CINXE.COM

Search results for: surge protection

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: surge protection</title> <meta name="description" content="Search results for: surge protection"> <meta name="keywords" content="surge protection"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="surge protection" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="surge protection"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2524</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: surge protection</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2524</span> Protection of Transformers Against Surge Voltage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anil%20S.%20Khopkar">Anil S. Khopkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Umesh%20N.%20Soni"> Umesh N. Soni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surge voltage arises in the system either by switching operations of heavy load or by natural lightning. Surge voltages cause significant failure of power system equipment if adequate protection is not provided. A Surge Arrester is a device connected to a power system to protect the equipment against surge voltages. To protect the transformers against surge voltages, metal oxide surge arresters (MOSA) are connected across each terminal. Basic Insulation Level (BIL) has been defined in national and international standards of transformers based on their voltage rating. While designing transformer insulation, the BIL of the transformer, Surge arrester ratings and its operating voltage have to be considered. However, the performance of transformer insulation largely depends on the ratings of the surge arrester connected, the location of the surge arrester, the margin considered in the insulation design, the quantity of surge voltage strike, etc. This paper demonstrates the role of Surge arresters in the protection of transformers against over-voltage, transformer insulation design, optimum location of surge arresters and their connection lead length, Insulation coordination for transformer, protection margin in BIL and methods of protection of transformers against surge voltages, in detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surge%20voltage" title="surge voltage">surge voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=surge%20arresters" title=" surge arresters"> surge arresters</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation%20coordination" title=" insulation coordination"> insulation coordination</a>, <a href="https://publications.waset.org/abstracts/search?q=protection%20margin" title=" protection margin"> protection margin</a> </p> <a href="https://publications.waset.org/abstracts/183790/protection-of-transformers-against-surge-voltage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2523</span> Simulation of Surge Protection for a Direct Current Circuit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Luis%20Ferrer%20Penalver">Pedro Luis Ferrer Penalver</a>, <a href="https://publications.waset.org/abstracts/search?q=Edmundo%20da%20Silva%20Braga"> Edmundo da Silva Braga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the performance of a simple surge protection for a direct current circuit was simulated. The protection circuit was developed from modified electric macro models of a gas discharge tube and a transient voltage suppressor diode. Moreover, a combination wave generator circuit was used as source of energy surges. The simulations showed that the circuit presented ensures immunity corresponding with test level IV of the IEC 61000-4-5:2014 international standard. The developed circuit can be modified to meet the requirements of any other equipment to be protected. Similarly, the parameters of the combination wave generator can be changed to provide different surge amplitudes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combination%20wave%20generator" title="combination wave generator">combination wave generator</a>, <a href="https://publications.waset.org/abstracts/search?q=IEC%2061000-4-5" title=" IEC 61000-4-5"> IEC 61000-4-5</a>, <a href="https://publications.waset.org/abstracts/search?q=Pspice%20simulation" title=" Pspice simulation"> Pspice simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=surge%20protection" title=" surge protection"> surge protection</a> </p> <a href="https://publications.waset.org/abstracts/57544/simulation-of-surge-protection-for-a-direct-current-circuit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2522</span> Analysis of Standard Tramway Surge Protection Methods Based on Real Cases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alain%20Rousseau">Alain Rousseau</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfred%20Aragones"> Alfred Aragones</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilles%20Rougier"> Gilles Rougier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study is based on lightning and surge standards mainly the EN series 62305 for facility protection, EN series 61643 for Low Voltage Surge Protective Devices, High Voltage surge arrester standard en 60099-4 and the traction arrester standards namely EN 50526-1 and 50526-1 dealing respectively with railway applications fixed installations D.C. surge arresters and voltage limiting devices. The more severe stress for tramways installations is caused by direct lightning on the catenary line. In such case, the surge current propagates towards the various poles and sparkover the insulators leading to a lower stress. If the impact point is near enough, a significant surge current will flow towards the traction surge arrester that is installed on the catenary at the location the substation is connected. Another surge arrester can be installed at the entrance of the substation or even inside the rectifier to avoid insulation damages. In addition, surge arresters can be installed between + and – to avoid damaging sensitive circuits. Based on disturbances encountered in a substation following a lighting event, the engineering department of RATP has decided to investigate the cause of such damage and more generally to question the efficiency of the various possible protection means. Based on the example of a recent tramway line the paper present the result of a lightning study based on direct lightning strikes. As a matter of fact, the induced surges on the catenary are much more frequent but much less damaging. First, a lightning risk assessment is performed for the substations that takes into account direct lightning and induced lightning both on the substation and its connected lines such as the catenary. Then the paper deals with efficiency of the various surge arresters is discussed based on field experience and calculations. The efficiency of the earthing system used at the bottom of the pole is also addressed based on high frequency earthing measurement. As a conclusion, the paper is making recommendations for an enhanced efficiency of existing protection means. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surge%20arrester" title="surge arrester">surge arrester</a>, <a href="https://publications.waset.org/abstracts/search?q=traction" title=" traction"> traction</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning" title=" lightning"> lightning</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a>, <a href="https://publications.waset.org/abstracts/search?q=surge%20protective%20device" title=" surge protective device"> surge protective device</a> </p> <a href="https://publications.waset.org/abstracts/75875/analysis-of-standard-tramway-surge-protection-methods-based-on-real-cases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2521</span> Pressure Surge Analysis for Al Gardabiya Pump Station Phase III of the Man-Made River Project</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Bensreti">Ahmed Bensreti</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Gouarsha"> Mohamed Gouarsha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a review of the pressure surge simulations carried out for Phase III of the Man Made River project in Libya with particular emphasis on the transient generated by simultaneous pump trips at Al Gardabiya Pump Station. The omission of the surge vessel check valve and bypass system on the grounds of cost, ease of design, and construction will result in, as expected, increased surge fluctuations as the damping effect in the form was removed. From the hydraulic and control requirements, it is recommended for Al Gardabiya Pump station that the check valve and check valve bypass be included in the final surge vessel design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=surge%20vessel%20design" title=" surge vessel design"> surge vessel design</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20surge%20analysis" title=" transient surge analysis"> transient surge analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pipe%20hydraulics" title=" water pipe hydraulics"> water pipe hydraulics</a> </p> <a href="https://publications.waset.org/abstracts/168694/pressure-surge-analysis-for-al-gardabiya-pump-station-phase-iii-of-the-man-made-river-project" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2520</span> Surge Analysis of Water Transmission Mains in Una, Himachal Pradesh, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baldev%20Setia">Baldev Setia</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20Rajeshwari"> Raj Rajeshwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Maneesh%20Kumar"> Maneesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present paper is an analysis of water transmission mains failed due to surge analysis by using basic software known as Surge Analysis Program (SAP). It is a real time failure case study of a pipe laid in Una, Himachal Pradesh. The transmission main is a 13 kilometer long pipe with 7.9 kilometers as pumping main and 5.1 kilometers as gravitational main. The analysis deals with mainly pumping mains. The results are available in two text files. Besides, several files are prepared with specific view to obtain results in a graphical form. These results help to observe the pressure difference and surge occurrence at different locations along the pipe profile, which help to redesign the transmission main with different but suitable safety measures against possible surge. A technically viable and economically feasible design has been provided as per the relevant manual and standard code of practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surge" title="surge">surge</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20hammer" title=" water hammer"> water hammer</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20mains" title=" transmission mains"> transmission mains</a>, <a href="https://publications.waset.org/abstracts/search?q=SAP%202000" title=" SAP 2000"> SAP 2000</a> </p> <a href="https://publications.waset.org/abstracts/6482/surge-analysis-of-water-transmission-mains-in-una-himachal-pradesh-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2519</span> Surge Analysis of Water Transmission Mains in Una, Himachal Pradesh (India)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baldev%20Setia">Baldev Setia</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20Rajeshwari"> Raj Rajeshwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Maneesh%20Kumar"> Maneesh Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present paper is an analysis of water transmission mains failed due to surge analysis by using basic software known as Surge Analysis Program (SAP). It is a real time failure case study of a pipe laid in Una, Himachal Pradesh. The transmission main is a 13 kilometres long pipe with 7.9 kilometres as pumping main and 5.1 kilometres as gravitational main. The analysis deals with mainly pumping mains. The results are available in two text files. Besides, several files are prepared with specific view to obtain results in a graphical form. These results help to observe the pressure difference and surge occurrence at different locations along the pipe profile, which help to redesign the transmission main with different but suitable safety measures against possible surge. A technically viable and economically feasible design has been provided as per the relevant manual and standard code of practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surge" title="surge">surge</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20hammer" title=" water hammer"> water hammer</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20mains" title=" transmission mains"> transmission mains</a>, <a href="https://publications.waset.org/abstracts/search?q=SAP%202000" title=" SAP 2000"> SAP 2000</a> </p> <a href="https://publications.waset.org/abstracts/6736/surge-analysis-of-water-transmission-mains-in-una-himachal-pradesh-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2518</span> Technique for Online Condition Monitoring of Surge Arresters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anil%20S.%20Khopkar">Anil S. Khopkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kartik%20S.%20Pandya"> Kartik S. Pandya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Overvoltage in power systems is a phenomenon that cannot be avoided. However, it can be controlled to a certain extent. Power system equipment is to be protected against overvoltage to avoid system failure. Metal Oxide Surge Arresters (MOSA) are connected to the system for the protection of the power system against overvoltages. The MOSA will behave as an insulator under normal working conditions, where it offers a conductive path under voltage conditions. MOSA consists of zinc oxide elements (ZnO Blocks), which have non-linear V-I characteristics. ZnO blocks are connected in series and fitted in ceramic or polymer housing. This degrades due to the aging effect under continuous operation. Degradation of zinc oxide elements increases the leakage current flowing from the surge arresters. This Increased leakage current results in the increased temperature of the surge arrester, which further decreases the resistance of zinc oxide elements. As a result, leakage current increases, which again increases the temperature of a MOSA. This creates thermal runaway conditions for MOSA. Once it reaches the thermal runaway condition, it cannot return to normal working conditions. This condition is a primary cause of premature failure of surge arresters, as MOSA constitutes a core protective device for electrical power systems against transients. It contributes significantly to the reliable operation of the power system network. Hence, the condition monitoring of surge arresters should be done at periodic intervals. Online and Offline condition monitoring techniques are available for surge arresters. Offline condition monitoring techniques are not very popular as they require removing surge arresters from the system, which requires system shutdown. Hence, online condition monitoring techniques are very popular. This paper presents the evaluation technique for the surge arrester condition based on the leakage current analysis. Maximum amplitude of total leakage current (IT), Maximum amplitude of fundamental resistive leakage current (IR) and maximum amplitude of third harmonic resistive leakage current (I3rd) have been analyzed as indicators for surge arrester condition monitoring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20oxide%20surge%20arrester%20%28MOSA%29" title="metal oxide surge arrester (MOSA)">metal oxide surge arrester (MOSA)</a>, <a href="https://publications.waset.org/abstracts/search?q=over%20voltage" title=" over voltage"> over voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20leakage%20current" title=" total leakage current"> total leakage current</a>, <a href="https://publications.waset.org/abstracts/search?q=resistive%20leakage%20current" title=" resistive leakage current"> resistive leakage current</a> </p> <a href="https://publications.waset.org/abstracts/182737/technique-for-online-condition-monitoring-of-surge-arresters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2517</span> Study of the S-Bend Intake Hammershock Based on Improved Delayed Detached Eddy Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qun-Feng%20Zhang">Qun-Feng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pan-Pan%20Yan"> Pan-Pan Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Li"> Jun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Qing%20Lei"> Jun-Qing Lei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical investigation of hammershock propagation in the S-bend intake caused by engine surge has been conducted by using Improved Delayed Detach-Eddy Simulation (IDDES). The effects of surge signatures on hammershock characteristics are obtained. It was shown that once the hammershock is produced, it moves upward to the intake entrance quickly with constant speed, however, the strength of hammershock keeps increasing. Meanwhile, being influenced by the centrifugal force, the hammershock strength on the larger radius side is much larger. Hammershock propagation speed and strength are sensitive to the ramp upgradient of surge signature. A larger ramp up gradient results in higher propagation speed and greater strength. Nevertheless, ramp down profile of surge signature have no obvious effect on the propagation speed and strength of hammershock. Increasing the maximum value of surge signature leads to enhance in the intensity of hammershock, they approximately match quadratic function distribution law. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hammershock" title="hammershock">hammershock</a>, <a href="https://publications.waset.org/abstracts/search?q=IDDES" title=" IDDES"> IDDES</a>, <a href="https://publications.waset.org/abstracts/search?q=S-bend" title=" S-bend"> S-bend</a>, <a href="https://publications.waset.org/abstracts/search?q=surge%20signature" title=" surge signature"> surge signature</a> </p> <a href="https://publications.waset.org/abstracts/67566/study-of-the-s-bend-intake-hammershock-based-on-improved-delayed-detached-eddy-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2516</span> Sundarban as a Buffer against Storm Surge Flooding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohiuddin%20Sakib">Mohiuddin Sakib</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatin%20Nihal"> Fatin Nihal</a>, <a href="https://publications.waset.org/abstracts/search?q=Anisul%20Haque"> Anisul Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=Munsur%20Rahman"> Munsur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansur%20Ali"> Mansur Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sundarban, the largest mangrove forest in the world, is known to act as a buffer against the cyclone and storm surge. Theoretically, Sundarban absorbs the initial thrust of the wind and acts to ‘resist’ the storm surge flooding. The role of Sundarban was evident during the cyclone Sidr when the Sundarban solely defended the initial thrust of the cyclonic wind and the resulting storm surge inundation. In doing this, Sundarban sacrificed 30% of its plant habitats. Although no scientific study has yet been conducted, it is generally believed that Sundarban will continuously play its role as a buffer against the cyclone when landfall of the cyclone is at or close to the Sundarban. Considering these facts, the present study mainly focused on a scientific insight into the role of Sundarban as a buffer against the present-day cyclone and storm surge and also its probable role on the impacts of future storms of similar nature but with different landfall locations. The Delft 3D dashboard and flow model are applied to compute the resulting inundation due to cyclone induced storm surge. The results show that Sundarban indeed acts as a buffer against the storm surge inundation when cyclone landfall is at or close to Sundarban. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buffer" title="buffer">buffer</a>, <a href="https://publications.waset.org/abstracts/search?q=Mangrove%20forest" title=" Mangrove forest"> Mangrove forest</a>, <a href="https://publications.waset.org/abstracts/search?q=Sidr" title=" Sidr"> Sidr</a>, <a href="https://publications.waset.org/abstracts/search?q=landfall" title=" landfall"> landfall</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness" title=" roughness"> roughness</a> </p> <a href="https://publications.waset.org/abstracts/37352/sundarban-as-a-buffer-against-storm-surge-flooding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2515</span> CFD Simulation of Surge Wave Generated by Flow-Like Landslides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liu-Chao%20Qiu">Liu-Chao Qiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The damage caused by surge waves generated in water bodies by flow-like landslides can be very high in terms of human lives and economic losses. The complicated phenomena occurred in this highly unsteady process are difficult to model because three interacting phases: air, water and sediment are involved. The problem therefore is challenging since the effects of non-Newtonian fluid describing the rheology of the flow-like landslides, multi-phase flow and free surface have to be included in the simulation. In this work, the commercial computational fluid dynamics (CFD) package FLUENT is used to model the surge waves due to flow-like landslides. The comparison between the numerical results and experimental data reported in the literature confirms the accuracy of the method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow-like%20landslide" title="flow-like landslide">flow-like landslide</a>, <a href="https://publications.waset.org/abstracts/search?q=surge%20wave" title=" surge wave"> surge wave</a>, <a href="https://publications.waset.org/abstracts/search?q=VOF" title=" VOF"> VOF</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian%20fluids" title=" non-Newtonian fluids"> non-Newtonian fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-phase%20flows" title=" multi-phase flows"> multi-phase flows</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20surface%20flow" title=" free surface flow"> free surface flow</a> </p> <a href="https://publications.waset.org/abstracts/12552/cfd-simulation-of-surge-wave-generated-by-flow-like-landslides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2514</span> Identification of Vulnerable Zone Due to Cyclone-Induced Storm Surge in the Exposed Coast of Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohiuddin%20Sakib">Mohiuddin Sakib</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatin%20Nihal"> Fatin Nihal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabeya%20Akter"> Rabeya Akter</a>, <a href="https://publications.waset.org/abstracts/search?q=Anisul%20Haque"> Anisul Haque</a>, <a href="https://publications.waset.org/abstracts/search?q=Munsur%20Rahman"> Munsur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Wasif-E-Elahi"> Wasif-E-Elahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surge generating cyclones are one of the deadliest natural disasters that threaten the life of coastal environment and communities worldwide. Due to the geographic location, ‘low lying alluvial plain, geomorphologic characteristics and 710 kilometers exposed coastline, Bangladesh is considered as one of the greatest vulnerable country for storm surge flooding. Bay of Bengal is possessing the highest potential of creating storm surge inundation to the coastal areas. Bangladesh is the most exposed country to tropical cyclone with an average of four cyclone striking every years. Frequent cyclone landfall made the country one of the worst sufferer within the world for cyclone induced storm surge flooding and casualties. During the years from 1797 to 2009 Bangladesh has been hit by 63 severe cyclones with strengths of different magnitudes. Though detailed studies were done focusing on the specific cyclone like Sidr or Aila, no study was conducted where vulnerable areas of exposed coast were identified based on the strength of cyclones. This study classifies the vulnerable areas of the exposed coast based on storm surge inundation depth and area due to cyclones of varying strengths. Classification of the exposed coast based on hazard induced cyclonic vulnerability will help the decision makers to take appropriate policies for reducing damage and loss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclone" title="cyclone">cyclone</a>, <a href="https://publications.waset.org/abstracts/search?q=landfall" title=" landfall"> landfall</a>, <a href="https://publications.waset.org/abstracts/search?q=storm%20surge" title=" storm surge"> storm surge</a>, <a href="https://publications.waset.org/abstracts/search?q=exposed%20coastline" title=" exposed coastline"> exposed coastline</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title=" vulnerability"> vulnerability</a> </p> <a href="https://publications.waset.org/abstracts/37354/identification-of-vulnerable-zone-due-to-cyclone-induced-storm-surge-in-the-exposed-coast-of-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2513</span> Improving Tower Grounding and Insulation Level vs. Line Surge Arresters for Protection of Subtransmission Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navid%20Eghtedarpour">Navid Eghtedarpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Hasani"> Mohammad Reza Hasani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since renewable wind power plants are usually installed in mountain regions and high-level lands, they are often prone to lightning strikes and their hazardous effects. Although the transmission line is protected using guard wires in order to prevent the lightning surges to strike the phase conductors, the back-flashover may also occur due to tower footing resistance. A combination of back-flashover corrective methods, tower-footing resistance reduction, insulation level improvement, and line arrester installation, are analyzed in this paper for back-flashover rate reduction of a double-circuit 63 kV line in the south region of Fars province. The line crosses a mountain region in some sections with a moderate keraunic level, whereas tower-footing resistance is substantially high at some towers. Consequently, an exceptionally high back-flashover rate is recorded. A new method for insulation improvement is studied and employed in the current study. The method consists of using a composite-type creepage extender in the string. The effectiveness of this method for insulation improvement of the string is evaluated through the experimental test. Simulation results besides monitoring the one-year operation of the 63-kV line show that due to technical, practical, and economic restrictions in operated sub-transmission lines, a combination of corrective methods can lead to an effective solution for the protection of transmission lines against lightning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lightning%20protection" title="lightning protection">lightning protection</a>, <a href="https://publications.waset.org/abstracts/search?q=BF%20rate" title=" BF rate"> BF rate</a>, <a href="https://publications.waset.org/abstracts/search?q=grounding%20system" title=" grounding system"> grounding system</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation%20level" title=" insulation level"> insulation level</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20surge%20arrester" title=" line surge arrester"> line surge arrester</a> </p> <a href="https://publications.waset.org/abstracts/149874/improving-tower-grounding-and-insulation-level-vs-line-surge-arresters-for-protection-of-subtransmission-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2512</span> Study of Transformer and Motor Winding under Pulsed Power Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arijit%20Basuray">Arijit Basuray</a>, <a href="https://publications.waset.org/abstracts/search?q=Saibal%20Chatterjee"> Saibal Chatterjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pulsed Power in the form of Recurrent Surge Generator (RSG) can be used for testing various parameters of Motor or Transformer windings including inter-turn, interlayer insulation. Windings with solid insulation in motor and transformer have many interfaces and undesirable defects, and these defects can be exposed under this nondestructive testing methodology. Due to rapid development in power electronics variable frequency drives (VFD), Dry Type or cast resin Transformer used with PWM Sine wave inverters for solar power, solid insulation system used nowadays are shifting more and more to a high-frequency application. Authors have used the recurrent surge generator for testing winding integrity as well as Partial Discharge(PD) at fast rising voltage enabling PD measurement at closer situation under which the insulation system is supposed to work. Authors have discussed test results on a different system with recurrent surge voltages of different rise time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fast%20rising%20voltage" title="fast rising voltage">fast rising voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20discharge" title=" partial discharge"> partial discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsed%20power" title=" pulsed power"> pulsed power</a>, <a href="https://publications.waset.org/abstracts/search?q=recurrent%20surge%20generator" title=" recurrent surge generator"> recurrent surge generator</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20insulation" title=" solid insulation"> solid insulation</a> </p> <a href="https://publications.waset.org/abstracts/66468/study-of-transformer-and-motor-winding-under-pulsed-power-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2511</span> Application of Computational Flow Dynamics (CFD) Analysis for Surge Inception and Propagation for Low Head Hydropower Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mohsin%20Munir">M. Mohsin Munir</a>, <a href="https://publications.waset.org/abstracts/search?q=Taimoor%20Ahmad"> Taimoor Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Javed%20Munir"> Javed Munir</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Rashid"> Usman Rashid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Determination of maximum elevation of a flowing fluid due to sudden rejection of load in a hydropower facility is of great interest to hydraulic engineers to ensure safety of the hydraulic structures. Several mathematical models exist that employ one-dimensional modeling for the determination of surge but none of these perfectly simulate real-time circumstances. The paper envisages investigation of surge inception and propagation for a Low Head Hydropower project using Computational Fluid Dynamics (CFD) analysis on FLOW-3D software package. The fluid dynamic model utilizes its analysis for surge by employing Reynolds’ Averaged Navier-Stokes Equations (RANSE). The CFD model is designed for a case study at Taunsa hydropower Project in Pakistan. Various scenarios have run through the model keeping in view upstream boundary conditions. The prototype results were then compared with the results of physical model testing for the same scenarios. The results of the numerical model proved quite accurate coherence with the physical model testing and offers insight into phenomenon which are not apparent in physical model and shall be adopted in future for the similar low head projects limiting delays and cost incurred in the physical model testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surge" title="surge">surge</a>, <a href="https://publications.waset.org/abstracts/search?q=FLOW-3D" title=" FLOW-3D"> FLOW-3D</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20model" title=" numerical model"> numerical model</a>, <a href="https://publications.waset.org/abstracts/search?q=Taunsa" title=" Taunsa"> Taunsa</a>, <a href="https://publications.waset.org/abstracts/search?q=RANSE" title=" RANSE"> RANSE</a> </p> <a href="https://publications.waset.org/abstracts/36198/application-of-computational-flow-dynamics-cfd-analysis-for-surge-inception-and-propagation-for-low-head-hydropower-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2510</span> Slope Stability of an Earthen Levee Strengthened by HPTRM under Turbulent Overtopping Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fashad%20Amini">Fashad Amini</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Li"> Lin Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High performance turf reinforcement mat (HPTRM) is one of the most advanced flexible armoring technologies for severe erosion challenges. The effect of turbulence on the slope stability of an earthen levee strengthened by high performance turf reinforcement mat (HPTRM) is investigated in this study for combined storm surge and wave overtopping conditions. The results show that turbulence has strong influence on the slope stability during the combined storm surge and wave overtopping conditions. Among the surge height, peak wave force and turbulent force. The turbulent force has the ability to stabilize the earthen levee at the large wave force the turbulent force has strongest effect on the FS. The surge storm acts as an independent force on the slope stability of the earthen levee. It just adds to the effects of the turbulent force and wave force on the slope stability of HPTRM strengthened levee. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title="slope stability">slope stability</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20reduction%20method" title=" strength reduction method"> strength reduction method</a>, <a href="https://publications.waset.org/abstracts/search?q=HPTRM" title=" HPTRM"> HPTRM</a>, <a href="https://publications.waset.org/abstracts/search?q=levee" title=" levee"> levee</a>, <a href="https://publications.waset.org/abstracts/search?q=overtopping" title=" overtopping "> overtopping </a> </p> <a href="https://publications.waset.org/abstracts/17649/slope-stability-of-an-earthen-levee-strengthened-by-hptrm-under-turbulent-overtopping-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2509</span> Next Generation UK Storm Surge Model for the Insurance Market: The London Case</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iacopo%20Carnacina">Iacopo Carnacina</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Keshtpoor"> Mohammad Keshtpoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Yablonsky"> Richard Yablonsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-structural protection measures against flooding are becoming increasingly popular flood risk mitigation strategies. In particular, coastal flood insurance impacts not only private citizens but also insurance and reinsurance companies, who may require it to retain solvency and better understand the risks they face from a catastrophic coastal flood event. In this context, a framework is presented here to assess the risk for coastal flooding across the UK. The area has a long history of catastrophic flood events, including the Great Flood of 1953 and the 2013 Cyclone Xaver storm, both of which led to significant loss of life and property. The current framework will leverage a technology based on a hydrodynamic model (Delft3D Flexible Mesh). This flexible mesh technology, coupled with a calibration technique, allows for better utilisation of computational resources, leading to higher resolution and more detailed results. The generation of a stochastic set of extra tropical cyclone (ETC) events supports the evaluation of the financial losses for the whole area, also accounting for correlations between different locations in different scenarios. Finally, the solution shows a detailed analysis for the Thames River, leveraging the information available on flood barriers and levees. Two realistic disaster scenarios for the Greater London area are simulated: In the first scenario, the storm surge intensity is not high enough to fail London’s flood defences, but in the second scenario, London’s flood defences fail, highlighting the potential losses from a catastrophic coastal flood event. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=storm%20surge" title="storm surge">storm surge</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20model" title=" stochastic model"> stochastic model</a>, <a href="https://publications.waset.org/abstracts/search?q=levee%20failure" title=" levee failure"> levee failure</a>, <a href="https://publications.waset.org/abstracts/search?q=Thames%20River" title=" Thames River"> Thames River</a> </p> <a href="https://publications.waset.org/abstracts/57311/next-generation-uk-storm-surge-model-for-the-insurance-market-the-london-case" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2508</span> Computer-Based Model for Design Selection of Lightning Arrester for 132/33kV Substation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uma%20U.%20Uma">Uma U. Uma</a>, <a href="https://publications.waset.org/abstracts/search?q=Uzoechi%20Laz"> Uzoechi Laz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Protection of equipment insulation against lightning over voltages and selection of lightning arrester that will discharge at lower voltage level than the voltage required to breakdown the electrical equipment insulation is examined. The objectives of this paper are to design a computer based model using standard equations for the selection of appropriate lightning arrester with the lowest rated surge arrester that will provide adequate protection of equipment insulation and equally have a satisfactory service life when connected to a specified line voltage in power system network. The effectiveness and non-effectiveness of the earthing system of substation determine arrester properties. MATLAB program with GUI (graphic user interphase) its subprogram is used in the development of the model for the determination of required parameters like voltage rating, impulse spark over voltage, power frequency spark over voltage, discharge current, current rating and protection level of lightning arrester of a specified voltage level of a particular line. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lightning%20arrester" title="lightning arrester">lightning arrester</a>, <a href="https://publications.waset.org/abstracts/search?q=GUIs" title=" GUIs"> GUIs</a>, <a href="https://publications.waset.org/abstracts/search?q=MatLab%20program" title=" MatLab program"> MatLab program</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20based%20model" title=" computer based model"> computer based model</a> </p> <a href="https://publications.waset.org/abstracts/5446/computer-based-model-for-design-selection-of-lightning-arrester-for-13233kv-substation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2507</span> Research of Stalled Operational Modes of Axial-Flow Compressor for Diagnostics of Pre-Surge State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Mohammadsadeghi">F. Mohammadsadeghi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relevance of research: Axial compressors are used in both aircraft engine construction and ground-based gas turbine engines. The compressor is considered to be one of the main gas turbine engine units, which define absolute and relative indicators of engine in general. Failure of compressor often leads to drastic consequences. Therefore, safe (stable) operation must be maintained when using axial compressor. Currently, we can observe a tendency of increase of power unit, productivity, circumferential velocity and compression ratio of axial compressors in gas turbine engines of aircraft and ground-based application whereas metal consumption of their structure tends to fall. This causes the increase of dynamic loads as well as danger of damage of high load compressor or engine structure elements in general due to transient processes. In operating practices of aeronautical engineering and ground units with gas turbine drive the operational stability failure of gas turbine engines is one of relatively often failure causes what can lead to emergency situations. Surge occurrence is considered to be an absolute buckling failure. This is one of the most dangerous and often occurring types of instability. However detailed were the researches of this phenomenon the development of measures for surge before-the-fact prevention is still relevant. This is why the research of transient processes for axial compressors is necessary in order to provide efficient, stable and secure operation. The paper addresses the problem of automatic control system improvement by integrating the anti-surge algorithms for axial compressor of aircraft gas turbine engine. Paper considers dynamic exhaustion of gas dynamic stability of compressor stage, results of numerical simulation of airflow flowing through the airfoil at design and stalling modes, experimental researches to form the criteria that identify the compressor state at pre-surge mode detection. Authors formulated basic ways for developing surge preventing systems, i.e. forming the algorithms that allow detecting the surge origination and the systems that implement the proposed algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20compressor" title="axial compressor">axial compressor</a>, <a href="https://publications.waset.org/abstracts/search?q=rotation%20stall" title=" rotation stall"> rotation stall</a>, <a href="https://publications.waset.org/abstracts/search?q=Surg" title=" Surg"> Surg</a>, <a href="https://publications.waset.org/abstracts/search?q=unstable%20operation%20of%20gas%20turbine%20engine" title=" unstable operation of gas turbine engine"> unstable operation of gas turbine engine</a> </p> <a href="https://publications.waset.org/abstracts/18711/research-of-stalled-operational-modes-of-axial-flow-compressor-for-diagnostics-of-pre-surge-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2506</span> Transient Level in the Surge Chamber at the Robert-bourassa Generating Station</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Kamali%20Nezhad">Maryam Kamali Nezhad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Robert-Bourassa development (LG-2), the first to be built on the Grande Rivière, comprises two sets of eight turbines- generator units each, the East and West powerhouses. Each powerhouse has two tailrace tunnels with an average length of about 1178 m. The LG-2A powerhouse houses 6 turbine-generator units. The water is discharged through two tailrace tunnels with a length of about 1330 m. The objective of this work, at RB (LG-2), is; 1) to establish a new maximum transient level in the surge chamber, 2) to define the new maximum equipment flow rate for the future turbine-generator units, 3) to ensure safe access to various intervention locations in the surge chamber. The transient levels under normal operating conditions at the RB plant were determined in 2001 by the Hydraulics Unit of HQE using the "Chamber" software. It is a one-dimensional mass oscillation calculation software; it is used to determine the variation of the water level in the equilibrium chamber located downstream of a power plant during the load shedding of the power plant units; it can also be used in the case of an equilibrium stack upstream of a power plant. The RB (LG-2) plant study is based on the theoretical nominal geometry of the chamber and the tailrace tunnels and the flow-level relationship at the outlet of the galleries established during design. The software is used in such a way that the results have an acceptable margin of safety, especially with respect to the maximum transient level (e.g., resumption of flow at an inopportune time), to take into account the turbulent and three-dimensional aspects of the actual flow in the chamber. Note that the transient levels depend on the water levels in the river and in the steady-state equilibrium chambers. These data are established in the HQP CRP database and updated from time to time. The maximum transient levels in the RB-East and RB-West powerhouses surge chamber were revised based on the latest update (set 4) of in-river rating curves and steady-state surge chamber water levels. The results of the revision were also used to update the technical advice on the operating conditions for the aforementioned surge chamber access while considering revisions to the calculated water levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generating%20station" title="generating station">generating station</a>, <a href="https://publications.waset.org/abstracts/search?q=surge%20chamber" title=" surge chamber"> surge chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20transient%20level" title=" maximum transient level"> maximum transient level</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroelectric%20power%20station" title=" hydroelectric power station"> hydroelectric power station</a>, <a href="https://publications.waset.org/abstracts/search?q=turbine-generator" title=" turbine-generator"> turbine-generator</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir" title=" reservoir"> reservoir</a> </p> <a href="https://publications.waset.org/abstracts/162729/transient-level-in-the-surge-chamber-at-the-robert-bourassa-generating-station" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2505</span> Development of Numerical Model to Compute Water Hammer Transients in Pipe Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Young%20Lee">Jae-Young Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Woo-Young%20Jung"> Woo-Young Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Myeong-Jun%20Nam"> Myeong-Jun Nam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water hammer is a hydraulic transient problem which is commonly encountered in the penstocks of hydropower plants. The numerical model was developed to estimate the transient behavior of pressure waves in pipe systems. The computational algorithm was proposed to model the water hammer phenomenon in a pipe system with pump shutdown at midstream and sudden valve closure at downstream. To predict the pressure head and flow velocity as a function of time as a result of rapidly closing a valve and pump shutdown, two boundary conditions at the ends considering pump operation and valve control can be implemented as specified equations of the pressure head and flow velocity based on the characteristics method. It was shown that the effects of transient flow make it determine the needs for protection devices, such as surge tanks, surge relief valves, or air valves, at various points in the system against overpressure and low pressure. It produced reasonably good performance with the results of the proposed transient model for pipeline systems. The proposed numerical model can be used as an efficient tool for the safety assessment of hydropower plants due to water hammer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20hammer" title="water hammer">water hammer</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20transient" title=" hydraulic transient"> hydraulic transient</a>, <a href="https://publications.waset.org/abstracts/search?q=pipe%20systems" title=" pipe systems"> pipe systems</a>, <a href="https://publications.waset.org/abstracts/search?q=characteristics%20method" title=" characteristics method"> characteristics method</a> </p> <a href="https://publications.waset.org/abstracts/96274/development-of-numerical-model-to-compute-water-hammer-transients-in-pipe-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2504</span> A Modelling Study to Compare the Storm Surge along Oman Coast Due to Ashobaa and Nanauk Cyclones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20V.%20Suresh%20Reddi">R. V. Suresh Reddi</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishnu%20S.%20Das"> Vishnu S. Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathew%20Leslie"> Mathew Leslie </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The weather systems within the Arabian Sea is very dynamic in terms of monsoon and cyclone events. The storms generated in the Arabian Sea are more likely to progress in the north-west or west direction towards Oman. From the database of Joint Typhoon Warning Center (JTWC), the number of cyclones that hit the Oman coast or pass within close vicinity is noteworthy and therefore they must be considered when looking at coastal/port engineering design and development projects. This paper provides a case study of two cyclones, i.e., Nanauk (2014) and Ashobaa (2015) to assess the impact on storm surge off the Oman coast. These two cyclones have been selected since they are comparable in terms of maximum wind, cyclone duration, central pressure and month of occurrence. They are of similar strength but differ in track, allowing the impact of proximity to the coast to be considered. Of the two selected cyclones, Ashobaa is the 'extreme' case with close proximity while Nanauk remains further offshore and is considered as a more typical case. The available 'best-track' data from JTWC is obtained for the 2 selected cyclones, and the cyclone winds are generated using a 'Cyclone Wind Generation Tool' from MIKE (modelling software) from DHI (Danish Hydraulic Institute). Using MIKE 21 Hydrodynamic model powered by DHI the storm surge is estimated at selected offshore locations along the Oman coast. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=costal%20engineering" title="costal engineering">costal engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclone" title=" cyclone"> cyclone</a>, <a href="https://publications.waset.org/abstracts/search?q=storm%20surge" title=" storm surge"> storm surge</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a> </p> <a href="https://publications.waset.org/abstracts/104031/a-modelling-study-to-compare-the-storm-surge-along-oman-coast-due-to-ashobaa-and-nanauk-cyclones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2503</span> Impact Assessment of Tropical Cyclone Hudhud on Visakhapatnam, Andhra Pradesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vivek%20Ganesh">Vivek Ganesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tropical cyclones are some of the most damaging events. They occur in yearly cycles and affect the coastal population with three dangerous effects: heavy rain, strong wind and storm surge. In order to estimate the area and the population affected by a cyclone, all the three types of physical impacts must be taken into account. Storm surge is an abnormal rise of water above the astronomical tides, generated by strong winds and drop in the atmospheric pressure. The main aim of the study is to identify the impact by comparing three different months data. The technique used here is NDVI classification technique for change detection and other techniques like storm surge modelling for finding the tide height. Current study emphasize on recent very severe cyclonic storm Hud Hud of category 3 hurricane which had developed on 8 October 2014 and hit the coast on 12 October 2014 which caused significant changes on land and coast of Visakhapatnam, Andhra Pradesh. In the present study, we have used Remote Sensing and GIS tools for investigating and quantifying the changes in vegetation and settlement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inundation%20map" title="inundation map">inundation map</a>, <a href="https://publications.waset.org/abstracts/search?q=NDVI%20map" title=" NDVI map"> NDVI map</a>, <a href="https://publications.waset.org/abstracts/search?q=storm%20tide%20map" title=" storm tide map"> storm tide map</a>, <a href="https://publications.waset.org/abstracts/search?q=track%20map" title=" track map"> track map</a> </p> <a href="https://publications.waset.org/abstracts/33375/impact-assessment-of-tropical-cyclone-hudhud-on-visakhapatnam-andhra-pradesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2502</span> Food Consumer Protection in Moroccan Legal System: A Systematic Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bouchaib%20Gazzaz">Bouchaib Gazzaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Mehdi"> Mounir Mehdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to ensure consumer food protection, the food industry has a legal obligation to provide food products that comply with the requirements of the legislation in force. National regulations in this area occupy an important place in the food control system in terms of consumer protection. This article discusses the legal and regulatory framework of food safety and consumer protection in Moroccan law. We used the doctrinal research approach by analyzing the judicial normative and bibliographic legal research. As a result, we were able to present the basic principles of consumer food protection by showing to what extent the food safety law provides effective consumer protection in Morocco. We have concluded that there is an impact -in terms of consumer legal protection- of food law reform on the concept of food safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20safety" title="food safety">food safety</a>, <a href="https://publications.waset.org/abstracts/search?q=Morocco" title=" Morocco"> Morocco</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer%20protection" title=" consumer protection"> consumer protection</a>, <a href="https://publications.waset.org/abstracts/search?q=framework" title=" framework"> framework</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20law" title=" food law"> food law</a> </p> <a href="https://publications.waset.org/abstracts/146727/food-consumer-protection-in-moroccan-legal-system-a-systematic-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2501</span> Analysis of SCR-Based ESD Protection Circuit on Holding Voltage Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong%20Seo%20Koo">Yong Seo Koo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Ho%20Nam"> Jong Ho Nam</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Nam%20Choi"> Yong Nam Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae%20Yeol%20Yoo"> Dae Yeol Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung%20Woo%20Han"> Jung Woo Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a silicon controller rectifier (SCR) based ESD protection circuit for IC. The proposed ESD protection circuit has low trigger voltage and high holding voltage compared with conventional SCR ESD protection circuit. Electrical characteristics of the proposed ESD protection circuit are simulated and analyzed using TCAD simulator. The proposed ESD protection circuit verified effective low voltage ESD characteristics with low trigger voltage and high holding voltage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electro-static%20discharge%20%28ESD%29" title="electro-static discharge (ESD)">electro-static discharge (ESD)</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20controlled%20rectifier%20%28SCR%29" title=" silicon controlled rectifier (SCR)"> silicon controlled rectifier (SCR)</a>, <a href="https://publications.waset.org/abstracts/search?q=holding%20voltage" title=" holding voltage"> holding voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=protection%20circuit" title=" protection circuit"> protection circuit</a> </p> <a href="https://publications.waset.org/abstracts/9524/analysis-of-scr-based-esd-protection-circuit-on-holding-voltage-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2500</span> Strengthening Legal Protection of Personal Data through Technical Protection Regulation in Line with Human Rights</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomy%20Prihananto">Tomy Prihananto</a>, <a href="https://publications.waset.org/abstracts/search?q=Damar%20Apri%20Sudarmadi"> Damar Apri Sudarmadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indonesia recognizes the right to privacy as a human right. Indonesia provides legal protection against data management activities because the protection of personal data is a part of human rights. This paper aims to describe the arrangement of data management and data management in Indonesia. This paper is a descriptive research with qualitative approach and collecting data from literature study. Results of this paper are comprehensive arrangement of data that have been set up as a technical requirement of data protection by encryption methods. Arrangements on encryption and protection of personal data are mutually reinforcing arrangements in the protection of personal data. Indonesia has two important and immediately enacted laws that provide protection for the privacy of information that is part of human rights. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indonesia" title="Indonesia">Indonesia</a>, <a href="https://publications.waset.org/abstracts/search?q=protection" title=" protection"> protection</a>, <a href="https://publications.waset.org/abstracts/search?q=personal%20data" title=" personal data"> personal data</a>, <a href="https://publications.waset.org/abstracts/search?q=privacy" title=" privacy"> privacy</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20rights" title=" human rights"> human rights</a>, <a href="https://publications.waset.org/abstracts/search?q=encryption" title=" encryption"> encryption</a> </p> <a href="https://publications.waset.org/abstracts/93122/strengthening-legal-protection-of-personal-data-through-technical-protection-regulation-in-line-with-human-rights" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2499</span> Efficient Backup Protection for Hybrid WDM/TDM GPON System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmahdi%20Mohammadine">Elmahdi Mohammadine</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahouzi%20Esmail"> Ahouzi Esmail</a>, <a href="https://publications.waset.org/abstracts/search?q=Najid%20Abdellah"> Najid Abdellah </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This contribution aims to present a new protected hybrid WDM/TDM PON architecture using Wavelength Selective Switches and Optical Line Protection devices. The objective from using these technologies is to improve flexibility and enhance the protection of GPON networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wavlenght%20Division%20Multiplexed%20Passive%20Optical%20Network%20%28WDM-PON%29" title="Wavlenght Division Multiplexed Passive Optical Network (WDM-PON)">Wavlenght Division Multiplexed Passive Optical Network (WDM-PON)</a>, <a href="https://publications.waset.org/abstracts/search?q=Time%20Division%20Multiplexed%20%20PON%20%28TDM-PON%29" title=" Time Division Multiplexed PON (TDM-PON)"> Time Division Multiplexed PON (TDM-PON)</a>, <a href="https://publications.waset.org/abstracts/search?q=architecture" title=" architecture"> architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=Protection" title=" Protection"> Protection</a>, <a href="https://publications.waset.org/abstracts/search?q=Wavelength%20Selective%20Switches%20%28WSS%29" title=" Wavelength Selective Switches (WSS)"> Wavelength Selective Switches (WSS)</a>, <a href="https://publications.waset.org/abstracts/search?q=Optical%20Line%20Protection%20%28OLP%29" title=" Optical Line Protection (OLP)"> Optical Line Protection (OLP)</a> </p> <a href="https://publications.waset.org/abstracts/18804/efficient-backup-protection-for-hybrid-wdmtdm-gpon-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2498</span> Statistical Comparison of Ensemble Based Storm Surge Forecasting Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Salighehdar">Amin Salighehdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziwen%20Ye"> Ziwen Ye</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingzhe%20Liu"> Mingzhe Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ionut%20%20Florescu"> Ionut Florescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20F.%20Blumberg"> Alan F. Blumberg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Storm surge is an abnormal water level caused by a storm. Accurate prediction of a storm surge is a challenging problem. Researchers developed various ensemble modeling techniques to combine several individual forecasts to produce an overall presumably better forecast. There exist some simple ensemble modeling techniques in literature. For instance, Model Output Statistics (MOS), and running mean-bias removal are widely used techniques in storm surge prediction domain. However, these methods have some drawbacks. For instance, MOS is based on multiple linear regression and it needs a long period of training data. To overcome the shortcomings of these simple methods, researchers propose some advanced methods. For instance, ENSURF (Ensemble SURge Forecast) is a multi-model application for sea level forecast. This application creates a better forecast of sea level using a combination of several instances of the Bayesian Model Averaging (BMA). An ensemble dressing method is based on identifying best member forecast and using it for prediction. Our contribution in this paper can be summarized as follows. First, we investigate whether the ensemble models perform better than any single forecast. Therefore, we need to identify the single best forecast. We present a methodology based on a simple Bayesian selection method to select the best single forecast. Second, we present several new and simple ways to construct ensemble models. We use correlation and standard deviation as weights in combining different forecast models. Third, we use these ensembles and compare with several existing models in literature to forecast storm surge level. We then investigate whether developing a complex ensemble model is indeed needed. To achieve this goal, we use a simple average (one of the simplest and widely used ensemble model) as benchmark. Predicting the peak level of Surge during a storm as well as the precise time at which this peak level takes place is crucial, thus we develop a statistical platform to compare the performance of various ensemble methods. This statistical analysis is based on root mean square error of the ensemble forecast during the testing period and on the magnitude and timing of the forecasted peak surge compared to the actual time and peak. In this work, we analyze four hurricanes: hurricanes Irene and Lee in 2011, hurricane Sandy in 2012, and hurricane Joaquin in 2015. Since hurricane Irene developed at the end of August 2011 and hurricane Lee started just after Irene at the beginning of September 2011, in this study we consider them as a single contiguous hurricane event. The data set used for this study is generated by the New York Harbor Observing and Prediction System (NYHOPS). We find that even the simplest possible way of creating an ensemble produces results superior to any single forecast. We also show that the ensemble models we propose generally have better performance compared to the simple average ensemble technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20learning" title="Bayesian learning">Bayesian learning</a>, <a href="https://publications.waset.org/abstracts/search?q=ensemble%20model" title=" ensemble model"> ensemble model</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20analysis" title=" statistical analysis"> statistical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=storm%20surge%20prediction" title=" storm surge prediction"> storm surge prediction</a> </p> <a href="https://publications.waset.org/abstracts/70123/statistical-comparison-of-ensemble-based-storm-surge-forecasting-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2497</span> Distance Protection Performance Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelsalam%20Omar">Abdelsalam Omar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents simulation-based case study that indicate the need for accurate dynamic modeling of distance protection relay. In many cases, a static analysis based on current and voltage phasors may be sufficient to assess the performance of distance protection. There are several circumstances under which such a simplified study does not provide the depth of analysis necessary to obtain accurate results, however. This letter present study of the influences of magnetizing inrush and power swing on the performance of distance protection relay. One type of numerical distance protection relay has been investigated: 7SA511. The study has been performed in order to demonstrate the relay response when dynamic model of distance relay is utilized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distance%20protection" title="distance protection">distance protection</a>, <a href="https://publications.waset.org/abstracts/search?q=magnitizing%20inrush" title=" magnitizing inrush"> magnitizing inrush</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20swing" title=" power swing"> power swing</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20model%20of%20protection%20relays" title=" dynamic model of protection relays"> dynamic model of protection relays</a>, <a href="https://publications.waset.org/abstracts/search?q=simulatio" title=" simulatio"> simulatio</a> </p> <a href="https://publications.waset.org/abstracts/21116/distance-protection-performance-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2496</span> Lightning Protection Design Applied to Sustainable Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sylvain%20Fauveaux">Sylvain Fauveaux</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Nowicki"> T. Nowicki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lightning protection is nowadays applied worldwide since the advent of international standards. Lightning protection is widely justified by the casualties and damages involved. As a matter of fact, the lightning business is constantly growing as more and more sensible areas need to be protected. However, the worldwide demand of copper materiel is increasing as well, its price too. Furthermore, the most frequently used method of protection is consuming a lot of copper. The copper production is also consuming a large amount of natural and power resources, not to mention the ecologic balance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ESEAT" title="ESEAT">ESEAT</a>, <a href="https://publications.waset.org/abstracts/search?q=Lightning%20protection" title=" Lightning protection "> Lightning protection </a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20resources%20management" title=" natural resources management"> natural resources management</a>, <a href="https://publications.waset.org/abstracts/search?q=NF%20C%2017-102" title=" NF C 17-102"> NF C 17-102</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a> </p> <a href="https://publications.waset.org/abstracts/123819/lightning-protection-design-applied-to-sustainable-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2495</span> Pilot Directional Protection Scheme Using Wireless Communication </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nitish%20Sharma">Nitish Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20G.%20Karady"> G. G. Karady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a scheme for the protection of loop system from all type of faults using the direction of fault current. The presence of distributed generation in today&rsquo;s system increases the complexity of fault detection as the power flow is bidirectional. Hence, protection scheme specific to this purpose needs to be developed. This paper shows a fast protection scheme using communication which can be fiber optic or wireless. In this paper, the possibility of wireless communication for protection is studied to exchange the information between the relays. The negative sequence and positive sequence directional elements are used to determine the direction of fault current. A PSCAD simulation is presented and validated using commercial SEL relays. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20grid%20protection" title="smart grid protection">smart grid protection</a>, <a href="https://publications.waset.org/abstracts/search?q=pilot%20protection" title=" pilot protection"> pilot protection</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system%20simulation" title=" power system simulation"> power system simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20communication" title=" wireless communication"> wireless communication</a> </p> <a href="https://publications.waset.org/abstracts/27773/pilot-directional-protection-scheme-using-wireless-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">636</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surge%20protection&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surge%20protection&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surge%20protection&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surge%20protection&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surge%20protection&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surge%20protection&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surge%20protection&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surge%20protection&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surge%20protection&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surge%20protection&amp;page=84">84</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surge%20protection&amp;page=85">85</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surge%20protection&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10