CINXE.COM
Search results for: shot peening
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: shot peening</title> <meta name="description" content="Search results for: shot peening"> <meta name="keywords" content="shot peening"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="shot peening" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="shot peening"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 124</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: shot peening</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">124</span> Elevated Temperature Shot Peening for M50 Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xinxin%20Ma">Xinxin Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Guangze%20Tang"> Guangze Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuxin%20Yang"> Shuxin Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinguang%20He"> Jinguang He</a>, <a href="https://publications.waset.org/abstracts/search?q=Fan%20Zhang"> Fan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Peiling%20Sun"> Peiling Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Liu"> Ming Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Minyu%20Sun"> Minyu Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Liqin%20Wang"> Liqin Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a traditional surface hardening technique, shot peening is widely used in industry. By using shot peening, a residual compressive stress is formed in the surface which is beneficial for improving the fatigue life of metal materials. At the same time, very fine grains and high density defects are generated in the surface layer which enhances the surface hardness, either. However, most of the processes are carried out at room temperature. For high strength steel, such as M50, the thickness of the strengthen layer is limited. In order to obtain a thick strengthen surface layer, elevated temperature shot peening was carried out in this work by using Φ1mm cast ion balls with a speed of 80m/s. Considering the tempering temperature of M50 steel is about 550 oC, the processing temperature was in the range from 300 to 500 oC. The effect of processing temperature and processing time of shot peening on distribution of residual stress and surface hardness was investigated. As we known, the working temperature of M50 steel can be as high as 315 oC. Because the defects formed by shot peening are unstable when the working temperature goes higher, it is worthy to understand what happens during the shot peening process, and what happens when the strengthen samples were kept at a certain temperature. In our work, the shot peening time was selected from 2 to 10 min. And after the strengthening process, the samples were annealed at various temperatures from 200 to 500 oC up to 60 h. The results show that the maximum residual compressive stress is near 900 MPa. Compared with room temperature shot peening, the strengthening depth of 500 oC shot peening sample is about 2 times deep. The surface hardness increased with the processing temperature, and the saturation peening time decreases. After annealing, the residual compressive stress decreases, however, for 500 oC peening sample, even annealing at 500 oC for 20 h, the residual compressive stress is still over 600 MPa. However, it is clean to see from SEM that the grain size of surface layers is still very small. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shot%20peening" title="shot peening">shot peening</a>, <a href="https://publications.waset.org/abstracts/search?q=M50%20steel" title=" M50 steel"> M50 steel</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20compressive%20stress" title=" residual compressive stress"> residual compressive stress</a>, <a href="https://publications.waset.org/abstracts/search?q=elevated%20temperature" title=" elevated temperature "> elevated temperature </a> </p> <a href="https://publications.waset.org/abstracts/28286/elevated-temperature-shot-peening-for-m50-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">123</span> Effect of Nitriding and Shot Peening on Corrosion Behavior and Surface Properties of Austenite Stainless Steel 316L</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khiaira%20S.%20Hassan">Khiaira S. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20S.%20Alwan"> Abbas S. Alwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muna%20K.%20Abbass"> Muna K. Abbass</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to study the effect of the liquid nitriding and shot peening on the hardness, surface roughness, residual stress, microstructure and corrosion behavior of austenite stainless steel 316 L. Chemical surface heat treatment by liquid nitriding process was carried out at 500 °C for 1 h and followed by shot peening with using ball steel diameter of 1.25 mm in different exposure time of 10 and 20 min. Electrochemical corrosion test was applied in sea water (3.5% NaCl solution) by using potentostat instrument. The results showed that the nitride layer consists of a compound layer (white layer) and diffusion zone immediately below the alloy layer. It has been found that the mechanical treatment (shot peening) has led to the formation of compressive residual stresses in layer surface that increased the hardness of stainless steel surface. All surface treatment (nitriding and shot peening) processes have led to the formation of carbide of CrN in hard surface layer. It was shown that both processes caused an increase in surface hardness and roughness which increases with shot peening time. Also, the corrosion results showed that the liquid nitriding and shot peening processes increase the corrosion rate to values more than that of not treated stainless steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20316L" title="stainless steel 316L">stainless steel 316L</a>, <a href="https://publications.waset.org/abstracts/search?q=shot%20peening" title=" shot peening"> shot peening</a>, <a href="https://publications.waset.org/abstracts/search?q=nitriding" title=" nitriding"> nitriding</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a> </p> <a href="https://publications.waset.org/abstracts/68488/effect-of-nitriding-and-shot-peening-on-corrosion-behavior-and-surface-properties-of-austenite-stainless-steel-316l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">122</span> Finite Element Modeling of Ultrasonic Shot Peening Process using Multiple Pin Impacts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao-xun%20Liu">Chao-xun Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shi-hong%20Lu"> Shi-hong Lu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In spite of its importance to the aerospace and automobile industries, little or no attention has been devoted to the accurate modeling of the ultrasonic shot peening (USP) process. It is therefore the purpose of this study to conduct finite element analysis of the process using a realistic multiple pin impacts model with the explicit solver of ABAQUS. In this paper, we research the effect of several key parameters on the residual stress distribution within the target, including impact velocity, incident angle, friction coefficient between pins and target and impact number of times were investigated. The results reveal that the impact velocity and impact number of times have obvious effect and impacting vertically could produce the most perfect residual stress distribution. Then we compare the results with the date in USP experiment and verify the exactness of the model. The analysis of the multiple pin impacts date reveal the relationships between peening process parameters and peening quality, which are useful for identifying the parameters which need to be controlled and regulated in order to produce a more beneficial compressive residual stress distribution within the target. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20shot%20peening" title="ultrasonic shot peening">ultrasonic shot peening</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20pins" title=" multiple pins"> multiple pins</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/6476/finite-element-modeling-of-ultrasonic-shot-peening-process-using-multiple-pin-impacts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">121</span> Effect of Shot Peening on the Mechanical Properties for Welded Joints of Aluminium Alloy 6061-T6</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muna%20Khethier%20Abbass">Muna Khethier Abbass</a>, <a href="https://publications.waset.org/abstracts/search?q=Khairia%20Salman%20Hussan"> Khairia Salman Hussan</a>, <a href="https://publications.waset.org/abstracts/search?q=Huda%20Mohummed%20AbdudAlaziz"> Huda Mohummed AbdudAlaziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to study the effect of shot peening on the mechanical properties of welded joints which performed by two different welding processes: Tungsten inert gas (TIG) welding and friction stir welding (FSW) processes of aluminum alloy 6061 T6. Arc welding process (TIG) was carried out on the sheet with dimensions of (100x50x6 mm) to obtain many welded joints with using electrode type ER4043 (AlSi5) as a filler metal and argon as shielding gas. While the friction stir welding process was carried out using CNC milling machine with a tool of rotational speed (1000 rpm) and welding speed of (20 mm/min) to obtain the same butt welded joints. The welded pieces were tested by X-ray radiography to detect the internal defects and faulty welded pieces were excluded. Tensile test specimens were prepared from welded joints and base alloy in the dimensions according to ASTM17500 and then subjected to shot peening process using steel ball of diameter 0.9 mm and for 15 min. All specimens were subjected to Vickers hardness test and micro structure examination to study the effect of welding process (TIG and FSW) on the micro structure of the weld zones. Results showed that a general decay of mechanical properties of TIG and FSW welded joints comparing with base alloy while the FSW welded joint gives better mechanical properties than that of TIG welded joint. This is due to the micro structure changes during the welding process. It has been found that the surface hardening by shot peening improved the mechanical properties of both welded joints, this is due to the compressive residual stress generation in the weld zones which was measured using X-Ray diffraction (XRD) inspection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title="friction stir welding">friction stir welding</a>, <a href="https://publications.waset.org/abstracts/search?q=TIG%20welding" title=" TIG welding"> TIG welding</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=shot%20peening" title=" shot peening"> shot peening</a> </p> <a href="https://publications.waset.org/abstracts/14890/effect-of-shot-peening-on-the-mechanical-properties-for-welded-joints-of-aluminium-alloy-6061-t6" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">120</span> Surface Nanostructure Developed by Ultrasonic Shot Peening and Its Effect on Low Cycle Fatigue Life of the IN718 Superalloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Kumar">Sanjeev Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Kumar"> Vikas Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inconel 718 (IN718) is a high strength nickel-based superalloy designed for high-temperature applications up to 650 °C. It is widely used in gas turbines of jet engines and related aerospace applications because of its good mechanical properties and structural stability at elevated temperatures. Because of good performance ratio and excellent process capability, this alloy has been used predominantly for aeronautic engine components like compressor disc and compressor blade. The main precipitates that contribute to high-temperature strength of IN718 are γʹ Ni₃(Al, Ti) and mainly γʹʹ (Ni₃ Nb). Various processes have been used for modification of the surface of components, such as Laser Shock Peening (LSP), Conventional Shot Peening (SP) and Ultrasonic Shot Peening (USP) to induce compressive residual stress (CRS) and development of fine-grained structure in the surface region. Surface nanostructure by ultrasonic shot peening is a novel methodology of surface modification to improve the overall performance of structural components. Surface nanostructure was developed on the peak aged IN718 superalloy using USP and its effect was studied on low cycle fatigue (LCF) life. Nanostructure of ~ 49 to 73 nm was developed in the surface region of the alloy by USP. The gage section of LCF samples was USPed for 5 minutes at a constant frequency of 20 kHz using StressVoyager to modify the surface. Strain controlled cyclic tests were performed for non-USPed and USPed samples at ±Δεt/2 from ±0.50% to ±1.0% at strain rate (ė) 1×10⁻³ s⁻¹ under reversal loading (R=‒1) at room temperature. The fatigue life of the USPed specimens was found to be more than that of the non-USPed ones. LCF life of the USPed specimen at Δεt/2=±0.50% was enhanced by more than twice of the non-USPed specimen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IN718%20superalloy" title="IN718 superalloy">IN718 superalloy</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=USP" title=" USP"> USP</a>, <a href="https://publications.waset.org/abstracts/search?q=LCF%20life" title=" LCF life"> LCF life</a> </p> <a href="https://publications.waset.org/abstracts/116773/surface-nanostructure-developed-by-ultrasonic-shot-peening-and-its-effect-on-low-cycle-fatigue-life-of-the-in718-superalloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">119</span> Experimental Study on Ultrasonic Shot Peening Forming and Surface Properties of AALY12</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shi-hong%20Lu">Shi-hong Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao-xun%20Liu"> Chao-xun Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-feng%20Zhu"> Yi-feng Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrasonic shot peening (USP) on AALY12 sheet was studied. Several parameters (arc heights, surface roughness, surface topography and microhardness) with different USP process parameters were measured. The research proposes that the radius of curvature of shot peened sheet increases with time and electric current decreasing, while it increases with pin diameter increasing, and radius of curvature reaches a saturation level after a specific processing time and electric current. An empirical model of the relationship between radius of curvature and pin diameter, electric current, time was also obtained. The research shows that the increment of surface and vertical microhardness of material is more obvious with longer time and higher value of electric current, which can be up to 20% and 28% respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=USP%20forming" title="USP forming">USP forming</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20properties" title=" surface properties"> surface properties</a>, <a href="https://publications.waset.org/abstracts/search?q=radius%20of%20curvature" title=" radius of curvature"> radius of curvature</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a> </p> <a href="https://publications.waset.org/abstracts/6472/experimental-study-on-ultrasonic-shot-peening-forming-and-surface-properties-of-aaly12" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">118</span> Fatigue Influence on the Residual Stress State in Shot Peened Duplex Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20D.%20Pedrosa">P. D. Pedrosa</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20A.%20Rebello"> J. M. A. Rebello</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Cindra%20Fonseca"> M. P. Cindra Fonseca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Duplex stainless steels (DSS) exhibit a biphasic microstructure consisting of austenite and delta ferrite. Their high resistance to oxidation, and corrosion, even in H2S containing environments, allied to low cost when compared to conventional stainless steel, are some properties which make this material very attractive for several industrial applications. However, several of these industrial applications imposes cyclic loading to the equipments and in consequence fatigue damage needs to be a concern. A well-known way of improving the fatigue life of a component is by introducing compressive residual stress in its surface. Shot peening is an industrial working process which brings the material directly beneath component surface in a high mechanical compressive state, so inhibiting fatigue crack initiation. However, one must take into account the fact that the cyclic loading itself can reduce and even suppress these residual stresses, thus having undesirable consequences in the process of improving fatigue life by the introduction of compressive residual stresses. In the present work, shot peening was used to introduce residual stresses in several DSS samples. These were thereafter submitted to three different fatigue regimes: low, medium and high cycle fatigue. The evolution of the residual stress during loading were then examined on both surface and subsurface of the samples. It was used the DSS UNS S31803, with microstructure composed of 49% austenite and 51% ferrite. The treatment of shot peening was accomplished by the application of blasting in two Almen intensities of 0.25 and 0.39A. The residual stresses were measured by X-ray diffraction using the double exposure method and a portable equipment with CrK radiation and the (211) diffracting plane for the austenite phase and the (220) plane for the ferrite phase. It is known that residual stresses may arise when two regions of the same material experienced different degrees of plastic deformation. When these regions are separated in respect to each other on a scale that is large compared to the material's microstructure they are called macro stresses. In contrast, microstresses can largely vary over distances which are small comparable to the scale of the material's microstructure and must balance zero between the phases present. In the present work, special attention will be paid to the measurement of residual microstresses. Residual stress measurements were carried out in test pieces submitted to low, medium and high-cycle fatigue, in both longitudinal and transverse direction of the test pieces. It was found that after shot peening, the residual microstress is tensile in the austenite and compressive in the ferrite phases. It was hypothesized that the hardening behavior of the austenite after shot peening was probably due to its higher nitrogen content. Fatigue cycling can effectively change this stress state but this effect was found to be dependent of the shot peening intensity was well as the fatigue range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20stresses" title="residual stresses">residual stresses</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=duplex%20steel" title=" duplex steel"> duplex steel</a>, <a href="https://publications.waset.org/abstracts/search?q=shot%20peening" title=" shot peening"> shot peening</a> </p> <a href="https://publications.waset.org/abstracts/63124/fatigue-influence-on-the-residual-stress-state-in-shot-peened-duplex-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">117</span> Simulation the Effect of Temperature on the Residual Stress in Shot Peening Process Using FEM Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Jalali%20Azizpour">M. Jalali Azizpour</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mohammadi%20Majd"> H. Mohammadi Majd</a>, <a href="https://publications.waset.org/abstracts/search?q=A.R.%20Aboudi%20Asl"> A.R. Aboudi Asl</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Sajedipour"> D. Sajedipour</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Tawaf"> V. Tawaf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sandblasting is a generally used surface treatment technique to improve the residual stress and adhesion of coatings to substrate. The goal of this work is to study the effect of temperature on the residual stress in sandblasting AISI1045 substrate. For this purpose a two dimensional axisymmetric model of shot impacting on an AISI 1045 disc was generated using ABAQUS version 6.10. The result shows for sandblasting temperature there is an optimum condition. In addition there are other effective factors that influence the fatigue life of parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=shot%20peen" title=" shot peen"> shot peen</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/26894/simulation-the-effect-of-temperature-on-the-residual-stress-in-shot-peening-process-using-fem-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">586</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">116</span> Potentiodynamic Polarization Behavior of Surface Mechanical Attrition Treated AA7075</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vaibhav%20Pandey">Vaibhav Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Chattopadhyay"> K. Chattopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20C.%20Santhi%20Srinivas"> N. C. Santhi Srinivas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vakil%20Singh"> Vakil Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminium alloy 7075 consist of different intermetallic precipitate particles MgZn2, CuAl2, which result in heterogeneity of micro structure and influence the corrosion properties of the alloy. Artificial ageing was found to enhance the strength properties, but highly susceptible to stress-corrosion cracking. Various conventional surface modification techniques are developed for improving corrosion properties of aluminum alloys. This led to development of novel surface mechanical attrition treatment (SMAT) technique the so called ultrasonic shot peening which gives nano-grain structure at surface. In the present investigation the influence of surface mechanical attrition treatment on corrosion behavior of aluminum alloy 7075 was studied in 3.5wt% NaCl solution. Two different size of 1 mm and 3 mm steel balls are used as peening media and SMAT was carried out for different time intervals 5, 15 and 30 minutes. Surface nano-grains/nano-crystallization was observed after SMAT. The formation of nano-grain structure was observed for larger size balls with time of treatment and consequent increase in micro strain. As-SMATed sample with 1 mm balls exhibits better corrosion resistance as compared to that of un-SMATed sample. The enhancement in corrosion resistance may be due to formation of surface nano-grain structure which reduced the electron release rate. In contrast the samples treated with 3 mm balls showed very poor corrosion resistance. A decrease in corrosion resistance was observed with increase in the time of peening. The decrease in corrosion resistance in the shotpeened samples with larger diameter balls may due to increase in microstrain and defect density. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy%207075" title="aluminum alloy 7075">aluminum alloy 7075</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=SMAT" title=" SMAT"> SMAT</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20shot%20peening" title=" ultrasonic shot peening"> ultrasonic shot peening</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20nano-grains" title=" surface nano-grains"> surface nano-grains</a> </p> <a href="https://publications.waset.org/abstracts/20395/potentiodynamic-polarization-behavior-of-surface-mechanical-attrition-treated-aa7075" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">115</span> Influence of Selected Finishing Technologies on the Roughness Parameters of Stainless Steel Manufactured by Selective Laser Melting Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Hajnys">J. Hajnys</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pagac"> M. Pagac</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Petru"> J. Petru</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Stefek"> P. Stefek</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Mesicek"> J. Mesicek</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Kratochvil"> J. Kratochvil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The new progressive method of 3D metal printing SLM (Selective Laser Melting) is increasingly expanded into the normal operation. As a result, greater demands are placed on the surface quality of the parts produced in this way. The article deals with research of selected finishing methods (tumbling, face milling, sandblasting, shot peening and brushing) and their impact on the final surface roughness. The 20 x 20 x 7 mm produced specimens using SLM additive technology on the Renishaw AM400 were subjected to testing of these finishing methods by adjusting various parameters. Surface parameters of roughness Sa, Sz were chosen as the evaluation criteria and profile parameters Ra, Rz were used as additional measurements. Optical measurement of surface roughness was performed on Alicona Infinite Focus 5. An experiment conducted to optimize the surface roughness revealed, as expected, that the best roughness parameters were achieved through a face milling operation. Tumbling is particularly suitable for 3D printing components, as tumbling media are able to reach even complex shapes and, after changing to polishing bodies, achieve a high surface gloss. Surface quality after tumbling depends on the process time. Other methods with satisfactory results are shot peening and tumbling, which should be the focus of further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20laser%20melting" title=" selective laser melting"> selective laser melting</a>, <a href="https://publications.waset.org/abstracts/search?q=SLM" title=" SLM"> SLM</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a> </p> <a href="https://publications.waset.org/abstracts/115882/influence-of-selected-finishing-technologies-on-the-roughness-parameters-of-stainless-steel-manufactured-by-selective-laser-melting-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">114</span> Laser Shock Peening of Additively Manufactured Nickel-Based Superalloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Munther">Michael Munther</a>, <a href="https://publications.waset.org/abstracts/search?q=Keivan%20Davami"> Keivan Davami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One significant roadblock for additively manufactured (AM) parts is the buildup of residual tensile stresses during the fabrication process. These residual stresses are formed due to the intense localized thermal gradients and high cooling rates that cause non-uniform material expansion/contraction and mismatched strain profiles during powder-bed fusion techniques, such as direct metal laser sintering (DMLS). The residual stresses adversely affect the fatigue life of the AM parts. Moreover, if the residual stresses become higher than the material’s yield strength, they will lead to acute geometric distortion. These are limiting the applications and acceptance of AM components for safety-critical applications. Herein, we discuss laser shock peening method as an advanced technique for the manipulation of the residual stresses in AM parts. An X-ray diffraction technique is used for the measurements of the residual stresses before and after the laser shock peening process. Also, the hardness of the structures is measured using a nanoindentation technique. Maps of nanohardness and modulus are obtained from the nanoindentation, and a correlation is made between the residual stresses and the mechanical properties. The results indicate that laser shock peening is able to induce compressive residual stresses in the structure that mitigate the tensile residual stresses and increase the hardness of AM IN718, a superalloy, almost 20%. No significant changes were observed in the modulus after laser shock peening. The results strongly suggest that laser shock peening can be used as an advanced post-processing technique to optimize the service lives of critical components for various applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=Inconel%20718" title=" Inconel 718"> Inconel 718</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20shock%20peening" title=" laser shock peening"> laser shock peening</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stresses" title=" residual stresses"> residual stresses</a> </p> <a href="https://publications.waset.org/abstracts/111318/laser-shock-peening-of-additively-manufactured-nickel-based-superalloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">113</span> Establishment and Application of Numerical Simulation Model for Shot Peen Forming Stress Field Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shuo%20Tian">Shuo Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuepiao%20Bai"> Xuepiao Bai</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianqin%20Shang"> Jianqin Shang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pengtao%20Gai"> Pengtao Gai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuansong%20Zeng"> Yuansong Zeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shot peen forming is an essential forming process for aircraft metal wing panel. With the development of computer simulation technology, scholars have proposed a numerical simulation method of shot peen forming based on stress field. Three shot peen forming indexes of crater diameter, shot speed and surface coverage are required as simulation parameters in the stress field method. It is necessary to establish the relationship between simulation and experimental process parameters in order to simulate the deformation under different shot peen forming parameters. The shot peen forming tests of the 2024-T351 aluminum alloy workpieces were carried out using uniform test design method, and three factors of air pressure, feed rate and shot flow were selected. The second-order response surface model between simulation parameters and uniform test factors was established by stepwise regression method using MATLAB software according to the results. The response surface model was combined with the stress field method to simulate the shot peen forming deformation of the workpiece. Compared with the experimental results, the simulated values were smaller than the corresponding test values, the maximum and average errors were 14.8% and 9%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shot%20peen%20forming" title="shot peen forming">shot peen forming</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20parameter" title=" process parameter"> process parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20model" title=" response surface model"> response surface model</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/163364/establishment-and-application-of-numerical-simulation-model-for-shot-peen-forming-stress-field-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">112</span> Cricket Shot Recognition using Conditional Directed Spatial-Temporal Graph Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanu%20Aneja">Tanu Aneja</a>, <a href="https://publications.waset.org/abstracts/search?q=Harsha%20Malaviya"> Harsha Malaviya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Capturing pose information in cricket shots poses several challenges, such as low-resolution videos, noisy data, and joint occlusions caused by the nature of the shots. In response to these challenges, we propose a CondDGConv-based framework specifically for cricket shot prediction. By analyzing the spatial-temporal relationships in batsman shot sequences from an annotated 2D cricket dataset, our model achieves a 97% accuracy in predicting shot types. This performance is made possible by conditioning the graph network on batsman 2D poses, allowing for precise prediction of shot outcomes based on pose dynamics. Our approach highlights the potential for enhancing shot prediction in cricket analytics, offering a robust solution for overcoming pose-related challenges in sports analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=action%20recognition" title="action recognition">action recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=cricket.%20sports%20video%20analytics" title=" cricket. sports video analytics"> cricket. sports video analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20convolutional%20networks" title=" graph convolutional networks"> graph convolutional networks</a> </p> <a href="https://publications.waset.org/abstracts/192975/cricket-shot-recognition-using-conditional-directed-spatial-temporal-graph-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">111</span> Probabilistic Damage Tolerance Methodology for Solid Fan Blades and Discs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrej%20Golowin">Andrej Golowin</a>, <a href="https://publications.waset.org/abstracts/search?q=Viktor%20Denk"> Viktor Denk</a>, <a href="https://publications.waset.org/abstracts/search?q=Axel%20Riepe"> Axel Riepe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid fan blades and discs in aero engines are subjected to high combined low and high cycle fatigue loads especially around the contact areas between blade and disc. Therefore, special coatings (e.g. dry film lubricant) and surface treatments (e.g. shot peening or laser shock peening) are applied to increase the strength with respect to combined cyclic fatigue and fretting fatigue, but also to improve damage tolerance capability. The traditional deterministic damage tolerance assessment based on fracture mechanics analysis, which treats service damage as an initial crack, often gives overly conservative results especially in the presence of vibratory stresses. A probabilistic damage tolerance methodology using crack initiation data has been developed for fan discs exposed to relatively high vibratory stresses in cross- and tail-wind conditions at certain resonance speeds for limited time periods. This Monte-Carlo based method uses a damage databank from similar designs, measured vibration levels at typical aircraft operations and wind conditions and experimental crack initiation data derived from testing of artificially damaged specimens with representative surface treatment under combined fatigue conditions. The proposed methodology leads to a more realistic prediction of the minimum damage tolerance life for the most critical locations applicable to modern fan disc designs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20fatigue" title="combined fatigue">combined fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20tolerance" title=" damage tolerance"> damage tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=engine" title=" engine"> engine</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20treatment" title=" surface treatment"> surface treatment</a> </p> <a href="https://publications.waset.org/abstracts/42578/probabilistic-damage-tolerance-methodology-for-solid-fan-blades-and-discs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">110</span> The Analysis of Defects Prediction in Injection Molding </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Moayyedian">Mehdi Moayyedian</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazem%20Abhary"> Kazem Abhary</a>, <a href="https://publications.waset.org/abstracts/search?q=Romeo%20Marian"> Romeo Marian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an evaluation of a plastic defect in injection molding before it occurs in the process; it is known as the short shot defect. The evaluation of different parameters which affect the possibility of short shot defect is the aim of this paper. The analysis of short shot possibility is conducted via SolidWorks Plastics and Taguchi method to determine the most significant parameters. Finite Element Method (FEM) is employed to analyze two circular flat polypropylene plates of 1 mm thickness. Filling time, part cooling time, pressure holding time, melt temperature and gate type are chosen as process and geometric parameters, respectively. A methodology is presented herein to predict the possibility of the short-shot occurrence. The analysis determined melt temperature is the most influential parameter affecting the possibility of short shot defect with a contribution of 74.25%, and filling time with a contribution of 22%, followed by gate type with a contribution of 3.69%. It was also determined the optimum level of each parameter leading to a reduction in the possibility of short shot are gate type at level 1, filling time at level 3 and melt temperature at level 3. Finally, the most significant parameters affecting the possibility of short shot were determined to be melt temperature, filling time, and gate type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=injection%20molding" title="injection molding">injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20defects" title=" plastic defects"> plastic defects</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20shot" title=" short shot"> short shot</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method "> Taguchi method </a> </p> <a href="https://publications.waset.org/abstracts/56717/the-analysis-of-defects-prediction-in-injection-molding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">109</span> 3D Biomechanical Analysis in Shot Put Techniques of International Throwers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satpal%20Yadav">Satpal Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Phulkar"> Ashish Phulkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishna%20K.%20Sahu"> Krishna K. Sahu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: The research aims at doing a 3 Dimension biomechanical analysis in the shot put techniques of International throwers to evaluate the performance. Research Method: The researcher adopted the descriptive method and the data was subjected to calculate by using Pearson’s product moment correlation for the correlation of the biomechanical parameters with the performance of shot put throw. In all the analyses, the 5% critical level (p ≤ 0.05) was considered to indicate statistical significance. Research Sample: Eight (N=08) international shot putters using rotational/glide technique in male category was selected as subjects for the study. The researcher used the following methods and tools to obtain reliable measurements the instrument which was used for the purpose of present study namely the tesscorn slow-motion camera, specialized motion analyzer software, 7.260 kg Shot Put (for a male shot-putter) and steel tape. All measurement pertaining to the biomechanical variables was taken by the principal investigator so that data collected for the present study was considered reliable. Results: The finding of the study showed that negative significant relationship between the angular velocity right shoulder, acceleration distance at pre flight (-0.70), (-0.72) respectively were obtained, the angular displacement of knee, angular velocity right shoulder and acceleration distance at flight (0.81), (0.75) and (0.71) respectively were obtained, the angular velocity right shoulder and acceleration distance at transition phase (0.77), (0.79) respectively were obtained and angular displacement of knee, angular velocity right shoulder, release velocity shot, angle of release, height of release, projected distance and measured distance as the values (0.76), (0.77), (-0.83), (-0.79), (-0.77), (0.99) and (1.00) were found higher than the tabulated value at 0.05 level of significance. On the other hand, there exists an insignificant relationship between the performance of shot put and acceleration distance [m], angular displacement shot, C.G at release and horizontal release distance on the technique of shot put. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomechanics" title="biomechanics">biomechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=shot%20put" title=" shot put"> shot put</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20throwers" title=" international throwers"> international throwers</a> </p> <a href="https://publications.waset.org/abstracts/92710/3d-biomechanical-analysis-in-shot-put-techniques-of-international-throwers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">108</span> Stress Corrosion Cracking, Parameters Affecting It, Problems Caused by It and Suggested Methods for Treatment: State of the Art</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Zaid">Adnan Zaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stress corrosion cracking (SCC) may be defined as a degradation of the mechanical properties of a material under the combined action of a tensile stress and corrosive environment of the susceptible material. It is a harmful phenomenon which might cause catastrophic fracture without a sign of prior warning. In this paper, the stress corrosion cracking, SCC, process, the parameters affecting it, and the different damages caused by it are given and discussed. Utilization of shot peening as a mean of enhancing the resistance of materials to SCC is given and discussed. Finally, a method for improving materials resistance to SCC by grain refining its structure by some refining elements prior to usage is suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20cracking" title="stress corrosion cracking">stress corrosion cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=parameters" title=" parameters"> parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=damages" title=" damages"> damages</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment%20methods" title=" treatment methods"> treatment methods</a> </p> <a href="https://publications.waset.org/abstracts/65830/stress-corrosion-cracking-parameters-affecting-it-problems-caused-by-it-and-suggested-methods-for-treatment-state-of-the-art" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Evaluation of Stress Relief using Ultrasonic Peening in GTAW Welding and Stress Corrosion Cracking (SCC) in Stainless Steel, and Comparison with the Thermal Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Mansouri">Hamidreza Mansouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the construction industry, the lifespan of a metal structure is directly related to the quality of welding. In most metal structures, the welded area is considered critical and is one of the most important factors in design. To date, many fracture incidents caused by these types of cracks have occurred. Various methods exist to increase the lifespan of welds to prevent failure in the welded area. Among these methods, the application of ultrasonic peening, in addition to the stress relief process, can manually and more precisely adjust the geometry of the weld toe and prevent stress concentration in this part. This research examined Gas Tungsten Arc Welding (GTAW) on common structural steels and 316 stainless steel, which require precise welding, to predict the optimal condition. The GTAW method was used to create residual stress; two samples underwent ultrasonic stress relief, and for comparison, two samples underwent thermal stress relief. Also, no treatment was considered for two samples. The residual stress of all six pieces was measured by X-Ray Diffraction (XRD) method. Then, the two ultrasonically stress-relieved samples and two untreated samples were exposed to a corrosive environment to initiate cracking and determine the effectiveness of the ultrasonic stress relief method. Thus, the residual stress caused by GTAW in the samples decreased by 3.42% with thermal treatment and by 7.69% with ultrasonic peening. Furthermore, the results show that the untreated sample developed cracks after 740 hours, while the ultrasonically stress-relieved piece showed no cracks. Given the high costs of welding and post-welding zone modification processes, finding an economical, effective, and comprehensive method that has the least limitations alongside a broad spectrum of usage is of great importance. Therefore, the impact of various ultrasonic peening stress relief parameters and the selection of the best stress relief parameter to achieve the longest lifespan for the weld area is highly significant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GTAW%20welding" title="GTAW welding">GTAW welding</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20corrosion%20cracking%28SCC%29" title=" stress corrosion cracking(SCC)"> stress corrosion cracking(SCC)</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20method" title=" thermal method"> thermal method</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20peening." title=" ultrasonic peening."> ultrasonic peening.</a> </p> <a href="https://publications.waset.org/abstracts/185199/evaluation-of-stress-relief-using-ultrasonic-peening-in-gtaw-welding-and-stress-corrosion-cracking-scc-in-stainless-steel-and-comparison-with-the-thermal-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> A Reinforcement Learning Based Method for Heating, Ventilation, and Air Conditioning Demand Response Optimization Considering Few-Shot Personalized Thermal Comfort</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaohua%20Zou">Xiaohua Zou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongxin%20Su"> Yongxin Su</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reasonable operation of heating, ventilation, and air conditioning (HVAC) is of great significance in improving the security, stability, and economy of power system operation. However, the uncertainty of the operating environment, thermal comfort varies by users and rapid decision-making pose challenges for HVAC demand response optimization. In this regard, this paper proposes a reinforcement learning-based method for HVAC demand response optimization considering few-shot personalized thermal comfort (PTC). First, an HVAC DR optimization framework based on few-shot PTC model and DRL is designed, in which the output of few-shot PTC model is regarded as the input of DRL. Then, a few-shot PTC model that distinguishes between awake and asleep states is established, which has excellent engineering usability. Next, based on soft actor criticism, an HVAC DR optimization algorithm considering the user’s PTC is designed to deal with uncertainty and make decisions rapidly. Experiment results show that the proposed method can efficiently obtain use’s PTC temperature, reduce energy cost while ensuring user’s PTC, and achieve rapid decision-making under uncertainty. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HVAC" title="HVAC">HVAC</a>, <a href="https://publications.waset.org/abstracts/search?q=few-shot%20personalized%20thermal%20comfort" title=" few-shot personalized thermal comfort"> few-shot personalized thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20reinforcement%20learning" title=" deep reinforcement learning"> deep reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=demand%20response" title=" demand response"> demand response</a> </p> <a href="https://publications.waset.org/abstracts/182116/a-reinforcement-learning-based-method-for-heating-ventilation-and-air-conditioning-demand-response-optimization-considering-few-shot-personalized-thermal-comfort" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Adaptive Few-Shot Deep Metric Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wentian%20Shi">Wentian Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Daming%20Shi"> Daming Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maysam%20Orouskhani"> Maysam Orouskhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Tian"> Feng Tian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whereas currently the most prevalent deep learning methods require a large amount of data for training, few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=few-shot%20learning" title="few-shot learning">few-shot learning</a>, <a href="https://publications.waset.org/abstracts/search?q=triplet%20network" title=" triplet network"> triplet network</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20margin" title=" adaptive margin"> adaptive margin</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a> </p> <a href="https://publications.waset.org/abstracts/132975/adaptive-few-shot-deep-metric-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> Leveraging Unannotated Data to Improve Question Answering for French Contract Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Touila%20Ahmed">Touila Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Elie%20Louis"> Elie Louis</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Gharbi"> Hamza Gharbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> State of the art question answering models have recently shown impressive performance especially in a zero-shot setting. This approach is particularly useful when confronted with a highly diverse domain such as the legal field, in which it is increasingly difficult to have a dataset covering every notion and concept. In this work, we propose a flexible generative question answering approach to contract analysis as well as a weakly supervised procedure to leverage unannotated data and boost our models’ performance in general, and their zero-shot performance in particular. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=question%20answering" title="question answering">question answering</a>, <a href="https://publications.waset.org/abstracts/search?q=contract%20analysis" title=" contract analysis"> contract analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-shot" title=" zero-shot"> zero-shot</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20language%20processing" title=" natural language processing"> natural language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=generative%20models" title=" generative models"> generative models</a>, <a href="https://publications.waset.org/abstracts/search?q=self-supervision" title=" self-supervision"> self-supervision</a> </p> <a href="https://publications.waset.org/abstracts/164182/leveraging-unannotated-data-to-improve-question-answering-for-french-contract-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> A Practical Survey on Zero-Shot Prompt Design for In-Context Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yinheng%20Li">Yinheng Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The remarkable advancements in large language models (LLMs) have brought about significant improvements in natural language processing tasks. This paper presents a comprehensive review of in-context learning techniques, focusing on different types of prompts, including discrete, continuous, few-shot, and zero-shot, and their impact on LLM performance. We explore various approaches to prompt design, such as manual design, optimization algorithms, and evaluation methods, to optimize LLM performance across diverse tasks. Our review covers key research studies in prompt engineering, discussing their methodologies and contributions to the field. We also delve into the challenges faced in evaluating prompt performance, given the absence of a single ”best” prompt and the importance of considering multiple metrics. In conclusion, the paper highlights the critical role of prompt design in harnessing the full potential of LLMs and provides insights into the combination of manual design, optimization techniques, and rigorous evaluation for more effective and efficient use of LLMs in various Natural Language Processing (NLP) tasks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in-context%20learning" title="in-context learning">in-context learning</a>, <a href="https://publications.waset.org/abstracts/search?q=prompt%20engineering" title=" prompt engineering"> prompt engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-shot%20learning" title=" zero-shot learning"> zero-shot learning</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20language%20models" title=" large language models"> large language models</a> </p> <a href="https://publications.waset.org/abstracts/166670/a-practical-survey-on-zero-shot-prompt-design-for-in-context-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> Shifted Window Based Self-Attention via Swin Transformer for Zero-Shot Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasaswi%20Palagummi">Yasaswi Palagummi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sareh%20Rowlands"> Sareh Rowlands</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generalised Zero-Shot Learning, often known as GZSL, is an advanced variant of zero-shot learning in which the samples in the unseen category may be either seen or unseen. GZSL methods typically have a bias towards the seen classes because they learn a model to perform recognition for both the seen and unseen classes using data samples from the seen classes. This frequently leads to the misclassification of data from the unseen classes into the seen classes, making the task of GZSL more challenging. In this work of ours, to solve the GZSL problem, we propose an approach leveraging the Shifted Window based Self-Attention in the Swin Transformer (Swin-GZSL) to work in the inductive GSZL problem setting. We run experiments on three popular benchmark datasets: CUB, SUN, and AWA2, which are specifically used for ZSL and its other variants. The results show that our model based on Swin Transformer has achieved state-of-the-art harmonic mean for two datasets -AWA2 and SUN and near-state-of-the-art for the other dataset - CUB. More importantly, this technique has a linear computational complexity, which reduces training time significantly. We have also observed less bias than most of the existing GZSL models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalised" title="generalised">generalised</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-shot%20learning" title=" zero-shot learning"> zero-shot learning</a>, <a href="https://publications.waset.org/abstracts/search?q=inductive%20learning" title=" inductive learning"> inductive learning</a>, <a href="https://publications.waset.org/abstracts/search?q=shifted-window%20attention" title=" shifted-window attention"> shifted-window attention</a>, <a href="https://publications.waset.org/abstracts/search?q=Swin%20transformer" title=" Swin transformer"> Swin transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=vision%20transformer" title=" vision transformer"> vision transformer</a> </p> <a href="https://publications.waset.org/abstracts/155517/shifted-window-based-self-attention-via-swin-transformer-for-zero-shot-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> A Numerical Study of the Interaction between Residual Stress Profiles Induced by Quasi-Static Plastification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guilherme%20F.%20Guimaraes">Guilherme F. Guimaraes</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfredo%20R.%20De%20Faria"> Alfredo R. De Faria</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronnie%20R.%20Rego"> Ronnie R. Rego</a>, <a href="https://publications.waset.org/abstracts/search?q=Andre%20L.%20R.%20D%27Oliveira"> Andre L. R. D'Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of methods for predicting manufacturing phenomena steadily grows due to their high potential to contribute to the component’s performance and durability. One of the most relevant phenomena in manufacturing is the residual stress state development through the manufacturing chain. In most cases, the residual stresses have their origin due to heterogenous plastifications produced by the processes. Although a few manufacturing processes have been successfully approached by numerical modeling, there is still a lack of understanding on how these processes' interactions will affect the final stress state. The objective of this work is to analyze the influence of previous stresses on the residual stress state induced by plastic deformation of a quasi-static indentation. The model consists of a simplified approach of shot peening, modeling four cases with variations in indenter size and force. This model was validated through topography, measured by optical 3D focus-variation, and residual stress, measured with the X-ray diffraction technique. The validated model was then exposed to several initial stress states, and the effect on the final residual stress was analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasticity" title="plasticity">plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/135638/a-numerical-study-of-the-interaction-between-residual-stress-profiles-induced-by-quasi-static-plastification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> Dynamic Distribution Calibration for Improved Few-Shot Image Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Habib%20Khan">Majid Habib Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinwei%20Zhao"> Jinwei Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinhong%20Hei"> Xinhong Hei</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Jiedong"> Liu Jiedong</a>, <a href="https://publications.waset.org/abstracts/search?q=Rana%20Shahzad%20Noor"> Rana Shahzad Noor</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Imran"> Muhammad Imran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deep learning is increasingly employed in image classification, yet the scarcity and high cost of labeled data for training remain a challenge. Limited samples often lead to overfitting due to biased sample distribution. This paper introduces a dynamic distribution calibration method for few-shot learning. Initially, base and new class samples undergo normalization to mitigate disparate feature magnitudes. A pre-trained model then extracts feature vectors from both classes. The method dynamically selects distribution characteristics from base classes (both adjacent and remote) in the embedding space, using a threshold value approach for new class samples. Given the propensity of similar classes to share feature distributions like mean and variance, this research assumes a Gaussian distribution for feature vectors. Subsequently, distributional features of new class samples are calibrated using a corrected hyperparameter, derived from the distribution features of both adjacent and distant base classes. This calibration augments the new class sample set. The technique demonstrates significant improvements, with up to 4% accuracy gains in few-shot classification challenges, as evidenced by tests on miniImagenet and CUB datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20classification" title=" image classification"> image classification</a>, <a href="https://publications.waset.org/abstracts/search?q=few-shot%20learning" title=" few-shot learning"> few-shot learning</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold" title=" threshold"> threshold</a> </p> <a href="https://publications.waset.org/abstracts/182071/dynamic-distribution-calibration-for-improved-few-shot-image-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Large Strain Compression-Tension Behavior of AZ31B Rolled Sheet in the Rolling Direction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Yazdanmehr">A. Yazdanmehr</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Jahed"> H. Jahed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Being made with the lightest commercially available industrial metal, Magnesium (Mg) alloys are of interest for light-weighting. Expanding their application to different material processing methods requires Mg properties at large strains. Several room-temperature processes such as shot and laser peening and hole cold expansion need compressive large strain data. Two methods have been proposed in the literature to obtain the stress-strain curve at high strains: 1) anti-buckling guides and 2) small cubic samples. In this paper, an anti-buckling fixture is used with the help of digital image correlation (DIC) to obtain the compression-tension (C-T) of AZ31B-H24 rolled sheet at large strain values of up to 10.5%. The effect of the anti-bucking fixture on stress-strain curves is evaluated experimentally by comparing the results with those of the compression tests of cubic samples. For testing cubic samples, a new fixture has been designed to increase the accuracy of testing cubic samples with DIC strain measurements. Results show a negligible effect of anti-buckling on stress-strain curves, specifically at high strain values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large%20strain" title="large strain">large strain</a>, <a href="https://publications.waset.org/abstracts/search?q=compression-tension" title=" compression-tension"> compression-tension</a>, <a href="https://publications.waset.org/abstracts/search?q=loading-unloading" title=" loading-unloading"> loading-unloading</a>, <a href="https://publications.waset.org/abstracts/search?q=Mg%20alloys" title=" Mg alloys"> Mg alloys</a> </p> <a href="https://publications.waset.org/abstracts/89743/large-strain-compression-tension-behavior-of-az31b-rolled-sheet-in-the-rolling-direction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Video Shot Detection and Key Frame Extraction Using Faber-Shauder DWT and SVD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assma%20Azeroual">Assma Azeroual</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20Afdel"> Karim Afdel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20El%20Hajji"> Mohamed El Hajji</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Douzi"> Hassan Douzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Key frame extraction methods select the most representative frames of a video, which can be used in different areas of video processing such as video retrieval, video summary, and video indexing. In this paper we present a novel approach for extracting key frames from video sequences. The frame is characterized uniquely by his contours which are represented by the dominant blocks. These dominant blocks are located on the contours and its near textures. When the video frames have a noticeable changement, its dominant blocks changed, then we can extracte a key frame. The dominant blocks of every frame is computed, and then feature vectors are extracted from the dominant blocks image of each frame and arranged in a feature matrix. Singular Value Decomposition is used to calculate sliding windows ranks of those matrices. Finally the computed ranks are traced and then we are able to extract key frames of a video. Experimental results show that the proposed approach is robust against a large range of digital effects used during shot transition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FSDWT" title="FSDWT">FSDWT</a>, <a href="https://publications.waset.org/abstracts/search?q=key%20frame%20extraction" title=" key frame extraction"> key frame extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=shot%20detection" title=" shot detection"> shot detection</a>, <a href="https://publications.waset.org/abstracts/search?q=singular%20value%20decomposition" title=" singular value decomposition"> singular value decomposition</a> </p> <a href="https://publications.waset.org/abstracts/18296/video-shot-detection-and-key-frame-extraction-using-faber-shauder-dwt-and-svd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Interlayer-Mechanical Working: Effective Strategy to Mitigate Solidification Cracking in Wire-Arc Additive Manufacturing (WAAM) of Fe-based Shape Memory Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soumyajit%20Koley">Soumyajit Koley</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuladeep%20Rajamudili"> Kuladeep Rajamudili</a>, <a href="https://publications.waset.org/abstracts/search?q=Supriyo%20Ganguly"> Supriyo Ganguly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, iron-based shape-memory alloys have been emerging as an inexpensive alternative to costly Ni-Ti alloy and thus considered suitable for many different applications in civil structures. Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy contains 37 wt.% of total solute elements. Such complex multi-component metallurgical system often leads to severe solute segregation and solidification cracking. Wire-arc additive manufacturing (WAAM) of Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy was attempted using a cold-wire fed plasma arc torch attached to a 6-axis robot. Self-standing walls were manufactured. However, multiple vertical cracks were observed after deposition of around 15 layers. Microstructural characterization revealed open surfaces of dendrites inside the crack, confirming these cracks as solidification cracks. Machine hammer peening (MHP) process was adopted on each layer to cold work the newly deposited alloy. Effect of MHP traverse speed were varied systematically to attain a window of operation where cracking was completely stopped. Microstructural and textural analysis were carried out further to correlate the peening process to microstructure.MHP helped in many ways. Firstly, a compressive residual stress was induced on each layer which countered the tensile residual stress evolved from solidification process; thus, reducing net tensile stress on the wall along its length. Secondly, significant local plastic deformation from MHP followed by the thermal cycle induced by deposition of next layer resulted into a recovered and recrystallized equiaxed microstructure instead of long columnar grains along the vertical direction. This microstructural change increased the total crack propagation length and thus, the overall toughness. Thirdly, the inter-layer peening significantly reduced the strong cubic {001} crystallographic texture formed along the build direction. Cubic {001} texture promotes easy separation of planes and easy crack propagation. Thus reduction of cubic texture alleviates the chance of cracking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iron-based%20shape-memory%20alloy" title="Iron-based shape-memory alloy">Iron-based shape-memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=wire-arc%20additive%20manufacturing" title=" wire-arc additive manufacturing"> wire-arc additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=solidification%20cracking" title=" solidification cracking"> solidification cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=inter-layer%20cold%20working" title=" inter-layer cold working"> inter-layer cold working</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20hammer%20peening" title=" machine hammer peening"> machine hammer peening</a> </p> <a href="https://publications.waset.org/abstracts/167160/interlayer-mechanical-working-effective-strategy-to-mitigate-solidification-cracking-in-wire-arc-additive-manufacturing-waam-of-fe-based-shape-memory-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Images Selection and Best Descriptor Combination for Multi-Shot Person Re-Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousra%20Hadj%20Hassen">Yousra Hadj Hassen</a>, <a href="https://publications.waset.org/abstracts/search?q=Walid%20Ayedi"> Walid Ayedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20Ouni"> Tarek Ouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Jallouli"> Mohamed Jallouli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To re-identify a person is to check if he/she has been already seen over a cameras network. Recently, re-identifying people over large public cameras networks has become a crucial task of great importance to ensure public security. The vision community has deeply investigated this area of research. Most existing researches rely only on the spatial appearance information from either one or multiple person images. Actually, the real person re-id framework is a multi-shot scenario. However, to efficiently model a person’s appearance and to choose the best samples to remain a challenging problem. In this work, an extensive comparison of descriptors of state of the art associated with the proposed frame selection method is studied. Specifically, we evaluate the samples selection approach using multiple proposed descriptors. We show the effectiveness and advantages of the proposed method by extensive comparisons with related state-of-the-art approaches using two standard datasets PRID2011 and iLIDS-VID. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=camera%20network" title="camera network">camera network</a>, <a href="https://publications.waset.org/abstracts/search?q=descriptor" title=" descriptor"> descriptor</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-shot" title=" multi-shot"> multi-shot</a>, <a href="https://publications.waset.org/abstracts/search?q=person%20re-identification" title=" person re-identification"> person re-identification</a>, <a href="https://publications.waset.org/abstracts/search?q=selection" title=" selection"> selection</a> </p> <a href="https://publications.waset.org/abstracts/65815/images-selection-and-best-descriptor-combination-for-multi-shot-person-re-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Scaling Siamese Neural Network for Cross-Domain Few Shot Learning in Medical Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinan%20Fiaidhi">Jinan Fiaidhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabah%20Mohammed"> Sabah Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cross-domain learning in the medical field is a research challenge as many conditions, like in oncology imaging, use different imaging modalities. Moreover, in most of the medical learning applications, the sample training size is relatively small. Although few-shot learning (FSL) through the use of a Siamese neural network was able to be trained on a small sample with remarkable accuracy, FSL fails to be effective for use in multiple domains as their convolution weights are set for task-specific applications. In this paper, we are addressing this problem by enabling FSL to possess the ability to shift across domains by designing a two-layer FSL network that can learn individually from each domain and produce a shared features map with extra modulation to be used at the second layer that can recognize important targets from mix domains. Our initial experimentations based on mixed medical datasets like the Medical-MNIST reveal promising results. We aim to continue this research to perform full-scale analytics for testing our cross-domain FSL learning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siamese%20neural%20network" title="Siamese neural network">Siamese neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=few-shot%20learning" title=" few-shot learning"> few-shot learning</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-learning" title=" meta-learning"> meta-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=metric-based%20learning" title=" metric-based learning"> metric-based learning</a>, <a href="https://publications.waset.org/abstracts/search?q=thick%20data%20transformation%20and%20analytics" title=" thick data transformation and analytics"> thick data transformation and analytics</a> </p> <a href="https://publications.waset.org/abstracts/185914/scaling-siamese-neural-network-for-cross-domain-few-shot-learning-in-medical-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shot%20peening&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shot%20peening&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shot%20peening&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shot%20peening&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shot%20peening&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>