CINXE.COM
Search results for: blended wing body
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: blended wing body</title> <meta name="description" content="Search results for: blended wing body"> <meta name="keywords" content="blended wing body"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="blended wing body" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="blended wing body"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4547</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: blended wing body</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4517</span> Lifting Body Concepts for Unmanned Fixed-Wing Transport Aircrafts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anand%20R.%20Nair">Anand R. Nair</a>, <a href="https://publications.waset.org/abstracts/search?q=Markus%20Trenker"> Markus Trenker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lifting body concepts were conceived as early as 1917 and patented by Roy Scroggs. It was an idea of using the fuselage as a lift producing body with no or small wings. Many of these designs were developed and even flight tested between 1920’s to 1970’s, but it was not pursued further for commercial flight as at lower airspeeds, such a configuration was incapable to produce sufficient lift for the entire aircraft. The concept presented in this contribution is combining the lifting body design along with a fixed wing to maximise the lift produced by the aircraft. Conventional aircraft fuselages are designed to be aerodynamically efficient, which is to minimise the drag; however, these fuselages produce very minimal or negligible lift. For the design of an unmanned fixed wing transport aircraft, many of the restrictions which are present for commercial aircraft in terms of fuselage design can be excluded, such as windows for the passengers/pilots, cabin-environment systems, emergency exits, and pressurization systems. This gives new flexibility to design fuselages which are unconventionally shaped to contribute to the lift of the aircraft. The two lifting body concepts presented in this contribution are targeting different applications: For a fast cargo delivery drone, the fuselage is based on a scaled airfoil shape with a cargo capacity of 500 kg for euro pallets. The aircraft has a span of 14 m and reaches 1500 km at a cruising speed of 90 m/s. The aircraft could also easily be adapted to accommodate pilot and passengers with modifications to the internal structures, but pressurization is not included as the service ceiling envisioned for this type of aircraft is limited to 10,000 ft. The next concept to be investigated is called a multi-purpose drone, which incorporates a different type of lifting body and is a much more versatile aircraft as it will have a VTOL capability. The aircraft will have a wingspan of approximately 6 m and flight speeds of 60 m/s within the same service ceiling as the fast cargo delivery drone. The multi-purpose drone can be easily adapted for various applications such as firefighting, agricultural purposes, surveillance, and even passenger transport. Lifting body designs are not a new concept, but their effectiveness in terms of cargo transportation has not been widely investigated. Due to their enhanced lift producing capability, lifting body designs enable the reduction of the wing area and the overall weight of the aircraft. This will, in turn, reduce the thrust requirement and ultimately the fuel consumption. The various designs proposed in this contribution will be based on the general aviation category of aircrafts and will be focussed on unmanned methods of operation. These unmanned fixed-wing transport drones will feature appropriate cargo loading/unloading concepts which can accommodate large size cargo for efficient time management and ease of operation. The various designs will be compared in performance to their conventional counterpart to understand their benefits/shortcomings in terms of design, performance, complexity, and ease of operation. The majority of the performance analysis will be carried out using industry relevant standards in computational fluid dynamics software packages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lifting%20body%20concept" title="lifting body concept">lifting body concept</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20fixed-wing%20aircraft" title=" unmanned fixed-wing aircraft"> unmanned fixed-wing aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=cargo%20drone" title=" cargo drone"> cargo drone</a> </p> <a href="https://publications.waset.org/abstracts/140026/lifting-body-concepts-for-unmanned-fixed-wing-transport-aircrafts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4516</span> Design and Stability Analysis of Fixed Wing – VTOL UAV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Eldenali">Omar Eldenali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Bufares"> Ahmed M. Bufares</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are primarily two types of Unmanned Aerial Vehicle (UAVs), namely, multirotor and fixed wing. Each type has its own advantages. This study introduces a design of a fixed wing vertical take-off and landing (VTOL) UAV. The design is classified as ready-to-fly (RTF) fixed wing UAV. This means that the UAV is capable of not only taking off, landing, or hovering like a multirotor aircraft but also cruising like a fixed wing UAV. In this study, the conceptual design of 15 kg takeoff weight twin-tail boom configuration FW-VTOL plane is carried out, the initial sizing of the plane is conducted, and both the horizontal and vertical tail configurations are estimated. Moreover, the power required for each stage of flight is determined. Finally, the stability analysis of the plane based on this design is performed, the results shows that this design based on the suggested flight mission is stable and can be utilized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FW-VTOL" title="FW-VTOL">FW-VTOL</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20sizing" title=" initial sizing"> initial sizing</a>, <a href="https://publications.waset.org/abstracts/search?q=constrain%20analysis" title=" constrain analysis"> constrain analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/173709/design-and-stability-analysis-of-fixed-wing-vtol-uav" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4515</span> CFD Analysis of an Aft Sweep Wing in Subsonic Flow and Making Analogy with Roskam Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Sakhaei">Ehsan Sakhaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Taherabadi"> Ali Taherabadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an aft sweep wing with specific characteristic feature was analysis with CFD method in Fluent software. In this analysis wings aerodynamic coefficient was calculated in different rake angle and wing lift curve slope to rake angle was achieved. Wing section was selected among NACA airfoils version 6. The sweep angle of wing is 15 degree, aspect ratio 8 and taper ratios 0.4. Designing and modeling this wing was done in CATIA software. This model was meshed in Gambit software and its three dimensional analysis was done in Fluent software. CFD methods used here were based on pressure base algorithm. SIMPLE technique was used for solving Navier-Stokes equation and Spalart-Allmaras model was utilized to simulate three dimensional wing in air. Roskam method is one of the common and most used methods for determining aerodynamics parameters in the field of airplane designing. In this study besides CFD analysis, an advanced aircraft analysis was used for calculating aerodynamic coefficient using Roskam method. The results of CFD were compared with measured data acquired from Roskam method and authenticity of relation was evaluated. The results and comparison showed that in linear region of lift curve there is a minor difference between aerodynamics parameter acquired from CFD to relation present by Roskam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aft%20sweep%20wing" title="aft sweep wing">aft sweep wing</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20method" title=" CFD method"> CFD method</a>, <a href="https://publications.waset.org/abstracts/search?q=fluent" title=" fluent"> fluent</a>, <a href="https://publications.waset.org/abstracts/search?q=Roskam" title=" Roskam"> Roskam</a>, <a href="https://publications.waset.org/abstracts/search?q=Spalart-Allmaras%20model" title=" Spalart-Allmaras model"> Spalart-Allmaras model</a> </p> <a href="https://publications.waset.org/abstracts/33671/cfd-analysis-of-an-aft-sweep-wing-in-subsonic-flow-and-making-analogy-with-roskam-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4514</span> Investigation of Flow Structure over X-45 Type Non-Slender Delta Wing Planform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Yan%C4%B1ktepe">B. Yanıktepe</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20%C3%96zalp"> C. Özalp</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20%C5%9Eahin"> B. Şahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Delta wing planform is an essential aerodynamic configuration, which could be effectively used at relatively high angles of attack than conventional wings in subsonic flow conditions. The flow over delta wings can be characterized by a pair of leading edge vortices emanating from wing apex. Boundary layer separation causes these vortical structures formed by rolling up of viscous flow sheet. This flow separation mechanism is occurred due to angle of attack and sharp leading edges of the delta wing. Therefore, complexity and variety in planform designs rise to catch the best under abnormal flow conditions. The present experimental study investigates the near surface flow structure and aerodynamic flow characteristics of X-45 type non-slender delta wing planform using dye visualization, Stereoscopic Particle Image Velocimetry (stereo-PIV). The instantaneous images are acquired on the plan-view plane within 5o≤α≤20o to calculate the time-averaged flow data. It can be concluded that vortical flow with a pair of well-defined LEVs over X-45 develop at very low angles of attack, secondary vortex are also evident and form close to the wing surface similar to delta and lambda planforms. The stall occurs at an angle of attack α=32o. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic" title="aerodynamic">aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=delta%20wing" title=" delta wing"> delta wing</a>, <a href="https://publications.waset.org/abstracts/search?q=PIV" title=" PIV"> PIV</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20breakdown" title=" vortex breakdown"> vortex breakdown</a> </p> <a href="https://publications.waset.org/abstracts/45231/investigation-of-flow-structure-over-x-45-type-non-slender-delta-wing-planform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4513</span> Computational Analysis of Cavity Effect over Aircraft Wing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Booma%20Devi">P. Booma Devi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dilip%20A.%20Shah"> Dilip A. Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper seeks the potentials of studying aerodynamic characteristics of inward cavities called dimples, as an alternative to the classical vortex generators. Increasing stalling angle is a greater challenge in wing design. But our examination is primarily focused on increasing lift. In this paper, enhancement of lift is mainly done by introduction of dimple or cavity in a wing. In general, aircraft performance can be enhanced by increasing aerodynamic efficiency that is lift to drag ratio of an aircraft wing. Efficiency improvement can be achieved by improving the maximum lift co-efficient or by reducing the drag co-efficient. At the time of landing aircraft, high angle of attack may lead to stalling of aircraft. To avoid this kind of situation, increase in the stalling angle is warranted. Hence, improved stalling characteristic is the best way to ease landing complexity. Computational analysis is done for the wing segment made of NACA 0012. Simulation is carried out for 30 m/s free stream velocity over plain airfoil and different types of cavities. The wing is modeled in CATIA V5R20 and analyses are carried out using ANSYS CFX. Triangle and square shapes are used as cavities for analysis. Simulations revealed that cavity placed on wing segment shows an increase of maximum lift co-efficient when compared to normal wing configuration. Flow separation is delayed at downstream of the wing by the presence of cavities up to a particular angle of attack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lift" title="lift">lift</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20reduce" title=" drag reduce"> drag reduce</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20dimple" title=" square dimple"> square dimple</a>, <a href="https://publications.waset.org/abstracts/search?q=triangle%20dimple" title=" triangle dimple"> triangle dimple</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancement%20of%20stall%20angle" title=" enhancement of stall angle"> enhancement of stall angle</a> </p> <a href="https://publications.waset.org/abstracts/51224/computational-analysis-of-cavity-effect-over-aircraft-wing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4512</span> WhatsApp as Part of a Blended Learning Model to Help Programming Novices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tlou%20J.%20Ramabu">Tlou J. Ramabu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Programming is one of the challenging subjects in the field of computing. In the higher education sphere, some programming novices’ performance, retention rate, and success rate are not improving. Most of the time, the problem is caused by the slow pace of learning, difficulty in grasping the syntax of the programming language and poor logical skills. More importantly, programming forms part of major subjects within the field of computing. As a result, specialized pedagogical methods and innovation are highly recommended. Little research has been done on the potential productivity of the WhatsApp platform as part of a blended learning model. In this article, the authors discuss the WhatsApp group as a part of blended learning model incorporated for a group of programming novices. We discuss possible administrative activities for productive utilisation of the WhatsApp group on the blended learning overview. The aim is to take advantage of the popularity of WhatsApp and the time students spend on it for their educational purpose. We believe that blended learning featuring a WhatsApp group may ease novices’ cognitive load and strengthen their foundational programming knowledge and skills. This is a work in progress as the proposed blended learning model with WhatsApp incorporated is yet to be implemented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blended%20learning" title="blended learning">blended learning</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20education" title=" higher education"> higher education</a>, <a href="https://publications.waset.org/abstracts/search?q=WhatsApp" title=" WhatsApp"> WhatsApp</a>, <a href="https://publications.waset.org/abstracts/search?q=programming" title=" programming"> programming</a>, <a href="https://publications.waset.org/abstracts/search?q=novices" title=" novices"> novices</a>, <a href="https://publications.waset.org/abstracts/search?q=lecturers" title=" lecturers"> lecturers</a> </p> <a href="https://publications.waset.org/abstracts/106546/whatsapp-as-part-of-a-blended-learning-model-to-help-programming-novices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4511</span> Blended Learning and English Language Teaching: Instructors' Perceptions and Aspirations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rasha%20Alshaye">Rasha Alshaye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Blended learning has become an innovative model that combines face-to-face with e-learning approaches. The Saudi Electronic University (SEU) has adopted blended learning as a flexible approach that provides instructors and learners with a motivating learning environment to stimulate the teaching and learning process. This study investigates the perceptions of English language instructors, teaching the four English language skills at Saudi Electronic University. Four main domains were examined in this study; challenges that the instructors encounter while implementing the blended learning approach, enhancing student-instructor interaction, flexibility in teaching, and the lack of technical skills. Furthermore, the study identifies and represents the instructors’ aspirations and plans to utilize this approach in enhancing the teaching and learning experience. Main findings indicate that instructors at Saudi Electronic University experience some challenges while teaching the four language skills. However, they find the blended learning approach motivating and flexible for them and their students. This study offers some important understandings into how instructors are applying the blended learning approach and how this process can be enriched. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blended%20learning" title="blended learning">blended learning</a>, <a href="https://publications.waset.org/abstracts/search?q=English%20language%20skills" title=" English language skills"> English language skills</a>, <a href="https://publications.waset.org/abstracts/search?q=English%20teaching" title=" English teaching"> English teaching</a>, <a href="https://publications.waset.org/abstracts/search?q=instructors%27%20perceptions" title=" instructors' perceptions"> instructors' perceptions</a> </p> <a href="https://publications.waset.org/abstracts/115948/blended-learning-and-english-language-teaching-instructors-perceptions-and-aspirations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4510</span> Structural Analysis of an Active Morphing Wing for Enhancing UAV Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Kaygan">E. Kaygan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gatto"> A. Gatto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical study of a design concept for actively controlling wing twist is described in this paper. The concept consists of morphing elements which were designed to provide a rigid and seamless skin while maintaining structural rigidity. The wing structure is first modeled in CATIA V5 then imported into ANSYS for structural analysis. Athena Vortex Lattice method (AVL) is used to estimate aerodynamic response as well as aerodynamic loads of morphing wings, afterwards a structural optimization performed via ANSYS Static. Overall, the results presented in this paper show that the concept provides efficient wing twist while preserving an aerodynamically smooth and compliant surface. Sufficient structural rigidity in bending is also obtained. This concept is suggested as a possible alternative for morphing skin applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=morphing" title=" morphing"> morphing</a>, <a href="https://publications.waset.org/abstracts/search?q=skin" title=" skin"> skin</a>, <a href="https://publications.waset.org/abstracts/search?q=twist" title=" twist"> twist</a> </p> <a href="https://publications.waset.org/abstracts/92569/structural-analysis-of-an-active-morphing-wing-for-enhancing-uav-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4509</span> Tuning of Fixed Wing Micro Aerial Vehicles Using Tethered Setup</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shoeb%20Ahmed%20Adeel">Shoeb Ahmed Adeel</a>, <a href="https://publications.waset.org/abstracts/search?q=Vivek%20Paul"> Vivek Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Prajwal"> K. Prajwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Fenelon"> Michael Fenelon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Techniques have been used to tether and stabilize a multi-rotor MAV but carrying out the same process to a fixed wing MAV is a novel method which can be utilized in order to reduce damage occurring to the fixed wing MAVs while conducting flight test trials and PID tuning. A few sensors and on board controller is required to carry out this experiment in horizontal and vertical plane of the vehicle. Here we will be discussing issues such as sensitivity of the air vehicle, endurance and external load of the string acting on the vehicle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MAV" title="MAV">MAV</a>, <a href="https://publications.waset.org/abstracts/search?q=PID%20tuning" title=" PID tuning"> PID tuning</a>, <a href="https://publications.waset.org/abstracts/search?q=tethered%20flight" title=" tethered flight"> tethered flight</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a> </p> <a href="https://publications.waset.org/abstracts/35297/tuning-of-fixed-wing-micro-aerial-vehicles-using-tethered-setup" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">635</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4508</span> Effectiveness of Blended Learning in Public School During Covid-19: A Way Forward</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumaira%20Taj">Sumaira Taj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Blended learning is emerged as a prerequisite approach for teaching in all schools after the outbreak of the COVID-19 pandemic. However, how much public elementary and secondary schools in Pakistan are ready for adapting this approach and what should be done to prepare schools and students for blended learning are the questions that this paper attempts to answer. Mixed-method research methodology was used to collect data from 40 teachers, 500 students, and 10 mothers. Descriptive statistics was used to analyze quantitative data. As for as readiness is concerned, schools lack resources for blended/ virtual/ online classes from infra-structure to skills, parents’ literacy level hindered students’ learning process and teachers’ skills presented challenges in a smooth and swift shift of the schools from face-to-face learning to blended learning. It is recommended to establish a conducive environment in schools by providing all required resources and skills. Special trainings should be organized for low literacy level parents. Multiple ways should be adopted to benefit all students. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blended%20learning" title="blended learning">blended learning</a>, <a href="https://publications.waset.org/abstracts/search?q=challenges%20in%20online%20classes" title=" challenges in online classes"> challenges in online classes</a>, <a href="https://publications.waset.org/abstracts/search?q=education%20in%20covid-19" title=" education in covid-19"> education in covid-19</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20schools%20in%20pakistan" title=" public schools in pakistan"> public schools in pakistan</a> </p> <a href="https://publications.waset.org/abstracts/143578/effectiveness-of-blended-learning-in-public-school-during-covid-19-a-way-forward" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4507</span> Studies on Race Car Aerodynamics at Wing in Ground Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dharni%20Vasudhevan%20Venkatesan">Dharni Vasudhevan Venkatesan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20E.%20Shanjay"> K. E. Shanjay</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Sujith%20Kumar"> H. Sujith Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Abhilash"> N. A. Abhilash</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Aswin%20Ram"> D. Aswin Ram</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical studies on race car aerodynamics at wing in ground effect have been carried out using a steady 3d, double precision, pressure-based, and standard k-epsilon turbulence model. Through various parametric analytical studies we have observed that at a particular speed and ground clearance of the wings a favorable negative lift was found high at a particular angle of attack for all the physical models considered in this paper. The fact is that if the ground clearance height to chord length (h/c) is too small, the developing boundary layers from either side (the ground and the lower surface of the wing) can interact, leading to an altered variation of the aerodynamic characteristics at wing in ground effect. Therefore a suitable ground clearance must be predicted throughout the racing for a better performance of the race car, which obviously depends upon the coupled effects of the topography, wing orientation with respect to the ground, the incoming flow features and/or the race car speed. We have concluded that for the design of high performance and high speed race cars the adjustable wings capable to alter the ground clearance and the angles of attack is the best design option for any race car for racing safely with variable speeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=external%20aerodynamics" title="external aerodynamics">external aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20flow%20choking" title=" external flow choking"> external flow choking</a>, <a href="https://publications.waset.org/abstracts/search?q=race%20car%20aerodynamics" title=" race car aerodynamics"> race car aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=wing%20in%20ground%20effect" title=" wing in ground effect"> wing in ground effect</a> </p> <a href="https://publications.waset.org/abstracts/12103/studies-on-race-car-aerodynamics-at-wing-in-ground-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4506</span> Computational Fluid Dynamics Analysis of an RC Airplane Wing Using a NACA 2412 Profile at Different Angle of Attacks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huseyin%20Gokberk">Huseyin Gokberk</a>, <a href="https://publications.waset.org/abstracts/search?q=Shian%20Gao"> Shian Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CFD analysis of the relationship between the coefficients of lift and drag with respect to the angle of attack on a NACA 2412 wing section of an RC plane is conducted. Both the 2D and 3D models are investigated with the turbulence model. The 2D analysis has a free stream velocity of 10m/s at different AoA of 0°, 2°, 5°, 10°, 12°, and 15°. The induced drag and drag coefficient increased throughout the changes in angles even after the critical angle had been exceeded, whereas the lift force and coefficient of lift increased but had a limit at the critical stall angle, which results in values to reduce sharply. Turbulence flow characteristics are analysed around the aerofoil with the additions caused due to a finite 3D model. 3D results highlight how wing tip vortexes develop and alter the flow around the wing with the effects of the tapered configuration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20modelling" title=" turbulence modelling"> turbulence modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=aerofoil" title=" aerofoil"> aerofoil</a>, <a href="https://publications.waset.org/abstracts/search?q=angle%20of%20attack" title=" angle of attack"> angle of attack</a> </p> <a href="https://publications.waset.org/abstracts/104536/computational-fluid-dynamics-analysis-of-an-rc-airplane-wing-using-a-naca-2412-profile-at-different-angle-of-attacks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4505</span> Effects of Temperature and Enzyme Concentration on Quality of Pineapple and Pawpaw Blended Juice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ndidi%20F.%20Amulu">Ndidi F. Amulu</a>, <a href="https://publications.waset.org/abstracts/search?q=Calistus%20N.%20Ude"> Calistus N. Ude</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20E.%20Amulu"> Patrick E. Amulu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nneka%20N.%20Uchegbu"> Nneka N. Uchegbu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of temperature and enzyme concentration on the quality of mixed pineapple and pawpaw blended fruits juice were studied. Extracts of the two fruit juices were separately treated at 70 for 15 min each so as to inactivate micro-organisms. They were analyzed and blended in different proportions of 70% pawpaw and 30% pineapple, 60% pawpaw and 40% pineapple, 50% pineapple and 50% pawpaw, 40% pawpaw and 60% pineapple. The characterization of the fresh pawpaw and pineapple juice before blending showed that the juices have good quality. The high water content of the product may have affected the viscosity, vitamin C content and total soluble solid of the blended juice to be low. The effects of the process parameters on the quality showed that better quality of the blended juice can be obtained within the optimum temperature range of (50-70 °C) and enzyme concentration range (0.12-0.18 w/v). The ratio of mix 60% pineapple juice: 40% pawpaw juice has better quality. This showed that pawpaw and pineapple juices can blend effectively to produce a quality juice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clarification" title="clarification">clarification</a>, <a href="https://publications.waset.org/abstracts/search?q=pawpaw" title=" pawpaw"> pawpaw</a>, <a href="https://publications.waset.org/abstracts/search?q=pineapple" title=" pineapple"> pineapple</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin%20C" title=" vitamin C"> vitamin C</a> </p> <a href="https://publications.waset.org/abstracts/70991/effects-of-temperature-and-enzyme-concentration-on-quality-of-pineapple-and-pawpaw-blended-juice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4504</span> MEIOSIS: Museum Specimens Shed Light in Biodiversity Shrinkage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zografou%20Konstantina">Zografou Konstantina</a>, <a href="https://publications.waset.org/abstracts/search?q=Anagnostellis%20Konstantinos"> Anagnostellis Konstantinos</a>, <a href="https://publications.waset.org/abstracts/search?q=Brokaki%20Marina"> Brokaki Marina</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaltsouni%20Eleftheria"> Kaltsouni Eleftheria</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimaki%20Maria"> Dimaki Maria</a>, <a href="https://publications.waset.org/abstracts/search?q=Kati%20Vassiliki"> Kati Vassiliki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Body size is crucial to ecology, influencing everything from individual reproductive success to the dynamics of communities and ecosystems. Understanding how temperature affects variations in body size is vital for both theoretical and practical purposes, as changes in size can modify trophic interactions by altering predator-prey size ratios and changing the distribution and transfer of biomass, which ultimately impacts food web stability and ecosystem functioning. Notably, a decrease in body size is frequently mentioned as the third "universal" response to climate warming, alongside shifts in distribution and changes in phenology. This trend is backed by ecological theories like the temperature-size rule (TSR) and Bergmann's rule, which have been observed in numerous species, indicating that many species are likely to shrink in size as temperatures rise. However, the thermal responses related to body size are still contradictory, and further exploration is needed. To tackle this challenge, we developed the MEIOSIS project, aimed at providing valuable insights into the relationship between the body size of species, species’ traits, environmental factors, and their response to climate change. We combined a digitized collection of butterflies from the Swiss Federal Institute of Technology in Zürich with our newly digitized butterfly collection from Goulandris Natural History Museum in Greece to analyse trends in time. For a total of 23868 images, the length of the right forewing was measured using ImageJ software. Each forewing was measured from the point at which the wing meets the thorax to the apex of the wing. The forewing length of museum specimens has been shown to have a strong correlation with wing surface area and has been utilized in prior studies as a proxy for overall body size. Temperature data corresponding to the years of collection were also incorporated into the datasets. A second dataset was generated when a custom computer vision tool was implemented for the automated morphological measuring of samples for the digitized collection in Zürich. Using the second dataset, we corrected manual measurements with ImageJ, and a final dataset containing 31922 samples was used for analysis. Setting time as a smoother variable, species identity as a random factor, and the length of right-wing size (a proxy for body size) as the response variable, we ran a global model for a maximum period of 110 years (1900 – 2010). Then, we investigated functional variability between different terrestrial biomes in a second model. Both models confirmed our initial hypothesis and resulted in a decreasing trend in body size over the years. We expect that this first output can be provided as basic data for the next challenge, i.e., to identify the ecological traits that influence species' temperature-size responses, enabling us to predict the direction and intensity of a species' reaction to rising temperatures more accurately. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=butterflies" title="butterflies">butterflies</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinking%20body%20size" title=" shrinking body size"> shrinking body size</a>, <a href="https://publications.waset.org/abstracts/search?q=museum%20specimens" title=" museum specimens"> museum specimens</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a> </p> <a href="https://publications.waset.org/abstracts/193434/meiosis-museum-specimens-shed-light-in-biodiversity-shrinkage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4503</span> Determining Factors for Successful Blended Learning in Higher Education: A Qualitative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pia%20Wetzl">Pia Wetzl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The learning process of students can be optimized by combining online teaching with face-to-face sessions. So-called blended learning offers extensive flexibility as well as contact opportunities with fellow students and teachers. Furthermore, learning can be individualized and self-regulated. The aim of this article is to investigate which factors are necessary for blended learning to be successful. Semi-structured interviews were conducted with students (N = 60) and lecturers (N = 21) from different disciplines at two German universities. The questions focused on the perception of online, face-to-face and blended learning courses. In addition, questions focused on possible optimization potential and obstacles to practical implementation. The results show that on-site presence is very important for blended learning to be successful. If students do not get to know each other on-site, there is a risk of loneliness during the self-learning phases. This has a negative impact on motivation. From the perspective of the lecturers, the willingness of the students to participate in the sessions on-site is low. Especially when there is no obligation to attend, group work is difficult to implement because the number of students attending is too low. Lecturers would like to see more opportunities from the university and its administration to enforce attendance. In their view, this is the only way to ensure the success of blended learning. In addition, they see the conception of blended learning courses as requiring a great deal of time, which they are not always willing to invest. More incentives are necessary to keep the lecturers motivated to develop engaging teaching material. The study identifies factors that can help teachers conceptualize blended learning. It also provides specific implementation advice and identifies potential impacts. This catalogue has great value for the future-oriented development of courses at universities. Future studies could test its practical use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blended%20learning" title="blended learning">blended learning</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20education" title=" higher education"> higher education</a>, <a href="https://publications.waset.org/abstracts/search?q=teachers" title=" teachers"> teachers</a>, <a href="https://publications.waset.org/abstracts/search?q=student%20learning" title=" student learning"> student learning</a>, <a href="https://publications.waset.org/abstracts/search?q=qualitative%20research" title=" qualitative research"> qualitative research</a> </p> <a href="https://publications.waset.org/abstracts/175630/determining-factors-for-successful-blended-learning-in-higher-education-a-qualitative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4502</span> Aerodynamic Study of Formula 1 Car in Upsight Down Configuration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hrishit%20Mitra">Hrishit Mitra</a>, <a href="https://publications.waset.org/abstracts/search?q=Saptarshi%20Mandal"> Saptarshi Mandal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of aerodynamics for Formula 1 cars is very crucial in determining their performance. In the current F1 industry, when each engine manufacturer exhibits a torque and peak speed that differ by less than 5%, the emphasis on maximizing performance is dependent heavily on the utilization of aerodynamics. This work examines the aerodynamic characteristics of an F1 car by utilizing computational fluid dynamics in order to substantiate the hypothesis that an F1 car can go upside down in a tunnel without any external assistance, only due to the downforce it produces. In addition to this, this study also suggests the implementation of a 'flexi-wing' front in F1 cars to optimize downforce and reduce drag. Furthermore, this paper provides a concise overview of the historical development of aerodynamics in F1, with a specific emphasis on the progression of aerodynamics and the impact of downforce on the dynamics of vehicles. Next, an examination of wings has been provided, comparing the performance of the suggested wing at high speeds and low speeds. Three simulations have been conducted: one to test the complete aerodynamics and validate the hypothesis discussed above, and two specifically focused on the flexi wing, one at high speed and one at low speed. The collected results have been examined to analyze the performance of the front flexi wing. Performance analysis was conducted from the measurement of downforce and drag coefficient, as well as the pressure and velocity distributions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20flexi%20wing" title="high speed flexi wing">high speed flexi wing</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20speed%20flexi%20wing" title=" low speed flexi wing"> low speed flexi wing</a>, <a href="https://publications.waset.org/abstracts/search?q=F1%20car%20aerodynamics" title=" F1 car aerodynamics"> F1 car aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=F1%20car%20drag%20reduction" title=" F1 car drag reduction"> F1 car drag reduction</a> </p> <a href="https://publications.waset.org/abstracts/193464/aerodynamic-study-of-formula-1-car-in-upsight-down-configuration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4501</span> Mechanical Properties of Class F Fly Ash Blended Concrete Incorporation with Natural Admixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Ramesh%20Babu">T. S. Ramesh Babu</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Neeraja"> D. Neeraja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research work revealed that effect of Natural admixture (NAD) on Conventional Concrete (CC) and Class F Fly Ash(FA) blended concrete. Broiler hen egg white albumen and yellow yolk were used as Natural Admixture. Cement was replaced by Class F fly ash at various levels of 0%, 25%, 35%, 45% and 55% by its mass and NAD was added to concrete at different replacement dosages of 0%, 0.25%, 0.5%, 0.75% and 1.00% by its volume to water content and liquid to binder ratio was maintained at 0.5. For all replacement levels of FA and NAD, the mechanical properties viz unit weight, compressive strength, splitting tensile strength and modulus of elasticity of CC and Class F fly ash (FA) were studied at 7, 28, 56 and 112 days. From the results, it was concluded that 0.25% of NAD dosage was considered as optimum dosage for both CC and class F fly ash blended concrete. The studies revealed that 35% Class F fly ash blended concrete mix is concluded as optimum mix and 55% Class F fly ash blended concrete mix is concluded as economical mix with 0.25% NAD dosage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Class%20F%20fly%20ash" title="Class F fly ash">Class F fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20admixture" title=" natural admixture"> natural admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20tensile%20strength" title=" splitting tensile strength"> splitting tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=unit%20weight" title=" unit weight"> unit weight</a> </p> <a href="https://publications.waset.org/abstracts/47902/mechanical-properties-of-class-f-fly-ash-blended-concrete-incorporation-with-natural-admixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4500</span> Small Fixed-Wing UAV Physical Based Modeling, Simulation, and Validation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20H.%20Kapeel">Ebrahim H. Kapeel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehab%20Safwat"> Ehab Safwat</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossam%20Hendy"> Hossam Hendy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Kamel"> Ahmed M. Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Yehia%20Z.%20Elhalwagy"> Yehia Z. Elhalwagy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Motivated by the problem of the availability of high-fidelity flight simulation models for small unmanned aerial vehicles (UAVs). This paper focuses on the geometric-mass inertia modeling and the actuation system modeling for the small fixed-wing UAVs. The UAV geometric parameters for the body, wing, horizontal and vertical tail are physically measured. Pendulum experiment with high-grade sensors and data analysis using MATLAB is used to estimate the airplane moment of inertia (MOI) model. Finally, UAV’s actuation system is modeled by estimating each servo transfer function by using the system identification, which uses experimental measurement for input and output angles through using field-programmable gate array (FPGA). Experimental results for the designed models are given to illustrate the effectiveness of the methodology. It also gives a very promising result to finalize the open-loop flight simulation model through modeling the propulsion system and the aerodynamic system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle" title="unmanned aerial vehicle">unmanned aerial vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric-mass%20inertia%20model" title=" geometric-mass inertia model"> geometric-mass inertia model</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title=" system identification"> system identification</a>, <a href="https://publications.waset.org/abstracts/search?q=Simulink" title=" Simulink"> Simulink</a> </p> <a href="https://publications.waset.org/abstracts/142165/small-fixed-wing-uav-physical-based-modeling-simulation-and-validation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4499</span> Aerodynamic Design and Optimization of Vertical Take-Off and Landing Type Unmanned Aerial Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enes%20Gunaltili">Enes Gunaltili</a>, <a href="https://publications.waset.org/abstracts/search?q=Burak%20Dam"> Burak Dam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The airplane history started with the Wright brothers' aircraft and improved day by day. With the help of this advancements, big aircrafts replace with small and unmanned air vehicles, so in this study we design this type of air vehicles. First of all, aircrafts mainly divided into two main parts in our day as a rotary and fixed wing aircrafts. The fixed wing aircraft generally use for transport, cargo, military and etc. The rotary wing aircrafts use for same area but there are some superiorities from each other. The rotary wing aircraft can take off vertically from the ground, and it can use restricted area. On the other hand, rotary wing aircrafts generally can fly lower range than fixed wing aircraft. There are one kind of aircraft consist of this two types specifications. It is named as VTOL (vertical take-off and landing) type aircraft. VTOLs are able to takeoff and land vertically and fly horizontally. The VTOL aircrafts generally can fly higher range from the rotary wings but can fly lower range from the fixed wing aircraft but it gives beneficial range between them. There are many other advantages of VTOL aircraft from the rotary and fixed wing aircraft. Because of that, VTOLs began to use for generally military, cargo, search, rescue and mapping areas. Within this framework, this study answers the question that how can we design VTOL as a small unmanned aircraft systems for search and rescue application for benefiting the advantages of fixed wing and rotary wing aircrafts by eliminating the disadvantages of them. To answer that question and design VTOL aircraft, multidisciplinary design optimizations (MDO), some theoretical terminologies, formulations, simulations and modelling systems based on CFD (Computational Fluid Dynamics) is used in same time as design methodology to determine design parameters and steps. As a conclusion, based on tests and simulations depend on design steps, suggestions on how the VTOL aircraft designed and advantages, disadvantages, and observations for design parameters are listed, then VTOL is designed and presented with the design parameters, advantages, and usage areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airplane" title="airplane">airplane</a>, <a href="https://publications.waset.org/abstracts/search?q=rotary" title=" rotary"> rotary</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed" title=" fixed"> fixed</a>, <a href="https://publications.waset.org/abstracts/search?q=VTOL" title=" VTOL"> VTOL</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/92083/aerodynamic-design-and-optimization-of-vertical-take-off-and-landing-type-unmanned-aerial-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4498</span> Numerical Study of Flapping-Wing Flight of Hummingbird Hawkmoth during Hovering: Longitudinal Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yao%20Jie">Yao Jie</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeo%20Khoon%20Seng"> Yeo Khoon Seng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent decades, flapping wing aerodynamics has attracted great interest. Understanding the physics of biological flyers such as birds and insects can help improve the performance of micro air vehicles. The present research focuses on the aerodynamics of insect-like flapping wing flight with the approach of numerical computation. Insect model of hawkmoth is adopted in the numerical study with rigid wing assumption currently. The numerical model integrates the computational fluid dynamics of the flow and active control of wing kinematics to achieve stable flight. The computation grid is a hybrid consisting of background Cartesian nodes and clouds of mesh-free grids around immersed boundaries. The generalized finite difference method is used in conjunction with single value decomposition (SVD-GFD) in computational fluid dynamics solver to study the dynamics of a free hovering hummingbird hawkmoth. The longitudinal dynamics of the hovering flight is governed by three control parameters, i.e., wing plane angle, mean positional angle and wing beating frequency. In present work, a PID controller works out the appropriate control parameters with the insect motion as input. The controller is adjusted to acquire desired maneuvering of the insect flight. The numerical scheme in present study is proven to be accurate and stable to simulate the flight of the hummingbird hawkmoth, which has relatively high Reynolds number. The PID controller is responsive to provide feedback to the wing kinematics during the hovering flight. The simulated hovering flight agrees well with the real insect flight. The present numerical study offers a promising route to investigate the free flight aerodynamics of insects, which could overcome some of the limitations of experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20control" title=" flight control"> flight control</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20%28CFD%29" title=" computational fluid dynamics (CFD)"> computational fluid dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=flapping-wing%20flight" title=" flapping-wing flight"> flapping-wing flight</a> </p> <a href="https://publications.waset.org/abstracts/58518/numerical-study-of-flapping-wing-flight-of-hummingbird-hawkmoth-during-hovering-longitudinal-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4497</span> The Impact of Blended Learning on the Perception of High School Learners Towards Entrepreneurship</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rylyne%20Mande%20Nchu">Rylyne Mande Nchu</a>, <a href="https://publications.waset.org/abstracts/search?q=Robertson%20Tengeh"> Robertson Tengeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Chux%20Iwu"> Chux Iwu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Blended learning is a global phenomenon and is essential to many institutes of learning as an additional method of teaching that complements more traditional methods of learning. In this paper, the lack of practice of a blended learning approach to entrepreneurship education and how it impacts learners' perception of being entrepreneurial. E-learning is in its infancy within the secondary and high school sectors in South Africa. The conceptual framework of the study is based on theoretical aspects of systemic-constructivist learning implemented in an interactive online learning environment in an entrepreneurship education subject. The formative evaluation research was conducted implementing mixed methods of research (quantitative and qualitative) and it comprised a survey of high school learners and informant interviewing with entrepreneurs. Theoretical analysis of literature provides features necessary for creating interactive blended learning environments to be used in entrepreneurship education subject. Findings of the study show that learners do not always objectively evaluate their capacities. Special attention has to be paid to the development of learners’ computer literacy as well as to the activities that would bring online learning to practical training. Needs analysis shows that incorporating blended learning in entrepreneurship education may have a positive perception of entrepreneurship. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blended%20learning" title="blended learning">blended learning</a>, <a href="https://publications.waset.org/abstracts/search?q=entrepreneurship%20education" title=" entrepreneurship education"> entrepreneurship education</a>, <a href="https://publications.waset.org/abstracts/search?q=entrepreneurship%20intention" title=" entrepreneurship intention"> entrepreneurship intention</a>, <a href="https://publications.waset.org/abstracts/search?q=entrepreneurial%20skills" title=" entrepreneurial skills"> entrepreneurial skills</a> </p> <a href="https://publications.waset.org/abstracts/156306/the-impact-of-blended-learning-on-the-perception-of-high-school-learners-towards-entrepreneurship" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4496</span> Running the Athena Vortex Lattice Code in JAVA through the Java Native Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Okonkwo">Paul Okonkwo</a>, <a href="https://publications.waset.org/abstracts/search?q=Howard%20Smith"> Howard Smith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a methodology to integrate the Athena Vortex Lattice Aerodynamic Software for automated operation in a multivariate optimisation of the Blended Wing Body Aircraft. The Athena Vortex Lattice code developed at the Massachusetts Institute of Technology allows for the aerodynamic analysis of aircraft using the vortex lattice method. Ordinarily, the Athena Vortex Lattice operation requires a text file containing the aircraft geometry to be loaded into the AVL solver in order to determine the aerodynamic forces and moments. However, automated operation will be required to enable integration into a multidisciplinary optimisation framework. Automated AVL operation within the JAVA design environment will nonetheless require a modification and recompilation of AVL source code into an executable file capable of running on windows and other platforms without the –X11 libraries. This paper describes the procedure for the integrating the FORTRAN written AVL software for automated operation within the multivariate design synthesis optimisation framework for the conceptual design of the BWB aircraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation" title=" optimisation"> optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=AVL" title=" AVL"> AVL</a>, <a href="https://publications.waset.org/abstracts/search?q=JNI" title=" JNI"> JNI</a> </p> <a href="https://publications.waset.org/abstracts/22131/running-the-athena-vortex-lattice-code-in-java-through-the-java-native-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">565</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4495</span> Lectures in Higher Education Using Teaching Strategies and Digital Tools to Overcome Challenges Faced in South Africa by Implementing Blended Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thaiurie%20Govender">Thaiurie Govender</a>, <a href="https://publications.waset.org/abstracts/search?q=Shannon%20Verne"> Shannon Verne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Fourth Industrial Revolution has ushered in an era where technology significantly impacts various aspects of life, including higher education. Blended learning, which combines synchronous and asynchronous learning, has gained popularity as a pedagogical approach. However, its effective implementation is a challenge, particularly in the context of the COVID-19 pandemic and technological obstacles faced in South Africa. This study focused on lecturers' teaching and learning practices to implement blended learning, aiming to understand the teaching and learning strategies used with the integration of digital tools to facilitate the blended learning approach within a private higher educational institution in South Africa. Using heutagogy and constructivism theoretical frameworks, the study aimed to uncover insights into the lecturer’s teaching and learning practices to overcome challenges in designing and facilitating blended learning modules. Through a qualitative analysis, the themes of student engagement, teaching and learning strategies, digital tools, and feedback emerged, highlighting the complexities and opportunities in a blended learning classroom. The findings emphasize the importance of tailoring methods to students' needs and subject matter, aligning with constructivist principles. Recommendations include promoting professional development opportunities, addressing infrastructure issues, and fostering a supportive learning environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blended%20learning" title="blended learning">blended learning</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20tools" title=" digital tools"> digital tools</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20education" title=" higher education"> higher education</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching%20strategies" title=" teaching strategies"> teaching strategies</a> </p> <a href="https://publications.waset.org/abstracts/186127/lectures-in-higher-education-using-teaching-strategies-and-digital-tools-to-overcome-challenges-faced-in-south-africa-by-implementing-blended-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4494</span> Leading Edge Vortex Development for a 65° Delta Wing with Varying Thickness and Maximum Thickness Locations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jana%20Stucke">Jana Stucke</a>, <a href="https://publications.waset.org/abstracts/search?q=Sean%20Tuling"> Sean Tuling</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Toomer"> Chris Toomer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on the numerical investigation of the leading edge vortex (LEV) development over a 65° swept delta wing with varying thickness and maximum thickness location and their impact on its overall performance. The tested configurations are defined by a 6% and 12 % thick biconvex aerofoil with maximum thickness location at 30% and 50% of the root chord. The results are compared to a flat plate delta wing configuration of 3.4% thickness. The largest differences are observed for the aerofoils of 12% thickness and are used to demonstrate the trends and aerodynamic characteristics from here on. It was found that the vortex structure changes with change with maximum thickness and overall thickness. This change leads to not only a reduction in lift but also in drag, especially when the maximum thickness is moved forward. The reduction in drag, however, outweighs the loss in lift thus increasing the overall performance of the configuration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=delta%20wing" title=" delta wing"> delta wing</a>, <a href="https://publications.waset.org/abstracts/search?q=leading%20edge%20vortices" title=" leading edge vortices"> leading edge vortices</a> </p> <a href="https://publications.waset.org/abstracts/105022/leading-edge-vortex-development-for-a-65-delta-wing-with-varying-thickness-and-maximum-thickness-locations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4493</span> The BL-5D Model: The Development of a Model of Instructional Design for Blended Learning Activities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Damian%20Gordon">Damian Gordon</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Doyle"> Paul Doyle</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Becevel"> Anna Becevel</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%BAlia%20Vilafranca%20Molero"> Júlia Vilafranca Molero</a>, <a href="https://publications.waset.org/abstracts/search?q=Cinta%20Gascon"> Cinta Gascon</a>, <a href="https://publications.waset.org/abstracts/search?q=Arianna%20Vitiello"> Arianna Vitiello</a>, <a href="https://publications.waset.org/abstracts/search?q=Tina%20Baloh"> Tina Baloh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has long been recognized that the creation of any teaching content can be enhanced if the development process follows a pre-defined approach, which is often referred to as an instructional design methodology. These methodologies typically define a number of stages, or phases, that an educator should undertake to help ensure the quality of the final teaching content that is developed. In this paper, we present an instructional design methodology that is focused specifically on the introduction of blended resources into a heretofore bricks-and-mortar course. To achieve this, research was undertaken concerning a range of models of instructional design, as well as literature covering some of the key challenges and “pain points” of blending. Following this, our model, the BL-5D model, is presented, which incorporates some key questions at each stage of this five-stage methodology to guide the development process. Finally, a discussion of some of the key themes and issues that have been uncovered in this work is presented, as well as a template for a blended learning case study that emerged from this approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blended%20learning" title="blended learning">blended learning</a>, <a href="https://publications.waset.org/abstracts/search?q=challenges%20of%20blended%20learning" title=" challenges of blended learning"> challenges of blended learning</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20methodologies" title=" design methodologies"> design methodologies</a>, <a href="https://publications.waset.org/abstracts/search?q=instructional%20design" title=" instructional design"> instructional design</a> </p> <a href="https://publications.waset.org/abstracts/159305/the-bl-5d-model-the-development-of-a-model-of-instructional-design-for-blended-learning-activities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4492</span> Comparison of Numerical Results of Lambda Wing under Different Turbulence Models and Wall Y+</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsien%20Hao%20Teng">Hsien Hao Teng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study uses numerical simulation to analyze the aerodynamic characteristics of the 53-degree Lambda wing with a sweep angle and mainly discusses the numerical simulation results and physical characteristics of the wall y+. Use the commercial software Fluent to execute Mach number 0.15; when the angle of attack attitude is between 0 degrees and 27 degrees, the physical characteristics of the overall aerodynamic force are analyzed, especially when the fluid separation and vortex structure changes are discussed under the condition of high angle of attack, it will affect The instability of pitching moment. In the numerical calculation, the use of wall y+ and turbulence model will affect the prediction of vortex generation and the difference in structure. The analysis results are compared with experimental data to discuss the trend of the aerodynamic characteristics of the Lambda wing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lambda%20wing" title="lambda wing">lambda wing</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20function" title=" wall function"> wall function</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20model" title=" turbulence model"> turbulence model</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a> </p> <a href="https://publications.waset.org/abstracts/142038/comparison-of-numerical-results-of-lambda-wing-under-different-turbulence-models-and-wall-y" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4491</span> Performance of a Sailing Vessel with a Solid Wing Sail Compared to a Traditional Sail</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=William%20Waddington">William Waddington</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jahir%20Rizvi"> M. Jahir Rizvi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sail used to propel a vessel functions in a similar way to an aircraft wing. Traditionally, cloth and ropes were used to produce sails. However, there is one major problem with traditional sail design, the increase in turbulence and flow separation when compared to that of an aircraft wing with the same camber. This has led to the development of the solid wing sail focusing mainly on the sail shape. Traditional cloth sails are manufactured as a single element whereas solid wing sail is made of two segments. To the authors’ best knowledge, the phenomena behind the performances of this type of sail at various angles of wind direction with respect to a sailing vessel’s direction (known as the angle of attack) is still an area of mystery. Hence, in this study, the thrusts of a sailing vessel produced by wing sails constructed with various angles (22°, 24°, 26° and 28°) between the two segments have been compared to that of a traditional cloth sail made of carbon-fiber material. The reason for using carbon-fiber material is to achieve the correct and the exact shape of a commercially available mainsail. NACA 0024 and NACA 0016 foils have been used to generate two-segment wing sail shape which incorporates a flap between the first and the second segments. Both the two-dimensional and the three-dimensional sail models designed in commercial CAD software Solidworks have been analyzed through Computational Fluid Dynamics (CFD) techniques using Ansys CFX considering an apparent wind speed of 20.55 knots with an apparent wind angle of 31°. The results indicate that the thrust from traditional sail increases from 8.18 N to 8.26 N when the angle of attack is increased from 5° to 7°. However, the thrust value decreases if the angle of attack is further increased. A solid wing sail which possesses 20° angle between its two segments, produces thrusts from 7.61 N to 7.74 N with an increase in the angle of attack from 7° to 8°. The thrust remains steady up to 9° angle of attack and drops dramatically beyond 9°. The highest thrust values that can be obtained for the solid wing sails with 22°, 24°, 26° and 28° angle respectively between the two segments are 8.75 N, 9.10 N, 9.29 N and 9.19 N respectively. The optimum angle of attack for each of the solid wing sails is identified as 7° at which these thrust values are obtained. Therefore, it can be concluded that all the thrust values predicted for the solid wing sails of angles between the two segments above 20° are higher compared to the thrust predicted for the traditional sail. However, the best performance from a solid wing sail is expected when the sail is created with an angle between the two segments above 20° but below or equal to 26°. In addition, 1/29th scale models in the wind tunnel have been tested to observe the flow behaviors around the sails. The experimental results support the numerical observations as the flow behaviors are exactly the same. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=drag" title=" drag"> drag</a>, <a href="https://publications.waset.org/abstracts/search?q=sailing%20vessel" title=" sailing vessel"> sailing vessel</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust" title=" thrust"> thrust</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20sail" title=" traditional sail"> traditional sail</a>, <a href="https://publications.waset.org/abstracts/search?q=wing%20sail" title=" wing sail"> wing sail</a> </p> <a href="https://publications.waset.org/abstracts/93023/performance-of-a-sailing-vessel-with-a-solid-wing-sail-compared-to-a-traditional-sail" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4490</span> Integrating the Athena Vortex Lattice Code into a Multivariate Design Synthesis Optimisation Platform in JAVA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Okonkwo">Paul Okonkwo</a>, <a href="https://publications.waset.org/abstracts/search?q=Howard%20Smith"> Howard Smith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a methodology to integrate the Athena Vortex Lattice Aerodynamic Software for automated operation in a multivariate optimisation of the Blended Wing Body Aircraft. The Athena Vortex Lattice code developed at the Massachusetts Institute of Technology by Mark Drela allows for the aerodynamic analysis of aircraft using the vortex lattice method. Ordinarily, the Athena Vortex Lattice operation requires a text file containing the aircraft geometry to be loaded into the AVL solver in order to determine the aerodynamic forces and moments. However, automated operation will be required to enable integration into a multidisciplinary optimisation framework. Automated AVL operation within the JAVA design environment will nonetheless require a modification and recompilation of AVL source code into an executable file capable of running on windows and other platforms without the –X11 libraries. This paper describes the procedure for the integrating the FORTRAN written AVL software for automated operation within the multivariate design synthesis optimisation framework for the conceptual design of the BWB aircraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation" title=" optimisation"> optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=AVL" title=" AVL"> AVL</a>, <a href="https://publications.waset.org/abstracts/search?q=JNI" title=" JNI"> JNI</a> </p> <a href="https://publications.waset.org/abstracts/22130/integrating-the-athena-vortex-lattice-code-into-a-multivariate-design-synthesis-optimisation-platform-in-java" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4489</span> Improving Learning and Teaching of Software Packages among Engineering Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Moridpour">Sara Moridpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To meet emerging industry needs, engineering students must learn different software packages and enhance their computational skills. Traditionally, face-to-face is selected as the preferred approach to teaching software packages. Face-to-face tutorials and workshops provide an interactive environment for learning software packages where the students can communicate with the teacher and interact with other students, evaluate their skills, and receive feedback. However, COVID-19 significantly limited face-to-face learning and teaching activities at universities. Worldwide lockdowns and the shift to online and remote learning and teaching provided the opportunity to introduce different strategies to enhance the interaction among students and teachers in online and virtual environments and improve the learning and teaching of software packages in online and blended teaching methods. This paper introduces a blended strategy to teach engineering software packages to undergraduate students. This article evaluates the effectiveness of the proposed blended learning and teaching strategy in students’ learning by comparing the impact of face-to-face, online and the proposed blended environments on students’ software skills. The paper evaluates the students’ software skills and their software learning through an authentic assignment. According to the results, the proposed blended teaching strategy successfully improves the software learning experience among undergraduate engineering students. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=teaching%20software%20packages" title="teaching software packages">teaching software packages</a>, <a href="https://publications.waset.org/abstracts/search?q=undergraduate%20students" title=" undergraduate students"> undergraduate students</a>, <a href="https://publications.waset.org/abstracts/search?q=blended%20learning%20and%20teaching" title=" blended learning and teaching"> blended learning and teaching</a>, <a href="https://publications.waset.org/abstracts/search?q=authentic%20assessment" title=" authentic assessment"> authentic assessment</a> </p> <a href="https://publications.waset.org/abstracts/160407/improving-learning-and-teaching-of-software-packages-among-engineering-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4488</span> Approaches and Strategies Used to Increase Student Engagement in Blended Learning Courses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pinar%20Ozdemir%20Ayber">Pinar Ozdemir Ayber</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeina%20Hojeij"> Zeina Hojeij</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Blended Learning (BL) is a rapidly growing teaching and learning approach, which brings together the best of both face-to-face and online learning to expand learning opportunities for students. However, there is limited research on the practices, opportunities and quality of instruction in Blended Classrooms, and on the role of the teaching faculty as well as the learners in these types of classes. This paper will highlight the researchers’ experiences and reflections on blending their classes. It will focus on the importance of designing effective lesson plans that emphasize learner engagement and motivation in alignment with course learning outcomes. In addition, it will identify the changing roles of the teacher and the learners and suggest appropriate variations to the traditional classroom setting taking into consideration the benefits and the challenges of the Blended Classroom. It is hoped that this paper would provide sufficient input for participants to reflect on ways they can blend their own lessons to promote ubiquitous learning and student autonomy. Practical tips and ideas will be shared with the participants on various strategies and technologies that were used in the researchers’ classes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blended%20learning" title="blended learning">blended learning</a>, <a href="https://publications.waset.org/abstracts/search?q=learner%20autonomy" title=" learner autonomy"> learner autonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=learner%20engagement" title=" learner engagement"> learner engagement</a>, <a href="https://publications.waset.org/abstracts/search?q=learner%20motivation" title=" learner motivation"> learner motivation</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20learning%20tools" title=" mobile learning tools"> mobile learning tools</a> </p> <a href="https://publications.waset.org/abstracts/62837/approaches-and-strategies-used-to-increase-student-engagement-in-blended-learning-courses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blended%20wing%20body&page=1" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blended%20wing%20body&page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blended%20wing%20body&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blended%20wing%20body&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blended%20wing%20body&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blended%20wing%20body&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blended%20wing%20body&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blended%20wing%20body&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blended%20wing%20body&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blended%20wing%20body&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blended%20wing%20body&page=151">151</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blended%20wing%20body&page=152">152</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=blended%20wing%20body&page=3" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>