CINXE.COM
Search results for: runoff allocation responsibilities
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: runoff allocation responsibilities</title> <meta name="description" content="Search results for: runoff allocation responsibilities"> <meta name="keywords" content="runoff allocation responsibilities"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="runoff allocation responsibilities" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="runoff allocation responsibilities"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1303</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: runoff allocation responsibilities</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1303</span> Study on Runoff Allocation Responsibilities of Different Land Uses in a Single Catchment Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chuan-Ming%20Tung">Chuan-Ming Tung</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Cheng%20Fu"> Jin-Cheng Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-En%20Feng"> Chia-En Feng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the rapid development of urban land in Taiwan has led to the constant increase of the areas of impervious surface, which has increased the risk of waterlogging during heavy rainfall. Therefore, in recent years, promoting runoff allocation responsibilities has often been used as a means of reducing regional flooding. In this study, the single catchment area covering both urban and rural land as the study area is discussed. Based on Storm Water Management Model, urban and rural land in a single catchment area was explored to develop the runoff allocation responsibilities according to their respective control regulation on land use. The impacts of runoff increment and reduction in sub-catchment area were studied to understand the impact of highly developed urban land on the reduction of flood risk of rural land at the back end. The results showed that the rainfall with 1 hour short delay of 2 years, 5 years, 10 years, and 25 years return period. If the study area was fully developed, the peak discharge at the outlet would increase by 24.46% -22.97% without runoff allocation responsibilities. The front-end urban land would increase runoff from back-end of rural land by 76.19% -46.51%. However, if runoff allocation responsibilities were carried out in the study area, the peak discharge could be reduced by 58.38-63.08%, which could make the front-end to reduce 54.05% -23.81% of the peak flow to the back-end. In addition, the researchers found that if it was seen from the perspective of runoff allocation responsibilities of per unit area, the residential area of urban land would benefit from the relevant laws and regulations of the urban system, which would have a better effect of reducing flood than the residential land in rural land. For rural land, the development scale of residential land was generally small, which made the effect of flood reduction better than that of industrial land. Agricultural land requires a large area of land, resulting in the lowest share of the flow per unit area. From the point of the planners, this study suggests that for the rural land around the city, its responsibility should be assigned to share the runoff. And setting up rain water storage facilities in the same way as urban land, can also take stock of agricultural land resources to increase the ridge of field for flood storage, in order to improve regional disaster reduction capacity and resilience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=runoff%20allocation%20responsibilities" title="runoff allocation responsibilities">runoff allocation responsibilities</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use" title=" land use"> land use</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20mitigation" title=" flood mitigation"> flood mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=SWMM" title=" SWMM"> SWMM</a> </p> <a href="https://publications.waset.org/abstracts/158254/study-on-runoff-allocation-responsibilities-of-different-land-uses-in-a-single-catchment-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1302</span> Estimation of the Curve Number and Runoff Height Using the Arc CN-Runoff Tool in Sartang Ramon Watershed in Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.Jowkar.%20M.Samiee">L.Jowkar. M.Samiee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Models or systems based on rainfall and runoff are numerous and have been formulated and applied depending on the precipitation regime, temperature, and climate. In this study, the ArcCN-Runoff rain-runoff modeling tool was used to estimate the spatial variability of the rainfall-runoff relationship in Sartang Ramon in Jiroft watershed. In this study, the runoff was estimated from 6-hour rainfall. The results showed that based on hydrological soil group map, soils with hydrological groups A, B, C, and D covered 1, 2, 55, and 41% of the basin, respectively. Given that the majority of the area has a slope above 60 percent and results of soil hydrologic groups, one can conclude that Sartang Ramon Basin has a relatively high potential for producing runoff. The average runoff height for a 6-hour rainfall with a 2-year return period is 26.6 mm. The volume of runoff from the 2-year return period was calculated as the runoff height of each polygon multiplied by the area of the polygon, which is 137913486 m³ for the whole basin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arc%20CN-Run%20off" title="Arc CN-Run off">Arc CN-Run off</a>, <a href="https://publications.waset.org/abstracts/search?q=rain-runoff" title=" rain-runoff"> rain-runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=return%20period" title=" return period"> return period</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed" title=" watershed"> watershed</a> </p> <a href="https://publications.waset.org/abstracts/121495/estimation-of-the-curve-number-and-runoff-height-using-the-arc-cn-runoff-tool-in-sartang-ramon-watershed-in-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1301</span> Time Series Modelling and Prediction of River Runoff: Case Study of Karkheh River, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karim%20Hamidi%20Machekposhti">Karim Hamidi Machekposhti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Sedghi"> Hossein Sedghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdolrasoul%20Telvari"> Abdolrasoul Telvari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Babazadeh"> Hossein Babazadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rainfall and runoff phenomenon is a chaotic and complex outcome of nature which requires sophisticated modelling and simulation methods for explanation and use. Time Series modelling allows runoff data analysis and can be used as forecasting tool. In the paper attempt is made to model river runoff data and predict the future behavioural pattern of river based on annual past observations of annual river runoff. The river runoff analysis and predict are done using ARIMA model. For evaluating the efficiency of prediction to hydrological events such as rainfall, runoff and etc., we use the statistical formulae applicable. The good agreement between predicted and observation river runoff coefficient of determination (R<sup>2</sup>) display that the ARIMA (4,1,1) is the suitable model for predicting Karkheh River runoff at Iran. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20series%20modelling" title="time series modelling">time series modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=ARIMA%20model" title=" ARIMA model"> ARIMA model</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20runoff" title=" river runoff"> river runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Karkheh%20River" title=" Karkheh River"> Karkheh River</a>, <a href="https://publications.waset.org/abstracts/search?q=CLS%20method" title=" CLS method"> CLS method</a> </p> <a href="https://publications.waset.org/abstracts/76659/time-series-modelling-and-prediction-of-river-runoff-case-study-of-karkheh-river-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1300</span> Effect of Climate Change on Runoff in the Upper Mun River Basin, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preeyaphorn%20Kosa">Preeyaphorn Kosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanutch%20Sukwimolseree"> Thanutch Sukwimolseree</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The climate change is a main parameter which affects the element of hydrological cycle especially runoff. Then, the purpose of this study is to determine the impact of the climate change on surface runoff using land use map on 2008 and daily weather data during January 1, 1979 to September 30, 2010 for SWAT model. SWAT continuously simulate time model and operates on a daily time step at basin scale. The results present that the effect of temperature change cannot be clearly presented on the change of runoff while the rainfall, relative humidity and evaporation are the parameters for the considering of runoff change. If there are the increasing of rainfall and relative humidity, there is also the increasing of runoff. On the other hand, if there is the increasing of evaporation, there is the decreasing of runoff. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate" title="climate">climate</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAT" title=" SWAT"> SWAT</a>, <a href="https://publications.waset.org/abstracts/search?q=upper%20Mun%20River%20basin" title=" upper Mun River basin"> upper Mun River basin</a> </p> <a href="https://publications.waset.org/abstracts/3825/effect-of-climate-change-on-runoff-in-the-upper-mun-river-basin-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1299</span> Exploring SSD Suitable Allocation Schemes Incompliance with Workload Patterns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae%20Young%20Park">Jae Young Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hwansu%20Jung"> Hwansu Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Tae%20Kim"> Jong Tae Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whether the data has been well parallelized is an important factor in the Solid-State-Drive (SSD) performance. SSD parallelization is affected by allocation scheme and it is directly connected to SSD performance. There are dynamic allocation and static allocation in representative allocation schemes. Dynamic allocation is more adaptive in exploiting write operation parallelism, while static allocation is better in read operation parallelism. Therefore, it is hard to select the appropriate allocation scheme when the workload is mixed read and write operations. We simulated conditions on a few mixed data patterns and analyzed the results to help the right choice for better performance. As the results, if data arrival interval is long enough prior operations to be finished and continuous read intensive data environment static allocation is more suitable. Dynamic allocation performs the best on write performance and random data patterns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20allocation" title="dynamic allocation">dynamic allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=NAND%20flash%20based%20SSD" title=" NAND flash based SSD"> NAND flash based SSD</a>, <a href="https://publications.waset.org/abstracts/search?q=SSD%20parallelism" title=" SSD parallelism"> SSD parallelism</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20allocation" title=" static allocation"> static allocation</a> </p> <a href="https://publications.waset.org/abstracts/41931/exploring-ssd-suitable-allocation-schemes-incompliance-with-workload-patterns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1298</span> Simulation of Optimal Runoff Hydrograph Using Ensemble of Radar Rainfall and Blending of Runoffs Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Myungjin%20Lee">Myungjin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Daegun%20Han"> Daegun Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongsung%20Kim"> Jongsung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Soojun%20Kim"> Soojun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung%20Soo%20Kim"> Hung Soo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the localized heavy rainfall and typhoons are frequently occurred due to the climate change and the damage is becoming bigger. Therefore, we may need a more accurate prediction of the rainfall and runoff. However, the gauge rainfall has the limited accuracy in space. Radar rainfall is better than gauge rainfall for the explanation of the spatial variability of rainfall but it is mostly underestimated with the uncertainty involved. Therefore, the ensemble of radar rainfall was simulated using error structure to overcome the uncertainty and gauge rainfall. The simulated ensemble was used as the input data of the rainfall-runoff models for obtaining the ensemble of runoff hydrographs. The previous studies discussed about the accuracy of the rainfall-runoff model. Even if the same input data such as rainfall is used for the runoff analysis using the models in the same basin, the models can have different results because of the uncertainty involved in the models. Therefore, we used two models of the SSARR model which is the lumped model, and the Vflo model which is a distributed model and tried to simulate the optimum runoff considering the uncertainty of each rainfall-runoff model. The study basin is located in Han river basin and we obtained one integrated runoff hydrograph which is an optimum runoff hydrograph using the blending methods such as Multi-Model Super Ensemble (MMSE), Simple Model Average (SMA), Mean Square Error (MSE). From this study, we could confirm the accuracy of rainfall and rainfall-runoff model using ensemble scenario and various rainfall-runoff model and we can use this result to study flood control measure due to climate change. Acknowledgements: This work is supported by the Korea Agency for Infrastructure Technology Advancement(KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 18AWMP-B083066-05). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radar%20rainfall%20ensemble" title="radar rainfall ensemble">radar rainfall ensemble</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall-runoff%20models" title=" rainfall-runoff models"> rainfall-runoff models</a>, <a href="https://publications.waset.org/abstracts/search?q=blending%20method" title=" blending method"> blending method</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20runoff%20hydrograph" title=" optimum runoff hydrograph"> optimum runoff hydrograph</a> </p> <a href="https://publications.waset.org/abstracts/76203/simulation-of-optimal-runoff-hydrograph-using-ensemble-of-radar-rainfall-and-blending-of-runoffs-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1297</span> Application of Hydrological Model in Support of Streamflow Allocation in Arid Watersheds in Northwestern China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chansheng%20He">Chansheng He</a>, <a href="https://publications.waset.org/abstracts/search?q=Lanhui%20Zhang"> Lanhui Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Baoqing%20Zhang"> Baoqing Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spatial heterogeneity of landscape significantly affects watershed hydrological processes, particularly in high elevation and cold mountainous watersheds such as the inland river (terminal lake) basins in Northwest China, where the upper reach mountainous areas are the main source of streamflow for the downstream agricultural oases and desert ecosystems. Thus, it is essential to take into account spatial variations of hydrological processes in streamflow allocation at the watershed scale. This paper adapts the Distributed Large Basin Runoff Model (DLBRM) to the Heihe River Watershed, the second largest inland river with a drainage area of about 128,000 km2 in Northwest China, for understanding the transfer and partitioning mechanism among the glacier and snowmelt, surface runoff, evapotranspiration, and groundwater recharge among the upper, middle, and lower reaches in the study area. Results indicate that the upper reach Qilian Mountain area is the main source of streamflow for the middle reach agricultural oasis and downstream desert areas. Large withdrawals for agricultural irrigation in the middle reach had significantly depleted river flow for the lower reach desert ecosystems. Innovative conservation and enforcement programs need to be undertaken to ensure the successful implementation of water allocation plan of delivering 0.95 x 109 m3 of water downstream annually by the State Council in the Heihe River Watershed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DLBRM" title="DLBRM">DLBRM</a>, <a href="https://publications.waset.org/abstracts/search?q=Northwestern%20China" title=" Northwestern China"> Northwestern China</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20variation" title=" spatial variation"> spatial variation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20allocation" title=" water allocation"> water allocation</a> </p> <a href="https://publications.waset.org/abstracts/40864/application-of-hydrological-model-in-support-of-streamflow-allocation-in-arid-watersheds-in-northwestern-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1296</span> Automatic Flood Prediction Using Rainfall Runoff Model in Moravian-Silesian Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Sir">B. Sir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Podhoranyi"> M. Podhoranyi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kuchar"> S. Kuchar</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kocyan"> T. Kocyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rainfall-runoff models play important role in hydrological predictions. However, the model is only one part of the process for creation of flood prediction. The aim of this paper is to show the process of successful prediction for flood event (May 15–May 18 2014). The prediction was performed by rainfall runoff model HEC–HMS, one of the models computed within Floreon+ system. The paper briefly evaluates the results of automatic hydrologic prediction on the river Olše catchment and its gages Český Těšín and Věřňovice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood" title="flood">flood</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-HMS" title=" HEC-HMS"> HEC-HMS</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff "> runoff </a> </p> <a href="https://publications.waset.org/abstracts/20151/automatic-flood-prediction-using-rainfall-runoff-model-in-moravian-silesian-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1295</span> Comparison of Different Hydrograph Routing Techniques in XPSTORM Modelling Software: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatema%20Akram">Fatema Akram</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Golam%20Rasul"> Mohammad Golam Rasul</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Masud%20Kamal%20Khan"> Mohammad Masud Kamal Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Sharif%20Imam%20Ibne%20Amir"> Md. Sharif Imam Ibne Amir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A variety of routing techniques are available to develop surface runoff hydrographs from rainfall. The selection of runoff routing method is very vital as it is directly related to the type of watershed and the required degree of accuracy. There are different modelling softwares available to explore the rainfall-runoff process in urban areas. XPSTORM, a link-node based, integrated storm-water modelling software, has been used in this study for developing surface runoff hydrograph for a Golf course area located in Rockhampton in Central Queensland in Australia. Four commonly used methods, namely SWMM runoff, Kinematic wave, Laurenson, and Time-Area are employed to generate runoff hydrograph for design storm of this study area. In runoff mode of XPSTORM, the rainfall, infiltration, evaporation and depression storage for sub-catchments were simulated and the runoff from the sub-catchment to collection node was calculated. The simulation results are presented, discussed and compared. The total surface runoff generated by SWMM runoff, Kinematic wave and Time-Area methods are found to be reasonably close, which indicates any of these methods can be used for developing runoff hydrograph of the study area. Laurenson method produces a comparatively less amount of surface runoff, however, it creates highest peak of surface runoff among all which may be suitable for hilly region. Although the Laurenson hydrograph technique is widely acceptable surface runoff routing technique in Queensland (Australia), extensive investigation is recommended with detailed topographic and hydrologic data in order to assess its suitability for use in the case study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ARI" title="ARI">ARI</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20storm" title=" design storm"> design storm</a>, <a href="https://publications.waset.org/abstracts/search?q=IFD" title=" IFD"> IFD</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20temporal%20pattern" title=" rainfall temporal pattern"> rainfall temporal pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=routing%20techniques" title=" routing techniques"> routing techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20runoff" title=" surface runoff"> surface runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=XPSTORM" title=" XPSTORM"> XPSTORM</a> </p> <a href="https://publications.waset.org/abstracts/4997/comparison-of-different-hydrograph-routing-techniques-in-xpstorm-modelling-software-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1294</span> Riparian Buffer Strips’ Capability of E. coli Removal in New York Streams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helen%20Sanders">Helen Sanders</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Cousins"> Joshua Cousins</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to ascertain whether riparian buffer strips could be used to reduce Escherichia Coli (E. coli) runoff into streams in Central New York. Mainstream methods currently utilized to reduce E. coli runoff include fencing and staggered fertilizing plans for agriculture. These methods still do not significantly limit E. coli and thus, pose a serious health risk to individuals who swim in contaminated waters or consume contaminated produce. One additional method still in research development involves the planting of vegetated riparian buffers along waterways. Currently, riparian buffer strips are primarily used for filtration of nitrate and phosphate runoff to slow erosion, regulate pH and, improve biodiversity within waterways. For my research, four different stream sites were selected for the study, in which rainwater runoff was collected at both the riparian buffer and the E. coli sourced runoff upstream. Preliminary results indicate that there is an average 70% decrease in E. coli content in streams at the riparian buffer strips compared to upstream runoff. This research could be utilized to include vegetated buffer planting as a method to decrease manure runoff into essential waterways. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title="Escherichia coli">Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=riparian%20buffer%20strips" title=" riparian buffer strips"> riparian buffer strips</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetated%20riparian%20buffers" title=" vegetated riparian buffers"> vegetated riparian buffers</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a> </p> <a href="https://publications.waset.org/abstracts/142236/riparian-buffer-strips-capability-of-e-coli-removal-in-new-york-streams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1293</span> Measuring the Amount of Eroded Soil and Surface Runoff Water in the Field </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulfatah%20Faraj%20Aboufayed">Abdulfatah Faraj Aboufayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water erosion is the most important problems of the soil in the Jebel Nefusa area located in north west of Libya, therefore erosion station had been established in the Faculty of Veterinary and rainfed agriculture research Station, University of the Jepel Algherbee in Zentan. The length of the station is 72.6 feet, 6 feet width, and the percentage of it's slope is 3%. The station was established to measure the mount of soil eroded and amount of surface water produced during the seasons 95/96 and 96/97 from each rain storms. The Monitoring shows that there was a difference between the two seasons in the number of rainstorms which made differences in the amount of surface runoff water and the amount of soil eroded between the two seasons. Although the slope is low (3%), the soil texture is sandy and the land ploughed twice during each season surface runoff and soil eroded occurred. The average amount of eroded soil was 3792 grams (gr) per season and the average amount of surface runoff water was 410 litter (L) per season. The amount of surface runoff water would be much greater from Jebel Nefusa upland with steep slopes and collecting of them will save a valuable amount of water which lost as a runoff while this area is in desperate of this water. The regression analysis of variance show strong correlation between rainfall depth and the other two depended variable (the amount of surface runoff water and the amount of eroded soil). It shows also strong correlation between amount of surface runoff water and amount of eroded soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rain" title="rain">rain</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20runoff%20water" title=" surface runoff water"> surface runoff water</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20erosion" title=" water erosion"> water erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a> </p> <a href="https://publications.waset.org/abstracts/2186/measuring-the-amount-of-eroded-soil-and-surface-runoff-water-in-the-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1292</span> The Relationship between Land Use Change and Runoff</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thanutch%20Sukwimolseree">Thanutch Sukwimolseree</a>, <a href="https://publications.waset.org/abstracts/search?q=Preeyaphorn%20Kosa"> Preeyaphorn Kosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many problems are occurred in watershed due to human activity and economic development. The purpose is to determine the effects of the land use change on surface runoff using land use map on 1980, 2001 and 2008 and daily weather data during January 1, 1979 to September 30, 2010 applied to SWAT. The results can be presented that the polynomial equation is suitable to display that relationship. These equations for land use in 1980, 2001 and 2008 are consisted of y = -0.0076x5 + 0.1914x4–1.6386x3 + 6.6324x2–8.736x + 7.8023(R2 = 0.9255), y = -0.0298x5 + 0.8794x4 - 9.8056x3 + 51.99x2 - 117.04x + 96.797; (R2 = 0.9186) and y = -0.0277x5 + 0.8132x4 - 8.9598x3 + 46.498x2–101.83x +81.108 (R2 = 0.9006), respectively. Moreover, if the agricultural area is the largest area, it is a sensitive parameter to concern surface runoff. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use" title="land use">land use</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=SWAT" title=" SWAT"> SWAT</a>, <a href="https://publications.waset.org/abstracts/search?q=upper%20Mun%20River%20basin" title=" upper Mun River basin"> upper Mun River basin</a> </p> <a href="https://publications.waset.org/abstracts/3827/the-relationship-between-land-use-change-and-runoff" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1291</span> GIS Application in Surface Runoff Estimation for Upper Klang River Basin, Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suzana%20Ramli">Suzana Ramli</a>, <a href="https://publications.waset.org/abstracts/search?q=Wardah%20Tahir"> Wardah Tahir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Estimation of surface runoff depth is a vital part in any rainfall-runoff modeling. It leads to stream flow calculation and later predicts flood occurrences. GIS (Geographic Information System) is an advanced and opposite tool used in simulating hydrological model due to its realistic application on topography. The paper discusses on calculation of surface runoff depth for two selected events by using GIS with Curve Number method for Upper Klang River basin. GIS enables maps intersection between soil type and land use that later produces curve number map. The results show good correlation between simulated and observed values with more than 0.7 of R2. Acceptable performance of statistical measurements namely mean error, absolute mean error, RMSE, and bias are also deduced in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20runoff" title="surface runoff">surface runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20system" title=" geographic information system"> geographic information system</a>, <a href="https://publications.waset.org/abstracts/search?q=curve%20number%20method" title=" curve number method"> curve number method</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/4351/gis-application-in-surface-runoff-estimation-for-upper-klang-river-basin-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1290</span> Runoff Estimation in the Khiyav River Basin by Using the SCS_ CN Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Esfandyari%20Darabad">F. Esfandyari Darabad</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Samadi"> Z. Samadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The volume of runoff caused by rainfall in the river basin has enticed the researchers in the fields of the water management resources. In this study, first of the hydrological data such as the rainfall and discharge of the Khiyav river basin of Meshkin city in the northwest of Iran collected and then the process of analyzing and reconstructing has been completed. The soil conservation service (scs) has developed a method for calculating the runoff, in which is based on the curve number specification (CN). This research implemented the following model in the Khiyav river basin of Meshkin city by the GIS techniques and concluded the following fact in which represents the usage of weight model in calculating the curve numbers that provides the possibility for the all efficient factors which is contributing to the runoff creation such as; the geometric characteristics of the basin, the basin soil characteristics, vegetation, geology, climate and human factors to be considered, so an accurate estimation of runoff from precipitation to be achieved as the result. The findings also exposed the accident-prone areas in the output of the Khiyav river basin so it was revealed that the Khiyav river basin embodies a high potential for the flood creation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curve%20number" title="curve number">curve number</a>, <a href="https://publications.waset.org/abstracts/search?q=khiyav%20river%20basin" title=" khiyav river basin"> khiyav river basin</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff%20estimation" title=" runoff estimation"> runoff estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=SCS" title=" SCS"> SCS</a> </p> <a href="https://publications.waset.org/abstracts/33261/runoff-estimation-in-the-khiyav-river-basin-by-using-the-scs-cn-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">622</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1289</span> Loss Allocation in Radial Distribution Networks for Loads of Composite Types</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumit%20Banerjee">Sumit Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandan%20Kumar%20Chanda"> Chandan Kumar Chanda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents allocation of active power losses and energy losses to consumers connected to radial distribution networks in a deregulated environment for loads of composite types. A detailed comparison among four algorithms, namely quadratic loss allocation, proportional loss allocation, pro rata loss allocation and exact loss allocation methods are presented. Quadratic and proportional loss allocations are based on identifying the active and reactive components of current in each branch and the losses are allocated to each consumer, pro rata loss allocation method is based on the load demand of each consumer and exact loss allocation method is based on the actual contribution of active power loss by each consumer. The effectiveness of the proposed comparison among four algorithms for composite load is demonstrated through an example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20type" title="composite type">composite type</a>, <a href="https://publications.waset.org/abstracts/search?q=deregulation" title=" deregulation"> deregulation</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20allocation" title=" loss allocation"> loss allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20distribution%20networks" title=" radial distribution networks"> radial distribution networks</a> </p> <a href="https://publications.waset.org/abstracts/42700/loss-allocation-in-radial-distribution-networks-for-loads-of-composite-types" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1288</span> Runoff Estimation Using NRCS-CN Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20K.%20Naseela">E. K. Naseela</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20M.%20Dodamani"> B. M. Dodamani</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaithra%20Chandran"> Chaithra Chandran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The GIS and remote sensing techniques facilitate accurate estimation of surface runoff from watershed. In the present study an attempt has been made to evaluate the applicability of Natural Resources Service Curve Number method using GIS and Remote sensing technique in the upper Krishna basin (69,425 Sq.km). Landsat 7 (with resolution 30 m) satellite data for the year 2012 has been used for the preparation of land use land cover (LU/LC) map. The hydrologic soil group is mapped using GIS platform. The weighted curve numbers (CN) for all the 5 subcatchments calculated on the basis of LU/LC type and hydrologic soil class in the area by considering antecedent moisture condition. Monthly rainfall data was available for 58 raingauge stations. Overlay technique is adopted for generating weighted curve number. Results of the study show that land use changes determined from satellite images are useful in studying the runoff response of the basin. The results showed that there is no significant difference between observed and estimated runoff depths. For each subcatchment, statistically positive correlations were detected between observed and estimated runoff depth (0.6<R^2<1). Therefore, the study reveals that Remote Sensing and GIS based NRCS-CN model can be used effectively to estimate the runoff from the ungauged watersheds when adequate hydrological information is not available. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curve%20number" title="curve number">curve number</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a> </p> <a href="https://publications.waset.org/abstracts/32748/runoff-estimation-using-nrcs-cn-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">539</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1287</span> Interaction of Low-Impact Development Techniques and Urban River Flooding on the Zoning – Case Study Qomroud</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Kavianpour">Mohammad Reza Kavianpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Arsalan%20Behzadifard%20Pour"> Arsalan Behzadifard Pour</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Aghazadeh%20Cloudy"> Ali Aghazadeh Cloudy</a>, <a href="https://publications.waset.org/abstracts/search?q=Abolfazl%20Moqimi"> Abolfazl Moqimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent decades, and with increasing of urban population and development of the city, the amount of impermeable surfaces has been increased. This cause urban runoff enhancement. This enhancement, especially in cities with urban river, increases the possibility of urban flooding caused by the river flooding interaction and urban runoff. In this research, we tried SWMM utilizes software development methods and practices that seek to reduce the impact of runoff to the river flows to reduce Qomroud and Effects using Arc GIS and HEC-RAS software on how we see the flood zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20management" title="flood management">flood management</a>, <a href="https://publications.waset.org/abstracts/search?q=SWMM" title=" SWMM"> SWMM</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20zone" title=" flood zone"> flood zone</a> </p> <a href="https://publications.waset.org/abstracts/22707/interaction-of-low-impact-development-techniques-and-urban-river-flooding-on-the-zoning-case-study-qomroud" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">611</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1286</span> Rainfall-Runoff Forecasting Utilizing Genetic Programming Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Najah%20Ahmed%20Al-Mahfoodh">Ahmed Najah Ahmed Al-Mahfoodh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Najah%20Ahmed%20%20Al-Mahfoodh"> Ali Najah Ahmed Al-Mahfoodh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Al-Shafie"> Ahmed Al-Shafie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, genetic programming (GP) technique has been investigated in prediction of set of rainfall-runoff data. To assess the effect of input parameters on the model, the sensitivity analysis was adopted. To evaluate the performance of the proposed model, three statistical indexes were used, namely; Correlation Coefficient (CC), Mean Square Error (MSE) and Correlation of Efficiency (CE). The principle aim of this study is to develop a computationally efficient and robust approach for predict of rainfall-runoff which could reduce the cost and labour for measuring these parameters. This research concentrates on the Johor River in Johor State, Malaysia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20programming" title="genetic programming">genetic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall-runoff" title=" rainfall-runoff"> rainfall-runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a> </p> <a href="https://publications.waset.org/abstracts/66110/rainfall-runoff-forecasting-utilizing-genetic-programming-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1285</span> Review of Hydrologic Applications of Conceptual Models for Precipitation-Runoff Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluwatosin%20Olofintoye">Oluwatosin Olofintoye</a>, <a href="https://publications.waset.org/abstracts/search?q=Josiah%20Adeyemo"> Josiah Adeyemo</a>, <a href="https://publications.waset.org/abstracts/search?q=Gbemileke%20Shomade"> Gbemileke Shomade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relationship between rainfall and runoff is an important issue in surface water hydrology therefore the understanding and development of accurate rainfall-runoff models and their applications in water resources planning, management and operation are of paramount importance in hydrological studies. This paper reviews some of the previous works on the rainfall-runoff process modeling. The hydrologic applications of conceptual models and artificial neural networks (ANNs) for the precipitation-runoff process modeling were studied. Gradient training methods such as error back-propagation (BP) and evolutionary algorithms (EAs) are discussed in relation to the training of artificial neural networks and it is shown that application of EAs to artificial neural networks training could be an alternative to other training methods. Therefore, further research interest to exploit the abundant expert knowledge in the area of artificial intelligence for the solution of hydrologic and water resources planning and management problems is needed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20algorithms" title=" evolutionary algorithms"> evolutionary algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=gradient%20training%20method" title=" gradient training method"> gradient training method</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall-runoff%20model" title=" rainfall-runoff model"> rainfall-runoff model</a> </p> <a href="https://publications.waset.org/abstracts/40481/review-of-hydrologic-applications-of-conceptual-models-for-precipitation-runoff-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1284</span> Understanding the Nature of Capital Allocation Problem in Corporate Finance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meltem%20Gurunlu">Meltem Gurunlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the central problems in corporate finance is the allocation of funds. This usually takes two forms: allocation of funds across firms in an economy or allocation of funds across projects or business units within a firm. The first one is typically related to the external markets (the bond market, the stock market, banks and finance companies) whereas the second form of the capital allocation is related to the internal capital markets in which corporate headquarters allocate capital to their business units. (within-group transfers, within-group credit markets, and within-group equity market). The main aim of this study is to investigate the nature of capital allocation dynamics by comparing the relevant studies carried out on external and internal capital markets with paying special significance to the business groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internal%20capital%20markets" title="internal capital markets">internal capital markets</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20capital%20markets" title=" external capital markets"> external capital markets</a>, <a href="https://publications.waset.org/abstracts/search?q=capital%20structure" title=" capital structure"> capital structure</a>, <a href="https://publications.waset.org/abstracts/search?q=capital%20allocation" title=" capital allocation"> capital allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20groups" title=" business groups"> business groups</a>, <a href="https://publications.waset.org/abstracts/search?q=corporate%20finance" title=" corporate finance"> corporate finance</a> </p> <a href="https://publications.waset.org/abstracts/89423/understanding-the-nature-of-capital-allocation-problem-in-corporate-finance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1283</span> A New Reliability Allocation Method Based on Fuzzy Numbers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peng%20Li">Peng Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuanri%20Li"> Chuanri Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Li"> Tao Li </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reliability allocation is quite important during early design and development stages for a system to apportion its specified reliability goal to subsystems. This paper improves the reliability fuzzy allocation method and gives concrete processes on determining the factor set, the factor weight set, judgment set, and multi-grade fuzzy comprehensive evaluation. To determine the weight of factor set, the modified trapezoidal numbers are proposed to reduce errors caused by subjective factors. To decrease the fuzziness in the fuzzy division, an approximation method based on linear programming is employed. To compute the explicit values of fuzzy numbers, centroid method of defuzzification is considered. An example is provided to illustrate the application of the proposed reliability allocation method based on fuzzy arithmetic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability%20allocation" title="reliability allocation">reliability allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20arithmetic" title=" fuzzy arithmetic"> fuzzy arithmetic</a>, <a href="https://publications.waset.org/abstracts/search?q=allocation%20weight" title=" allocation weight"> allocation weight</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20programming" title=" linear programming "> linear programming </a> </p> <a href="https://publications.waset.org/abstracts/27101/a-new-reliability-allocation-method-based-on-fuzzy-numbers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1282</span> Approaches and Implications of Working on Gender Equality under Corporate Social Responsibility: A Case Study of Two Corporate Social Responsibilities in India </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shilpa%20Vasavada">Shilpa Vasavada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the 17 SustainableDevelopmentGoals focuses on gender equality. The paper is based on the learning derived from working with two Corporate Social Responsibility cases in India: one, CSR of an International Corporate and the other, CSR of a multi state national level corporate -on their efforts to integrate gender perspective in their agriculture and livestock based rural livelihood programs. The author tries to dissect how ‘gender equality’ is seen by these two CSRs, where the goals are different. The implications of a CSR’sunderstandingon ‘gender equality’ as a goal; versus CSR’s understanding of working 'with women for enhancing quantity or quality of production’ gets reflected in their orientation to staff, resource allocation, strategic level and in processes followed at the rural grassroots level. The paper comes up with examples of changes made at programmatic front when CSR understands and works with the focus on gender equality as a goal. On the other hand, the paper also explores the differential, at times, the negative impact on women and the programmes;- when the goals differ. The paper concludes with recommendations for CSRs to take up at their resource allocation and strategic level if gender equality is the goal- which has direct implication at their grassroots programmatic work. The author argues that if gender equality has to be implemented actually in spirit by a CSR, it requires change in mindset and thus an openness to changes in strategies and resource allocation pattern of the CSR and not simply adding on women in the way intervention has been going on. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gender%20equality" title="gender equality">gender equality</a>, <a href="https://publications.waset.org/abstracts/search?q=approaches" title=" approaches"> approaches</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20impact" title=" differential impact"> differential impact</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20allocation" title=" resource allocation"> resource allocation</a> </p> <a href="https://publications.waset.org/abstracts/80690/approaches-and-implications-of-working-on-gender-equality-under-corporate-social-responsibility-a-case-study-of-two-corporate-social-responsibilities-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1281</span> An Improved VM Allocation Algorithm by Utilizing Combined Resource Allocation Mechanism and Released Resources in Cloud Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md%20Habibul%20Ansary">Md Habibul Ansary</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandan%20Garai"> Chandan Garai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjan%20Dasgupta"> Ranjan Dasgupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Utilization of resources is always a great challenge for any allocation problem, particularly when resource availability is dynamic in nature. In this work VM allocation mechanism has been augmented by providing resources in a combined manner. This approach has some inherent advantages in terms of reduction of wait state for the pending jobs of some users and better utilization of unused resources from the service providers’ point of view. Moreover the algorithm takes care of released resources from the finished jobs as soon as those become available. The proposed algorithm has been explained by suitable example to make the work complete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bid%20ratio" title="Bid ratio">Bid ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20service" title=" cloud service"> cloud service</a>, <a href="https://publications.waset.org/abstracts/search?q=virtualization" title=" virtualization"> virtualization</a>, <a href="https://publications.waset.org/abstracts/search?q=VM%20allocation%20problem" title=" VM allocation problem"> VM allocation problem</a> </p> <a href="https://publications.waset.org/abstracts/34024/an-improved-vm-allocation-algorithm-by-utilizing-combined-resource-allocation-mechanism-and-released-resources-in-cloud-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1280</span> Urban Runoff Modeling of Ungauged Volcanic Catchment in Madinah, Western Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Alahmadi">Fahad Alahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Norhan%20Abd%20Rahman"> Norhan Abd Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Abdulrazzak"> Mohammad Abdulrazzak</a>, <a href="https://publications.waset.org/abstracts/search?q=Zulikifli%20Yusop"> Zulikifli Yusop </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Runoff prediction of ungauged catchment is still a challenging task especially in arid regions with a unique land cover such as volcanic basalt rocks where geological weathering and fractures are highly significant. In this study, Bathan catchment in Madinah western Saudi Arabia was selected for analysis. The aim of this paper is to evaluate different rainfall loss methods; soil conservation Services curve number (SCS-CN), green-ampt and initial-constant rate. Different direct runoff methods were evaluated: soil conservation services dimensionless unit hydrograph (SCS-UH), Snyder unit hydrograph and Clark unit hydrograph. The study showed the superiority of SCS-CN loss method and Clark unit hydrograph method for ungauged catchment where there is no observed runoff data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20runoff%20modelling" title="urban runoff modelling">urban runoff modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=arid%20regions" title=" arid regions"> arid regions</a>, <a href="https://publications.waset.org/abstracts/search?q=ungauged%20catchments" title=" ungauged catchments"> ungauged catchments</a>, <a href="https://publications.waset.org/abstracts/search?q=volcanic%20rocks" title=" volcanic rocks"> volcanic rocks</a>, <a href="https://publications.waset.org/abstracts/search?q=Madinah" title=" Madinah"> Madinah</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia"> Saudi Arabia</a> </p> <a href="https://publications.waset.org/abstracts/14362/urban-runoff-modeling-of-ungauged-volcanic-catchment-in-madinah-western-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1279</span> Runoff Simulation by Using WetSpa Model in Garmabrood Watershed of Mazandaran Province, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Dahmardeh%20Ghaleno">Mohammad Reza Dahmardeh Ghaleno</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Nohtani"> Mohammad Nohtani</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeedeh%20Khaledi"> Saeedeh Khaledi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrological models are applied to simulation and prediction floods in watersheds. WetSpa is a distributed, continuous and physically model with daily or hourly time step that explains of precipitation, runoff and evapotranspiration processes for both simple and complex contexts. This model uses a modified rational method for runoff calculation. In this model, runoff is routed along the flow path using Diffusion-Wave Equation which depend on the slope, velocity and flow route characteristics. Garmabrood watershed located in Mazandaran province in Iran and passing over coordinates 53° 10´ 55" to 53° 38´ 20" E and 36° 06´ 45" to 36° 25´ 30"N. The area of the catchment is about 1133 km2 and elevations in the catchment range from 213 to 3136 m at the outlet, with average slope of 25.77 %. Results of the simulations show a good agreement between calculated and measured hydrographs at the outlet of the basin. Drawing upon Nash-Sutcliffe Model Efficiency Coefficient for calibration periodic model estimated daily hydrographs and maximum flow rate with an accuracy up to 61% and 83.17 % respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=watershed%20simulation" title="watershed simulation">watershed simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=WetSpa" title=" WetSpa"> WetSpa</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20prediction" title=" flood prediction"> flood prediction</a> </p> <a href="https://publications.waset.org/abstracts/74079/runoff-simulation-by-using-wetspa-model-in-garmabrood-watershed-of-mazandaran-province-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1278</span> Derivation of Runoff Susceptibility Map Using Slope-Adjusted SCS-CN in a Tropical River Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abolghasem%20Akbari">Abolghasem Akbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Natural Resources Conservation Service Curve Number (NRCS-CN) method is widely used for predicting direct runoff from rainfall. It employs the hydrologic soil groups and land use information along with period soil moisture conditions to derive NRCS-CN. This method has been well documented and available in popular rainfall-runoff models such as HEC-HMS, SWAT, SWMM and much more. Despite all benefits and advantages of this well documented and easy-to-use method, it does not take into account the effect of terrain slope and drainage area. This study aimed to first investigate the effect of slope on CN and then slope-adjusted runoff potential map is generated for Kuantan River Basin, Malaysia. The Hanng method was used to adjust CN values provided in National Handbook of Engineering and The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) version 2 is used to derive slope map with the spatial resolution of 30 m for Kuantan River Basin (KRB). The study significantly enhanced the application of GIS tools and recent advances in earth observation technology to analyze the hydrological process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuantan" title="Kuantan">Kuantan</a>, <a href="https://publications.waset.org/abstracts/search?q=ASTER-GDEM" title=" ASTER-GDEM"> ASTER-GDEM</a>, <a href="https://publications.waset.org/abstracts/search?q=SCS-CN" title=" SCS-CN"> SCS-CN</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a> </p> <a href="https://publications.waset.org/abstracts/52762/derivation-of-runoff-susceptibility-map-using-slope-adjusted-scs-cn-in-a-tropical-river-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1277</span> Belarus Rivers Runoff: Current State, Prospects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliaksandr%20Volchak">Aliaksandr Volchak</a>, <a href="https://publications.waset.org/abstracts/search?q=%D0%9Caryna%20Barushka"> Мaryna Barushka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The territory of Belarus is studied quite well in terms of hydrology but runoff fluctuations over time require more detailed research in order to forecast changes in rivers runoff in future. Generally, river runoff is shaped by natural climatic factors, but man-induced impact has become so big lately that it can be compared to natural processes in forming runoffs. In Belarus, a heavy man load on the environment was caused by large-scale land reclamation in the 1960s. Lands of southern Belarus were reclaimed most, which contributed to changes in runoff. Besides, global warming influences runoff. Today we observe increase in air temperature, decrease in precipitation, changes in wind velocity and direction. These result from cyclic climate fluctuations and, to some extent, the growth of concentration of greenhouse gases in the air. Climate change affects Belarus’s water resources in different ways: in hydropower industry, other water-consuming industries, water transportation, agriculture, risks of floods. In this research we have done an assessment of river runoff according to the scenarios of climate change and global climate forecast presented in the 4th and 5th Assessment Reports conducted by Intergovernmental Panel on Climate Change (IPCC) and later specified and adjusted by experts from Vilnius Gediminas Technical University with the use of a regional climatic model. In order to forecast changes in climate and runoff, we analyzed their changes from 1962 up to now. This period is divided into two: from 1986 up to now in comparison with the changes observed from 1961 to 1985. Such a division is a common world-wide practice. The assessment has revealed that, on the average, changes in runoff are insignificant all over the country, even with its irrelevant increase by 0.5 – 4.0% in the catchments of the Western Dvina River and north-eastern part of the Dnieper River. However, changes in runoff have become more irregular both in terms of the catchment area and inter-annual distribution over seasons and river lengths. Rivers in southern Belarus (the Pripyat, the Western Bug, the Dnieper, the Neman) experience reduction of runoff all year round, except for winter, when their runoff increases. The Western Bug catchment is an exception because its runoff reduces all year round. Significant changes are observed in spring. Runoff of spring floods reduces but the flood comes much earlier. There are different trends in runoff changes in spring, summer, and autumn. Particularly in summer, we observe runoff reduction in the south and west of Belarus, with its growth in the north and north-east. Our forecast of runoff up to 2035 confirms the trend revealed in 1961 – 2015. According to it, in the future, there will be a strong difference between northern and southern Belarus, between small and big rivers. Although we predict irrelevant changes in runoff, it is quite possible that they will be uneven in terms of seasons or particular months. Especially, runoff can change in summer, but decrease in the rest seasons in the south of Belarus, whereas in the northern part the runoff is predicted to change insignificantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assessment" title="assessment">assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20fluctuation" title=" climate fluctuation"> climate fluctuation</a>, <a href="https://publications.waset.org/abstracts/search?q=forecast" title=" forecast"> forecast</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20runoff" title=" river runoff"> river runoff</a> </p> <a href="https://publications.waset.org/abstracts/89284/belarus-rivers-runoff-current-state-prospects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1276</span> Influence of Antecedent Soil Moisture on Soil Erosion: A Two-Year Field Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Da%20Chen">Yu-Da Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Chun%20Wu"> Chia-Chun Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relationship between antecedent soil moisture content and soil erosion is a complicated phenomenon. Some studies confirm the effect of antecedent soil moisture content on soil erosion, but some deny it. Therefore, the objective of this study is to clarify such contradictions through field experiments. This study conducted two-year field observations of soil losses from natural rainfall events on runoff plots with a length of 10 meters, width of 3 meters, and uniform slope of 9%. Volumetric soil moisture sensors were used to log the soil moisture changes for each rainfall event. A total of 49 effective events were monitored. Results of this study show that antecedent soil moisture content promotes the generation of surface runoff, especially for rainfall events with short duration or lower magnitudes. A positive correlation was found between antecedent soil moisture content and soil loss per unit Rainfall-Runoff Erosivity Index, which indicated that soil with high moisture content is more susceptible to detachment. Once the rainfall duration exceeds 10 hours, the impact from the rainfall duration to soil erosion overwrites, and the effect of antecedent soil moisture is almost negligible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antecedent%20soil%20moisture%20content" title="antecedent soil moisture content">antecedent soil moisture content</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20loss" title=" soil loss"> soil loss</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff%20coefficient" title=" runoff coefficient"> runoff coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall-runoff%20erosivity" title=" rainfall-runoff erosivity"> rainfall-runoff erosivity</a> </p> <a href="https://publications.waset.org/abstracts/181070/influence-of-antecedent-soil-moisture-on-soil-erosion-a-two-year-field-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1275</span> A New Method to Winner Determination for Economic Resource Allocation in Cloud Computing Systems </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Behrouzian%20Nejad">Ebrahim Behrouzian Nejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Rezvan%20Alipoor%20Sabzevari"> Rezvan Alipoor Sabzevari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cloud computing systems are large-scale distributed systems, so that they focus more on large scale resource sharing, cooperation of several organizations and their use in new applications. One of the main challenges in this realm is resource allocation. There are many different ways to resource allocation in cloud computing. One of the common methods to resource allocation are economic methods. Among these methods, the auction-based method has greater prominence compared with Fixed-Price method. The double combinatorial auction is one of the proper ways of resource allocation in cloud computing. This method includes two phases: winner determination and resource allocation. In this paper a new method has been presented to determine winner in double combinatorial auction-based resource allocation using Imperialist Competitive Algorithm (ICA). The experimental results show that in our new proposed the number of winner users is higher than genetic algorithm. On other hand, in proposed algorithm, the number of winner providers is higher in genetic algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title="cloud computing">cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20allocation" title=" resource allocation"> resource allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20auction" title=" double auction"> double auction</a>, <a href="https://publications.waset.org/abstracts/search?q=winner%20determination" title=" winner determination "> winner determination </a> </p> <a href="https://publications.waset.org/abstracts/35920/a-new-method-to-winner-determination-for-economic-resource-allocation-in-cloud-computing-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1274</span> Dynamic Bandwidth Allocation in Fiber-Wireless (FiWi) Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20I.%20Raslan">Eman I. Raslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitham%20S.%20Hamza"> Haitham S. Hamza</a>, <a href="https://publications.waset.org/abstracts/search?q=Reda%20A.%20El-Khoribi"> Reda A. El-Khoribi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fiber-Wireless (FiWi) networks are a promising candidate for future broadband access networks. These networks combine the optical network as the back end where different passive optical network (PON) technologies are realized and the wireless network as the front end where different wireless technologies are adopted, e.g. LTE, WiMAX, Wi-Fi, and Wireless Mesh Networks (WMNs). The convergence of both optical and wireless technologies requires designing architectures with robust efficient and effective bandwidth allocation schemes. Different bandwidth allocation algorithms have been proposed in FiWi networks aiming to enhance the different segments of FiWi networks including wireless and optical subnetworks. In this survey, we focus on the differentiating between the different bandwidth allocation algorithms according to their enhancement segment of FiWi networks. We classify these techniques into wireless, optical and Hybrid bandwidth allocation techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber-wireless%20%28FiWi%29" title="fiber-wireless (FiWi)">fiber-wireless (FiWi)</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20bandwidth%20allocation%20%28DBA%29" title=" dynamic bandwidth allocation (DBA)"> dynamic bandwidth allocation (DBA)</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20optical%20networks%20%28PON%29" title=" passive optical networks (PON)"> passive optical networks (PON)</a>, <a href="https://publications.waset.org/abstracts/search?q=media%20access%20control%20%28MAC%29" title=" media access control (MAC)"> media access control (MAC)</a> </p> <a href="https://publications.waset.org/abstracts/43649/dynamic-bandwidth-allocation-in-fiber-wireless-fiwi-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=runoff%20allocation%20responsibilities&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=runoff%20allocation%20responsibilities&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=runoff%20allocation%20responsibilities&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=runoff%20allocation%20responsibilities&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=runoff%20allocation%20responsibilities&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=runoff%20allocation%20responsibilities&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=runoff%20allocation%20responsibilities&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=runoff%20allocation%20responsibilities&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=runoff%20allocation%20responsibilities&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=runoff%20allocation%20responsibilities&page=43">43</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=runoff%20allocation%20responsibilities&page=44">44</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=runoff%20allocation%20responsibilities&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>