CINXE.COM
Search results for: river sand
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: river sand</title> <meta name="description" content="Search results for: river sand"> <meta name="keywords" content="river sand"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="river sand" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="river sand"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1729</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: river sand</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1729</span> Contribution of Algerians Local Materials on the Compressive Strengths of Concrete: Experimental and Numerical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Lyes%20Kamel%20Khouadjia">Mohamed Lyes Kamel Khouadjia</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouzidi%20Mezghiche"> Bouzidi Mezghiche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The evolution in the civil engineering and carried out more consumption of aggregates and particularly the sand. Due to the depletion of natural reserves of sand, it is necessary to focus on the use of local materials such as crushed sand, river sand and dune sand, mineral additions. The aim of this work is to improve the state of knowledge on the compressive strengths of crushed sands with several mixtures (dune sand, river sand, pozzolan, and slag). The obtained results were compared with numerical results obtained with the software Béton Lab Pro 3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crushed%20sand" title="crushed sand">crushed sand</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20sand" title=" river sand"> river sand</a>, <a href="https://publications.waset.org/abstracts/search?q=dune%20sand" title=" dune sand"> dune sand</a>, <a href="https://publications.waset.org/abstracts/search?q=pouzzolan" title=" pouzzolan"> pouzzolan</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strengths" title=" compressive strengths"> compressive strengths</a>, <a href="https://publications.waset.org/abstracts/search?q=B%C3%A9ton%20Lab%20Pro%203" title=" Béton Lab Pro 3"> Béton Lab Pro 3</a> </p> <a href="https://publications.waset.org/abstracts/32109/contribution-of-algerians-local-materials-on-the-compressive-strengths-of-concrete-experimental-and-numerical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1728</span> Characteristic Study of Polymer Sand as a Potential Substitute for Natural River Sand in Construction Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Khupsare">Abhishek Khupsare</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Parmar"> Ajay Parmar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Agarwal"> Ajay Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Swapnil%20Wanjari"> Swapnil Wanjari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The extreme demand for aggregate leads to the exploitation of river-bed for fine aggregates, affecting the environment adversely. Therefore, a suitable alternative to natural river sand is essentially required. This study focuses on preventing environmental impact by developing polymer sand to replace natural river sand (NRS). Development of polymer sand by mixing high volume fly ash, bottom ash, cement, natural river sand, and locally purchased high solid content polycarboxylate ether-based superplasticizer (HS-PCE). All the physical and chemical properties of polymer sand (P-Sand) were observed and satisfied the requirement of the Indian Standard code. P-Sand yields good specific gravity of 2.31 and is classified as zone-I sand with a satisfactory friction angle (37˚) compared to natural river sand (NRS) and Geopolymer fly ash sand (GFS). Though the water absorption (6.83%) and pH (12.18) are slightly more than those of GFS and NRS, the alkali silica reaction and soundness are well within the permissible limit as per Indian Standards. The chemical analysis by X-Ray fluorescence showed the presence of high amounts of SiO2 and Al2O3 with magnitudes of 58.879% 325 and 26.77%, respectively. Finally, the compressive strength of M-25 grade concrete using P-sand and Geopolymer sand (GFS) was observed to be 87.51% and 83.82% with respect to natural river sand (NRS) after 28 days, respectively. The results of this study indicate that P-sand can be a good alternative to NRS for construction work as it not only reduces the environmental effect due to sand mining but also focuses on utilising fly ash and bottom ash. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20sand" title="polymer sand">polymer sand</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=bottom%20ash" title=" bottom ash"> bottom ash</a>, <a href="https://publications.waset.org/abstracts/search?q=HSPCE%20plasticizer" title=" HSPCE plasticizer"> HSPCE plasticizer</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20sand%20mining" title=" river sand mining"> river sand mining</a> </p> <a href="https://publications.waset.org/abstracts/172622/characteristic-study-of-polymer-sand-as-a-potential-substitute-for-natural-river-sand-in-construction-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1727</span> Modeling of Sand Boil near the Danube River</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edina%20Koch">Edina Koch</a>, <a href="https://publications.waset.org/abstracts/search?q=K%C3%A1roly%20Gomb%C3%A1s"> Károly Gombás</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%A1rton%20Maller"> Márton Maller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Little Plain is located along the Danube river, and this area is a “hotbed” of sand boil formation. This is due to the combination of a 100-250 m thick gravel layer beneath the Little Plain with a relatively thin blanket of poor soil spreading the gravel with variable thickness. Sand boils have a tradition and history in this area. It was possible to know which sand boil started and stopped working at what water level, and some of them even have names. The authors present a 2D finite element model of groundwater flow through a selected cross-section of the Danube river, which observed activation of piping phenomena during the 2013 flood event. Soil parametrization is based on a complex site investigation program conducted along the Danube River in the Little Plain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=site%20characterization" title="site characterization">site characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20flow" title=" groundwater flow"> groundwater flow</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20boil" title=" sand boil"> sand boil</a> </p> <a href="https://publications.waset.org/abstracts/145545/modeling-of-sand-boil-near-the-danube-river" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1726</span> Experimental Evaluation of Compressive Strength of Concrete with Several Local Sand Exposed to Freeze-Thaw Cycles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mlk.%20Khouadjia">Mlk. Khouadjia</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Mezghiche"> B. Mezghiche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The environment protection has led to a growing interest in the use of crushed sand, which is not correctly exploited due to the high rate of fine particles that it contains and which affect concrete properties. This study will examine the variation of the compressive strength of concrete with several local areas of sand exposed to freeze-thaw cycles and chemical solutions. The experiments have been realized on crushed, river, and dune sands. We use software (MATLAB) to find the coefficient of particle shape. Finally, we have found a relationship between the reference concrete without modification and concrete modified with river and dune sands to predict the variations of resistance after curing in different environments. The results showed that the behavior of concrete is different according to the types of sand and the environment of exposition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crushed%20sand" title="crushed sand">crushed sand</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze-thaw" title=" freeze-thaw"> freeze-thaw</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=dune%20sand" title=" dune sand"> dune sand</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20sand" title=" river sand"> river sand</a> </p> <a href="https://publications.waset.org/abstracts/112031/experimental-evaluation-of-compressive-strength-of-concrete-with-several-local-sand-exposed-to-freeze-thaw-cycles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1725</span> Evaluation of Heavy Metal Contamination and Assessment of the Suitability of Water for Irrigation: A Case Study of the Sand River, Limpopo Province, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ngonidzashe%20Moyo">Ngonidzashe Moyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mmaditshaba%20Rapatsa"> Mmaditshaba Rapatsa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The primary objective of this study was to determine heavy metal contamination in the water, sediment, grass and fish in Sand River, South Africa. This river passes through an urban area and sewage effluent is discharged into it. Water from the Sand river is subsequently used for irrigation downstream of the sewage treatment works. The suitability of this water and the surrounding boreholes for irrigation was determined. This study was undertaken between January, 2014 and January, 2015. Monthly samples were taken from four sites. Sites 1 was upstream of the Polokwane Wastewater Treatment Plant, sites 2, 3 and 4 were downstream. Ten boreholes in the vicinity of the Sand River were randomly selected and the water was tested for heavy metal contamination. The concentration of heavy metals in Sand River water followed the order Mn>Fe>Pb>Cu≥Zn≥Cd. Manganese concentration averaged 0.34 mg/L. Heavy metal concentration in the sediment, grass and fish followed the order Fe>Mn>Zn>Cu>Pb>Cd. The bioaccumulation factor from grass to fish was highest in manganese (19.25), followed by zinc (16.39) and iron (14.14). Soil permeability index (PI) and sodium adsorption ratio (SAR) were used to determine the suitability of Sand River and borehole water for irrigation. The PI index for Sand River water was 75.1% and this indicates that Sand River water is suitable for irrigation of crops. The PI index for the borehole water ranged from 65.8-72.8% and again this indicates suitability of borehole water for crop irrigation. The sodium adsorption ratio also indicated that both Sand River and borehole water were suitable for irrigation. A risk assessment study is recommended to determine the suitability of the fish for human consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioaccumulation" title="bioaccumulation">bioaccumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=bioavailability" title=" bioavailability"> bioavailability</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20adsorption%20ratio" title=" sodium adsorption ratio"> sodium adsorption ratio</a> </p> <a href="https://publications.waset.org/abstracts/81675/evaluation-of-heavy-metal-contamination-and-assessment-of-the-suitability-of-water-for-irrigation-a-case-study-of-the-sand-river-limpopo-province-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1724</span> Impact of Meteorological Events and Sand Excavation on Turbidity and Total Suspended Solids Levels of Imo River</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ihejirika%20Chinedu%20Emeka">Ihejirika Chinedu Emeka</a>, <a href="https://publications.waset.org/abstracts/search?q=Njoku%20John%20Didacus"> Njoku John Didacus</a>, <a href="https://publications.waset.org/abstracts/search?q=Obenade%20Moses"> Obenade Moses</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was aimed at determining the impact of meteorological events (seasonal variations) and sand excavation activities on turbidity and Total Suspended Solids (TSS) of Imo River, Southeastern Nigeria. In-situ measurements of the parameters were carried out at the peaks of two consecutive seasons–dry and rainy season at seven major points of sand excavation along the river, under standard analytical methods. There were significant variations in seasons (P<0.05) for turbidity and TSS at all locations. The average turbidity concentration of locations were 36.71 NTU, during the rainy season, and 17 NTU in a dry season, while the average TSS concentration were 27.14 mg/L, during the rainy season, and 8.86mg/L in a dry season. Turbidity correlated positively (strongly) with TSS (r=0.956) at R–Square=0.91. Turbidity and TSS values were higher during the rainy season than the dry season. Turbidity increased when Total Suspended Solids increased. Sand excavation increased turbidity and TSS values of Imo River. The river had moderate water quality during the rainy season and unimpaired water quality during a dry season. The river was not very clear in both seasons, but clearer in a dry season than in rainy season. The increase in turbidity and TSS can lead to the destruction of aquatic biodiversity and stagnation of ecosystem processes. Exposure of aquatic animals to the recorded turbidity level in a rainy season can lead to stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiversity%20destruction" title="biodiversity destruction">biodiversity destruction</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20events" title=" meteorological events"> meteorological events</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20excavation" title=" sand excavation"> sand excavation</a> </p> <a href="https://publications.waset.org/abstracts/25919/impact-of-meteorological-events-and-sand-excavation-on-turbidity-and-total-suspended-solids-levels-of-imo-river" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1723</span> An Analysis on Gravel of Sand-Gravel Bar at Gneiss or Granite Area of the Upper Hongcheon River in South Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Man%20Kyu%20Kim">Man Kyu Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hansu%20Shin"> Hansu Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is an analysis on gravel of sand-gravel bar that stretches variously in the Duchon and Naechon stream basins, which are situated on Hong-Cheon River (a well-developed sand-gravel bar in upstream river) basins in Korea. Naechon stream mostly flows through granite zone but Duchon stream mostly flows through gneiss zone. The characteristics of gravel in the sand-gravel bar of these two branches in the upper Hongcheon River were analyzed in this study in order to understand the geomorphic development of streams depending on the differences of bedrock. Through the analysis on the roundness and flatness of gravel, we figured out an irregular trend following the increase in supply of granite gravel and gneiss gravel as we traveled downstream. The result shows that the two basins have uppermost small basin condition reflecting the mountain valley environment although it may be difficult to do an equivalent comparison to other roundness researches in Korea or in Europe. This study conducted an analysis on gravels found in small scale streams unlike the previous studies trend which mostly studies large rivers. The research provides an opportunity to offer basic data for continuous comparison research on various small basins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flatness" title="flatness">flatness</a>, <a href="https://publications.waset.org/abstracts/search?q=geology" title=" geology"> geology</a>, <a href="https://publications.waset.org/abstracts/search?q=roundness" title=" roundness"> roundness</a>, <a href="https://publications.waset.org/abstracts/search?q=sand-gravel%20bar" title=" sand-gravel bar"> sand-gravel bar</a> </p> <a href="https://publications.waset.org/abstracts/37457/an-analysis-on-gravel-of-sand-gravel-bar-at-gneiss-or-granite-area-of-the-upper-hongcheon-river-in-south-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1722</span> Effect of Three Sand Types on Potato Vegetative Growth and Yield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shatha%20A.%20Yousif">Shatha A. Yousif</a>, <a href="https://publications.waset.org/abstracts/search?q=Qasim%20M.%20Zamil"> Qasim M. Zamil</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Y.%20Al%20Muhi"> Hasan Y. Al Muhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20A.%20Al%20Shammari"> Jamal A. Al Shammari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Potato (Solanum tuberosum L.) is one of the major vegetable crops that are grown world wide because of its economic importance. This experiment investigated the effect of local sands (River Base, Al-Ekader and Karbala) on number and total weight of mini tubers. Statistical analysis revealed that there were no significant differences among sand cultures in number of stem/plant, chlorophyll index and tubers dry weight. River Base sand had the highest plant height (74.9 cm), leaf number/plant number (39.3), leaf area (84.4 dcm2⁄plant), dry weight/plant (26.31), tubers number/plant (8.5), tubers weight/plant (635.53 gm) and potato tuber yields/trove (28.60 kg), whereas the Karbala sand had lower performance. All the characters had positive and significant correlation with yields except the traits number of stem and tuber dry weight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation" title="correlation">correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=potato" title=" potato"> potato</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20culture" title=" sand culture"> sand culture</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/25112/effect-of-three-sand-types-on-potato-vegetative-growth-and-yield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1721</span> Assessment of Morphodynamic Changes at Kaluganga River Outlet, Sri Lanka Due to Poorly Planned Flood Controlling Measures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20P.%20Gunasinghe">G. P. Gunasinghe</a>, <a href="https://publications.waset.org/abstracts/search?q=Lilani%20Ruhunage"> Lilani Ruhunage</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20P.%20Ratnayake"> N. P. Ratnayake</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20V.%20I.%20Samaradivakara"> G. V. I. Samaradivakara</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20R.%20Premasiri"> H. M. R. Premasiri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Ratnayake"> A. S. Ratnayake</a>, <a href="https://publications.waset.org/abstracts/search?q=Nimila%20Dushantha"> Nimila Dushantha</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20P.%20Weerakoon"> W. A. P. Weerakoon</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20B.%20A.%20Silva"> K. B. A. Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sri Lanka is affected by different natural disasters such as tsunami, landslides, lightning, and riverine flood. Out of them, riverine floods act as a major disaster in the country. Different strategies are applied to control the impacts of flood hazards, and the expansion of river mouth is considered as one of the main activities for flood mitigation and disaster reduction. However, due to this expansion process, natural sand barriers including sand spits, barrier islands, and tidal planes are destroyed or subjected to change. This, in turn, can change the hydrodynamics and sediment dynamics of the area leading to other damages to the natural coastal features. The removal of a considerable portion of naturally formed sand barrier at Kaluganga River outlet (Calido Beach), Sri Lanka to control flooding event at Kaluthara urban area on May 2017, has become a serious issue in the area causing complete collapse of river mouth barrier spit bar system leading to rapid coastal erosion Kaluganga river outlet area and saltwater intrusion into the Kaluganga River. The present investigation is focused on assessing effects due to the removal of a considerable portion of naturally formed sand barrier at Kaluganga river mouth. For this study, the beach profiles, the bathymetric surveys, and Google Earth historical satellite images, before and after the flood event were collected and analyzed. Furthermore, a beach boundary survey was also carried out in October 2018 to support the satellite image data. The results of Google Earth satellite images and beach boundary survey data analyzed show a chronological breakdown of the sand barrier at the river outlet. The comparisons of pre and post-disaster bathymetric maps and beach profiles analysis revealed a noticeable deepening of the sea bed at the nearshore zone as well. Such deepening in the nearshore zone can cause the sea waves to break very near to the coastline. This might also lead to generate new diffraction patterns resulting in differential coastal accretion and erosion scenarios. Unless immediate mitigatory measures were not taken, the impacts may cause severe problems to the sensitive Kaluganag river mouth system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bathymetry" title="bathymetry">bathymetry</a>, <a href="https://publications.waset.org/abstracts/search?q=beach%20profiles" title=" beach profiles"> beach profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20features" title=" coastal features"> coastal features</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20outlet" title=" river outlet"> river outlet</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20barrier" title=" sand barrier"> sand barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=Sri%20Lanka" title=" Sri Lanka"> Sri Lanka</a> </p> <a href="https://publications.waset.org/abstracts/108725/assessment-of-morphodynamic-changes-at-kaluganga-river-outlet-sri-lanka-due-to-poorly-planned-flood-controlling-measures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1720</span> Application of Nanofiltration Membrane for River Nile Water Treatment in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarek%20S.%20Jamil">Tarek S. Jamil</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Shaban"> Ahmed M. Shaban</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20S.%20Mansor"> Eman S. Mansor</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Karim"> Ahmed A. Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=Azza%20M.%20Abdel%20Aty"> Azza M. Abdel Aty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this manuscript, 35 m³/d NF unit was designed and applied for surface water treatment of river Nile water. Intake of Embaba drinking water treatment plant was selected to install that unit at since; it has the lowest water quality index value through the examined 6 sites in greater Cairo area. The optimized operating conditions were feed and permeate flow, 40 and 7 m³/d, feed pressure 2.68 bar and flux rate 37.7 l/m2.h. The permeate water was drinkable according to Egyptian Ministerial decree 458/2007 for the tested parameters (physic-chemical, heavy metals, organic, algal, bacteriological and parasitological). Single and double sand filters were used as pretreatment for NF membranes, but continuous clogging for sand filters moved us to use UF membrane as pretreatment for NF membrane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=River%20Nile" title="River Nile">River Nile</a>, <a href="https://publications.waset.org/abstracts/search?q=NF%20membrane" title=" NF membrane"> NF membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=UF%20membrane" title=" UF membrane"> UF membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/61649/application-of-nanofiltration-membrane-for-river-nile-water-treatment-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">708</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1719</span> Assessment of Spatial and Vertical Distribution of Heavy Metals in the Mid Sand Bars of Brahmaputra River in Assam, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Meena">Vijay Meena</a>, <a href="https://publications.waset.org/abstracts/search?q=Arup%20Kumar%20Sarma"> Arup Kumar Sarma</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandan%20Mahanta"> Chandan Mahanta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The environment has been getting contaminated by anthropogenic processes including those that discharge heavy metals to air, soil and water. The present work emphasizes the spatial distribution and vertical profile of six heavy metals (Cu, Zn, Mn, Ni, Fe, Cr) in three layers of mid sand bars (bed surface layer, 50 cm and 100 cm depth) at 42 sampling stations covering around 600 km stretch of the Brahmaputra River, India. Heavy metal analysis was conducted on the sample collected from mid-sand bars in the river stretch to examine the impact of dredging for various hydrological operations in the future. Sediment quality was assessed by calculating six different indices viz., EF, CF, CD, PLI, Igeo, and PERI. In all sediment layers, heavy metal concentrations have been observed to be the same as listed, Fe > Mn > Zn > Ni > Cr > Cu in μg/g. The average concentration of Cu, Mn, and Fe was found in the middle layer while Zn, Ni, and Cr were in the Surface layer. EF indicates higher enrichment in reach 2 which is likely to be due to anthropogenic sources of industrial and urbanized effluents. The sediment of the mid-sand bar was generally found moderately polluted possessing low risk to aquatic lives and the environment. Suggesting, Dredging can be possible in the future. An examination of correlation matrices, principal components analysis, and cluster analyses indicated that these heavy metals possess similar anthropogenic origins for their enrichment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20contamination" title="heavy metal contamination">heavy metal contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropogenic%20impacts" title=" anthropogenic impacts"> anthropogenic impacts</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/157865/assessment-of-spatial-and-vertical-distribution-of-heavy-metals-in-the-mid-sand-bars-of-brahmaputra-river-in-assam-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1718</span> Suitability of Quarry Dust as Replacement of Sand in Medium Grade Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Popoola%20M.%20Oyenola">Popoola M. Oyenola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete plays the important role and a huge percentage of concrete is being utilized in every construction practices. Natural river sand is one of the major ingredients of concrete, is becoming expensive due to excessive cost of accessibility from sources. Also large scale depletion of sources creates environmental problems. Therefore, there is a need of economic alternative materials. Quarry dust is a waste obtained during quarrying process. It has been rampantly used in different construction practices and could be used as an effective fine aggregate instead of river sand. Partial and total replacement of fine aggregate in conventional concrete with quarry dust has been empirically conducted with the view to examining primarily the compressive strength of the resulting composite and possible total utilization of quarry dust as fine aggregate in the production of medium grade concrete. The results of the study showed that its specific gravity, porosity and water absorption showed satisfactory performance. The percentage replacement of natural river sand with quarry dust for a designed strength of 25N/mm2 varied at intervals of 10% up to a maximum value of 100%. A total of 132 cubes of 150 x 150 x 150mm were cast and tested at 7, 14 and 28 days of hydration. Compressive strength increases with curing age in all the mixes. Compressive strength decreases with increase in percentage of quarry dust. Generally the compressive strength of concrete incorporating quarry dust attained strength of 22.47 N/mm2 after 28 days which makes it a suitable aggregate for the production medium grade concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quarry%20dust" title="quarry dust">quarry dust</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregates" title=" aggregates"> aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/13444/suitability-of-quarry-dust-as-replacement-of-sand-in-medium-grade-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1717</span> Performance of Structural Concrete Containing Marble Dust as a Partial Replacement for River Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravande%20Kishore">Ravande Kishore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper present the results of experimental investigation carried out to understand the mechanical properties of concrete containing marble dust. Two grades of concrete viz. M25 and M35 have been considered for investigation. For each grade of concrete five replacement percentages of sand viz. 5%, 10%, 15%, 20% and 25% by marble dust have been considered. In all, 12 concrete mix cases including two control concrete mixtures have been studied to understand the key properties such as Compressive strength, Modulus of elasticity, Modulus of rupture and Split tensile strength. Development of Compressive strength is also investigated. In general, the results of investigation indicated improved performance of concrete mixture containing marble dust. About 21% increase in Compressive strength is noticed for concrete mixtures containing 20% marble dust and 80% river sand. An overall assessment of investigation results pointed towards high potential for marble dust as alternative construction material coming from waste generated in marble industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20material" title="construction material">construction material</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20replacement" title=" partial replacement"> partial replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=marble%20dust" title=" marble dust"> marble dust</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/15741/performance-of-structural-concrete-containing-marble-dust-as-a-partial-replacement-for-river-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1716</span> Performance Study of Geopolymer Concrete by Partial Replacement of Fly Ash with Cement and Full Replacement of River Sand by Crushed Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asis%20Kumar%20Khan">Asis Kumar Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Kumar%20Goel"> Rajeev Kumar Goel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent infrastructure growth all around the world lead to increase in demand for concrete day by day. Cement being binding material for concrete the usage of cement also gone up significantly. Cement manufacturing utilizes abundant natural resources and causes environment pollution by releasing a huge quantity of CO₂ into the atmosphere. So, it is high time to look for alternates to reduce the cement consumption in concrete. Geopolymer concrete is one such material which utilizes the industrial waste such as fly ash, ground granulated blast furnace slag and low-cost alkaline liquids such as sodium hydroxide and sodium silicate to produce the concrete. On the other side, river sand is becoming very expensive due to its large-scale depletion at source and the high cost of transportation. In this view, river sand is replaced by crushed sand in this study. In this work, an attempt has been made to understand the durability parameters of geopolymer concrete by partially replacing fly ash with cement. Fly ash is replaced by cement at various levels e.g., from 0 to 50%. Concrete cubes of 100x100x100mm were used for investigating different durability parameters. The various parameters studied includes compressive strength, split tensile strength, drying shrinkage, sodium sulphate attack resistance, sulphuric acid attack resistance and chloride permeability. Highest compressive strength & highest split tensile strength is observed in 30% replacement level. Least drying is observed with 30% replacement level. Very good resistance for sulphuric acid & sodium sulphate is found with 30% replacement. However, it was not possible to find out the chloride permeability due to the high conductivity of geopolymer samples of all replacement levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crushed%20sand" title="crushed sand">crushed sand</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=drying%20shrinkage" title=" drying shrinkage"> drying shrinkage</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer%20concrete" title=" geopolymer concrete"> geopolymer concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=split%20tensile%20strength" title=" split tensile strength"> split tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20sulphate%20attack%20resistance" title=" sodium sulphate attack resistance"> sodium sulphate attack resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphuric%20acid%20attack%20resistance" title=" sulphuric acid attack resistance"> sulphuric acid attack resistance</a> </p> <a href="https://publications.waset.org/abstracts/90702/performance-study-of-geopolymer-concrete-by-partial-replacement-of-fly-ash-with-cement-and-full-replacement-of-river-sand-by-crushed-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1715</span> Comparing the Durability of Saudi Silica Sands for Use in Foundry Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Alsagour">Mahdi Alsagour</a>, <a href="https://publications.waset.org/abstracts/search?q=Sam%20Ramrattan"> Sam Ramrattan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper was developed to investigate two types of sands from the Kingdom of Saudi Arabia (KSA) for potential use in the global metal casting industry. Four types of sands were selected for study, two of the sand systems investigated are natural sands from the KSA. The third sand sample is a heat processed synthetic sand and the last sample is commercially available US silica sand that is used as a control in the study. The purpose of this study is to define the durability of the four sand systems selected for foundry usage. Additionally, chemical analysis of the sand systems is presented before and after elevated temperature exposure. Results show that Saudi silica sands are durable and can be used in foundry processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20molding%20media" title="alternative molding media">alternative molding media</a>, <a href="https://publications.waset.org/abstracts/search?q=foundry%20sand" title=" foundry sand"> foundry sand</a>, <a href="https://publications.waset.org/abstracts/search?q=reclamation" title=" reclamation"> reclamation</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20sand" title=" silica sand"> silica sand</a>, <a href="https://publications.waset.org/abstracts/search?q=specialty%20sand" title=" specialty sand"> specialty sand</a> </p> <a href="https://publications.waset.org/abstracts/109687/comparing-the-durability-of-saudi-silica-sands-for-use-in-foundry-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1714</span> Anthropogenic Impact on Migration Process of River Yamuna in Delhi-NCR Using Geospatial Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Asim">Mohd Asim</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Nageswara%20Rao"> K. Nageswara Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work was carried out on River Yamuna passing through Delhi- National Capital Region (Delhi-NCR) of India for a stretch of about 130 km to assess the anthropogenic impact on the channel migration process for a period of 200 years with the help of satellite data and topographical maps with integration of geographic information system environment. Digital Shoreline Analysis System (DSAS) application was used to quantify river channel migration in ArcGIS environment. The average river channel migration was calculated to be 22.8 m/year for the entire study area. River channel migration was found to be moving in westward and eastward direction. Westward migration is more than 4 km maximum in length and eastward migration is about 4.19 km. The river has migrated a total of 32.26 sq. km of area. The results reveal that the river is being impacted by various human activities. The impact indicators include engineering structures, sand mining, embankments, urbanization, land use/land cover, canal network. The DSAS application was also used to predict the position of river channel in future for 2032 and 2042 by analyzing the past and present rate and direction of movement. The length of channel in 2032 and 2042 will be 132.5 and 141.6 km respectively. The channel will migrate maximum after crossing Okhla Barrage near Faridabad for about 3.84 sq. km from 2022 to 2042 from west to east. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=river%20migration" title="river migration">river migration</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20Yamuna" title=" river Yamuna"> river Yamuna</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropogenic%20impacts" title=" anthropogenic impacts"> anthropogenic impacts</a>, <a href="https://publications.waset.org/abstracts/search?q=DSAS" title=" DSAS"> DSAS</a>, <a href="https://publications.waset.org/abstracts/search?q=Delhi-NCR" title=" Delhi-NCR"> Delhi-NCR</a> </p> <a href="https://publications.waset.org/abstracts/150261/anthropogenic-impact-on-migration-process-of-river-yamuna-in-delhi-ncr-using-geospatial-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1713</span> Sedimentological and Geochemical Characteristics of Aeolian Sediments and Their Implication for Sand Origin in the Yarlung Zangbo River Valley, Southern Qinghai-Tibetan Plateau</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Na%20Zhou">Na Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Lai%20Zhang"> Chun-Lai Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qing%20Li"> Qing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Bingqi%20Zhu"> Bingqi Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xun-Ming%20Wang"> Xun-Ming Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The understanding of the dynamics of aeolian sand in the Yarlung Zangbo River Valley (YLZBV), southern Qinghai-Tibetan Plateau, including its origins, transportation,and deposition, remains preliminary. In this study, we investigated the extensive origin of aeolian sediments in the YLZBV by analyzing the distribution and composition of sediment’s grain size and geochemical composition in dune sediments collected from the wide river terraces. The major purpose is to characterize the sedimentological and geochemical compositions of these aeolian sediments, trace back to their sources, and understand their influencing factors. As a result, the grain size and geochemistry variations, which showed a significant correlation between grain sizes distribution and element abundances, give a strong evidence that the important part of the aeolian sediments in the downstream areas was firstly derived from the upper reaches by intense fluvial processes. However, the sediments experienced significant mixing process with local inputs and reconstructed by regional wind transportation. The diverse compositions and tight associations in the major and trace element geochemistry between the up- and down-stream aeolian sediments and the local detrital rocks, which were collected from the surrounding mountains, suggest that the upstream aeolian sediments had originated from the various close-range rock types, and experienced intensive mixing processes via aeolian- fluvial dynamics. Sand mass transported by water and wind was roughly estimated to qualify the interplay between the aeolian and fluvial processes controlling the sediment transport, yield, and ultimately shaping the aeolian landforms in the mainstream of the YLZBV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grain%20size%20distribution" title="grain size distribution">grain size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemistry" title=" geochemistry"> geochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20and%20water%20load" title=" wind and water load"> wind and water load</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20source" title=" sand source"> sand source</a>, <a href="https://publications.waset.org/abstracts/search?q=Yarlung%20Zangbo%20River%20Valley" title=" Yarlung Zangbo River Valley"> Yarlung Zangbo River Valley</a> </p> <a href="https://publications.waset.org/abstracts/151172/sedimentological-and-geochemical-characteristics-of-aeolian-sediments-and-their-implication-for-sand-origin-in-the-yarlung-zangbo-river-valley-southern-qinghai-tibetan-plateau" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1712</span> Velocity Distribution in Open Channels with Sand: An Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Keramaris">E. Keramaris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, laboratory experiments in open channel flows over a sand bed were conducted. A porous bed (sand bed) with porosity of ε=0.70 and porous thickness of s΄=3 cm was tested. Vertical distributions of velocity were evaluated by using a two-dimensional (2D) Particle Image Velocimetry (PIV). Velocity profiles are measured above the impermeable bed and above the sand bed for the same different total water heights (h= 6, 8, 10 and 12 cm) and for the same slope S=1.5. Measurements of mean velocity indicate the effects of the bed material used (sand bed) on the flow characteristics (Velocity distribution and Reynolds number) in comparison with those above the impermeable bed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20image%20velocimetry" title="particle image velocimetry">particle image velocimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20bed" title=" sand bed"> sand bed</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20distribution" title=" velocity distribution"> velocity distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a> </p> <a href="https://publications.waset.org/abstracts/46893/velocity-distribution-in-open-channels-with-sand-an-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1711</span> Adhesion Study of Repair Mortar Based in Dune and Crushed Limestone Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krobba%20Benharzallah">Krobba Benharzallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenai%20%20Said"> Kenai Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouhicha%20Mohamed"> Bouhicha Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakhdari%20Mohammed%20Fatah"> Lakhdari Mohammed Fatah</a>, <a href="https://publications.waset.org/abstracts/search?q=Merah%20Ahmed"> Merah Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, great interest has been directed towards the use of local materials and natural resources in building and public works. This is to satisfy the enormous need for these materials and contribute to sustainable development. Among these resources, dune sand and limestone crushed sand, which can be an interesting alternative to the replacement of siliceous alluvial sands for the formulation of a repair mortar. The results found show that the particle size correction of dune sand by limestone sand and the addition of a superplasticizer are very beneficial in terms of adhesion and mechanical strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=repair%20mortar" title="repair mortar">repair mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=dune%20sand" title=" dune sand"> dune sand</a>, <a href="https://publications.waset.org/abstracts/search?q=crushed%20limestone%20sand" title=" crushed limestone sand"> crushed limestone sand</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesion" title=" adhesion"> adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20strength" title=" mechanical strength"> mechanical strength</a> </p> <a href="https://publications.waset.org/abstracts/125082/adhesion-study-of-repair-mortar-based-in-dune-and-crushed-limestone-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1710</span> Studying the Simultaneous Effect of Petroleum and DDT Pollution on the Geotechnical Characteristics of Sands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Seyfi">Sara Seyfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> DDT and petroleum contamination in coastal sand alters the physical and mechanical properties of contaminated soils. This article aims to understand the effects of DDT pollution on the geotechnical characteristics of sand groups, including sand, silty sand, and clay sand. First, the studies conducted on the topic of the article will be reviewed. In the initial stage of the tests, this article deals with the identification of the used sands (sand, silty sand, clay sand) by FTIR, µ-XRF and SEM methods. Then, the geotechnical characteristics of these sand groups, including density, permeability, shear strength, compaction, and plasticity, are investigated using a sand cone, head permeability test, Vane shear test, strain gauge penetrometer, and plastic limit test. Sand groups are artificially contaminated with petroleum substances with 1, 2, 4, 8, 10, 12% by weight. In a separate experiment, amounts of 2, 4, 8, 12, 16, 20 mg/liter of DDT were added to the sand groups. Geotechnical characteristics and identification analysis are performed on the contaminated samples. In the final tests, the mentioned amounts of oil pollution and DDT are simultaneously added to the sand groups, and identification and measurement processes are carried out. The results of the tests showed that petroleum contamination had reduced the optimal moisture content, permeability, and plasticity of all samples. Except silty sand’s plasticity, which petroleum increased it by 1-4% and decreased it by 8-12%. The dry density of sand and clay sand increased, but that of silty sand decreased. Also, the shear strength of sand and silty sand increased, but that of clay sand decreased. DDT contamination increased the maximum dry density and decreased the permeability of all samples. It also reduced the optimum moisture content of the sand. The shear resistance of silty sand and clayey sand decreased, and plasticity of clayey sand increased, and silty sand decreased. The simultaneous effect of petroleum and DDT pollution on the maximum dry density of sand and clayey sand has been synergistic, on the plasticity of clayey sand and silty sand, there has been antagonism. This process has caused antagonism of optimal sand content, shear strength of silty sand and clay sand. In other cases, the effect of synergy or antagonism is not observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DDT%20contamination" title="DDT contamination">DDT contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20characteristics" title=" geotechnical characteristics"> geotechnical characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20contamination" title=" petroleum contamination"> petroleum contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a> </p> <a href="https://publications.waset.org/abstracts/186047/studying-the-simultaneous-effect-of-petroleum-and-ddt-pollution-on-the-geotechnical-characteristics-of-sands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1709</span> A Remote Sensing Approach to Estimate the Paleo-Discharge of the Lost Saraswati River of North-West India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zafar%20Beg">Zafar Beg</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumar%20Gaurav"> Kumar Gaurav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lost Saraswati is described as a large perennial river which was 'lost' in the desert towards the end of the Indus-Saraswati civilisation. It has been proposed earlier that the lost Saraswati flowed in the Sutlej-Yamuna interfluve, parallel to the present day Indus River. It is believed that one of the earliest known ancient civilizations, the 'Indus-Saraswati civilization' prospered along the course of the Saraswati River. The demise of the Indus civilization is considered to be due to desiccation of the river. Today in the Sutlej-Yamuna interfluve, we observe an ephemeral river, known as Ghaggar. It is believed that along with the Ghaggar River, two other Himalayan Rivers Sutlej and Yamuna were tributaries of the lost Saraswati and made a significant contribution to its discharge. Presence of a large number of archaeological sites and the occurrence of thick fluvial sand bodies in the subsurface in the Sutlej-Yamuna interfluve has been used to suggest that the Saraswati River was a large perennial river. Further, the wider course of about 4-7 km recognized from satellite imagery of Ghaggar-Hakra belt in between Suratgarh and Anupgarh strengthens this hypothesis. Here we develop a methodology to estimate the paleo discharge and paleo width of the lost Saraswati River. In doing so, we rely on the hypothesis which suggests that the ancient Saraswati River used to carry the combined flow or some part of the Yamuna, Sutlej and Ghaggar catchments. We first established a regime relationship between the drainage area-channel width and catchment area-discharge of 29 different rivers presently flowing on the Himalayan Foreland from Indus in the west to the Brahmaputra in the East. We found the width and discharge of all the Himalayan rivers scale in a similar way when they are plotted against their corresponding catchment area. Using these regime curves, we calculate the width and discharge of paleochannels originating from the Sutlej, Yamuna and Ghaggar rivers by measuring their corresponding catchment area from satellite images. Finally, we add the discharge and width obtained from each of the individual catchments to estimate the paleo width and paleo discharge respectively of the Saraswati River. Our regime curves provide a first-order estimate of the paleo discharge of the lost Saraswati. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indus%20civilization" title="Indus civilization">Indus civilization</a>, <a href="https://publications.waset.org/abstracts/search?q=palaeochannel" title=" palaeochannel"> palaeochannel</a>, <a href="https://publications.waset.org/abstracts/search?q=regime%20curve" title=" regime curve"> regime curve</a>, <a href="https://publications.waset.org/abstracts/search?q=Saraswati%20River" title=" Saraswati River"> Saraswati River</a> </p> <a href="https://publications.waset.org/abstracts/102282/a-remote-sensing-approach-to-estimate-the-paleo-discharge-of-the-lost-saraswati-river-of-north-west-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1708</span> Monitoring the Phenomenon of Black Sand in Hurghada’s Artificial Lakes from Sources of Groundwater and Removal Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Noureldin">Ahmed M. Noureldin</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20M.%20Naguib"> Khaled M. Naguib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experimental investigation tries to identify the root cause of the black sand issue in one of the man-made lakes in a well-known Hurghada resort. The lake is nourished by the underground wells' source, which continuously empties into the Red Sea. Chemical testing was done by looking at spots of stinky black sand beneath the sandy lake surface. The findings on samples taken from several locations (wells, lake bottom sand samples, and clean sand with exact specifications as bottom sand) indicated the existence of organic sulfur bacteria that are responsible for the phenomena of black sand. Approximately 39.139 mg/kg of sulfide in the form of hydrogen sulfide was present in the lake bottom sand, while 1.145 mg/kg, before usage, was in the bare sand. The study also involved modeling with the GPS-X program for cleaning bottom sand that uses hydro cyclones as a physical-mechanical treatment method. The modeling findings indicated a Total Organic Carbon (TOC) removal effectiveness of 0.65%. The research recommended using hydro cyclones to routinely mechanically clear the sand from lake bottoms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=man-made%20lakes" title="man-made lakes">man-made lakes</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20sulfur%20bacteria" title=" organic sulfur bacteria"> organic sulfur bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20organic%20carbon" title=" total organic carbon"> total organic carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=hydro%20cyclone" title=" hydro cyclone"> hydro cyclone</a> </p> <a href="https://publications.waset.org/abstracts/168279/monitoring-the-phenomenon-of-black-sand-in-hurghadas-artificial-lakes-from-sources-of-groundwater-and-removal-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1707</span> Experimental Study on Granulated Steel Slag as an Alternative to River Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Raghu">K. Raghu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Vathhsala"> M. N. Vathhsala</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveen%20Aradya"> Naveen Aradya</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharth"> Sharth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> River sand is the most preferred fine aggregate for mortar and concrete. River sand is a product of natural weathering of rocks over a period of millions of years and is mined from river beds. Sand mining has disastrous environmental consequences. The excessive mining of river bed is creating an ecological imbalance. This has lead to have restrictions imposed by ministry of environment on sand mining. Driven by the acute need for sand, stone dust or manufactured sand prepared from the crushing and screening of coarse aggregate is being used as sand in the recent past. However manufactured sand is also a natural material and has quarrying and quality issues. To reduce the burden on the environment, alternative materials to be used as fine aggregates are being extensively investigated all over the world. Looking to the quantum of requirements, quality and properties there has been a global consensus on a material – Granulated slags. Granulated slag has been proven as a suitable material for replacing natural sand / crushed fine aggregates. In developed countries, the use of granulated slag as fine aggregate to replace natural sand is well established and is in regular practice. In the present paper Granulated slag has been experimented for usage in mortar. Slags are the main by-products generated during iron and steel production in the steel industry. Over the past decades, the steel production has increased and, consequently, the higher volumes of by-products and residues generated which have driven to the reuse of these materials in an increasingly efficient way. In recent years new technologies have been developed to improve the recovery rates of slags. Increase of slags recovery and use in different fields of applications like cement making, construction and fertilizers help in preserving natural resources. In addition to the environment protection, these practices produced economic benefits, by providing sustainable solutions that can allow the steel industry to achieve its ambitious targets of “zero waste” in coming years. Slags are generated at two different stages of steel production, iron making and steel making known as BF(Blast Furnace) slag and steel slag respectively. The slagging agent or fluxes, such as lime stone, dolomite and quartzite added into BF or steel making furnaces in order to remove impurities from ore, scrap and other ferrous charges during smelting. The slag formation is the result of a complex series of physical and chemical reactions between the non-metallic charge(lime stone, dolomite, fluxes), the energy sources(coal, coke, oxygen, etc.) and refractory materials. Because of the high temperatures (about 15000 C) during their generation, slags do not contain any organic substances. Due to the fact that slags are lighter than the liquid metal, they float and get easily removed. The slags protect the metal bath from atmosphere and maintain temperature through a kind of liquid formation. These slags are in liquid state and solidified in air after dumping in the pit or granulated by impinging water systems. Generally, BF slags are granulated and used in cement making due to its high cementious properties, and steel slags are mostly dumped due to unfavourable physio-chemical conditions. The increasing dump of steel slag not only occupies a plenty of land but also wastes resources and can potentially have an impact on the environment due to water pollution. Since BF slag contains little Fe and can be used directly. BF slag has found a wide application, such as cement production, road construction, Civil Engineering work, fertilizer production, landfill daily cover, soil reclamation, prior to its application outside the iron and steel making process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel%20slag" title="steel slag">steel slag</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20sand" title=" river sand"> river sand</a>, <a href="https://publications.waset.org/abstracts/search?q=granulated%20slag" title=" granulated slag"> granulated slag</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental" title=" environmental"> environmental</a> </p> <a href="https://publications.waset.org/abstracts/17354/experimental-study-on-granulated-steel-slag-as-an-alternative-to-river-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1706</span> Valorization of Clay Material in the Road Sector By Adding Granulated Recycled Plastic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouaaz%20Oum%20Essaad">Ouaaz Oum Essaad</a>, <a href="https://publications.waset.org/abstracts/search?q=Melbouci%20Bachir"> Melbouci Bachir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experimental study conducted has a dual purpose: to valorize the clay material in the road domain and improve the lift of the shape layers by strengthening with plastic waste (in the form of aggregates). To do this, six mixtures of Clay and sand of different percentages were studied: 100% Clay, 95% Clay + 05% Sand, 90% Clay + 10% Sand, 85% Clay + 15% Sand, 80% Clay + 20% Sand, 75% Clay + 25% Sand. Proctor compaction and simple compression tests have been carried out on mixtures (sand + clay + plastic waste). The results obtained show a clear evolution of the characteristics of the Proctor test and the compressive strength of the mixtures according to the different types and percentages of the recycled plastic Plasticity and consistency index are important parameters that play a role in the toughness of plastic soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=valorization" title="valorization">valorization</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20mixture" title=" soil mixture"> soil mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20tests" title=" mechanical tests"> mechanical tests</a> </p> <a href="https://publications.waset.org/abstracts/163504/valorization-of-clay-material-in-the-road-sector-by-adding-granulated-recycled-plastic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1705</span> A Study of Combined Mechanical and Chemical Stabilisation of Fine Grained Dredge Soil of River Jhelum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20F.%20Sheikh">Adnan F. Sheikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Fayaz%20A.%20Mir"> Fayaz A. Mir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After the recent devastating flood in Kashmir in 2014, dredging of the local water bodies, especially Jhelum River has become a priority for the government. Local government under the project name of 'Comprehensive Flood Management Programme' plans to undertake an increase in discharge of existing flood channels by removal of encroachments and acquisition of additional land, dredging and other works of the water bodies. The total quantity of soil to be dredged will be 16.15 lac cumecs. Dredged soil is a major component that would result from the project which requires disposal/utilization. This study analyses the effect of cement and sand on the engineering properties of soil. The tests were conducted with variable additions of sand (10%, 20% and 30%), whereas cement was added at 12%. Samples with following compositions: soil-cement (12%) and soil-sand (30%) were tested as well. Laboratory experiments were conducted to determine the engineering characteristics of soil, i.e., compaction, strength, and CBR characteristics. The strength characteristics of the soil were determined by unconfined compressive strength test and direct shear test. Unconfined compressive strength of the soil was tested immediately and for a curing period of seven days. CBR test was performed for unsoaked, soaked (worst condition- 4 days) and cured (4 days) samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=comprehensive%20flood%20management%20programme" title="comprehensive flood management programme">comprehensive flood management programme</a>, <a href="https://publications.waset.org/abstracts/search?q=dredge%20soil" title=" dredge soil"> dredge soil</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20characteristics" title=" strength characteristics"> strength characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=flood" title=" flood"> flood</a> </p> <a href="https://publications.waset.org/abstracts/87924/a-study-of-combined-mechanical-and-chemical-stabilisation-of-fine-grained-dredge-soil-of-river-jhelum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1704</span> River's Bed Level Changing Pattern Due to Sedimentation, Case Study: Gash River, Kassala, Sudan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Ali">Faisal Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasssan%20Saad%20Mohammed%20Hilmi"> Hasssan Saad Mohammed Hilmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Mohamed"> Mustafa Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamseddin%20Musa"> Shamseddin Musa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Gash rivers an ephemeral river, it usually flows from July to September, it has a braided pattern with high sediment content, of 15200 ppm in suspension, and 360 kg/sec as bed load. The Gash river bed has an average slope of 1.3 m/Km. The objectives of this study were: assessing the Gash River bed level patterns; quantifying the annual variations in Gash bed level; and recommending a suitable method to reduce the sediment accumulation on the Gash River bed. The study covered temporally the period 1905-2013 using datasets included the Gash river flows, and the cross sections. The results showed that there is an increasing trend in the river bed of 5 cm3 per year. This is resulted in changing the behavior of the flood routing and consequently the flood hazard is tremendously increased in Kassala city. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bed%20level" title="bed level">bed level</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20section" title=" cross section"> cross section</a>, <a href="https://publications.waset.org/abstracts/search?q=gash%20river" title=" gash river"> gash river</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentation" title=" sedimentation"> sedimentation</a> </p> <a href="https://publications.waset.org/abstracts/28631/rivers-bed-level-changing-pattern-due-to-sedimentation-case-study-gash-river-kassala-sudan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1703</span> Use of Fine Marble in Concrete Based On Sand Dune</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Belachia">M. Belachia</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Djebien"> R. Djebien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the development that our country has in all areas and especially in the field of Building and Construction, the development of new building materials is a current problem where researchers are trying to find the right materials for each region and returning cheapest countries. Enhancement of crushed sand and sand dunes and reuse of waste as additions in concrete can help to overcome the deficit in aggregates. This work focuses on the development of concrete made from sand, knowing that our country has huge potential in sand dune. This study is complemented by a review of the possibility of using certain recycled wastes in concrete sand, including the effect of fines (marble powders) on the rheological and mechanical properties of concrete and sand to the outcome optimal formulation. After the characterization phase of basic materials, we proceeded to carry out the experimental program was to search the optimum characteristics by adding different percentages of fines. The aim is to show that the possibility of using local materials (sand dune) for the manufacture of concrete and reuse of waste (marble powders) in the implementation of concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sand%20dune" title="sand dune">sand dune</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title=" rheological properties"> rheological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20marble" title=" fine marble"> fine marble</a> </p> <a href="https://publications.waset.org/abstracts/16777/use-of-fine-marble-in-concrete-based-on-sand-dune" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1702</span> Effect of Sand Wall Stabilized with Different Percentages of Lime on Bearing Capacity of Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20S.%20Abdulrasool">Ahmed S. Abdulrasool</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently sand wall started to gain more attention as the sand is easy to compact by using vibroflotation technique. An advantage of sand wall is the availability of different additives that can be mixed with sand to increase the stiffness of the sand wall and hence to increase its performance. In this paper, the bearing capacity of circular foundation surrounded by sand wall stabilized with lime is evaluated through laboratory testing. The studied parameters include different sand-lime walls depth (H/D) ratio (wall depth to foundation diameter) ranged between (0.0-3.0). Effect of lime percentages on the bearing capacity of skirted foundation models is investigated too. From the results, significant change is occurred in the behavior of shallow foundations due to confinement of the soil. It has been found that (H/D) ratio of 2 gives substantial improvement in bearing capacity, and beyond (H/D) ratio of 2, there is no significant improvement in bearing capacity. The results show that the optimum lime content is 11%, and the maximum increase in bearing capacity reaches approximately 52% at (H/D) ratio of 2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title="bearing capacity">bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20foundation" title=" circular foundation"> circular foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20soil" title=" clay soil"> clay soil</a>, <a href="https://publications.waset.org/abstracts/search?q=lime-sand%20wall" title=" lime-sand wall"> lime-sand wall</a> </p> <a href="https://publications.waset.org/abstracts/62996/effect-of-sand-wall-stabilized-with-different-percentages-of-lime-on-bearing-capacity-of-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1701</span> Time Series Modelling and Prediction of River Runoff: Case Study of Karkheh River, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karim%20Hamidi%20Machekposhti">Karim Hamidi Machekposhti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Sedghi"> Hossein Sedghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdolrasoul%20Telvari"> Abdolrasoul Telvari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Babazadeh"> Hossein Babazadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rainfall and runoff phenomenon is a chaotic and complex outcome of nature which requires sophisticated modelling and simulation methods for explanation and use. Time Series modelling allows runoff data analysis and can be used as forecasting tool. In the paper attempt is made to model river runoff data and predict the future behavioural pattern of river based on annual past observations of annual river runoff. The river runoff analysis and predict are done using ARIMA model. For evaluating the efficiency of prediction to hydrological events such as rainfall, runoff and etc., we use the statistical formulae applicable. The good agreement between predicted and observation river runoff coefficient of determination (R<sup>2</sup>) display that the ARIMA (4,1,1) is the suitable model for predicting Karkheh River runoff at Iran. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20series%20modelling" title="time series modelling">time series modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=ARIMA%20model" title=" ARIMA model"> ARIMA model</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20runoff" title=" river runoff"> river runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Karkheh%20River" title=" Karkheh River"> Karkheh River</a>, <a href="https://publications.waset.org/abstracts/search?q=CLS%20method" title=" CLS method"> CLS method</a> </p> <a href="https://publications.waset.org/abstracts/76659/time-series-modelling-and-prediction-of-river-runoff-case-study-of-karkheh-river-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1700</span> Incorporation of Foundry Sand in Asphalt Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20P.%20Nascimento">L. P. Nascimento</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Soares"> M. Soares</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Val%C3%A9rio"> N. Valério</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ribeiro"> A. Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20M.%20Oliveira"> J. R. M. Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Ara%C3%BAjo"> J. Araújo</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Vilarinho"> C. Vilarinho</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Carvalho"> J. Carvalho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the growing need to save natural resources and value waste that was previously worthless, waste recycling becomes imperative. Thus, with the techno-scientific growth and in the perspective of sustainability, it is observed that waste has the potential to replace significant percentages of materials considered “virgin”. An example is the replacement of crushed aggregates with foundry sand. In this work, a mix design study of two asphalt mixes, a base mix (AC 20) and a surface mix (AC14) was carried out to evaluate the maximum amount of foundry sand residue that could be used. Water sensitivity tests were performed to evaluate the mechanical behavior of these mixtures. For the superficial mixture with foundry sand (AC14FS), the maximum of sand used was 5%, with satisfactory results of sensitivity to water. In the base mixture with sand (AC20FS), the maximum of sand used was 12%, which had less satisfactory results. However, from an environmental point of view, the re-incorporation of this residue in the pavement is beneficial because it prevents it from being deposited in landfills. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foundry%20sand" title="foundry sand">foundry sand</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20mix%20asphalt" title=" hot mix asphalt"> hot mix asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20waste" title=" industrial waste"> industrial waste</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20valorization" title=" waste valorization"> waste valorization</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/152830/incorporation-of-foundry-sand-in-asphalt-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=river%20sand&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=river%20sand&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=river%20sand&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=river%20sand&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=river%20sand&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=river%20sand&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=river%20sand&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=river%20sand&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=river%20sand&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=river%20sand&page=57">57</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=river%20sand&page=58">58</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=river%20sand&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>