CINXE.COM

Search results for: land productivity

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: land productivity</title> <meta name="description" content="Search results for: land productivity"> <meta name="keywords" content="land productivity"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="land productivity" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="land productivity"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3705</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: land productivity</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3705</span> Monitoring Land Productivity Dynamics of Gombe State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ishiyaku%20Abdulkadir">Ishiyaku Abdulkadir</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20Kumar%20J"> Satish Kumar J</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Land Productivity is a measure of the greenness of above-ground biomass in health and potential gain and is not related to agricultural productivity. Monitoring land productivity dynamics is essential to identify, especially when and where the trend is characterized degraded for mitigation measures. This research aims to monitor the land productivity trend of Gombe State between 2001 and 2015. QGIS was used to compute NDVI from AVHRR/MODIS datasets in a cloud-based method. The result appears that land area with improving productivity account for 773sq.km with 4.31%, stable productivity traced to 4,195.6 sq.km with 23.40%, stable but stressed productivity represent 18.7sq.km account for 0.10%, early sign of decline productivity occupied 5203.1sq.km with 29%, declining productivity account for 7019.7sq.km, represent 39.2%, water bodies occupied 718.7sq.km traced to 4% of the state’s area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=above-ground%20biomass" title="above-ground biomass">above-ground biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics" title=" dynamics"> dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20productivity" title=" land productivity"> land productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=man-environment%20relationship" title=" man-environment relationship"> man-environment relationship</a> </p> <a href="https://publications.waset.org/abstracts/134221/monitoring-land-productivity-dynamics-of-gombe-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3704</span> Farming Production in Brazil: Innovation and Land-Sparing Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isabela%20Romanha%20de%20Alcantara">Isabela Romanha de Alcantara</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Eustaquio%20Ribeiro%20Vieira%20Filho"> Jose Eustaquio Ribeiro Vieira Filho</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Garcia%20Gasques"> Jose Garcia Gasques</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Innovation and technology can be determinant factors to ensure agricultural and sustainable growth, as well as productivity gains. Technical change has contributed considerably to supply agricultural expansion in Brazil. This agricultural growth could be achieved by incorporating more land or capital. If capital is the main source of agricultural growth, it is possible to increase production per unit of land. The objective of this paper is to estimate: 1) total factor productivity (TFP), which is measured in terms of the rate of output per unit of input; and 2) the land-saving effect (LSE) that is the amount of land required in the case that yield rate is constant over time. According to this study, from 1990 to 2019, it appears that 87 percent of Brazilian agriculture product growth comes from the gains of productivity; the rest of 13 percent comes from input growth. In the same period, the total LSE was roughly 400 Mha, which corresponds to 47 percent of the national territory. These effects reflect the greater efficiency of using productive factors, whose technical change has allowed an increase in agricultural production based on productivity gains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=land-saving%20effect" title=" land-saving effect"> land-saving effect</a>, <a href="https://publications.waset.org/abstracts/search?q=livestock" title=" livestock"> livestock</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a> </p> <a href="https://publications.waset.org/abstracts/137802/farming-production-in-brazil-innovation-and-land-sparing-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3703</span> Strategy in Controlling Rice-Field Conversion in Pangkep Regency, South Sulawesi, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurliani">Nurliani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ida%20Rosada"> Ida Rosada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The national rice consumption keeps increasing along with raising income of the households and the rapid growth of population. However, food availability, particularly rice, is limited. Impacts of rice-field conversion have run cumulatively, as we can see on potential losses of rice and crops production, as well as work opportunity that keeps increasing year-by-year. Therefore, it requires policy recommendation to control rice-field conversion through economic, social, and ecological approaches. The research was a survey method intended to: (1) Identify internal factors; quality and productivity of the land as the cause of land conversion, (2) Identify external factors of land conversion, value of the rice-field and the competitor&rsquo;s land, workforce absorption, and regulation, as well as (3) Formulate strategies in controlling rice-field conversion. Population of the research was farmers who applied land conversion at Pangkep Regency, South Sulawesi. Samples were determined using the incidental sampling method. Data analysis used productivity analysis, land quality analysis, total economic value analysis, and SWOT analysis. Results of the research showed that the quality of rice-field was low as well as productivity of the grains (unhulled-rice). So that, average productivity of the grains and quality of rice-field were low as well. Total economic value of rice-field was lower than the economic value of the embankment. Workforce absorption value on rice-field was higher than on the embankment. Strategies in controlling such rice-field conversion can be done by increasing rice-field productivity, improving land quality, applying cultivation technique of specific location, improving the irrigation lines, and socializing regulation and sanction about the transfer of land use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20conversion" title="land conversion">land conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20rice-field" title=" quality of rice-field"> quality of rice-field</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20economic%20value." title=" land economic value."> land economic value.</a> </p> <a href="https://publications.waset.org/abstracts/56534/strategy-in-controlling-rice-field-conversion-in-pangkep-regency-south-sulawesi-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3702</span> Impact of Gender Difference on Crop Productivity: The Case of Decha Woreda, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Getinet%20Gezahegn%20Gebre">Getinet Gezahegn Gebre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study examined the impact of gender differences on Crop productivity in Decha woreda of southwest Kafa zone, located 140 Km from Jimma Town and 460 km southwest of Addis Ababa, between Bonga town and Omo River. The specific objectives were to assess the extent to which the agricultural production system is gender oriented, to examine access and control over productive resources, and to estimate men’s and women’s productivity in agriculture. Cross-sectional data collected from a total of 140 respondents were used in this study, whereby 65 were female-headed and 75 were male-headed households. The data were analyzed by using Statistical Package for Social Science (SPSS). Descriptive statistics such as frequency, mean, percentage, t-test and chi-square were used to summarize and compare the information between the two groups. Moreover, Cobb-Douglas(CD) production function was used to estimate the productivity difference in agriculture between male and female-headed households. Results of the study showed that male-headed households (MHH) own more productive resources such as land, livestock, labor and other agricultural inputs as compared to female-headed households (FHH). Moreover, the estimate of CD production function shows that livestock, herbicide use, land size and male labor were statistically significant for MHH, while livestock, land size, herbicides use and female labor were significant variables for FHH. The crop productivity difference between MHH and FHH was about 68.83% in the study area. However, if FHH had equal access to the inputs as MHH, the gross value of the output would be higher by 23.58% for FHH. This might suggest that FHH would be more productive than MHH if they had equal access to inputs as MHH. Based on the results obtained, the following policy implication can be drawn: accessing FHH to inputs that increase the productivity of agriculture, such as herbicides, livestock and male labor; increasing the productivity of land; and introducing technologies that reduce the time and energy of women, especially for enset processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gender%20difference" title="gender difference">gender difference</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20productivity" title=" crop productivity"> crop productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=GDP" title=" GDP"> GDP</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/163857/impact-of-gender-difference-on-crop-productivity-the-case-of-decha-woreda-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3701</span> The Impact of Gender Difference on Crop Productivity: The Case of Decha Woreda, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Getinet%20Gezahegn%20Gebre">Getinet Gezahegn Gebre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study examined the impact of gender differences on Crop productivity in Decha woreda of south west Kafa zone, located 140 Km from Jimma Town and 460 km south west of Addis Ababa, between Bonga town and Omo River. The specific objectives were to assess the extent to which the agricultural production system is gender oriented, to examine access and control over productive resources, and to estimate men’s and women’s productivity in agriculture. Cross-sectional data collected from a total of 140 respondents were used in this study, whereby 65 were female headed and 75 were male headed households. The data were analyzed by using Statistical Package for Social Science (SPSS). Descriptive statistics such as frequency, mean, percentage, t-test, and chi-square were used to summarize and compare the information between the two groups. Moreover, Cobb-Douglas(CD) production function was to estimate the productivity difference in agriculture between male and female headed households. Results of the study showed that male headed households (MHH) own more productive resources such as land, livestock, labor, and other agricultural inputs as compared to female headed households (FHH). Moreover, the estimate of CD production function shows that livestock, herbicide use, land size, and male labor were statistically significant for MHH, while livestock, land size, herbicides use and female labor were significant variables for FHH. The crop productivity difference between MHH and FHH was about 68.83% in the study area. However, if FHH had equal access to the inputs as MHH, the gross value of the output would be higher by 23.58% for FHH. This might suggest that FHH would be more productive than MHH if they had equal access to inputs as MHH. Based on the results obtained, the following policy implication can be drawn: accessing FHH to inputs that increase the productivity of agriculture, such as herbicides, livestock, and male labor; increasing the productivity of land; and introducing technologies that reduce the time and energy of women, especially for inset processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gender%20difference" title="gender difference">gender difference</a>, <a href="https://publications.waset.org/abstracts/search?q=crop" title=" crop"> crop</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/163943/the-impact-of-gender-difference-on-crop-productivity-the-case-of-decha-woreda-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3700</span> The Effect of Resource Misallocation on the Productivity of Rice Farming in Thailand: Evidence from Household-Level Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siwapong%20Dheera-Aumpon">Siwapong Dheera-Aumpon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Resource misallocation is known to be prevalent in many countries. Such misallocation in the manufacturing sector is large and has a considerable negative effect on aggregate productivity. Thailand is one of the countries having large resource misallocation in the manufacturing sector. Resource misallocation is also known to be widespread in the agricultural sector. It is, therefore, likely that resource misallocation exists in the agricultural sector of Thailand as well. This study aims to evaluate the extent of resource misallocation in Thai rice farming. Using household-level data from 2013 Thai Agricultural Census, this study calculates farm total factor productivity (TFP) controlling for land quality and rain. Similar to the case of Malawi, marginal products of land and capital are found to be related to farm TFP implying large resource misallocation. The output gain from a reallocation of resources to their best use is 67 percent. The gain from reallocation is highest for farms in the southern region and followed by the northeastern region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=misallocation" title=" misallocation"> misallocation</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=rice" title=" rice"> rice</a> </p> <a href="https://publications.waset.org/abstracts/86882/the-effect-of-resource-misallocation-on-the-productivity-of-rice-farming-in-thailand-evidence-from-household-level-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3699</span> The Climate Change and Soil Degradation in the Czech Republic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miroslav%20Dumbrovsky">Miroslav Dumbrovsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with impacts of climate change with the main emphasis on land degradation, agriculture and forestry management in the landscape. Land degradation, due to adverse effect of farmers activities, as a result of inappropriate conventional technologies, was a major issue in the Czech Republic during the 20th century and will remain for solving in the 21st century. The importance of land degradation is very high because of its impact on crop productivity and many other adverse effects. Land degradation through soil degradation is causing losses on crop productivity and quality of the environment, through decreasing quality of soil and water (especially water resources). Negative effects of conventional farming practices are increased water erosion, as well as crusting and compaction of the topsoil and subsoil. Soil erosion caused by water destructs the soil’s structure, reduces crop productivity due to deterioration in soil physical and chemical properties such as infiltration rate, water-holding capacity, loss of nutrients needed for crop production, and loss of soil carbon. Water erosion occurs on fields with row crops (maize, sunflower), especially during the rainfall period from April to October. Recently there is a serious problem of greatly expanded production of biofuels and bioenergy from field crops. The result is accelerated soil degradation. The damages (on and off- site) are greater than the benefits. An effective soil conservation requires an appropriate complex system of measures in the landscape. They are also important to continue to develop new sophisticated methods and technologies for decreasing land degradation. The system of soil conservation solving land degradation depend on the ability and the willingness of land users to apply them. When we talk about land degradation, it is not just a technical issue but also an economic and political issue. From a technical point of view, we have already made many positive steps, but for successful solving the problem of land degradation is necessary to develop suitable economic and political tools to increase the willingness and ability of land users to adopt conservation measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20degradation" title="land degradation">land degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20conservation" title=" soil conservation"> soil conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a> </p> <a href="https://publications.waset.org/abstracts/57706/the-climate-change-and-soil-degradation-in-the-czech-republic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3698</span> The Role of Land Consolidation to Reduce Soil Degradation in the Czech Republic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miroslav%20Dumbrovsky">Miroslav Dumbrovsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with positive impacts of land consolidation on decreasing soil degradation with the main emphasis on soil and water conservation in the landscape. The importance of land degradation is very high because of its impact on crop productivity and many other adverse effects. Soil degradation through soil erosion is causing losses in crop productivity and quality of the environment, through decreasing quality of soil and water (especially water resources). Negative effects of conventional farming practices are increased water erosion, as well as crusting and compaction of the topsoil and subsoil. Soil erosion caused by water destructs the soil’s structure, reduces crop productivity due to deterioration in soil physical and chemical properties such as infiltration rate, water holding capacity, loss of nutrients needed for crop production, and loss of soil carbon. Recently, a new process of complex land consolidation in the Czech Republic has provided a unique opportunity for improving the quality of the environment and sustainability of the crop production by means a better soil and water conservation. The present process of the complex land consolidation is not only a reallocation of plots, but this system consists of a new layout of plots within a certain territory, aimed at establishing the integrated land-use economic units, based on the needs of individual landowners and land users. On the other hand, the interests of the general public and the environmental protection have to be solved, too. From the general point of view, a large part of the Czech landscape shall be reconstructed in the course of complex land consolidation projects. These projects will be based on new integrated soil-economic units, spatially arranged in a designed multifunctional system of soil and water conservation measures, such as path network and a territorial system of ecological stability, according to structural changes in agriculture. This new approach will be the basis of a rational economic utilization of the region which will comply with the present ecological and aesthetic demands at present. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20degradation" title="soil degradation">soil degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20consolidation" title=" land consolidation"> land consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20conservation" title=" soil conservation"> soil conservation</a> </p> <a href="https://publications.waset.org/abstracts/67572/the-role-of-land-consolidation-to-reduce-soil-degradation-in-the-czech-republic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3697</span> The Impact of Human Intervention on Net Primary Productivity for the South-Central Zone of Chile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yannay%20Casas-Ledon">Yannay Casas-Ledon</a>, <a href="https://publications.waset.org/abstracts/search?q=Cinthya%20A.%20Andrade"> Cinthya A. Andrade</a>, <a href="https://publications.waset.org/abstracts/search?q=Camila%20E.%20Salazar"> Camila E. Salazar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20Aguayo"> Mauricio Aguayo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The sustainable management of available natural resources is a crucial question for policy-makers, economists, and the research community. Among several, land constitutes one of the most critical resources, which is being intensively appropriated by human activities producing ecological stresses and reducing ecosystem services. In this context, net primary production (NPP) has been considered as a feasible proxy indicator for estimating the impacts of human interventions on land-uses intensity. Accordingly, the human appropriation of NPP (HANPP) was calculated for the south-central regions of Chile between 2007 and 2014. The HANPP was defined as the difference between the potential NPP of the naturally produced vegetation (NPP0, i.e., the vegetation that would exist without any human interferences) and the NPP remaining in the field after harvest (NPPeco), expressed in gC/m² yr. Other NPP flows taken into account in HANPP estimation were the harvested (NPPh) and the losses of NPP through land conversion (NPPluc). The ArcGIS 10.4 software was used for assessing the spatial and temporal HANPP changes. The differentiation of HANPP as % of NPP0 was estimated by each landcover type taken in 2007 and 2014 as the reference years. The spatial results depicted a negative impact on land use efficiency during 2007 and 2014, showing negative HANPP changes for the whole region. The harvest and biomass losses through land conversion components are the leading causes of loss of land-use efficiency. Furthermore, the study depicted higher HANPP in 2014 than in 2007, representing 50% of NPP0 for all landcover classes concerning 2007. This performance was mainly related to the higher volume of harvested biomass for agriculture. In consequence, the cropland depicted the high HANPP followed by plantation. This performance highlights the strong positive correlation between the economic activities developed into the region. This finding constitutes the base for a better understanding of the main driving force influencing biomass productivity and a powerful metric for supporting the sustainable management of land use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20appropriation" title="human appropriation">human appropriation</a>, <a href="https://publications.waset.org/abstracts/search?q=land-use%20changes" title=" land-use changes"> land-use changes</a>, <a href="https://publications.waset.org/abstracts/search?q=land-use%20impact" title=" land-use impact"> land-use impact</a>, <a href="https://publications.waset.org/abstracts/search?q=net%20primary%20productivity" title=" net primary productivity"> net primary productivity</a> </p> <a href="https://publications.waset.org/abstracts/130455/the-impact-of-human-intervention-on-net-primary-productivity-for-the-south-central-zone-of-chile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3696</span> Geospatial Land Suitability Modeling for Biofuel Crop Using AHP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naruemon%20Phongaksorn">Naruemon Phongaksorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The biofuel consumption has increased significantly over the decade resulting in the increasing request on agricultural land for biofuel feedstocks. However, the biofuel feedstocks are already stressed of having low productivity owing to inappropriate agricultural practices without considering suitability of crop land. This research evaluates the land suitability using GIS-integrated Analytic Hierarchy Processing (AHP) of biofuel crops: cassava, at Chachoengsao province, in Thailand. AHP method that has been widely accepted for land use planning. The objective of this study is compared between AHP method and the most limiting group of land characteristics method (classical approach). The reliable results of the land evaluation were tested against the crop performance assessed by the field investigation in 2015. In addition to the socio-economic land suitability, the expected availability of raw materials for biofuel production to meet the local biofuel demand, are also estimated. The results showed that the AHP could classify and map the physical land suitability with 10% higher overall accuracy than the classical approach. The Chachoengsao province showed high and moderate socio-economic land suitability for cassava. Conditions in the Chachoengsao province were also favorable for cassava plantation, as the expected raw material needed to support ethanol production matched that of ethanol plant capacity of this province. The GIS integrated AHP for biofuel crops land suitability evaluation appears to be a practical way of sustainably meeting biofuel production demand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Analytic%20Hierarchy%20Processing%20%28AHP%29" title="Analytic Hierarchy Processing (AHP)">Analytic Hierarchy Processing (AHP)</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassava" title=" Cassava"> Cassava</a>, <a href="https://publications.waset.org/abstracts/search?q=Geographic%20Information%20Systems" title=" Geographic Information Systems"> Geographic Information Systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Land%20suitability" title=" Land suitability "> Land suitability </a> </p> <a href="https://publications.waset.org/abstracts/104797/geospatial-land-suitability-modeling-for-biofuel-crop-using-ahp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3695</span> Remote Sensing and GIS Integration for Paddy Production Estimation in Bali Province, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarono">Sarono</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamim%20Zaky%20Hadibasyir"> Hamim Zaky Hadibasyir</a>, <a href="https://publications.waset.org/abstracts/search?q=dan%20Ridho%20Kurniawan"> dan Ridho Kurniawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Estimation of paddy production is one of the areas that can be examined using the techniques of remote sensing and geographic information systems (GIS) in the field of agriculture. The purpose of this research is to know the amount of the paddy production estimation and how remote sensing and geographic information systems (GIS) are able to perform analysis of paddy production estimation in Tegalallang and Payangan Sub district, Bali Province, Indonesia. The method used is the method of land suitability. This method associates a physical parameters which are to be embodied in the smallest unit of a mapping that represents a mapping unit in a particular field and connecting with its field productivity. Analysis of estimated production using standard land suitability from FAO using matching technique. The parameters used to create the land unit is slope (FAO), climate classification (Oldeman), landform (Prapto Suharsono), and soil type. Land use map consist of paddy and non paddy field information obtained from Geo-eye 1 imagery using visual interpretation technique. Landsat image of the Data used for the interpretation of the landform, the classification of the slopes obtained from high point identification with method of interpolation spline, whereas climate data, soil, use secondary data originating from institutions-related institutions. The results of this research indicate Tegallalang and Payangan Districts in known wetland suitability consists of S1 (very suitable) covering an area of 2884,7 ha with the productivity of 5 tons/ha and S2 (suitable) covering an area of 482,9 ha with the productivity of 3 tons/ha. The sum of paddy production estimation as a results in both districts are 31.744, 3 tons in one year. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=production%20estimation" title="production estimation">production estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=paddy" title=" paddy"> paddy</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=geography%20information%20system" title=" geography information system"> geography information system</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20suitability" title=" land suitability"> land suitability</a> </p> <a href="https://publications.waset.org/abstracts/9550/remote-sensing-and-gis-integration-for-paddy-production-estimation-in-bali-province-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3694</span> Urban Land Expansion Impact Assessment on Agriculture Land in Kabul City, Afghanistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Sharif%20Ahmadi">Ahmad Sharif Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoshitaka%20Kajita"> Yoshitaka Kajita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kabul city is experiencing urban land expansion in an unprecedented scale, especially since the last decade. With massive population expansion and fast economic development, urban land has increasingly expanded and encroached upon agriculture land during the urbanization history of the city. This paper evaluates the integrated urban land expansion impact on agriculture land in Kabul city since the formation of the basic structure of the city between 1962-1964. The paper studies the temporal and spatial characteristic of agriculture land and agriculture land loss in Kabul city using geographic information system (GIS) and remote sensing till 2008. Many temporal Landsat Thematic Mapper (TM) imageries were interpreted to detect the temporal and spatial characteristics of agriculture land loss. Different interval study periods, however, had vast difference in the agriculture land loss which is due to the urban land expansion trends in the city. the high number of Agriculture land adjacent to the city center and urban fringe have been converted into urban land during the study period in the city, as the agriculture land is highly correlated with the urban land. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture%20land" title="agriculture land">agriculture land</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture%20land%20loss" title=" agriculture land loss"> agriculture land loss</a>, <a href="https://publications.waset.org/abstracts/search?q=Kabul%20city" title=" Kabul city"> Kabul city</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20land%20expansion" title=" urban land expansion"> urban land expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=urbanization" title=" urbanization"> urbanization</a> </p> <a href="https://publications.waset.org/abstracts/63212/urban-land-expansion-impact-assessment-on-agriculture-land-in-kabul-city-afghanistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3693</span> Quantile Smoothing Splines: Application on Productivity of Enterprises</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Semra%20Turkan">Semra Turkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have examined the factors that affect the productivity of Turkey’s Top 500 Industrial Enterprises in 2014. The labor productivity of enterprises is taken as an indicator of productivity of industrial enterprises. When the relationships between some financial ratios and labor productivity, it is seen that there is a nonparametric relationship between labor productivity and return on sales. In addition, the distribution of labor productivity of enterprises is right-skewed. If the dependent distribution is skewed, the quantile regression is more suitable for this data. Hence, the nonparametric relationship between labor productivity and return on sales by quantile smoothing splines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantile%20regression" title="quantile regression">quantile regression</a>, <a href="https://publications.waset.org/abstracts/search?q=smoothing%20spline" title=" smoothing spline"> smoothing spline</a>, <a href="https://publications.waset.org/abstracts/search?q=labor%20productivity" title=" labor productivity"> labor productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20ratios" title=" financial ratios"> financial ratios</a> </p> <a href="https://publications.waset.org/abstracts/60552/quantile-smoothing-splines-application-on-productivity-of-enterprises" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3692</span> Multi-Temporal Remote Sensing of landscape Dynamics and Pattern Changes in Dire District, Southern Oromia, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Berhanu">K. Berhanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improper land use results in land degradation and decline in agricultural productivity. Hence, in order to get maximum benefits out of land, proper utilization of its resources is inevitable. The present study was aimed at identifying the landcover changes in the study area in the last 25 years and determines the extent and direction of change that has occurred. The study made use of Landsat TM 1986 and 2011 Remote Sensing Satellite Image for analysis to determine the extent and pattern of rangeland change. The results of the landuse/landcover change detection showed that in the last 25 years, 3 major changes were observed, grassland and open shrub-land resource significantly decreased at a rate of 17.1km2/year and 12 km2/year/, respectively. On the other hand in 25 years dense bushland, open bush land, dense shrubland and cultivated land has shown increment in size at a rate of 0.23km2/year,13.5 km2/year, 6.3 km2/year and 0.2 km2/year, respectively within 25 years. The expansion of unpalatable woody species significantly reduced the rangeland size and availability of grasses. The consequence of the decrease in herbaceous biomass production might result in high risk of food insecurity in the area unless proper interventions are made in time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS%20and%20remote%20sensing" title="GIS and remote sensing">GIS and remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=Dire%20District" title=" Dire District"> Dire District</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%2Fland%20cover" title=" land use/land cover"> land use/land cover</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20sat%20TM" title=" land sat TM "> land sat TM </a> </p> <a href="https://publications.waset.org/abstracts/12049/multi-temporal-remote-sensing-of-landscape-dynamics-and-pattern-changes-in-dire-district-southern-oromia-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3691</span> Value-Added Tax Exemptions and Farm-Level Productivity: The Case of Rice, Millet, and Maize in Senegal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Awa%20Diouf">Awa Diouf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since 2004, inputs specific to the agricultural sector have been exempt from VAT in Senegal. This paper measures, using the Naatal Mbay survey, the impact of this reform on agricultural productivity. The survey covers a sample of 3,122 rice, millet and maize farms for the 2016 crop year. The regressions show that tax incentives are ineffective in improving partial productivity of the land factor: the higher the share of the value of exemptions in the higher the production costs, the less productive the operation. The negative effect of the exemptions on productivity is accentuated for the most intensive agricultural area: the Senegal River Delta, and the most intensive crop: irrigated rice. This relationship could stem from a decrease in allocative efficiency: farmers have overinvested in the most accessible inputs. The loose budget constraint syndrome, therefore, explains this result: farmers who benefit more from exemptions reduce their managerial effort. The results suggest a removal of the VAT exemptions applied to finished products and agricultural inputs for a better efficiency of this tax, which typically taxes final consumption and should be neutral for the producer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20productivity" title="agricultural productivity">agricultural productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20taxation" title=" agricultural taxation"> agricultural taxation</a>, <a href="https://publications.waset.org/abstracts/search?q=Senegal" title=" Senegal"> Senegal</a>, <a href="https://publications.waset.org/abstracts/search?q=tax%20incentives" title=" tax incentives"> tax incentives</a> </p> <a href="https://publications.waset.org/abstracts/122919/value-added-tax-exemptions-and-farm-level-productivity-the-case-of-rice-millet-and-maize-in-senegal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3690</span> Land Suitability Assessment for Vineyards in Afghanistan Based on Physical and Socio-Economic Criteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Tokhi%20Arab">Sara Tokhi Arab</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Salari"> Tariq Salari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryozo%20Noguchi"> Ryozo Noguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tofael%20Ahamed"> Tofael Ahamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Land suitability analysis is essential for table grape cultivation in order to increase its production and productivity under the dry condition of Afghanistan. In this context, the main aim of this paper was to determine the suitable locations for vineyards based on satellite remote sensing and GIS (geographical information system) in Kabul Province of Afghanistan. The Landsat8 OLI (operational land imager) and thermal infrared sensor (TIRS) and shuttle radar topography mission digital elevation model (SRTM DEM) images were processed to obtain the normalized difference vegetation index (NDVI), normalized difference moisture index (NDMI), land surface temperature (LST), and topographic criteria (elevation, aspect, and slope). Moreover, Jaxa rainfall (mm per hour), soil properties information are also used for the physical suitability of vineyards. Besides, socio-economic criteria were collected through field surveys from Kabul Province in order to develop the socio-economic suitability map. Finally, the suitable classes were determined using weighted overly based on a reclassification of each criterion based on AHP (Analytical Hierarchy Process) weights. The results indicated that only 11.1% of areas were highly suitable, 24.8% were moderately suitable, 35.7% were marginally suitable and 28.4% were not physically suitable for grapes production. However, 15.7% were highly suitable, 17.6% were moderately suitable, 28.4% were marginally suitable and 38.3% were not socio-economically suitable for table grapes production in Kabul Province. This research could help decision-makers, growers, and other stakeholders with conducting precise land assessments by identifying the main limiting factors for the production of table grapes management and able to increase land productivity more precisely. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vineyards" title="vineyards">vineyards</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20physical%20suitability" title=" land physical suitability"> land physical suitability</a>, <a href="https://publications.waset.org/abstracts/search?q=socio-economic%20suitability" title=" socio-economic suitability"> socio-economic suitability</a>, <a href="https://publications.waset.org/abstracts/search?q=AHP" title=" AHP"> AHP</a> </p> <a href="https://publications.waset.org/abstracts/142717/land-suitability-assessment-for-vineyards-in-afghanistan-based-on-physical-and-socio-economic-criteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3689</span> Securing Land Rights for Food Security in Africa: An Appraisal of Links Between Smallholders’ Land Rights and the Right to Adequate Food in Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Husen%20Ahmed%20Tura">Husen Ahmed Tura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are strong links between secure land rights and food security in Africa. However, as land is owned by governments, land users do not have adequate legislative protection. This article explores normative and implementation gaps in relation to small-scale farmers’ land rights under the Ethiopia’s law. It finds that the law facilitates eviction of small-scale farmers and indigenous peoples from their land without adequate alternative means of livelihood. It argues that as access to land and other natural resources is strongly linked to the right to adequate food, Ethiopia should reform its land laws in the light of its legal obligations under international human rights law to respect, protect and fulfill the right to adequate food and ensure freedom from hunger. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smallholder" title="smallholder">smallholder</a>, <a href="https://publications.waset.org/abstracts/search?q=secure%20land%20rights" title=" secure land rights "> secure land rights </a>, <a href="https://publications.waset.org/abstracts/search?q=food%20security" title=" food security"> food security</a>, <a href="https://publications.waset.org/abstracts/search?q=right%20to%20food" title=" right to food"> right to food</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20grabbing" title=" land grabbing"> land grabbing</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20evictions" title=" forced evictions"> forced evictions</a> </p> <a href="https://publications.waset.org/abstracts/55657/securing-land-rights-for-food-security-in-africa-an-appraisal-of-links-between-smallholders-land-rights-and-the-right-to-adequate-food-in-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3688</span> Land Degradation Vulnerability Modeling: A Study on Selected Micro Watersheds of West Khasi Hills Meghalaya, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amritee%20Bora">Amritee Bora</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20Mipun"> B. S. Mipun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Land degradation is often used to describe the land environmental phenomena that reduce land’s original productivity both qualitatively and quantitatively. The study of land degradation vulnerability primarily deals with “Environmentally Sensitive Areas” (ESA) and the amount of topsoil loss due to erosion. In many studies, it is observed that the assessment of the existing status of land degradation is used to represent the vulnerability. Moreover, it is also noticed that in most studies, the primary emphasis of land degradation vulnerability is to assess its sensitivity to soil erosion only. However, the concept of land degradation vulnerability can have different objectives depending upon the perspective of the study. It shows the extent to which changes in land use land cover can imprint their effect on the land. In other words, it represents the susceptibility of a piece of land to degrade its productive quality permanently or in the long run. It is also important to mention that the vulnerability of land degradation is not a single factor outcome. It is a probability assessment to evaluate the status of land degradation and needs to consider both biophysical and human induce parameters. To avoid the complexity of the previous models in this regard, the present study has emphasized on to generate a simplified model to assess the land degradation vulnerability in terms of its current human population pressure, land use practices, and existing biophysical conditions. It is a “Mixed-Method” termed as the land degradation vulnerability index (LDVi). It was originally inspired by the MEDALUS model (Mediterranean Desertification and Land Use), 1999, and Farazadeh’s 2007 revised version of it. It has followed the guidelines of Space Application Center, Ahmedabad / Indian Space Research Organization for land degradation vulnerability. The model integrates the climatic index (Ci), vegetation index (Vi), erosion index (Ei), land utilization index (Li), population pressure index (Pi), and cover management index (CMi) by giving equal weightage to each parameter. The final result shows that the very high vulnerable zone primarily indicates three (3) prominent circumstances; land under continuous population pressure, high concentration of human settlement, and high amount of topsoil loss due to surface runoff within the study sites. As all the parameters of the model are amalgamated with equal weightage further with the help of regression analysis, the LDVi model also provides a strong grasp of each parameter and how far they are competent to trigger the land degradation process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=population%20pressure" title="population pressure">population pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20utilization" title=" land utilization"> land utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20degradation%20vulnerability" title=" land degradation vulnerability"> land degradation vulnerability</a> </p> <a href="https://publications.waset.org/abstracts/144126/land-degradation-vulnerability-modeling-a-study-on-selected-micro-watersheds-of-west-khasi-hills-meghalaya-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3687</span> Remote Sensing and GIS for Land Use Change Assessment: Case Study of Oued Bou Hamed Watershed, Southern Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouerchefani%20Dalel">Ouerchefani Dalel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdhaoui%20Basma"> Mahdhaoui Basma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Land use change is one of the important factors needed to evaluate later on the impact of human actions on land degradation. This work present the application of a methodology based on remote sensing for evaluation land use change in an arid region of Tunisia. This methodology uses Landsat TM and ETM+ images to produce land use maps by supervised classification based on ground truth region of interests. This study showed that it was possible to rely on radiometric values of the pixels to define each land use class in the field. It was also possible to generate 3 land use classes of the same study area between 1988 and 2011. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use" title="land use">land use</a>, <a href="https://publications.waset.org/abstracts/search?q=change" title=" change"> change</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a> </p> <a href="https://publications.waset.org/abstracts/31556/remote-sensing-and-gis-for-land-use-change-assessment-case-study-of-oued-bou-hamed-watershed-southern-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">564</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3686</span> Analysis of Changes in Land Uses Planning for Bangalore City as per Master Plans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minakshi%20Goswami">Minakshi Goswami</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Khire"> M. V. Khire</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The urban land use is an outcome of geographical and socio economic factors over the decades. Hence, spatial information on land use and possibilities of alternate use is essential for the selection, planning and implementation to meet the increasing demands of human needs and welfare of the urban area. This information assists in monitoring the land use resulting out of charging demands of increasing urban population over the decades. So in this paper, a detailed work on urban land use pattern, with a special reference to build up land in Bangalore city is analyzed in view of the various master plans from 1975to 2011. An attempt has been made to study the status of urban land use of Bangalore city during this period to detect the changes on land utilization rate that has taken place in each master plan period, particularly in the built-up land. The set of measures taken by the city corporation to contain the problems regarding the extremely bothering existing land use in Bangalore city is analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=built%20up%20land" title="built up land">built up land</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%20changes" title=" land use changes"> land use changes</a>, <a href="https://publications.waset.org/abstracts/search?q=master%20plan" title=" master plan"> master plan</a>, <a href="https://publications.waset.org/abstracts/search?q=population" title=" population"> population</a> </p> <a href="https://publications.waset.org/abstracts/44049/analysis-of-changes-in-land-uses-planning-for-bangalore-city-as-per-master-plans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3685</span> Vulnerability of Indian Agriculture to Climate Change: A Study of the Himalayan Region State </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajendra%20Kumar%20Isaac">Rajendra Kumar Isaac</a>, <a href="https://publications.waset.org/abstracts/search?q=Monisha%20Isaac"> Monisha Isaac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate variability and changes are the emerging challenges for Indian agriculture with the growing population to ensure national food security. A study was conducted to assess the Climatic Change effects in medium to low altitude areas of the Himalayan region causing changes in land use and cereal crop productivity with the various climatic parameters. The rainfall and temperature changes from 1951 to 2013 were studied at four locations of varying altitudes, namely Hardwar, Rudra Prayag, Uttar Kashi and Tehri Garwal. It was observed that there is noticeable increment in temperature on all the four locations. It was surprisingly observed that the mean rainfall intensity of 30 minutes duration has increased at the rate of 0.1 mm/hours since 2000. The study shows that the combined effect of increasing temperature, rainfall, runoff and urbanization at the mid-Himalayan region is causing an increase in various climatic disasters and changes in agriculture patterns. A noticeable change in cropping patterns, crop productivity and land use change was observed. Appropriate adaptation and mitigation strategies are necessary to ensure that sustainable and climate-resilient agriculture. Appropriate information is necessary for farmers, as well as planners and decision makers for developing, disseminating and adopting climate-smart technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20variability" title="climate variability">climate variability</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use" title=" land use"> land use</a>, <a href="https://publications.waset.org/abstracts/search?q=mitigation%20strategies" title=" mitigation strategies"> mitigation strategies</a> </p> <a href="https://publications.waset.org/abstracts/58743/vulnerability-of-indian-agriculture-to-climate-change-a-study-of-the-himalayan-region-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3684</span> Government Intervention in Land Market </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waqar%20Ahmad%20Bajwa">Waqar Ahmad Bajwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the land market, there are two kinds of government intervention. First one is the control of development and second is the supply of land. In the both intervention Government has a lot of benefits. In development control the government designation of conservation areas and the effects of growth controls which may increase the price of land. On other hand Government also apply charge fee on land. The second type of intervention is to increase the supply of land, either by direct action or indirect action, as in the Pakistan, by obligatory purchase or important domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supply%20of%20control" title="supply of control">supply of control</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20of%20development" title=" control of development"> control of development</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20fee" title=" charge fee"> charge fee</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20control" title=" land control"> land control</a> </p> <a href="https://publications.waset.org/abstracts/78717/government-intervention-in-land-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3683</span> A Preliminary Study for Design of Automatic Block Reallocation Algorithm with Genetic Algorithm Method in the Land Consolidation Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tayfun%20%C3%87ay">Tayfun Çay</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasar%20%C4%B0nceyol"> Yasar İnceyol</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdurrahman%20%C3%96zbeyaz"> Abdurrahman Özbeyaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Land reallocation is one of the most important steps in land consolidation projects. Many different models were proposed for land reallocation in the literature such as Fuzzy Logic, block priority based land reallocation and Spatial Decision Support Systems. A model including four parts is considered for automatic block reallocation with genetic algorithm method in land consolidation projects. These stages are preparing data tables for a project land, determining conditions and constraints of land reallocation, designing command steps and logical flow chart of reallocation algorithm and finally writing program codes of Genetic Algorithm respectively. In this study, we designed the first three steps of the considered model comprising four steps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20consolidation" title="land consolidation">land consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=landholding" title=" landholding"> landholding</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20reallocation" title=" land reallocation"> land reallocation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/28036/a-preliminary-study-for-design-of-automatic-block-reallocation-algorithm-with-genetic-algorithm-method-in-the-land-consolidation-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3682</span> Development of Value Productivity in Automotive Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Kle%C4%8Dka">Jiří Klečka</a>, <a href="https://publications.waset.org/abstracts/search?q=Dagmar%20%C4%8C%C3%A1msk%C3%A1"> Dagmar Čámská</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is focused on the investigation of productivity (total productivity and partial productivity). The value productivity is an indicator of level and changes in technical economic efficiency of production factors. It represents an important factor in achieving corporate objectives. This text works with the contemporary concept of value productivity that means that indicators of the productivity express the effect of economic efficiency not only of inputs consumption, but also of inputs binding efficiency. This approach is based on principles of the economic profit, respectively the economic value added (EVA). The research is done on the sample of Czech enterprises operating in the automotive industry in the regions of Liberec and the Central Bohemia. The data sample covers the time period 2006-2011 which allows the comparison of development before crisis and during crisis period. It enables to discover the companies' reaction during crises and the regional comparison allows to showing if there are significant differences between regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20industry" title="automotive industry">automotive industry</a>, <a href="https://publications.waset.org/abstracts/search?q=Czech%20Republic" title=" Czech Republic"> Czech Republic</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20efficiency" title=" economic efficiency"> economic efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=regional%20comparison" title=" regional comparison"> regional comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20productivity" title=" value productivity "> value productivity </a> </p> <a href="https://publications.waset.org/abstracts/1272/development-of-value-productivity-in-automotive-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3681</span> Area Exclosure as a Government Strategy to Restore Woody Plant Species Diversity: Case Study in Southern Ethiopia </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tsegaw%20Abebe">Tsegaw Abebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Temesgen%20Abebe"> Temesgen Abebe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Land degradation is one of a serious environmental challenge in Ethiopia and is one of the major underlying causes for declining agricultural productivity. The Ethiopia government realized the significance of environmental restoration specifically on deforested and degraded land after the 1973 and 1984/85 major famines that struck the country. Among the various conservation strategies, the establishment of area exclosures have been regarded as an effective response to halt and reverse the problems of land degradation. There are limited studies in Ethiopia dealing how the conversion of free grazing lands and degraded lands by closures increase biomass accumulation. However, these studies are not sufficient to conclude about the strength of area closures to restore degraded vegetations at the diverse agro-ecological condition. The overall objective of this study was, therefore, to assess and evaluate the usefulness of area closure technique in enhancing rehabilitation of degraded ecosystem and thereby increase the natural capital in the study site (southern Ethiopia). Woody plant species were collected from area exclosure for eight year and adjacent degraded land with similar landscape positions using systematic sampling plot design technique. Woody species diversity was determined by Shannon diversity. Comparative assessment result of woody plant species analysis showed that the density of woody species in the exclosure and degraded site were 778 and 222 individuals per hectare, respectively. A total of 16 woody species, representing 12 families were recorded in the study site. Out of the 12 families, all were recorded in the exclosure while 5 were recorded in the degraded site. Out of the 16 species, 15 were recorded in the exclosure while six were in the degraded site. A total of 10 species were recorded in the exclosure, which were absent in the degraded site. Similarly, one species was recorded in the degraded site which was not present in the exclosure. The results showed that protecting of degraded site from human and animal disturbances promotes woody plant species regenerations and productivity Apart from increasing woody plant species, the local communities have benefited from the exclosure in the form of both products (grass harvesting) and services (ecological). Due to this reason the local communities have positive attitudes and contribute a lot for the success of enclosures in the study site. The present study clearly showed that area closure interventions should be oriented towards managing and improving the productivity of the degraded land, in such a way that both the need for conservation of biodiversity and environmental sustainability, and the demands of the local people for biomass resources can be achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degraded%20land" title="degraded land">degraded land</a>, <a href="https://publications.waset.org/abstracts/search?q=exclosure" title=" exclosure"> exclosure</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20restoration" title=" land restoration"> land restoration</a>, <a href="https://publications.waset.org/abstracts/search?q=woody%20vegetation" title=" woody vegetation"> woody vegetation</a> </p> <a href="https://publications.waset.org/abstracts/16949/area-exclosure-as-a-government-strategy-to-restore-woody-plant-species-diversity-case-study-in-southern-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3680</span> House Price Index Predicts a Larger Impact of Habitat Loss than Primary Productivity on the Biodiversity of North American Avian Communities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marlen%20Acosta%20Alamo">Marlen Acosta Alamo</a>, <a href="https://publications.waset.org/abstracts/search?q=Lisa%20Manne"> Lisa Manne</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Veit"> Richard Veit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Habitat loss due to land use change is one of the leading causes of biodiversity loss worldwide. This form of habitat loss is a non-random phenomenon since the same environmental factors that make an area suitable for supporting high local biodiversity overlap with those that make it attractive for urban development. We aimed to compare the effect of two non-random habitat loss predictors on the richness, abundance, and rarity of nature-affiliated and human-affiliated North American breeding birds. For each group of birds, we simulated the non-random habitat loss using two predictors: the House Price Index as a measure of the attractiveness of an area for humans and the Normalized Difference Vegetation Index as a proxy for primary productivity. We compared the results of the two non-random simulation sets and one set of random habitat loss simulations using an analysis of variance and followed up with a Tukey-Kramer test when appropriate. The attractiveness of an area for humans predicted estimates of richness loss and increase of rarity higher than primary productivity and random habitat loss for nature-affiliated and human-affiliated birds. For example, at 50% of habitat loss, the attractiveness of an area for humans produced estimates of richness at least 5% lower and of a rarity at least 40% higher than primary productivity and random habitat loss for both groups of birds. Only for the species abundance of nature-affiliated birds, the attractiveness of an area for humans did not outperform primary productivity as a predictor of biodiversity following habitat loss. We demonstrated the value of the House Price Index, which can be used in conservation assessments as an index of the risks of habitat loss for natural communities. Thus, our results have relevant implications for sustainable urban land-use planning practices and can guide stakeholders and developers in their efforts to conserve local biodiversity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiversity%20loss" title="biodiversity loss">biodiversity loss</a>, <a href="https://publications.waset.org/abstracts/search?q=bird%20biodiversity" title=" bird biodiversity"> bird biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=house%20price%20index" title=" house price index"> house price index</a>, <a href="https://publications.waset.org/abstracts/search?q=non-random%20habitat%20loss" title=" non-random habitat loss"> non-random habitat loss</a> </p> <a href="https://publications.waset.org/abstracts/163832/house-price-index-predicts-a-larger-impact-of-habitat-loss-than-primary-productivity-on-the-biodiversity-of-north-american-avian-communities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3679</span> Adapting to Rural Demographic Change: Impacts, Challenges and Opportunities for Ageing Farmers in Prachin Buri Province, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Para%20Jansuwan">Para Jansuwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerstin%20K.%20Zander"> Kerstin K. Zander</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most people in rural Thailand still depend on agriculture. The rural areas are undergoing changes in their demographic structures with an increasing older population, out migration of younger people and a shift away from work in the agricultural sector towards manufacturing and service provisioning. These changes may lead to a decline in agricultural productivity and food insecurity. Our research aims to examine perceptions of older farmers on how rural demographic change affects them, to investigate how farmers may change their agricultural practices to cope with their ageing and to explore the factors affecting these changes, including the opportunities and challenges arising from them. The data were collected through a household survey with 368 farmers in the Prachin Buri province in central Thailand, the main area for agricultural production. A series of binomial logistic regression models were applied to analyse the data. We found that most farmers suffered from age-related diseases, which compromised their working capacity. Most farmers attempted to reduce labour intense work, by either stopping farming through transferring farmland to their children (41%), stopping farming by giving the land to the others (e.g., selling, leasing out) (28%) and continuing farming with making some changes (e.g., changing crops, employing additional workers) (24%). Farmers’ health and having a potential farm successor were positively associated with the probability of stopping farming by transferring the land to the children. Farmers with a successor were also less likely to stop farming by giving the land to the others. Farmers’ age was negatively associated with the likelihood of continuing farming by making some changes. The results show that most farmers base their decisions on the hope that their children will take over the farms, and that without successor, farmers lease out or sell the land. Without successor, they also no longer invest in expansion and improvement of their farm production, especially adoption of innovative technologies that could help them to maintain their farm productivity. To improve farmers’ quality of life and sustain their farm productivity, policies are needed to support the viability of farms, the access to a pension system and the smooth and successful transfer of the land to a successor of farmers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rural%20demographic%20change" title="rural demographic change">rural demographic change</a>, <a href="https://publications.waset.org/abstracts/search?q=older%20farmer" title=" older farmer"> older farmer</a>, <a href="https://publications.waset.org/abstracts/search?q=stopping%20farming" title=" stopping farming"> stopping farming</a>, <a href="https://publications.waset.org/abstracts/search?q=continuing%20farming" title=" continuing farming"> continuing farming</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20and%20age" title=" health and age"> health and age</a>, <a href="https://publications.waset.org/abstracts/search?q=farm%20successor" title=" farm successor"> farm successor</a>, <a href="https://publications.waset.org/abstracts/search?q=Thailand" title=" Thailand"> Thailand</a> </p> <a href="https://publications.waset.org/abstracts/117737/adapting-to-rural-demographic-change-impacts-challenges-and-opportunities-for-ageing-farmers-in-prachin-buri-province-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3678</span> Check Factors Contributing to the Increase or Decrease in Labor Productivity in Employees Applied Science Center Municipal Andimeshk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Boromandfar">Hossein Boromandfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Ghalavandi"> Ahmad Ghalavandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the importance of human resources as a strategic resource and the factors that lead to increased Labor productivity in Applied Science Center Andimeshk pay. First, the concepts and definitions of productivity and factors affecting it, and then determine the center Recommendations for improving the productivity of the university at a high level its improvement. What leads to increased productivity of labor is worth. The most competent human resources infrastructure is set, because by moving towards the development and promotion. The use of qualified employees in the university with a focus on specific objectives can be effective on its promotion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=productivity" title="productivity">productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=manage" title=" manage"> manage</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20resources" title=" human resources"> human resources</a>, <a href="https://publications.waset.org/abstracts/search?q=center%20for%20applied%20science" title=" center for applied science"> center for applied science</a> </p> <a href="https://publications.waset.org/abstracts/37722/check-factors-contributing-to-the-increase-or-decrease-in-labor-productivity-in-employees-applied-science-center-municipal-andimeshk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3677</span> Modeling the Impacts of Road Construction on Lands Values</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maha%20Almumaiz">Maha Almumaiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Harry%20Evdorides"> Harry Evdorides</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Change in land value typically occurs when a new interurban road construction causes an increase in accessibility; this change in the adjacent lands values differs according to land characteristics such as geographic location, land use type, land area and sale time (appraisal time). A multiple regression model is obtained to predict the percent change in land value (CLV) based on four independent variables namely land distance from the constructed road, area of land, nature of land use and time from the works completion of the road. The random values of percent change in land value were generated using Microsoft Excel with a range of up to 35%. The trend of change in land value with the four independent variables was determined from the literature references. The statistical analysis and model building process has been made by using the IBM SPSS V23 software. The Regression model suggests, for lands that are located within 3 miles as the straight distance from the road, the percent CLV is between (0-35%) which is depending on many factors including distance from the constructed road, land use, land area and time from works completion of the new road. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interurban%20road" title="interurban road">interurban road</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%20types" title=" land use types"> land use types</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20road%20construction" title=" new road construction"> new road construction</a>, <a href="https://publications.waset.org/abstracts/search?q=percent%20CLV" title=" percent CLV"> percent CLV</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20model" title=" regression model"> regression model</a> </p> <a href="https://publications.waset.org/abstracts/55333/modeling-the-impacts-of-road-construction-on-lands-values" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3676</span> Strawberry Productivity of Peri-Urban and Urban Locations across Southeast Michigan, USA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20E.%20Laconi">Maria E. Laconi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyla%20D.%20Scherr"> Kyla D. Scherr</a>, <a href="https://publications.waset.org/abstracts/search?q=Mary%20A.%20Jamieson"> Mary A. Jamieson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human populations in urban environments have rapidly grown in recent decades. Consequently, the intensity of land-use and development has also increased in many urban and peri-urban environments. Some cities, such as Detroit, Michigan, USA, have embraced urban agriculture and local food production. Little is known, however, about how the local and landscape scale environmental factors influence crop productivity on urban farms. Our study aims to evaluate factors influencing the productivity of strawberries on community farms and gardens in the Detroit metropolitan area. Strawberries are one of few fruits that can provide an abundant harvest just after the first season of being planted, which is ideal for urban gardeners in developed areas. In the spring of 2016, we planted six different strawberry cultivars (three everbearing and three June bearing varieties) at five farm sites in Wayne and Oakland County (six replicate plants per cultivar per site). We surveyed flower and fruit phenology and production for everbearing varieties weekly (flowers for June bearing varieties were removed to enhance productivity in the coming growing season). Additionally, we conducted one initial 36hr pollinator survey in mid-September during peak fruit production and characterized local and landscape scale land-cover data. Preliminary results and observations from this first year of our study revealed that strawberry production varied significantly by site. Specifically, productivity at our most northern site appeared to suffer from delayed phenology and early frost damage to ripening strawberries. Bee abundance and diversity also differed among farms, though further surveys are needed to adequately inventory the pollinator community. Finally, strawberry cultivars demonstrated significant differences in the number and size of fruits produced. We plan to continue this study in the coming years, increasing the number of sites surveyed and number of pollinator sampling events. Our study aims to inform strategies for enhancing crop productivity on urban and peri-urban farms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=insect%20pollination" title="insect pollination">insect pollination</a>, <a href="https://publications.waset.org/abstracts/search?q=strawberry%20productivity" title=" strawberry productivity"> strawberry productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20agriculture" title=" sustainable agriculture"> sustainable agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20gardening" title=" urban gardening"> urban gardening</a> </p> <a href="https://publications.waset.org/abstracts/61925/strawberry-productivity-of-peri-urban-and-urban-locations-across-southeast-michigan-usa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=land%20productivity&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=land%20productivity&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=land%20productivity&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=land%20productivity&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=land%20productivity&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=land%20productivity&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=land%20productivity&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=land%20productivity&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=land%20productivity&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=land%20productivity&amp;page=123">123</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=land%20productivity&amp;page=124">124</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=land%20productivity&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10