CINXE.COM

Search results for: Arsenic Exposure

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Arsenic Exposure</title> <meta name="description" content="Search results for: Arsenic Exposure"> <meta name="keywords" content="Arsenic Exposure"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Arsenic Exposure" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Arsenic Exposure"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2127</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Arsenic Exposure</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2127</span> Arsenic Contamination in Drinking Water Is Associated with Dyslipidemia in Pregnancy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Begum%20Rokeya">Begum Rokeya</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahelee%20Zinnat"> Rahelee Zinnat</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatema%20Jebunnesa"> Fatema Jebunnesa</a>, <a href="https://publications.waset.org/abstracts/search?q=Israt%20Ara%20Hossain"> Israt Ara Hossain</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rahman"> A. Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Aims: Arsenic in drinking water is a global environmental health problem, and the exposure may increase dyslipidemia and cerebrovascular diseases mortalities, most likely through causing atherosclerosis. However, the mechanism of lipid metabolism, atherosclerosis formation, arsenic exposure and impact in pregnancy is still unclear. Recent epidemiological evidences indicate close association between inorganic arsenic exposure via drinking water and Dyslipidemia. However, the exact mechanism of this arsenic-mediated increase in atherosclerosis risk factors remains enigmatic. We explore the association of the effect of arsenic on serum lipid profile in pregnant subjects. Methods: A total 200 pregnant mother screened in this study from arsenic exposed area. Our study group included 100 exposed subjects were cases and 100 Non exposed healthy pregnant were controls requited by a cross-sectional study. Clinical and anthropometric measurements were done by standard techniques. Lipidemic status was assessed by enzymatic endpoint method. Urinary As was measured by inductively coupled plasma-mass spectrometry and adjusted with specific gravity and Arsenic exposure was assessed by the level of urinary arsenic level > 100 μg/L was categorized as arsenic exposed and < 100 μg/L were categorized as non-exposed. Multivariate logistic regression and Student’s t - test was used for statistical analysis. Results: Systolic and diastolic blood pressure both were significantly higher in the Arsenic exposed pregnant subjects compared to the Non-exposed group (p<0.001). Arsenic exposed subjects had 2 times higher chance of developing hypertensive pregnancy (Odds Ratio 2.2). In parallel to the findings in Ar exposed subjects showed significantly higher proportion of triglyceride and total cholesterol and low density of lipo protein when compare to non- arsenic exposed pregnant subjects. Significant correlation of urinary arsenic level was also found with SBP, DBP, TG, T chol and serum LDL-Cholesterol. On multivariate logistic regression showed urinary arsenic had a positive association with DBP, SBP, Triglyceride and LDL-c. Conclusion: In conclusion, arsenic exposure may induce dyslipidemia like atherosclerosis through modifying reverse cholesterol transport in cholesterol metabolism. For decreasing atherosclerosis related mortality associated with arsenic, preventing exposure from environmental sources in early life is an important element. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arsenic%20Exposure" title="Arsenic Exposure">Arsenic Exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=Dyslipidemia" title=" Dyslipidemia"> Dyslipidemia</a>, <a href="https://publications.waset.org/abstracts/search?q=Gestational%20Diabetes%20Mellitus" title=" Gestational Diabetes Mellitus"> Gestational Diabetes Mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=Serum%20lipid%20profile" title=" Serum lipid profile"> Serum lipid profile</a> </p> <a href="https://publications.waset.org/abstracts/122297/arsenic-contamination-in-drinking-water-is-associated-with-dyslipidemia-in-pregnancy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2126</span> Increased Risk of Adverse Birth Outcomes of Newborns in Arsenic Exposed- Women with Gestational Diabetes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tania%20Mannan">Tania Mannan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahelee%20Zinnat"> Rahelee Zinnat</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatema%20Jebunnesa"> Fatema Jebunnesa</a>, <a href="https://publications.waset.org/abstracts/search?q=Israt%20Ara%20Hossain"> Israt Ara Hossain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Exposure to arsenic has known toxic effects but the effect on pregnancy outcomes is not as widely documented especially in women with diabetes. Growing evidence has suggested a potential role of arsenic exposure in the development of gestational diabetes mellitus (GDM). Therefore, we aimed to investigate the association of urinary arsenic (UAs) with birth outcomes in GDM subjects. Methods: Under an observational cross-sectional design a total of 263 GDM subjects (age in years, M±SD, 21±3.7) residing in an arsenic affected area of Bangladesh, were subjected to a 2 sample OGTT at the third trimester of gestation. Among them, 73 GDM and 190 non-GDM subjects enrolled in this study. Clinical and anthropometric measurements were done by standard techniques. Degree of chronic arsenic exposure was assessed by the level of UAs level. According to World Health Organization (WHO) criteria, GDM was diagnosed and neonatal outcomes using APGAR (Activity Pulse Grimace Appearance Respirations) Score, birth weight and size were assessed by a specialist obstetrician. Serum glucose was measured by the Glucose Oxidase method and UAs level was determined by ultraviolet/visible spectrophotometry. Result: Out of the 263 pregnant women, 28% developed GDM. Urinary Arsenic was significantly higher in the GDM as compared to the non-GDM group [UAs, µg/l, M±SD (range), 204.2±67.0 (67.0-377.0) vs 77.3±38.1 (22.0-99.0), p < 0.001]. Activity Pulse Grimace Appearance Respirations Score of the neonates from GDM mothers was significantly lower compared to the neonates from non-GDM mothers [APGAR Score, M±SD, 4.7±0.8 vs. 6.4±0.7, p<0.001]. Pearson’s correlation analysis in GDM subjects revealed that UA levels were found to have a significant positive correlation with both fasting and postprandial serum glucose levels (p < 0.001) and (p < 0.001) respectively. Again, a significant inverse correlation of UAs with birth weight and size was observed (p < 0.001). The APGAR Score of the neonates were found to have a significant negative correlation (p < 0.001) with UAs level. Conclusion: The effect of chronic arsenic exposure is associated with glucose intolerance during pregnancy and it also adversely affects birth outcomes. The study suggests further research on the impact of total arsenic exposure on pregnancy outcomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=APGAR%20score" title="APGAR score">APGAR score</a>, <a href="https://publications.waset.org/abstracts/search?q=arsenic%20exposure" title=" arsenic exposure"> arsenic exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=birth%20outcome" title=" birth outcome"> birth outcome</a>, <a href="https://publications.waset.org/abstracts/search?q=gestational%20diabetes%20mellitus" title=" gestational diabetes mellitus"> gestational diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a> </p> <a href="https://publications.waset.org/abstracts/122103/increased-risk-of-adverse-birth-outcomes-of-newborns-in-arsenic-exposed-women-with-gestational-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2125</span> In vitro Cytotoxic and Genotoxic Effects of Arsenic Trioxide on Human Keratinocytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Bouaziz">H. Bouaziz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sefi"> M. Sefi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20de%20Lapuente"> J. de Lapuente</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Borras"> M. Borras</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Zeghal"> N. Zeghal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although arsenic trioxide has been the subject of toxicological research, in vitro cytotoxicity and genotoxicity studies using relevant cell models and uniform methodology are not well elucidated. Hence, the aim of the present study was to evaluate the cytotoxicity and genotoxicity induced by arsenic trioxide in human keratinocytes (HaCaT) using the MTT [3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and alkaline single cell gel electrophoresis (Comet) assays, respectively. Human keratinocytes were treated with different doses of arsenic trioxide for 4 h prior to cytogenetic assessment. Data obtained from the MTT assay indicated that arsenic trioxide significantly reduced the viability of HaCaT cells in a dose-dependent manner, showing a IC50 value of 34.18 ± 0.6 µM. Data generated from the comet assay also indicated a significant dose-dependent increase in DNA damage in HaCaT cells associated with arsenic trioxide exposure. We observed a significant increase in comet tail length and tail moment, showing an evidence of arsenic trioxide -induced genotoxic damage in HaCaT cells. This study confirms that the comet assay is a sensitive and effective method to detect DNA damage caused by arsenic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic%20trioxide" title="arsenic trioxide">arsenic trioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxixity" title=" cytotoxixity"> cytotoxixity</a>, <a href="https://publications.waset.org/abstracts/search?q=genotoxicity" title=" genotoxicity"> genotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=HaCaT" title=" HaCaT"> HaCaT</a> </p> <a href="https://publications.waset.org/abstracts/27537/in-vitro-cytotoxic-and-genotoxic-effects-of-arsenic-trioxide-on-human-keratinocytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2124</span> Preliminary Assessment of Arsenic Levels in Farmland Soils of Bokkos Local Government Area, Plateau State Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20M.%20Buba">W. M. Buba</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20G.%20Nangbes"> J. G. Nangbes</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Butven"> J. P. Butven</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was undertaken to evolve community based awareness on the arsenic contamination from agricultural practices in Communities of Bokkos local government area. Contaminated farmland soil samples were collected from the surface for tailings and at various depths (50, 100, 150 cm intervals) in eight holes drilled in each farm at different locations using hand auger. A total of sixty- four (64) soil samples were collected from eight (8) different communities. A standard titrimetric method was applied for the determination of arsenic. It was found that the average concentration of arsenic in the surface soil (0-150cm) for the entire study areas was 0.0525mg/kg with range 0.0425 -0.0601mg/kg which is well above the recommended the soil to plant concentration guideline range of 2.3 – 4.3 x10-4 mg/kg value. This indicates that the arsenic concentration in the study areas does pose health risk for agricultural practices via potential bioaccumulation in plant food crops. However, some risks measures could follow the arsenic occurrence through direct exposure such as those resulting from the inhalation, oral or dermal intake of arsenic during agricultural practices and in the course of stay on the contaminated soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agrochemicals" title="agrochemicals">agrochemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=arsenic" title=" arsenic"> arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=bokkos" title=" bokkos"> bokkos</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination" title=" contamination"> contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a> </p> <a href="https://publications.waset.org/abstracts/36910/preliminary-assessment-of-arsenic-levels-in-farmland-soils-of-bokkos-local-government-area-plateau-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2123</span> Arsenic Speciation in Cicer arietinum: A Terrestrial Legume That Contains Organoarsenic Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjana%20Sagar">Anjana Sagar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arsenic poisoned ground water is a major concern in South Asia. The arsenic enters the food chain not only through drinking but also by using arsenic polluted water for irrigation. Arsenic is highly toxic in its inorganic forms; however, organic forms of arsenic are comparatively less toxic. In terrestrial plants, inorganic form of arsenic is predominantly found; however, we found that significant proportion of organic arsenic was present in root and shoot of a staple legume, chickpea (Cicer arientinum L) plants. Chickpea plants were raised in pot culture on soils spiked with arsenic ranging from 0-70 mg arsenate per Kg soil. Total arsenic concentrations of chickpea shoots and roots were determined by inductively coupled plasma-mass-spectrometry (ICP-MS) ranging from 0.76 to 20.26, and 2.09 to 16.43 µg g⁻¹ dry weight, respectively. Information on arsenic species was acquired by methanol/water extraction method, with arsenic species being analyzed by high-performance liquid chromatography (HPLC) coupled with ICP-MS. Dimethylarsinic acid (DMA) was the only organic arsenic species found in amount from 0.02 to 3.16 % of total arsenic shoot concentration and 0 to 6.93 % of total arsenic root concentration, respectively. To investigate the source of the organic arsenic in chickpea plants, arsenic species in the rhizosphere of soils of plants were also examined. The absence of organic arsenic in soils would suggest the possibility of formation of DMA in plants. The present investigation provides useful information for better understanding of distribution of arsenic species in terrestrial legume plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic" title="arsenic">arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=arsenic%20speciation" title=" arsenic speciation"> arsenic speciation</a>, <a href="https://publications.waset.org/abstracts/search?q=dimethylarsinic%20acid" title=" dimethylarsinic acid"> dimethylarsinic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=organoarsenic" title=" organoarsenic"> organoarsenic</a> </p> <a href="https://publications.waset.org/abstracts/125043/arsenic-speciation-in-cicer-arietinum-a-terrestrial-legume-that-contains-organoarsenic-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2122</span> Effect of Sodium Arsenite Exposure on Pharmacodynamic of Meloxicam in Male Wistar Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prashantkumar%20Waghe">Prashantkumar Waghe</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Prakash"> N. Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20D.%20Prasada"> N. D. Prasada</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20V.%20Lokesh"> L. V. Lokesh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Vijay%20Kumar"> M. Vijay Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Tikare"> Vinay Tikare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arsenic is a naturally occurring metalloid with potent toxic effects. It is ubiquitous in the environment and released from both natural and anthropogenic sources. It has the potential to cause various health hazards in exposed populations. Arsenic exposure through drinking water is considered as one of the most serious global environmental threats including Southeast Asia. The aim of present study was to evaluate the modulatory role of subacute exposure to sodium (meta) arsenite on the antinociceptive, anti-inflammatory and antipyretic responses mediated by meloxicam in rats. Rats were exposed to arsenic as sodium arsenite through drinking water for 28 days. A single dose of meloxicam (2 mg/kg b. wt.) was administered by oral gavage on the 29th day. The exact time of meloxicam administration depended on the type of test. Rats were divided randomly into 5 groups (n=6). Group I served as normal control and received arsenic free drinking water, while rats in group II were maintained similar to Group I but received meloxicam on 29th day. Groups III, IV and V were pre-exposed to arsenic through drinking water at 0.5, 5.0 and 50 ppm, respectively, for 28 days and was administered meloxicam next day and; pain and inflammation carried out by using formalin-induced nociception and carrageenan-induced inflammatory model(s), respectively by using standard protocol. For assessment of antipyretic effects, one more additional group (Group VI) was taken and given LPS @ 1.8 mg/kg b. wt. for induction of pyrexia (LPS control). Higher dose of arsenic inhibited the meloxicam mediated antinociceptive, anti-inflammatory and antipyretic responses. Further, meloxicam inhibited the arsenic induced level of tumor necrosis factor-α, inetrleukin-1β, interleukin -6 and COX2 mediated prostaglandin E2 in hind paw muscle. These results suggest a functional antagonism of meloxicam by arsenic. This may relate to arsenic mediated local release of tumor necrosis factor-α, inetrleukin-1β, interleukin -6 releases COX2 mediated prostaglandin E2. Based on the experimental study, it is concluded that sub-acute exposure to arsenic through drinking water aggravate pyrexia, inflammation and pain at environment relevant concentration and decrease the therapeutic efficacy of meloxicam at higher level of arsenite exposure. Thus, the observation made has clinical relevance in situations where animals are exposed to arsenite epidemic geographical locations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic" title="arsenic">arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=analgesic%20activity" title=" analgesic activity"> analgesic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=meloxicam" title=" meloxicam"> meloxicam</a>, <a href="https://publications.waset.org/abstracts/search?q=Wistar%20rats" title=" Wistar rats"> Wistar rats</a> </p> <a href="https://publications.waset.org/abstracts/79057/effect-of-sodium-arsenite-exposure-on-pharmacodynamic-of-meloxicam-in-male-wistar-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2121</span> Effect of Arsenic Treatment on Element Contents of Sunflower, Growing in Nutrient Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Szilvia%20V%C3%A1rallyay">Szilvia Várallyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Szilvia%20Veres"> Szilvia Veres</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%89va%20B%C3%B3di"> Éva Bódi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzaneh%20Garousi"> Farzaneh Garousi</a>, <a href="https://publications.waset.org/abstracts/search?q=B%C3%A9la%20Kov%C3%A1cs"> Béla Kovács</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The agricultural environment is contaminated with heavy metals and other toxic elements, which means more and more threats. One of the most important toxic element is the arsenic. Consequences of arsenic toxicity in the plant organism is decreases the weight of the roots, and causes discoloration and necrosis of leaves. The toxicity of arsenic depends on the quality and quantity of the arsenic specialization. The arsenic in the soil and in the plant presents as a most hazardous specialization. A dicotyledon plant were chosen for the experiment, namely sunflower. The sunflower plants were grown in nutrient solution in different As(III) levels. The content of As, P, Fe were measured from experimental plants, using by ICP-MS.Negative correlation was observed between the higher concentration of As(V) and As(III) in the nutrition solution and the content of P in the sunflower tissue. The amount of Fe was decreasing if we used a higher concentration of arsenic (30 mg kg-1). We can tell the conclusion that the arsenic had a negative effect on the sunflower tissue P and Fe content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic" title="arsenic">arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=sunflower" title=" sunflower"> sunflower</a>, <a href="https://publications.waset.org/abstracts/search?q=ICP-MS" title=" ICP-MS"> ICP-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/21278/effect-of-arsenic-treatment-on-element-contents-of-sunflower-growing-in-nutrient-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">646</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2120</span> Bioremediation of Arsenic from Industrially Polluted Soil of Vatva, Ahmedabad, Gujarat, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Makwana">C. Makwana</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Dave"> S. R. Dave </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arsenic is toxic to almost all living cells. Its contamination in natural sources affects the growth of microorganisms. The presence of arsenic is associated with various human disorders also. The attempt of this sort of study provides information regarding the performance of our isolated microorganisms in the presence of Arsenic, which have ample scope for bioremediation. Six isolates were selected from the polluted sample of industrial zone Vatva, Ahmedabad, Gujarat, India, out of which two were Thermophilic organisms. The thermophilic exopolysaccharide (EPS) producing Bacillus was used for microbial enhance oil recovery (MEOR) and in the bio beneficiation. Inorganic arsenic primarily exists in the form of arsenate or arsenite. This arsenic resistance isolate was capable of transforming As +3 to As+5. This isolate would be useful for arsenic remediation standpoint from aquatic systems. The study revealed that the thermophilic microorganism was growing at 55 degree centigrade showed considerable remediation property. The results on the growth and enzyme catalysis would be discussed in response to Arsenic remediation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquatic%20systems" title="aquatic systems">aquatic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophilic" title=" thermophilic"> thermophilic</a>, <a href="https://publications.waset.org/abstracts/search?q=exopolysacchride" title=" exopolysacchride"> exopolysacchride</a>, <a href="https://publications.waset.org/abstracts/search?q=arsenic" title=" arsenic"> arsenic</a> </p> <a href="https://publications.waset.org/abstracts/37578/bioremediation-of-arsenic-from-industrially-polluted-soil-of-vatva-ahmedabad-gujarat-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2119</span> Protective Effect of Thymoquinone against Arsenic-Induced Testicular Toxicity in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amr%20A.%20Fouad">Amr A. Fouad</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20H.%20Albuali"> Waleed H. Albuali</a>, <a href="https://publications.waset.org/abstracts/search?q=Iyad%20Jresat"> Iyad Jresat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The protective effect of thymoquinone (TQ) was investigated in rats exposed to testicular injury induced by sodium arsenite (10mg/kg/day, orally, for two days). TQ treatment (10mg/kg/day, intraperitoneal injection) was applied for five days, starting three day before arsenic administration. TQ significantly attenuated the arsenic-induced decreases of serum testosterone, and testicular reduced glutathione level, and significantly decreased the elevations of testicular malondialdehyde and nitric oxide levels resulted from arsenic administration. Also, TQ ameliorated the arsenic-induced testicular tissue injury observed by histopathological examination. In addition, TQ decreased the arsenic-induced expression of inducible nitric oxide synthase and caspase-3 in testicular tissue. It was concluded that TQ may represent a potential candidate to protect against arsenic-induced testicular injury. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thymoquinone" title="thymoquinone">thymoquinone</a>, <a href="https://publications.waset.org/abstracts/search?q=arsenic" title=" arsenic"> arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=testes" title=" testes"> testes</a>, <a href="https://publications.waset.org/abstracts/search?q=rats" title=" rats"> rats</a> </p> <a href="https://publications.waset.org/abstracts/6289/protective-effect-of-thymoquinone-against-arsenic-induced-testicular-toxicity-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2118</span> Amelioration of Arsenic and Mercury Induced Vasoconstriction by Eugenol, Linalool and Carvone </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swati%20Kundu">Swati Kundu</a>, <a href="https://publications.waset.org/abstracts/search?q=Seemi%20Farhat%20Basir"> Seemi Farhat Basir</a>, <a href="https://publications.waset.org/abstracts/search?q=Luqman%20A.%20Khan"> Luqman A. Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acute and chronic exposure to arsenic and mercury is known to produce vasoconstriction. Pathways involved in this hypercontraction and their relative contribution are not understood. In this study, we measure agonist-induced contraction of isolated rat aorta exposed to arsenic and mercury aorta and delineate pathways mediating this effect. PE-induced hypercontraction of 37% and 32% was obtained with 25 µM As(III) and 6 nM Hg(II), respectively. Isometric contraction measurements in the presence of apocynin, verapamil and sodium nitroprusside indicates that the major cause of increased contraction is reactive oxygen species and depletion of nitric oxide. Calcium influx plays a minor role in both arsenic and mercury caused hypercontraction. In the unexposed aorta, eugenol causes relaxation by inhibiting ROS and elevating NO, linalool by blocking voltage dependent calcium channel (VDCC) and elevating NO, and carvone by blocking calcium influx through VDDC. Since arsenic and mercury caused hypercontraction is mediated by increased ROS and depletion of nitric oxide, we hypothesize that molecules which neutralize ROS or elevate NO will be better ameliorators. In line with this argument, we find eugenol to be the best ameliorator of arsenic and mercury hypercontraction followed by linalool and carvone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carvone" title="carvone">carvone</a>, <a href="https://publications.waset.org/abstracts/search?q=eugenol" title=" eugenol"> eugenol</a>, <a href="https://publications.waset.org/abstracts/search?q=linalool" title=" linalool"> linalool</a>, <a href="https://publications.waset.org/abstracts/search?q=mercury" title=" mercury"> mercury</a> </p> <a href="https://publications.waset.org/abstracts/37358/amelioration-of-arsenic-and-mercury-induced-vasoconstriction-by-eugenol-linalool-and-carvone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2117</span> Mulberry Leave: An Efficient and Economical Adsorbent for Remediation of Arsenic (V) and Arsenic (III) Contaminated Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saima%20Q.%20Memon">Saima Q. Memon</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazhar%20I.%20Khaskheli"> Mazhar I. Khaskheli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of present study was to investigate the efficiency of mulberry leaves for the removal of both arsenic (III) and arsenic (V) from aqueous medium. Batch equilibrium studies were carried out to optimize various parameters such as pH of metal ion solution, volume of sorbate, sorbent doze, and agitation speed and agitation time. Maximum sorption efficiency of mulberry leaves for As (III) and As (V) at optimum conditions were 2818 μg.g-1 and 4930 μg.g-1, respectively. The experimental data was a good fit to Freundlich and D-R adsorption isotherm. Energy of adsorption was found to be in the range of 3-6 KJ/mole suggesting the physical nature of process. Kinetic data followed the first order rate, Morris-Weber equations. Developed method was applied to remove arsenic from real water samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic%20removal" title="arsenic removal">arsenic removal</a>, <a href="https://publications.waset.org/abstracts/search?q=mulberry" title=" mulberry"> mulberry</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20isotherms" title=" adsorption isotherms"> adsorption isotherms</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics%20of%20adsorption" title=" kinetics of adsorption"> kinetics of adsorption</a> </p> <a href="https://publications.waset.org/abstracts/5150/mulberry-leave-an-efficient-and-economical-adsorbent-for-remediation-of-arsenic-v-and-arsenic-iii-contaminated-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2116</span> Hepatotoxicity Induced by Arsenic Trioxide in Adult Mice and Their Progeny</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bouaziz%20H.">Bouaziz H.</a>, <a href="https://publications.waset.org/abstracts/search?q=Soudania%20N."> Soudania N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Essafia%20M."> Essafia M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Amara%20I."> Ben Amara I.</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakim%20A."> Hakim A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamoussi%20K."> Jamoussi K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeghal%20Km"> Zeghal Km</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeghal%20N."> Zeghal N.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this investigation, we have evaluated the effects of arsenic trioxide on hepatic function in pregnant and lactating Swiss albino mice and their suckling pups. Experiments were carried out on female mice given 175 ppm As2O3 in their drinking water from the 14th day of pregnancy until day 14 after delivery. Our results showed a significant decrease in plasma levels of total protein and albumin, cholesterol and triglyceride in As2O3 treated mice and their pups. The hyperbilirubinemia and the increased plasma total alkaline phosphatase activity suggested the presence of cholestasis. Transaminase activities as well as lactate deshydrogenase activity in plasma, known as biomarkers of hepatocellular injury, were elevated indicating hepatic cells’damage after treatment with As2O3. Exposure to arsenic led to an increase of liver thiobarbituric acid reactive substances level along with a concomitant decrease in the activities of superoxide dismutase, catalase and glutathione peroxidase and in glutathione. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20status" title="antioxidant status">antioxidant status</a>, <a href="https://publications.waset.org/abstracts/search?q=arsenic%20trioxide" title=" arsenic trioxide"> arsenic trioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatotoxicity" title=" hepatotoxicity"> hepatotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=mice" title=" mice"> mice</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a> </p> <a href="https://publications.waset.org/abstracts/22776/hepatotoxicity-induced-by-arsenic-trioxide-in-adult-mice-and-their-progeny" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2115</span> Effects of Nitrogen and Arsenic on Antioxidant Enzyme Activities and Photosynthetic Pigments in Safflower (Carthamus tinctorius L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Heidari">Mostafa Heidari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrogen fertilization has played a significant role in increasing crop yield, and solving problems of hunger and malnutrition worldwide. However, excessive of heavy metals such as arsenic can interfere on growth and reduced grain yield. In order to investigate the effects of different concentrations of arsenic and nitrogen fertilizer on photosynthetic pigments and antioxidant enzyme activities in safflower (cv. Goldasht), a factorial plot experiment as randomized complete block design with three replication was conducted in university of Zabol. Arsenic treatment included: A1= control or 0, A2=30, A3=60 and A4=90 mg. kg-1 soil from the Na2HASO4 source and three nitrogen levels including W1=75, W2=150 and W3=225 kg.ha-1 from urea source. Results showed that, arsenic had a significant effect on the activity of antioxidant enzymes. By increasing arsenic levels from A1 to A4, the activity of ascorbate peroxidase (APX) and gayacol peroxidase (GPX) increased and catalase (CAT) was decreased. In this study, arsenic had no significant on chlorophyll a, b and cartoneid content. Nitrogen and interaction between arsenic and nitrogen treatment, except APX, had significant effect on CAT and GPX. The highest GPX activity was obtained at A4N3 treatment. Nitrogen increased the content of chlorophyll a, b and cartoneid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic" title="arsenic">arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=physiological%20parameters" title=" physiological parameters"> physiological parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20enzymes" title=" oxidative enzymes"> oxidative enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a> </p> <a href="https://publications.waset.org/abstracts/16787/effects-of-nitrogen-and-arsenic-on-antioxidant-enzyme-activities-and-photosynthetic-pigments-in-safflower-carthamus-tinctorius-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2114</span> Protective Efficacy of Curcuma Aromatica Leaf Extract on Liver of Arsenic Intoxicated Albino Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priya%20Bajaj">Priya Bajaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Baby%20Tabassum"> Baby Tabassum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arsenic is a poisonous metalloid, naturally occurring in soil, air, rocks and ground water. This dreadful metalloid commonly exists as inorganic compound, arsenic trioxide. WHO permitted maximum limit for arsenic in water is 0.01 mg/L, but some affected areas show ground water level of arsenic up to 3 mg/L even. Ground water arsenic pollution has created a number of health problems, viz. keratosis, melanosis, lesions and even skin cancers. The key objective of our nested study was to characterize arsenic induced hepatotoxicity and to find out some herbal protection against it. For the purpose, we selected albino rat (Rattus norvegicus) as model for arsenic induced liver injury and wild turmeric (Curcuma aromatica) leaf extract as remedy for it. The study was performed at acute (1 day) and subacute (7, 14 & 21 days) levels. The LD50 estimated for arsenic trioxide was 14.98 mg/kg body weight. In our investigation, we observed a significant restoration of altered hepatic lipid, cholesterol, protein and glycogen contents as well as liver weight, body-weight and hepato-somatic index by Curcuma aromatica leaf extract before arsenic intoxication. The results reveal excellent protective efficacy of Curcuma aromatica leaf extract that further can be exploited in remediation programme in heavy metal affected areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic" title="arsenic">arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=Curcuma%20aromatica" title=" Curcuma aromatica"> Curcuma aromatica</a>, <a href="https://publications.waset.org/abstracts/search?q=glycogen" title=" glycogen"> glycogen</a>, <a href="https://publications.waset.org/abstracts/search?q=lipids" title=" lipids"> lipids</a> </p> <a href="https://publications.waset.org/abstracts/50706/protective-efficacy-of-curcuma-aromatica-leaf-extract-on-liver-of-arsenic-intoxicated-albino-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2113</span> Groundwater Arsenic Contamination in Gangetic Jharkhand, India: Risk Implications for Human Health and Sustainable Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukalyan%20Chakraborty">Sukalyan Chakraborty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arsenic contamination in groundwater has been a matter of serious concern worldwide. Globally, arsenic contaminated water has caused serious chronic human diseases and in the last few decades the transfer of arsenic to human beings via food chain has gained much attention because food represents a further potential exposure pathway to arsenic in instances where crops are irrigated with high arsenic groundwater, grown in contaminated fields or cooked with arsenic laden water. In the present study, the groundwater of Sahibganj district of Jharkhand has been analysed to find the degree of contamination and its probable associated risk due to direct consumption or irrigation. The present study area comprising of three blocks, namely Sahibganj, Rajmahal and Udhwa in Sahibganj district of Jharkhand state, India, situated in the western bank of river Ganga has been investigated for arsenic contamination in groundwater, soil and crops predominantly growing in the region. Associated physicochemical parameters of groundwater including pH, temperature, electrical conductivity (EC), total dissolved solids (TDS), dissolved oxygen (DO), oxidation reduction potential (ORP), ammonium, nitrate and chloride were assessed to understand the mobilisation mechanism and chances of arsenic exposure from soil to crops and further into the food chain. Results suggested the groundwater to be dominantly Ca-HCO3- type with low redox potential and high total dissolved solids load. Major cations followed the order of Ca ˃ Na ˃ Mg ˃ K. The concentration of major anions was found in the order of HCO3− > Cl− > SO42− > NO3− > PO43− varied between 0.009 to 0.20 mg L-1. Fe concentrations of the groundwater samples were below WHO permissible limit varying between 54 to 344 µg L-1. Phosphate concentration was high and showed a significant positive correlation with arsenic. As concentrations ranged from 7 to 115 µg L-1 in premonsoon, between 2 and 98 µg L-1 in monsoon and 1 to 133µg L-1 in postmonsoon season. Arsenic concentration was found to be much higher than the WHO or BIS permissible limit in majority of the villages in the study area. Arsenic was also seen to be positively correlated with iron and phosphate. PCA results demonstrated the role of both geological condition and anthropogenic inputs to influence the water quality. Arsenic was also found to increase with depth up to 100 m from the surface. Calculation of carcinogenic and non-carcinogenic effects of the arsenic concentration in the communities exposed to the groundwater for drinking and other purpose indicated high risk with an average of more than 1 in a 1000 population. Health risk analysis revealed high to very high carcinogenic and non-carcinogenic risk for adults and children in the communities dependent on groundwater of the study area. Observation suggested the groundwater to be considerably polluted with arsenic and posing significant health risk for the exposed communities. The mobilisation mechanism of arsenic also could be identified from the results suggesting reductive dissolution of Fe oxyhydroxides due to high phosphate concentration from agricultural input arsenic release from the sediments along river Ganges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic" title="arsenic">arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20parameters" title=" physicochemical parameters"> physicochemical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=mobilisation" title=" mobilisation"> mobilisation</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20effects" title=" health effects"> health effects</a> </p> <a href="https://publications.waset.org/abstracts/39540/groundwater-arsenic-contamination-in-gangetic-jharkhand-india-risk-implications-for-human-health-and-sustainable-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2112</span> Effect of Different Arsenic Treatments on Root Growth of Sunflower Seedlings in Rhizobox Experiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Szilvia%20V%C3%A1rallyay">Szilvia Várallyay</a>, <a href="https://publications.waset.org/abstracts/search?q=B%C3%A9la%20Kov%C3%A1cs"> Béla Kovács</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%89va%20B%C3%B3di"> Éva Bódi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzeneh%20Garousi"> Farzeneh Garousi</a>, <a href="https://publications.waset.org/abstracts/search?q=Szilvia%20Veres"> Szilvia Veres</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arsenic (As) is a naturally occurring substance that can be present in soil, water and air. Vegetables, fruits, and other plants that grow in contaminated soils which are able to accumulate arsenic. Arsenic when presents in plant cells, has various negative physiological effects and when presents in soil will be inorgaic form, namely arsenite (As(III)) and arsenate (As(V)). These two forms of arsenic disrupt plant metabolism by inhibiting its growth and these arsenic species has negative effect on nutrient uptake. A rhizobox experiment was conducted to investigate the effect of arsenite and arsenate on root growth of sunflower seedlings. Sunflower plants were grown in climatic room under irradiance of 300 µmol m-2 s-1, 16-h day and 8-h night photoperiod, day/night temperature of 25/20°C and relative humidity of 65-75%. We applied arsenic in form of arsenite (NaAsO2) and arsenate (KH2AsO4), respectively. The applied arsenic treatments was 0, 10, 30, 90 mg.kg-1. After disinfection, seeds were germinated between moist filter papers. Seedlings with 2-3 cm coleoptils were placed into rhizoboxes. In the rhizoboxes the growing and daily growing rhythm of roots of sunflower can be followed up, moreover possible phytotoxic symptoms of roots resulting from increasing arsenic can be seen. Weights of rhizoboxes were measured daily and also evaporated water added each day. The lengths of roots were measured daily until seedlings roots get at the end of the rhizoboxes. Negative correlation was observed between the higher concentration of arsenic in the soil and the growth of sunflower seedlings roots. The effect of arsenic toxicity was more considerable in 90 mg.kg-1 arsenic treatment than lower concentration. The same arsenite concentration causes slower growth in case of sunflower plant than the same arsenate concentration produced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic" title="arsenic">arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizobox%20experiment" title=" rhizobox experiment"> rhizobox experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=sunflower" title=" sunflower"> sunflower</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20growth" title=" root growth"> root growth</a> </p> <a href="https://publications.waset.org/abstracts/27302/effect-of-different-arsenic-treatments-on-root-growth-of-sunflower-seedlings-in-rhizobox-experiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2111</span> A Comparison of the Adsorption Mechanism of Arsenic on Iron-Modified Nanoclays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Leo%20L.%20Dela%20Cruz">Michael Leo L. Dela Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Khryslyn%20G.%20Arano"> Khryslyn G. Arano</a>, <a href="https://publications.waset.org/abstracts/search?q=Eden%20May%20B.%20Dela%20Pena"> Eden May B. Dela Pena</a>, <a href="https://publications.waset.org/abstracts/search?q=Leslie%20Joy%20Diaz"> Leslie Joy Diaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arsenic adsorbents were continuously being researched to ease the detrimental impact of arsenic to human health. A comparative study on the adsorption mechanism of arsenic on iron modified nanoclays was undertaken. Iron intercalated montmorillonite (Fe-MMT) and montmorillonite supported zero-valent iron (ZVI-MMT) were the adsorbents investigated in this study. Fe-MMT was produced through ion-exchange by replacing the sodium intercalated ions in montmorillonite with iron (III) ions. The iron (III) in Fe-MMT was later reduced to zero valent iron producing ZVI-MMT. Adsorption study was performed by batch technique. Obtained data were fitted to intra-particle diffusion, pseudo-first order, and pseudo-second-order models and the Elovich equation to determine the kinetics of adsorption. The adsorption of arsenic on Fe-MMT followed the intra-particle diffusion model with intra-particle rate constant of 0.27 mg/g-min0.5. Arsenic was found to be chemically bound on ZVI-MMT as suggested by the pseudo-second order and Elovich equation. The derived pseudo-second order rate constant was 0.0027 g/mg-min with initial adsorption rate computed from the Elovich equation was 113 mg/g-min. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption%20mechanism" title="adsorption mechanism">adsorption mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=arsenic" title=" arsenic"> arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=montmorillonite" title=" montmorillonite"> montmorillonite</a>, <a href="https://publications.waset.org/abstracts/search?q=zero%20valent%20iron" title=" zero valent iron"> zero valent iron</a> </p> <a href="https://publications.waset.org/abstracts/9758/a-comparison-of-the-adsorption-mechanism-of-arsenic-on-iron-modified-nanoclays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2110</span> Phytoremediation of Arsenic-Contaminated Soil and Recovery of Valuable Arsenic Products </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valentine%20C.%20Eze">Valentine C. Eze</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20P.%20Harvey"> Adam P. Harvey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contamination of groundwater and soil by heavy metals and metalloids through anthropogenic activities and natural occurrence poses serious environmental challenges globally. A possible solution to this problem is through phytoremediation of the contaminants using hyper-accumulating plants. Conventional phytoremediation treats the contaminated hyper-accumulator biomass as a waste stream which adds no value to the heavy metal(loid)s decontamination process. This study investigates strategies for remediation of soil contaminated with arsenic and the extractive chemical routes for recovery of arsenic and phosphorus from the hyper-accumulator biomass. Pteris cretica ferns species were investigated for their uptake of arsenic from soil containing 200 ± 3ppm of arsenic. The Pteris cretica ferns were shown to be capable of hyper-accumulation of arsenic, with maximum accumulations of about 4427 ± 79mg to 4875 ± 96mg of As per kg of the dry ferns. The arsenic in the Pteris cretica fronds was extracted into various solvents, with extraction efficiencies of 94.3 ± 2.1% for ethanol-water (1:1 v/v), 81.5 ± 3.2% for 1:1(v/v) methanol-water, and 70.8 ± 2.9% for water alone. The recovery efficiency of arsenic from the molybdic acid complex process 90.8 ± 5.3%. Phosphorus was also recovered from the molybdic acid complex process at 95.1 ± 4.6% efficiency. Quantitative precipitation of Mg₃(AsO₄)₂ and Mg₃(PO₄)₂ occurred in the treatment of the aqueous solutions of arsenic and phosphorus after stripping at pH of 8 – 10. The amounts of Mg₃(AsO₄)₂ and Mg₃(PO₄)₂ obtained were 96 ± 7.2% for arsenic and 94 ± 3.4% for phosphorus. The arsenic nanoparticles produced from the Mg₃(AsO₄)₂ recovered from the biomass have the average particles diameter of 45.5 ± 11.3nm. A two-stage reduction process – a first step pre-reduction of As(V) to As(III) with L-cysteine, followed by NaBH₄ reduction of the As(III) to As(0), was required to produced arsenic nanoparticles from the Mg₃(AsO₄)₂. The arsenic nanoparticles obtained are potentially valuable for medical applications, while the Mg₃(AsO₄)₂ could be used as an insecticide. The phosphorus contents of the Pteris cretica biomass was recovered as phosphomolybdic acid complex and converted to Mg₃(PO₄)₂, which could be useful in productions of fertilizer. Recovery of these valuable products from phytoremediation biomass would incentivize and drive commercial industries’ participation in remediation of contaminated lands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title="phytoremediation">phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=Pteris%20cretica" title=" Pteris cretica"> Pteris cretica</a>, <a href="https://publications.waset.org/abstracts/search?q=hyper-accumulator" title=" hyper-accumulator"> hyper-accumulator</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction" title=" solvent extraction"> solvent extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=molybdic%20acid%20process" title=" molybdic acid process"> molybdic acid process</a>, <a href="https://publications.waset.org/abstracts/search?q=arsenic%20nanoparticles" title=" arsenic nanoparticles"> arsenic nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/90396/phytoremediation-of-arsenic-contaminated-soil-and-recovery-of-valuable-arsenic-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2109</span> Evaluation of Arsenic Removal in Soils Contaminated by the Phytoremediation Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Ibujes">V. Ibujes</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Guevara"> A. Guevara</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Barreto"> P. Barreto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concentration of arsenic represents a serious threat to human health. It is a bioaccumulable toxic element and is transferred through the food chain. In Ecuador, values of 0.0423 mg/kg As are registered in potatoes of the skirts of the Tungurahua volcano. The increase of arsenic contamination in Ecuador is mainly due to mining activity, since the process of gold extraction generates toxic tailings with mercury. In the Province of Azuay, due to the mining activity, the soil reaches concentrations of 2,500 to 6,420 mg/kg As whereas in the province of Tungurahua it can be found arsenic concentrations of 6.9 to 198.7 mg/kg due to volcanic eruptions. Since the contamination by arsenic, the present investigation is directed to the remediation of the soils in the provinces of Azuay and Tungurahua by phytoremediation technique and the definition of a methodology of extraction by means of analysis of arsenic in the system soil-plant. The methodology consists in selection of two types of plants that have the best arsenic removal capacity in synthetic solutions 60 μM As, a lower percentage of mortality and hydroponics resistance. The arsenic concentrations in each plant were obtained from taking 10 ml aliquots and the subsequent analysis of the ICP-OES (inductively coupled plasma-optical emission spectrometry) equipment. Soils were contaminated with synthetic solutions of arsenic with the capillarity method to achieve arsenic concentration of 13 and 15 mg/kg. Subsequently, two types of plants were evaluated to reduce the concentration of arsenic in soils for 7 weeks. The global variance for soil types was obtained with the InfoStat program. To measure the changes in arsenic concentration in the soil-plant system, the Rhizo and Wenzel arsenic extraction methodology was used and subsequently analyzed with the ICP-OES (optima 8000 Pekin Elmer). As a result, the selected plants were bluegrass and llanten, due to the high percentages of arsenic removal of 55% and 67% and low mortality rates of 9% and 8% respectively. In conclusion, Azuay soil with an initial concentration of 13 mg/kg As reached the concentrations of 11.49 and 11.04 mg/kg As for bluegrass and llanten respectively, and for the initial concentration of 15 mg/kg As reached 11.79 and 11.10 mg/kg As for blue grass and llanten after 7 weeks. For the Tungurahua soil with an initial concentration of 13 mg/kg As it reached the concentrations of 11.56 and 12.16 mg/kg As for the bluegrass and llanten respectively, and for the initial concentration of 15 mg/kg As reached 11.97 and 12.27 mg/kg Ace for bluegrass and llanten after 7 weeks. The best arsenic extraction methodology of soil-plant system is Wenzel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blue%20grass" title="blue grass">blue grass</a>, <a href="https://publications.waset.org/abstracts/search?q=llanten" title=" llanten"> llanten</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20of%20Azuay" title=" soil of Azuay"> soil of Azuay</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20of%20Tungurahua" title=" soil of Tungurahua"> soil of Tungurahua</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20arsenic%20solution" title=" synthetic arsenic solution"> synthetic arsenic solution</a> </p> <a href="https://publications.waset.org/abstracts/101022/evaluation-of-arsenic-removal-in-soils-contaminated-by-the-phytoremediation-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2108</span> Ameliorative Effect of Curcuma Longa against Arsenic Induced Reproductive Toxicity in Charles Foster Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shazia%20Naheed%20Akhter">Shazia Naheed Akhter</a>, <a href="https://publications.waset.org/abstracts/search?q=Rekha%20Kumari"> Rekha Kumari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An estimated 70 million population are exposed to arsenic poisoning in India in recent times. Arsenic contamination in the groundwater has caused serious health hazards among the exposed population. In Bihar, the first district was Bhojpur, where arsenic causing health issues were reported in 2002. Presently, there are 18 districts that are reported arsenic poisoning in the groundwater. The exposed population is firstly diseased with various symptoms such as skin manifestations, loss of appetite, constipation, hormonal disorders, etc. The long duration exposure has led to cause infertility in the male subjects. The present study thus aims to develop the antidote against arsenic-induced male reproductive toxicity in animal models. The study was carried out on Charles Foster Rats after the approval from Institutional Animal Ethics Committee. A total of n=18 rats (12 weeks old) of an average weight of 160 ± 20 g were used for the study. The study group included n=6 control and n= 12 treated with sodium arsenite orally at the dose of 8mg/Kg b.w daily for 40 days. The n= 6 animals were dissected and the rest n=6 was administered orally with Curcuma longa rhizome ethanolic extract at the dose of 600mg/Kg b.w per day for 40 days. At the end of the entire experiment, all the animals were dissected out and their reproductive organs were taken out, especially epididymis for sperm counts, sperm motility, sperm mortality, sperm morphology. The blood samples were collected for the hormonal assay (testosterone and luteinizing hormone), as well as for hematological and biochemical analysis. The study showed a high magnitude of degeneration in the reproductive organs of the rats in the arsenic-treated group. There were degenerative fluctuations in the sperm counts, sperm motility, sperm mortality, sperm morphology and in the hormonal parameters, as well as in the hematological and biochemical parameters in the arsenic-treated rats. But, after the administration of Curcuma longa, there was significant amelioration in all these parameters. Therefore, the present study shows that Curcuma longa plays a vital role to combat arsenic-induced male reproductive toxicity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sodium%20arsenite" title="sodium arsenite">sodium arsenite</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20foster%20rats" title=" Charles foster rats"> Charles foster rats</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanolic%20rhizome%20extract%20of%20curcuma%20longa" title=" ethanolic rhizome extract of curcuma longa"> ethanolic rhizome extract of curcuma longa</a>, <a href="https://publications.waset.org/abstracts/search?q=male%20reproductive%20toxicity" title=" male reproductive toxicity"> male reproductive toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=amelioration" title=" amelioration"> amelioration</a> </p> <a href="https://publications.waset.org/abstracts/139480/ameliorative-effect-of-curcuma-longa-against-arsenic-induced-reproductive-toxicity-in-charles-foster-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2107</span> The Trial Using Bio-Product for Reducing Arsenic Heavy Metal in Soil in Grow Organic Vegetables </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nittaya%20Nokham">Nittaya Nokham</a>, <a href="https://publications.waset.org/abstracts/search?q=Nattaphon%20Kamon"> Nattaphon Kamon</a>, <a href="https://publications.waset.org/abstracts/search?q=Pipatpong%20%20%20%20Pimkhot"> Pipatpong Pimkhot</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedcharada%20Yusuk"> Pedcharada Yusuk </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Testing efficacy of a bio-product (bp) to reduce amount of arsenic was carried out in soil which were used for cultivation of organic vegetables, at Watchan Royal Project Development Center, Kulayaniwattana district, Chiang Mai. The test consists of 6 treatments e.g. Tr.1) Control: To underlie the planting pits (pp)with compost; Tr.2) Using bp: To underlie thepp with compost mixed with (+) bp at 100 g/pit; Tr.3) Using bp: To underlie the pp with compost + bp at 100 g/pit and to spray the vegetables with bp at 2 l/20 l of water, once a week; Tr.4) Using bp: To spread the compost bp on the planting area at 3 kg/1 m2 ; Tr.5) Using bp: To spread the compost + bp on the planting area at 3 kg/1 m2and to spray vegetables with bp at 2 l/20 l of water; Tr.6) Using bp: To spray vegetables with bp at 2 l/20 l of water. Result showed that after first trial of pointed cabbage cultivation, only Tr.6 had a small reduction of arsenic; while the others had higher amount of the metal. After second trial of growing red oak leaf, Tr.6 had more reduction of arsenic while Tr.5 and Tr.3 had less reduction compared to Tr.6 but more reduction than the others. In the third trial of growing mustard, very small reduction could be found on Tr.6 and Tr.5 but more reduction in Tr.3. For the fourth (last) trial with cos romaine lettuce: Tr.6, Tr.5 showed most reduction of arsenic to about half of the original amount. So, it can be concluded that this bio-product can help reducing arsenic when using this product by spraying the bp to vegetables at concentration of 2 l/20 l of water once week (Tr.6), or using the bio-product mixed with compost to spread on the planting area at 3 kg/1 m2 together with spraying the product (Tr.5). The results obtained from continuous planting 4 kinds of vegetables at the same area. The amount of arsenic found in roots and stem is very small in the 4 vegetables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20vegetables" title="organic vegetables">organic vegetables</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-product" title=" bio-product"> bio-product</a>, <a href="https://publications.waset.org/abstracts/search?q=arsenic" title=" arsenic"> arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a> </p> <a href="https://publications.waset.org/abstracts/77108/the-trial-using-bio-product-for-reducing-arsenic-heavy-metal-in-soil-in-grow-organic-vegetables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2106</span> Bacillus licheniformis sp. nov. PS-6, an Arsenic Tolerance Bacterium with Biotransforming Potential Isolated from Sediments of Pichavaram Mangroves of South India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Padmanabhan%20D">Padmanabhan D</a>, <a href="https://publications.waset.org/abstracts/search?q=Kavitha%20S"> Kavitha S</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the study is to investigate arsenic resistance ability of indigenous microflora and its ability to utilize arsenic species form containing water source. PS-6 potential arsenic tolerance bacterium was screened from thirty isolates from Pichavaram Mangroves of India having tolerance to grow up to 1000 mg/l of As (V) and 800 mg/l of As (III) and arsenic utilization ability of 98 % of As (V) and 97% of As (III) with initial concentration of 3-5 mg/l within 48 hrs. Optimum pH and temperature was found to be ~7-7.4 and 37°C. Active growth of PS-6 in minimal salt media (MSB) helps in cost effective biomass production. Dry weight analysis of PS-6 has shown significant difference in biomass when exposed to As (III) and As (V). Protein level study of PS-6 after exposing to As (V) and As (III) shown modification in total protein concentration and variation in SDS-PAGE pattern. PS-6 was identified as Bacillus licheniformis based on partially sequenced of 16S rRNA using NCBI Blast. Further investigation will help in using this potential bacterium as a well-grounded source for urgency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenite" title="arsenite">arsenite</a>, <a href="https://publications.waset.org/abstracts/search?q=arsenate" title=" arsenate"> arsenate</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20licheniformis" title=" Bacillus licheniformis"> Bacillus licheniformis</a>, <a href="https://publications.waset.org/abstracts/search?q=utilization" title=" utilization"> utilization</a> </p> <a href="https://publications.waset.org/abstracts/13201/bacillus-licheniformis-sp-nov-ps-6-an-arsenic-tolerance-bacterium-with-biotransforming-potential-isolated-from-sediments-of-pichavaram-mangroves-of-south-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2105</span> Evaluation of Arsenic Removal in Synthetic Solutions and Natural Waters by Rhizofiltration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Barreto">P. Barreto</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Guevara"> A. Guevara</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Ibujes"> V. Ibujes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the removal of arsenic from synthetic solutions and natural water from Papallacta Lagoon was evaluated, by using the rhizofiltration method with terrestrial and aquatic plant species. Ecuador is a country of high volcanic activity, that is why most of water sources come from volcanic glaciers. Therefore, it is necessary to find new, affordable and effective methods for treating water. The water from Papallacta Lagoon shows levels from 327 µg/L to 803 µg/L of arsenic. The evaluation for the removal of arsenic began with the selection of 16 different species of terrestrial and aquatic plants. These plants were immersed to solutions of 4500 µg/L arsenic concentration, for 48 hours. Subsequently, 3 terrestrial species and 2 aquatic species were selected based on the highest amount of absorbed arsenic they showed, analyzed by plasma optical emission spectrometry (ICP-OES), and their best capacity for adaptation into the arsenic solution. The chosen terrestrial species were cultivated from their seed with hydroponics methods, using coconut fiber and polyurethane foam as substrates. Afterwards, the species that best adapted to hydroponic environment were selected. Additionally, a control of the development for the selected aquatic species was carried out using a basic nutrient solution to provide the nutrients that the plants required. Following this procedure, 30 plants from the 3 types of species selected were exposed to a synthetic solution with levels of arsenic concentration of 154, 375 and 874 µg/L, for 15 days. Finally, the plant that showed the highest level of arsenic absorption was placed in 3 L of natural water, with arsenic levels of 803 µg/L. The plant laid in the water until it reached the desired level of arsenic of 10 µg/L. This experiment was carried out in a total of 30 days, in which the capacity of arsenic absorption of the plant was measured. As a result, the five species initially selected to be used in the last part of the evaluation were: sunflower (Helianthus annuus), clover (Trifolium), blue grass (Poa pratensis), water hyacinth (Eichhornia crassipes) and miniature aquatic fern (Azolla). The best result of arsenic removal was showed by the water hyacinth with a 53,7% of absorption, followed by the blue grass with 31,3% of absorption. On the other hand, the blue grass was the plant that best responded to the hydroponic cultivation, by obtaining a germination percentage of 97% and achieving its full growth in two months. Thus, it was the only terrestrial species selected. In summary, the final selected species were blue grass, water hyacinth and miniature aquatic fern. These three species were evaluated by immersing them in synthetic solutions with three different arsenic concentrations (154, 375 and 874 µg/L). Out of the three plants, the water hyacinth was the one that showed the highest percentages of arsenic removal with 98, 58 and 64%, for each one of the arsenic solutions. Finally, 12 plants of water hyacinth were chosen to reach an arsenic level up to 10 µg/L in natural water. This significant arsenic concentration reduction was obtained in 5 days. In conclusion, it was found that water hyacinth is the best plant to reduce arsenic levels in natural water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic" title="arsenic">arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20water" title=" natural water"> natural water</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20species" title=" plant species"> plant species</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizofiltration" title=" rhizofiltration"> rhizofiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20solutions" title=" synthetic solutions"> synthetic solutions</a> </p> <a href="https://publications.waset.org/abstracts/101024/evaluation-of-arsenic-removal-in-synthetic-solutions-and-natural-waters-by-rhizofiltration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2104</span> Development of a Sensitive Electrochemical Sensor Based on Carbon Dots and Graphitic Carbon Nitride for the Detection of 2-Chlorophenol and Arsenic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Theo%20H.%20G.%20Moundzounga">Theo H. G. Moundzounga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arsenic and 2-chlorophenol are priority pollutants that pose serious health threats to humans and ecology. An electrochemical sensor, based on graphitic carbon nitride (g-C₃N₄) and carbon dots (CDs), was fabricated and used for the determination of arsenic and 2-chlorophenol. The g-C₃N₄/CDs nanocomposite was prepared via microwave irradiation heating method and was dropped-dried on the surface of the glassy carbon electrode (GCE). Transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence (PL), Fourier transform infrared spectroscopy (FTIR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) were used for the characterization of structure and morphology of the nanocomposite. Electrochemical characterization was done by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrochemical behaviors of arsenic and 2-chlorophenol on different electrodes (GCE, CDs/GCE, and g-C₃N₄/CDs/GCE) was investigated by differential pulse voltammetry (DPV). The results demonstrated that the g-C₃N₄/CDs/GCE significantly enhanced the oxidation peak current of both analytes. The analytes detection sensitivity was greatly improved, suggesting that this new modified electrode has great potential in the determination of trace level of arsenic and 2-chlorophenol. Experimental conditions which affect the electrochemical response of arsenic and 2-chlorophenol were studied, the oxidation peak currents displayed a good linear relationship to concentration for 2-chlorophenol (R²=0.948, n=5) and arsenic (R²=0.9524, n=5), with a linear range from 0.5 to 2.5μM for 2-CP and arsenic and a detection limit of 2.15μM and 0.39μM respectively. The modified electrode was used to determine arsenic and 2-chlorophenol in spiked tap and effluent water samples by the standard addition method, and the results were satisfying. According to the measurement, the new modified electrode is a good alternative as chemical sensor for determination of other phenols. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemistry" title="electrochemistry">electrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode" title=" electrode"> electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=limit%20of%20detection" title=" limit of detection"> limit of detection</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a> </p> <a href="https://publications.waset.org/abstracts/123651/development-of-a-sensitive-electrochemical-sensor-based-on-carbon-dots-and-graphitic-carbon-nitride-for-the-detection-of-2-chlorophenol-and-arsenic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2103</span> Using Fly Ash Based Synthetic Zeolite Permeable Reactive Barrier to Remove Arsenic, Cadmium, and their Mixture from Aqueous Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mozhgan%20Bahadory">Mozhgan Bahadory</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholam-Hossein%20Rostami"> Gholam-Hossein Rostami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the next quarter of a century, the US government and the private sector will spend billions of dollars annually to clean the contaminated sites from pollution such as petroleum products, heavy metals, and solvents organic compounds. During the past three decades, almost 750,000 sites that require remediation have been reported to the United States federal and state agencies. Out of these contamination sites, approximately 300,000 are still in need of remediation. In these sites, the most widespread forms of contamination are petroleum products and heavy metals. At least half of US Department of Defense, US Department of Energy, Superfund sites, and Resource Conservation and Recovery Act (RCRA) sites have been reported to contain heavy metals. Heavy metals most often found in the contaminated water are lead, mercury, chromium, cadmium, arsenic, and zinc. This investigation emphasizes the elimination of arsenic and cadmium from aqueous solution. During the past several years, we developed a novel material called Alkali-Activated fly ash Material Permeable Reactive Barrier (AAM-PRB), which includes fly ash, fine aggregates, coarse aggregates, activating chemicals, and water. AAM can be produced with high permeability, 10-1 cm/s, then crushed into pelletized form. Laboratory experiments showed that water containing 10 ppm, 100 ppm, and 1000 ppm of arsenic and cadmium ion passing through AAM-PRB reduced to less than 0.1 ppm. However, water containing 10,000 ppm arsenic ion passing through AAM- PRB shows that the breakthrough was achieved. The removal of the mixture of arsenic and cadmium from aqueous solutions was also tested by using AAM-PRB. The results indicate that the efficiency of AAM-PRB for simultaneous removal of arsenic and cadmium from 10 ppm, 100 ppm, and 1,000 ppm were marginally below that of arsenic alone. Still, it was significantly lower for cadmium from the aqueous solution. The basic science behind removing heavy metal and microstructural investigation AAM-PRB will be the focus of our future work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic" title="arsenic">arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium" title=" cadmium"> cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=contaminated%20water" title=" contaminated water"> contaminated water</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20barrier" title=" reactive barrier"> reactive barrier</a> </p> <a href="https://publications.waset.org/abstracts/176764/using-fly-ash-based-synthetic-zeolite-permeable-reactive-barrier-to-remove-arsenic-cadmium-and-their-mixture-from-aqueous-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2102</span> Potential Enhancement of Arsenic Removal Filter Commonly Used in South Asia: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarthak%20Karki">Sarthak Karki</a>, <a href="https://publications.waset.org/abstracts/search?q=Haribansha%20Timalsina"> Haribansha Timalsina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kanchan Arsenic Filter is an economical low cost and termed the most efficient arsenic removal filter system in South Asian countries such as Nepal. But when the effluent quality was evaluated, it was seen to possess a lower removal rate of arsenite species. In addition to that, greater pathogenic growth and loss in overall efficacy with time due to precipitation of iron sulphates were the further complications. This brings the health issue on the front line as millions of people rely on groundwater sources for general water necessities. With this paper, we analyzed the mechanisms and changes in the efficiency of the extant filter system when integrated with activated laterite and hair column beds, plus an additional charcoal layer for inhibiting pathogen colonies. Hair column have rich keratin protein that binds with arsenic species, and similarly, raw laterite has huge deposits of iron and aluminum, all of these factors helping to remove heavy metal contaminants from water sources. Further study on the commercialized mass production of the new proposed filter and versatility analysis is required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laterite" title="laterite">laterite</a>, <a href="https://publications.waset.org/abstracts/search?q=charcoal" title=" charcoal"> charcoal</a>, <a href="https://publications.waset.org/abstracts/search?q=arsenic%20removal" title=" arsenic removal"> arsenic removal</a>, <a href="https://publications.waset.org/abstracts/search?q=hair%20column" title=" hair column"> hair column</a> </p> <a href="https://publications.waset.org/abstracts/140992/potential-enhancement-of-arsenic-removal-filter-commonly-used-in-south-asia-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2101</span> Effect of Toxic Metals Exposure on Rat Behavior and Brain Morphology: Arsenic, Manganese</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Bikashvili">Tamar Bikashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Lordkipanidze"> Tamar Lordkipanidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilia%20Lazrishvili"> Ilia Lazrishvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metals remain one of serious environmental problems due to their toxic effects. The effect of arsenic and manganese compounds on rat behavior and neuromorphology was studied. Wistar rats were assigned to four groups: rats in control group were given regular water, while rats in other groups drank water with final manganese concentration of 10 mg/L (group A), 20 mg/L (group B) and final arsenic concentration 68 mg/L (group C), respectively, for a month. To study exploratory and anxiety behavior and also to evaluate aggressive performance in “home cage” rats were tested in “Open Field” and to estimate learning and memory status multi-branched maze was used. Statistically significant increase of motor and oriental-searching activity in experimental groups was revealed by an open field test, which was expressed in increase of number of lines crossed, rearing and hole reflexes. Obtained results indicated the suppression of fear in rats exposed to manganese. Specifically, this was estimated by the frequency of getting to the central part of the open field. Experiments revealed that 30-day exposure to 10 mg/ml manganese did not stimulate aggressive behavior in rats, while exposure to the higher dose (20 mg/ml), 37% of initially non-aggressive animals manifested aggressive behavior. Furthermore, 25% of rats were extremely aggressive. Obtained data support the hypothesis that excess manganese in the body is one of the immediate causes of enhancement of interspecific predatory aggressive and violent behavior in rats. It was also discovered that manganese intoxication produces non-reversible severe learning disability and insignificant, reversible memory disturbances. Studies of rodents exposed to arsenic also revealed changes in the learning process. As it is known, the distribution of metal ions differs in various brain regions. The principle manganese accumulation was observed in the hippocampus and in the neocortex, while arsenic was predominantly accumulated in nucleus accumbens, striatum, and cortex. These brain regions play an important role in the regulation of emotional state and motor activity. Histopathological analyzes of brain sections illustrated two morphologically distinct altered phenotypes of neurons: (1) shrunk cells with indications of apoptosis - nucleus and cytoplasm were very difficult to be distinguished, the integrity of neuronal cytoplasm was not disturbed; and (2) swollen cells - with indications of necrosis. Pyknotic nucleus, plasma membrane disruption and cytoplasmic vacuoles were observed in swollen neurons and they were surrounded by activated gliocytes. It’s worth to mention that in the cortex the majority of damaged neurons were apoptotic while in subcortical nuclei –neurons were mainly necrotic. Ultrastructural analyses demonstrated that all cell types in the cortex and the nucleus caudatus represent destructed mitochondria, widened neurons’ vacuolar system profiles, increased number of lysosomes and degeneration of axonal endings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arsenic" title="arsenic">arsenic</a>, <a href="https://publications.waset.org/abstracts/search?q=manganese" title=" manganese"> manganese</a>, <a href="https://publications.waset.org/abstracts/search?q=behavior" title=" behavior"> behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=learning" title=" learning"> learning</a>, <a href="https://publications.waset.org/abstracts/search?q=neuron" title=" neuron"> neuron</a> </p> <a href="https://publications.waset.org/abstracts/41099/effect-of-toxic-metals-exposure-on-rat-behavior-and-brain-morphology-arsenic-manganese" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2100</span> Chronic Renal Failure Associated with Heavy Metal Contamination of Drinking Water in Hail, Kingdom of Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elsayed%20A.%20M.%20Shokr">Elsayed A. M. Shokr</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Alhazemi"> A. Alhazemi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Naser"> T. Naser</a>, <a href="https://publications.waset.org/abstracts/search?q=Talal%20A.%20Zuhair"> Talal A. Zuhair</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20A.%20Zuhair"> Adel A. Zuhair</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20N.%20Alshamary"> Ahmed N. Alshamary</a>, <a href="https://publications.waset.org/abstracts/search?q=Thamer%20A.%20Alanazi"> Thamer A. Alanazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hosam%20A.%20Alanazi"> Hosam A. Alanazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main threats to human health from heavy metals are associated with exposure to Pb, Cd, Cu, Mo, Zn, Ni, Mn Co and Cr. is mainly via intake of drinking water being the most important source in most populations. These metals have been extensively studied and their effects on human health regularly reviewed by international bodies such as the WHO. Heavy metals have been used by humans for thousands of years. Although several adverse health effects of heavy metals have been known for a long time, exposure to heavy metals continues, and is even increasing in some parts of the world, in particular in less developed countries, though emissions have declined in most developed countries over the last 100 years. A strong relationship between contaminated drinking water with heavy metals from some of the stations of water shopping in Hail, KSA and chronic diseases such as renal failure, liver cirrhosis, and chronic anemia has been identified in this study. These diseases are apparently related to contaminant drinking water with heavy metals such as Pb, Cd, Cu, Mo, Zn, Ni, Mn Co and Cr. Renal failure is related to contaminate drinking water with lead and cadmium, liver cirrhosis to copper and molybdenum, and chronic anemia to copper and cadmium. Recent data indicate that adverse health effects of cadmium exposure may occur at lower exposure levels than previously anticipated, primarily in the form of kidney damage but possibly also bone effects and fractures. The general population is primarily exposed to mercury via drinking water being a major source of methyl mercury exposure, and dental amalgam. During the last century lead, cadmium, zinc, iron and arsenic is mainly via intake of drinking water being the most important source in most populations. Long-term exposure to lead, cadmium, zinc, iron and arsenic in drinking-water is mainly related to primarily in the form of kidney damage. Studies of these diseases suggest that abnormal incidence in specific areas is related to toxic materials in the groundwater and thereby led to the contamination of drinking water in these areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20functions" title=" liver functions"> liver functions</a>, <a href="https://publications.waset.org/abstracts/search?q=kidney%20functions%20and%20chronic%20renal%20failure" title=" kidney functions and chronic renal failure"> kidney functions and chronic renal failure</a>, <a href="https://publications.waset.org/abstracts/search?q=hail" title=" hail"> hail</a>, <a href="https://publications.waset.org/abstracts/search?q=renal" title=" renal"> renal</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a> </p> <a href="https://publications.waset.org/abstracts/45010/chronic-renal-failure-associated-with-heavy-metal-contamination-of-drinking-water-in-hail-kingdom-of-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2099</span> Design of Black-Seed Pulp biomass-Derived New Bio-Sorbent by Combining Methods of Mineral Acids and High-Temperature for Arsenic Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mozhgan%20Mohammadi">Mozhgan Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Arezoo%20Ghadi"> Arezoo Ghadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arsenic is known as a potential threat to the environment. Therefore, the aim of this research is to assess the arsenic removal efficiency from an aqueous solution, with a new biosorbent composed of a black seed pulp (BSP). To treat BSP, the combination of two methods (i.e. treating with mineral acids and use at high temperature) was used and designed bio-sorbent called BSP-activated/carbonized. The BSP-activated and BSP-carbonized were also prepared using HCL and 400°C temperature, respectively, to compare the results of each three methods. Followed by, adsorption parameters such as pH, initial ion concentration, biosorbent dosage, contact time, and temperature were assessed. It was found that the combination method has provided higher adsorption capacity so that up to ~99% arsenic removal was observed with BSP-activated/carbonized at pH of 7.0 and 40°C. The adsorption capacity for BSP-carbonized and BSP-activated were 87.92% (pH: 7, 60°C) and 78.50% (pH: 6, 90°C), respectively. Moreover, adsorption kinetics data indicated the best fit with the pseudo-second-order model. The maximum biosorption capacity, by the Langmuir isotherm model, was also recorded for BSP-activated/carbonized (53.47 mg/g). It is notable that arsenic adsorption on studied bio sorbents takes place as spontaneous and through chemisorption along with the endothermic nature of the biosorption process and reduction of random collision in the solid-liquid phase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20seed%20pulp" title="black seed pulp">black seed pulp</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-sorbents" title=" bio-sorbents"> bio-sorbents</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment%20of%20sorbents" title=" treatment of sorbents"> treatment of sorbents</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20isotherms" title=" adsorption isotherms"> adsorption isotherms</a> </p> <a href="https://publications.waset.org/abstracts/151961/design-of-black-seed-pulp-biomass-derived-new-bio-sorbent-by-combining-methods-of-mineral-acids-and-high-temperature-for-arsenic-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2098</span> Arsenic and Mercury Levels in Scalp Hair of School Children of Three Villages in Kandal Province, Cambodia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Yavar">Alireza Yavar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukiman%20Sarmani"> Sukiman Sarmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Khoo%20Kok%20Siong"> Khoo Kok Siong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The residents of villages in Kandal province of Cambodia, because of dietary habits, lifestyle and ecological conditions, are exposed to toxic elements like arsenic (As) and mercury (Hg). For comparison purpose, scalp hair samples of 12-17 school children from three villages of Anglong Romiot (AR), Svay Romiot (SR) and Kampong Kong (KK) in Kandal province of Cambodia were considered using k0- instrumental neutron activation method (k0-INAA). The samples irradiated 6 hours with 750 kW power in Malaysian nuclear agency (MNA) research reactor and subsequently found gamma peaks of radionuclides in samples using HPGe detector. The average values of arsenic and mercury were 0.0 and 3.52 (mg/kg) in AR; 1.88 and 4.26 (mg/kg) in SR; 2.81 and 3.37 (mg/kg) in KK, respectively. The results indicate KK, SR, and AR villages were in high, medium and control level of arsenic pollution, respectively. However, Hg concentration were highest in SR, then KK and AR villages, respectively. The accuracy of the method was assessed by analyzing ERM-DB001-human hair as certified reference materials (CRMs), which experimental result of ERM-DB001 was consistent with certified values. In addition, correlation between As and Hg levels was found by Pearson’s correlation test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kandal%20province%20of%20Cambodia" title="Kandal province of Cambodia">Kandal province of Cambodia</a>, <a href="https://publications.waset.org/abstracts/search?q=k0-%20instrumental%20neutron%20activation%20method." title=" k0- instrumental neutron activation method."> k0- instrumental neutron activation method.</a>, <a href="https://publications.waset.org/abstracts/search?q=scalp%20human%20hair" title=" scalp human hair"> scalp human hair</a>, <a href="https://publications.waset.org/abstracts/search?q=arsenic%20and%20mercury" title=" arsenic and mercury"> arsenic and mercury</a> </p> <a href="https://publications.waset.org/abstracts/155707/arsenic-and-mercury-levels-in-scalp-hair-of-school-children-of-three-villages-in-kandal-province-cambodia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Arsenic%20Exposure&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Arsenic%20Exposure&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Arsenic%20Exposure&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Arsenic%20Exposure&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Arsenic%20Exposure&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Arsenic%20Exposure&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Arsenic%20Exposure&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Arsenic%20Exposure&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Arsenic%20Exposure&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Arsenic%20Exposure&amp;page=70">70</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Arsenic%20Exposure&amp;page=71">71</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Arsenic%20Exposure&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10