–Magnesium Alloy AlMg4.5Mn With TiC Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javad%20Karimi">Javad Karimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The grain morphology and size of the additively manufactured (AM) aluminium alloys play a vital role in the performance and mechanical properties. AM-fabricated aluminium parts exhibit a relatively coarse microstructure with a columnar morphology. Ceramic nanoparticles, such as Titanium carbide (TiC), have shown great potential to reduce grain size and consequently influence the mechanical properties. In this study, the microstructural and mechanical properties of aluminium parts with TiC nanoparticles will be investigated. AM aluminium components will be fabricated using wire arc additive manufacturing (WAAM). The effect of the addition of TiC nanoparticles with different wt% on the melt pool geometry will be examined, and the obtained results will be compared to those obtained from pure ER5183. The impact of TiC nanoparticles addition in the AM parts will be analyzed comprehensively, and the results will be discussed in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=wire%20arc%20additive%20manufacturing" title=" wire arc additive manufacturing"> wire arc additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20refinement" title=" grain refinement"> grain refinement</a> </p> <a href="https://publications.waset.org/abstracts/169222/wire-arc-additive-manufacturing-of-aluminium-magnesium-alloy-almg45mn-with-tic-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4204</span> Transforming Automotive Performance: The Role of Additive Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joaquin%20Ticzon">Joaquin Ticzon</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20%20Demition"> Christian Demition</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Honra"> Jaime Honra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing (AM) or 3D printing has been one of the emerging trends present in various industries, particularly in prototyping. This review focuses on the impact of additive manufacturing on a motor vehicle's performance aiming to investigate potential advancements to further revolutionize the way parts are manufactured. One of the most common problems faced in the automotive industry is carbon footprint emissions from motor vehicles, which was stated to be remedied by lightweight; additively manufactured parts helped reduce these emissions due to weight reduction provided by additively manufactured parts. Composed of various techniques for AM as well as materials utilized during the manufacturing process, which differ in terms of the quality and performance it provides during its application on the final product. Given this, the generative design will not be discussed in such a detailed manner because the focus will revolve around the effects on the performance of a vehicle due to additively manufactured parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing%20%28AM%29" title="additive manufacturing (AM)">additive manufacturing (AM)</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive" title=" automotive"> automotive</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20aided%20design%20%28CAD%29" title=" computer aided design (CAD)"> computer aided design (CAD)</a>, <a href="https://publications.waset.org/abstracts/search?q=generative%20design" title=" generative design"> generative design</a> </p> <a href="https://publications.waset.org/abstracts/188186/transforming-automotive-performance-the-role-of-additive-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4203</span> Sustainable Food Systems and the Importance of Food Safety in Ensuring Sustainability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%96zlem%20Turan">Özlem Turan</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eule%20Turhan"> Şule Turhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> About 1 billion people in the world are suffering from hunger. Approximately 1.3 billion tons of produced food is wasted each year as well. While the waste of industrialized countries is 670 million tons per year, the waste per year in developing countries is estimated as 630 million tons. When evaluated in this respect, the importance of sustainability and food security can be seen clearly. Food safety is defined as taking the necessary measures and eliminating all risk arising from food. The goal of sustainable food security is, protection of consumer health, development of safe food and beverages trade nationally and internationally and to ensure reliable fair trade schemes. In this study, this study will focus on sustainable food systems and food security, by examining the food wastage and losses from environmental and economic point of views and the precautions that need to be taken will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food" title="food">food</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20safety" title=" food safety"> food safety</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20systems" title=" food systems"> food systems</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/37290/sustainable-food-systems-and-the-importance-of-food-safety-in-ensuring-sustainability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4202</span> Food Consumer Protection in Moroccan Legal System: A Systematic Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bouchaib%20Gazzaz">Bouchaib Gazzaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Mehdi"> Mounir Mehdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to ensure consumer food protection, the food industry has a legal obligation to provide food products that comply with the requirements of the legislation in force. National regulations in this area occupy an important place in the food control system in terms of consumer protection. This article discusses the legal and regulatory framework of food safety and consumer protection in Moroccan law. We used the doctrinal research approach by analyzing the judicial normative and bibliographic legal research. As a result, we were able to present the basic principles of consumer food protection by showing to what extent the food safety law provides effective consumer protection in Morocco. We have concluded that there is an impact -in terms of consumer legal protection- of food law reform on the concept of food safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20safety" title="food safety">food safety</a>, <a href="https://publications.waset.org/abstracts/search?q=Morocco" title=" Morocco"> Morocco</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer%20protection" title=" consumer protection"> consumer protection</a>, <a href="https://publications.waset.org/abstracts/search?q=framework" title=" framework"> framework</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20law" title=" food law"> food law</a> </p> <a href="https://publications.waset.org/abstracts/146727/food-consumer-protection-in-moroccan-legal-system-a-systematic-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4201</span> Synergizing Additive Manufacturing and Artificial Intelligence: Analyzing and Predicting the Mechanical Behavior of 3D-Printed CF-PETG Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sirine%20Sayed">Sirine Sayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostapha%20Tarfaoui"> Mostapha Tarfaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmalek%20Toumi"> Abdelmalek Toumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Youssef%20Qarssis"> Youssef Qarssis</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Daly"> Mohamed Daly</a>, <a href="https://publications.waset.org/abstracts/search?q=Chokri%20Bouraoui"> Chokri Bouraoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper delves into the combination of additive manufacturing (AM) and artificial intelligence (AI) to solve challenges related to the mechanical behavior of AM-produced parts. The article highlights the fundamentals and benefits of additive manufacturing, including creating complex geometries, optimizing material use, and streamlining manufacturing processes. The paper also addresses the challenges associated with additive manufacturing, such as ensuring stable mechanical performance and material properties. The role of AI in improving the static behavior of AM-produced parts, including machine learning, especially the neural network, is to make regression models to analyze the large amounts of data generated during experimental tests. It investigates the potential synergies between AM and AI to achieve enhanced functions and personalized mechanical properties. The mechanical behavior of parts produced using additive manufacturing methods can be further improved using design optimization, structural analysis, and AI-based adaptive manufacturing. The article concludes by emphasizing the importance of integrating AM and AI to enhance mechanical operations, increase reliability, and perform advanced functions, paving the way for innovative applications in different fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20behavior" title=" mechanical behavior"> mechanical behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20functionalities" title=" advanced functionalities"> advanced functionalities</a> </p> <a href="https://publications.waset.org/abstracts/193071/synergizing-additive-manufacturing-and-artificial-intelligence-analyzing-and-predicting-the-mechanical-behavior-of-3d-printed-cf-petg-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4200</span> European Food Safety Authority (EFSA) Safety Assessment of Food Additives: Data and Methodology Used for the Assessment of Dietary Exposure for Different European Countries and Population Groups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Petra%20Gergelova">Petra Gergelova</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Ioannidou"> Sofia Ioannidou</a>, <a href="https://publications.waset.org/abstracts/search?q=Davide%20Arcella"> Davide Arcella</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20Tard"> Alexandra Tard</a>, <a href="https://publications.waset.org/abstracts/search?q=Polly%20E.%20Boon"> Polly E. Boon</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20Lindtner"> Oliver Lindtner</a>, <a href="https://publications.waset.org/abstracts/search?q=Christina%20Tlustos"> Christina Tlustos</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Charles%20Leblanc"> Jean-Charles Leblanc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: To assess chronic dietary exposure to food additives in different European countries and population groups. Method and Design: The European Food Safety Authority’s (EFSA) Panel on Food Additives and Nutrient Sources added to Food (ANS) estimates chronic dietary exposure to food additives with the purpose of re-evaluating food additives that were previously authorized in Europe. For this, EFSA uses concentration values (usage and/or analytical occurrence data) reported through regular public calls for data by food industry and European countries. These are combined, at individual level, with national food consumption data from the EFSA Comprehensive European Food Consumption Database including data from 33 dietary surveys from 19 European countries and considering six different population groups (infants, toddlers, children, adolescents, adults and the elderly). EFSA ANS Panel estimates dietary exposure for each individual in the EFSA Comprehensive Database by combining the occurrence levels per food group with their corresponding consumption amount per kg body weight. An individual average exposure per day is calculated, resulting in distributions of individual exposures per survey and population group. Based on these distributions, the average and 95th percentile of exposure is calculated per survey and per population group. Dietary exposure is assessed based on two different sets of data: (a) Maximum permitted levels (MPLs) of use set down in the EU legislation (defined as regulatory maximum level exposure assessment scenario) and (b) usage levels and/or analytical occurrence data (defined as refined exposure assessment scenario). The refined exposure assessment scenario is sub-divided into the brand-loyal consumer scenario and the non-brand-loyal consumer scenario. For the brand-loyal consumer scenario, the consumer is considered to be exposed on long-term basis to the highest reported usage/analytical level for one food group, and at the mean level for the remaining food groups. For the non-brand-loyal consumer scenario, the consumer is considered to be exposed on long-term basis to the mean reported usage/analytical level for all food groups. An additional exposure from sources other than direct addition of food additives (i.e. natural presence, contaminants, and carriers of food additives) is also estimated, as appropriate. Results: Since 2014, this methodology has been applied in about 30 food additive exposure assessments conducted as part of scientific opinions of the EFSA ANS Panel. For example, under the non-brand-loyal scenario, the highest 95th percentile of exposure to α-tocopherol (E 307) and ammonium phosphatides (E 442) was estimated in toddlers up to 5.9 and 8.7 mg/kg body weight/day, respectively. The same estimates under the brand-loyal scenario in toddlers resulted in exposures of 8.1 and 20.7 mg/kg body weight/day, respectively. For the regulatory maximum level exposure assessment scenario, the highest 95th percentile of exposure to α-tocopherol (E 307) and ammonium phosphatides (E 442) was estimated in toddlers up to 11.9 and 30.3 mg/kg body weight/day, respectively. Conclusions: Detailed and up-to-date information on food additive concentration values (usage and/or analytical occurrence data) and food consumption data enable the assessment of chronic dietary exposure to food additives to more realistic levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-tocopherol" title="α-tocopherol">α-tocopherol</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonium%20phosphatides" title=" ammonium phosphatides"> ammonium phosphatides</a>, <a href="https://publications.waset.org/abstracts/search?q=dietary%20exposure%20assessment" title=" dietary exposure assessment"> dietary exposure assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=European%20Food%20Safety%20Authority" title=" European Food Safety Authority"> European Food Safety Authority</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20additives" title=" food additives"> food additives</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20consumption%20data" title=" food consumption data"> food consumption data</a> </p> <a href="https://publications.waset.org/abstracts/61553/european-food-safety-authority-efsa-safety-assessment-of-food-additives-data-and-methodology-used-for-the-assessment-of-dietary-exposure-for-different-european-countries-and-population-groups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4199</span> Effect of Carbon Black Nanoparticles Additive on the Qualities of Fly Ash Based Geopolymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Kiani">Maryam Kiani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to investigate the influence of carbon black additive on the properties of fly ash-based geopolymer. The geopolymer samples were prepared using fly ash as the primary source material, along with an alkali activator solution and different concentrations of carbon black additive. The effects of carbon black on the geopolymer binder were evaluated by analyzing the compressive strength, flexural strength, water absorption, and microstructural properties of the cured samples. The results revealed that the inclusion of carbon black additive significantly enhanced the mechanical properties of the geopolymer binder. The compressive and flexural strengths were found to increase with the addition of carbon black, showing improvements of up to 25% and 15%, respectively. Moreover, the water absorption of the geopolymer samples reduced due to the presence of carbon black, indicating improved resistance against water permeability. Microstructural analysis using scanning electron microscopy (SEM) revealed a more compact and homogenous structure in the geopolymer samples with carbon black. The dispersion of carbon black particles within the geopolymer matrix was observed, suggesting improved interparticle bonding and increased densification. Overall, this study demonstrates the positive impact of carbon black additive on the qualities of fly ash-based geopolymer, emphasizing its potential as an effective enhancer for geopolymer binder applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fly-ash" title="fly-ash">fly-ash</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20black" title=" carbon black"> carbon black</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title=" geopolymer"> geopolymer</a> </p> <a href="https://publications.waset.org/abstracts/172605/effect-of-carbon-black-nanoparticles-additive-on-the-qualities-of-fly-ash-based-geopolymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4198</span> Re-Defining Food Waste and Food Waste Management in the Food Service Sector: A Case Study in a University Food Service Unit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boineelo%20P.%20Lefadola">Boineelo P. Lefadola</a>, <a href="https://publications.waset.org/abstracts/search?q=Annemarie%20T.%20Viljoen"> Annemarie T. Viljoen</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerrie%20E.%20Du%20Rand"> Gerrie E. Du Rand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The food service sector wastes staggering quantities of food. More than one-third of food produced today gets wasted. This is both perplexing and daunting given that not all that is wasted is accounted for when measuring food waste. It is recognised that the present food waste definitions are ambiguous and do not really take into account all food waste generated. The contention is that food waste in the food service sector can be prevented or reduced if we have an explicit food waste definition in the context of food service. This study, therefore, explores the definition of the concept of food waste in the food service sector and its implications on sustainable food waste management strategies. An ethnographic research approach was adopted. A university food service unit was selected as a research site. Data collection techniques employed included document analyses, participant observations, focus group discussions with front-of-house and back-of-house staff, and one-on-one interviews with staff on managerial positions. A grounded theory approach was applied to analyse data. The concept of food waste was constructed differently by different levels of staff. Whereas managers raised discussion from a financial perspective, BOH and FOH staff drew upon socio-cultural implications. This study lays the foundation for a harmonised definition of the concept of food waste in food service. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20service" title="food service">food service</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20waste" title=" food waste"> food waste</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20waste%20management" title=" food waste management"> food waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/85967/re-defining-food-waste-and-food-waste-management-in-the-food-service-sector-a-case-study-in-a-university-food-service-unit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4197</span> Legal Issues of Food Security in Republic of Kazakhstan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20T.%20Aigarinova">G. T. Aigarinova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article considers the legal issues of food security as a major component of national security of the republic. The problem of food security is the top priority of the economic policy strategy of any state, the effectiveness of this solution influences social, political, and ethnic stability in society. Food security and nutrition is everyone’s business. Food security exists when all people, at all times, have physical, social and economic access to sufficient safe and nutritious food that meets their dietary needs and food preferences for an active and healthy life. By analyzing the existing legislation in the area of food security, the author identifies weaknesses and gaps, suggesting ways to improve it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20security" title="food security">food security</a>, <a href="https://publications.waset.org/abstracts/search?q=national%20security" title=" national security"> national security</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20resources" title=" public resources"> public resources</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20security" title=" economic security"> economic security</a> </p> <a href="https://publications.waset.org/abstracts/4863/legal-issues-of-food-security-in-republic-of-kazakhstan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4196</span> Effect of Liquid Additive on Dry Grinding for Desired Surface Structure of CaO Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wiyanti%20Fransisca%20Simanullang">Wiyanti Fransisca Simanullang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shinya%20Yamanaka"> Shinya Yamanaka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Grinding method was used to control the active site and to improve the specific surface area (SSA) of calcium oxide (CaO) derived from scallop shell as a sustainable resource. The dry grinding of CaO with acetone and tertiary butanol as a liquid additive was carried out using a planetary ball mill with a laboratory scale. The experiments were operated by stepwise addition with time variations to determine the grinding limit. The active site of CaO was measured by X-Ray Diffraction and FT-IR. The SSA variations of products with grinding time were measured by BET method. The morphology structure of CaO was observed by SEM. The use of liquid additive was effective for increasing the SSA and controlling the active site of CaO. SSA of CaO was increased in proportion to the amount of the liquid additive and the grinding time. The performance of CaO as a solid base catalyst for biodiesel production was tested in the transesterification reaction of used cooking oil to produce fatty acid methyl ester (FAME). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20site" title="active site">active site</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20oxide" title=" calcium oxide"> calcium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=grinding" title=" grinding"> grinding</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20surface%20area" title=" specific surface area"> specific surface area</a> </p> <a href="https://publications.waset.org/abstracts/68649/effect-of-liquid-additive-on-dry-grinding-for-desired-surface-structure-of-cao-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4195</span> Energy-efficient Buildings In Construction Industry Using Fly Ash-based Geopolymer Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Kiani">Maryam Kiani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to investigate the influence of nanoparticles additive on the properties of fly ash-based geopolymer. The geopolymer samples were prepared using fly ash as the primary source material, along with an alkali activator solution and different concentrations of carbon black additive. The effects of nanoparticles flexural strength, water absorption, and micro-structural properties of the cured samples. The results revealed that the inclusion of nanoparticles additive significantly enhanced the mechanical and electrical properties of the geopolymer binder. Micro-structural analysis using scanning electron microscopy (SEM) revealed a more compact and homogeneous structure in the geopolymer samples with nanoparticles. The dispersion of nanoparticles particles within the geopolymer matrix was observed, suggesting improved inter-particle bonding and increased density. Overall, this study demonstrates the positive impact of nanoparticles additive on the qualities of fly ash-based geopolymer, emphasizing its potential as an effective enhancer for geopolymer binder applications for the development of construction and infrastructure for energy buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fly-ash" title="fly-ash">fly-ash</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title=" geopolymer"> geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20buildings" title=" energy buildings"> energy buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a> </p> <a href="https://publications.waset.org/abstracts/173337/energy-efficient-buildings-in-construction-industry-using-fly-ash-based-geopolymer-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4194</span> Bactericidal Efficacy of Quaternary Ammonium Compound on Carriers with Food Additive Grade Calcium Hydroxide against Salmonella Infantis and Escherichia coli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Shahin%20Alam">M. Shahin Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Satoru%20Takahashi"> Satoru Takahashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariko%20Itoh"> Mariko Itoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Miyuki%20Komura"> Miyuki Komura</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayuko%20Suzuki"> Mayuko Suzuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Natthanan%20%20Sangsriratanakul"> Natthanan Sangsriratanakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuaki%20Takehara"> Kazuaki Takehara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cleaning and disinfection are key components of routine biosecurity in livestock farming and food processing industry. The usage of suitable disinfectants and their proper concentration are important factors for a successful biosecurity program. Disinfectants have optimum bactericidal and virucidal efficacies at temperatures above 20°C, but very few studies on application and effectiveness of disinfectants at low temperatures have been done. In the present study, the bactericidal efficacies of food additive grade calcium hydroxide (FdCa(OH)), quaternary ammonium compound (QAC) and their mixture, were investigated under different conditions, including time, organic materials (fetal bovine serum: FBS) and temperature, either in suspension or in carrier test. Salmonella Infantis and Escherichia coli, which are the most prevalent gram negative bacteria in commercial poultry housing and food processing industry, were used in this study. Initially, we evaluated these disinfectants at two different temperatures (4°C and room temperature (RT) (25°C ± 2°C)) and 7 contact times (0, 5 and 30 sec, 1, 3, 20 and 30 min), with suspension tests either in the presence or absence of 5% FBS. Secondly, we investigated the bactericidal efficacies of these disinfectants by carrier tests (rubber, stainless steel and plastic) at same temperatures and 4 contact times (30 sec, 1, 3, and 5 min). Then, we compared the bactericidal efficacies of each disinfectant within their mixtures, as follows. When QAC was diluted with redistilled water (dW2) at 1: 500 (QACx500) to obtain the final concentration of didecyl-dimethylammonium chloride (DDAC) of 200 ppm, it could inactivate Salmonella Infantis within 5 sec at RT either with or without 5% FBS in suspension test; however, at 4°C it required 30 min in presence of 5% FBS. FdCa(OH)2 solution alone could inactivate bacteria within 1 min both at RT and 4°C even with 5% FBS. While FdCa(OH)2 powder was added at final concentration 0.2% to QACx500 (Mix500), the mixture could inactivate bacteria within 30 sec and 5 sec, respectively, with or without 5% FBS at 4°C. The findings from the suspension test indicated that low temperature inhibited the bactericidal efficacy of QAC, whereas Mix500 was effective, regardless of short contact time and low temperature, even with 5% FBS. In the carrier test, single disinfectant required bit more time to inactivate bacteria on rubber and plastic surfaces than on stainless steel. However, Mix500 could inactivate S. Infantis on rubber, stainless steel and plastic surfaces within 30 sec and 1 min, respectively, at RT and 4°C; but, for E. coli, it required only 30 sec at both temperatures. So, synergistic effects were observed on different carriers at both temperatures. For a successful enhancement of biosecurity during winter, the disinfectants should be selected that could have short contact times with optimum efficacy against the target pathogen. The present study findings help farmers to make proper strategies for application of disinfectants in their livestock farming and food processing industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carrier" title="carrier">carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20additive%20grade%20calcium%20hydroxide%20%28FdCa%28OH%29%E2%82%82%29" title=" food additive grade calcium hydroxide (FdCa(OH)₂)"> food additive grade calcium hydroxide (FdCa(OH)₂)</a>, <a href="https://publications.waset.org/abstracts/search?q=quaternary%20ammonium%20compound" title=" quaternary ammonium compound"> quaternary ammonium compound</a>, <a href="https://publications.waset.org/abstracts/search?q=synergistic%20effects" title=" synergistic effects"> synergistic effects</a> </p> <a href="https://publications.waset.org/abstracts/81553/bactericidal-efficacy-of-quaternary-ammonium-compound-on-carriers-with-food-additive-grade-calcium-hydroxide-against-salmonella-infantis-and-escherichia-coli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4193</span> Intelligent Algorithm-Based Tool-Path Planning and Optimization for Additive Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Efrain%20Rodriguez">Efrain Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Pertuz"> Sergio Pertuz</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristhian%20Riano"> Cristhian Riano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tool-path generation is an essential step in the FFF (Fused Filament Fabrication)-based Additive Manufacturing (AM) process planning. In the manufacture of a mechanical part by using additive processes, high resource consumption and prolonged production times are inherent drawbacks of these processes mainly due to non-optimized tool-path generation. In this work, we propose a heuristic-search intelligent algorithm-based approach for optimized tool-path generation for FFF-based AM. The main benefit of this approach is a significant reduction of travels without material deposition when the AM machine performs moves without any extrusion. The optimization method used reduces the number of travels without extrusion in comparison with commercial software as Slic3r or Cura Engine, which means a reduction of production time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=tool-path%20optimization" title=" tool-path optimization"> tool-path optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20filament%20fabrication" title=" fused filament fabrication"> fused filament fabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20planning" title=" process planning"> process planning</a> </p> <a href="https://publications.waset.org/abstracts/83494/intelligent-algorithm-based-tool-path-planning-and-optimization-for-additive-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4192</span> Food Safety Management in Riyadh’s Ministry of Health Hospitals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Alrasheed">A. Alrasheed</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Connerton"> I. Connerton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Providing patients with safe meals on a daily basis is one of the challenges in the healthcare sector. In Saudi Arabia matters related to food safety and hygiene have been the heart of the Ministry of Health (MOH) and Saudi Food and Drugs Authority (SFDA). The aim of this study is to examine the causes of inadequate implementation of food safety management systems such as HACCP in Riyadh’s MOH hospitals. By the law, food safety must be managed using a documented, HACCP based approach, and food handlers must be appropriately trained in food safety. Food handlers in Saudi Arabia are not required to provide a certificate or attend a food handling training course even in healthcare sectors. Since food safety and hygiene issues are of increasing importance for Saudi Arabian health decision makers, the SFDA has been established to apply food hygiene requirements in all food operations. It should be pointed out that the implications of food outbreaks on the whole society may potentially go beyond individual health impacts but also impact on the Nation’s health and bring about economic repercussions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20safety" title="food safety">food safety</a>, <a href="https://publications.waset.org/abstracts/search?q=patient" title=" patient"> patient</a>, <a href="https://publications.waset.org/abstracts/search?q=hospital" title=" hospital"> hospital</a>, <a href="https://publications.waset.org/abstracts/search?q=HACCP" title=" HACCP"> HACCP</a> </p> <a href="https://publications.waset.org/abstracts/68800/food-safety-management-in-riyadhs-ministry-of-health-hospitals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">872</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4191</span> Primal Instinct: Formation of Food Aversion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zihuan%20%28Dylan%29%20Wang">Zihuan (Dylan) Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper analyzes the formation of human food aversion from a biological perspective. It points out that this biased behavior is formed through the accumulation of long-term survival and life experiences. By introducing the "Food Chain Energy Pyramid" model and the analogous deduction of the "Human Food Aversion Pyramid," with energy conversion efficiency as the primary reason, it analyzes the underlying reasons for the formation of food preferences. Food industry professionals can gain inspiration from this article to combine the theory presented with their expertise in order to leverage product quality and promote environmentally conscious practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20aversion" title="food aversion">food aversion</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20preference" title=" food preference"> food preference</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20conversion%20efficiency" title=" energy conversion efficiency"> energy conversion efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20and%20culture" title=" food and culture"> food and culture</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition" title=" nutrition"> nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=research%20and%20development" title=" research and development"> research and development</a> </p> <a href="https://publications.waset.org/abstracts/184423/primal-instinct-formation-of-food-aversion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=food%20additive&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=food%20additive&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=food%20additive&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=food%20additive&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=food%20additive&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=food%20additive&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=food%20additive&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=food%20additive&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=food%20additive&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=food%20additive&page=140">140</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=food%20additive&page=141">141</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=food%20additive&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>