CINXE.COM
Search results for: permutation entropy (PE)
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: permutation entropy (PE)</title> <meta name="description" content="Search results for: permutation entropy (PE)"> <meta name="keywords" content="permutation entropy (PE)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="permutation entropy (PE)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="permutation entropy (PE)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 377</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: permutation entropy (PE)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">377</span> Automatic Seizure Detection Using Weighted Permutation Entropy and Support Vector Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noha%20Seddik">Noha Seddik</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherine%20Youssef"> Sherine Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Kholeif"> Mohamed Kholeif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The automated epileptic seizure detection research field has emerged in the recent years; this involves analyzing the Electroencephalogram (EEG) signals instead of the traditional visual inspection performed by expert neurologists. In this study, a Support Vector Machine (SVM) that uses Weighted Permutation Entropy (WPE) as the input feature is proposed for classifying normal and seizure EEG records. WPE is a modified statistical parameter of the permutation entropy (PE) that measures the complexity and irregularity of a time series. It incorporates both the mapped ordinal pattern of the time series and the information contained in the amplitude of its sample points. The proposed system utilizes the fact that entropy based measures for the EEG segments during epileptic seizure are lower than in normal EEG. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroencephalogram%20%28EEG%29" title="electroencephalogram (EEG)">electroencephalogram (EEG)</a>, <a href="https://publications.waset.org/abstracts/search?q=epileptic%20seizure%20detection" title=" epileptic seizure detection"> epileptic seizure detection</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20permutation%20entropy%20%28WPE%29" title=" weighted permutation entropy (WPE)"> weighted permutation entropy (WPE)</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine%20%28SVM%29" title=" support vector machine (SVM)"> support vector machine (SVM)</a> </p> <a href="https://publications.waset.org/abstracts/12444/automatic-seizure-detection-using-weighted-permutation-entropy-and-support-vector-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">376</span> Electroencephalography (EEG) Analysis of Alcoholic and Control Subjects Using Multiscale Permutation Entropy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lal%20Hussain">Lal Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Wajid%20Aziz"> Wajid Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Ahmed%20Nadeem"> Sajjad Ahmed Nadeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Arif%20Shah"> Saeed Arif Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Majid"> Abdul Majid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brain electrical activity as reflected in Electroencephalography (EEG) have been analyzed and diagnosed using various techniques. Among them, complexity measure, nonlinearity, disorder, and unpredictability play vital role due to the nonlinear interconnection between functional and anatomical subsystem emerged in brain in healthy state and during various diseases. There are many social and economical issues of alcoholic abuse as memory weakness, decision making, impairments, and concentrations etc. Alcoholism not only defect the brains but also associated with emotional, behavior, and cognitive impairments damaging the white and gray brain matters. A recently developed signal analysis method i.e. Multiscale Permutation Entropy (MPE) is proposed to estimate the complexity of long-range temporal correlation time series EEG of Alcoholic and Control subjects acquired from University of California Machine Learning repository and results are compared with MSE. Using MPE, coarsed grained series is first generated and the PE is computed for each coarsed grained time series against the electrodes O1, O2, C3, C4, F2, F3, F4, F7, F8, Fp1, Fp2, P3, P4, T7, and T8. The results computed against each electrode using MPE gives higher significant values as compared to MSE as well as mean rank differences accordingly. Likewise, ROC and Area under the ROC also gives higher separation against each electrode using MPE in comparison to MSE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroencephalogram%20%28EEG%29" title="electroencephalogram (EEG)">electroencephalogram (EEG)</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale%20permutation%20entropy%20%28MPE%29" title=" multiscale permutation entropy (MPE)"> multiscale permutation entropy (MPE)</a>, <a href="https://publications.waset.org/abstracts/search?q=multiscale%20sample%20entropy%20%28MSE%29" title=" multiscale sample entropy (MSE)"> multiscale sample entropy (MSE)</a>, <a href="https://publications.waset.org/abstracts/search?q=permutation%20entropy%20%28PE%29" title=" permutation entropy (PE)"> permutation entropy (PE)</a>, <a href="https://publications.waset.org/abstracts/search?q=mann%20whitney%20test%20%28MMT%29" title=" mann whitney test (MMT)"> mann whitney test (MMT)</a>, <a href="https://publications.waset.org/abstracts/search?q=receiver%20operator%20curve%20%28ROC%29" title=" receiver operator curve (ROC)"> receiver operator curve (ROC)</a>, <a href="https://publications.waset.org/abstracts/search?q=complexity%20measure" title=" complexity measure"> complexity measure</a> </p> <a href="https://publications.waset.org/abstracts/21664/electroencephalography-eeg-analysis-of-alcoholic-and-control-subjects-using-multiscale-permutation-entropy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">375</span> Linear Codes Afforded by the Permutation Representations of Finite Simple Groups and Their Support Designs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Saeidi">Amin Saeidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using a representation-theoretic approach and considering G to be a finite primitive permutation group of degree n, our aim is to determine linear codes of length n that admit G as a permutation automorphism group. We can show that in some cases, every binary linear code admitting G as a permutation automorphism group is a submodule of a permutation module defined by a primitive action of G. As an illustration of the method, we consider the sporadic simple group M₁₁ and the unitary group U(3,3). We also construct some point- and block-primitive 1-designs from the supports of some codewords of the codes in the discussion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20code" title="linear code">linear code</a>, <a href="https://publications.waset.org/abstracts/search?q=permutation%20representation" title=" permutation representation"> permutation representation</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20design" title=" support design"> support design</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20group" title=" simple group"> simple group</a> </p> <a href="https://publications.waset.org/abstracts/174007/linear-codes-afforded-by-the-permutation-representations-of-finite-simple-groups-and-their-support-designs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">374</span> Rényi Entropy Correction to Expanding Universe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Fazlollahi">Hamidreza Fazlollahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Re ́nyi entropy comprises a group of data estimates that sums up the well-known Shannon entropy, acquiring a considerable lot of its properties. It appears as unqualified and restrictive entropy, relative entropy, or common data, and has found numerous applications in information theory. In the Re ́nyi’s argument, the area law of the black hole entropy plays a significant role. However, the total entropy can be modified by some quantum effects, motivated by the randomness of a system. In this note, by employing this modified entropy relation, we have derived corrections to Friedmann equations. Taking this entropy associated with the apparent horizon of the Friedmann-Robertson-Walker Universe and assuming the first law of thermodynamics, dE=T_A (dS)_A+WdV, satisfies the apparent horizon, we have reconsidered expanding Universe. Also, the second thermodynamics law has been examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Friedmann%20equations" title="Friedmann equations">Friedmann equations</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20energy" title=" dark energy"> dark energy</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20law%20of%20thermodynamics" title=" first law of thermodynamics"> first law of thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=Reyni%20entropy" title=" Reyni entropy"> Reyni entropy</a> </p> <a href="https://publications.waset.org/abstracts/164326/renyi-entropy-correction-to-expanding-universe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">373</span> A Genetic Algorithm Based Permutation and Non-Permutation Scheduling Heuristics for Finite Capacity Material Requirement Planning Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Watchara%20Songserm">Watchara Songserm</a>, <a href="https://publications.waset.org/abstracts/search?q=Teeradej%20Wuttipornpun"> Teeradej Wuttipornpun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a genetic algorithm based permutation and non-permutation scheduling heuristics (GAPNP) to solve a multi-stage finite capacity material requirement planning (FCMRP) problem in automotive assembly flow shop with unrelated parallel machines. In the algorithm, the sequences of orders are iteratively improved by the GA characteristics, whereas the required operations are scheduled based on the presented permutation and non-permutation heuristics. Finally, a linear programming is applied to minimize the total cost. The presented GAPNP algorithm is evaluated by using real datasets from automotive companies. The required parameters for GAPNP are intently tuned to obtain a common parameter setting for all case studies. The results show that GAPNP significantly outperforms the benchmark algorithm about 30% on average. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacitated%20MRP" title="capacitated MRP">capacitated MRP</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20programming" title=" linear programming"> linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20industries" title=" automotive industries"> automotive industries</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20shop" title=" flow shop"> flow shop</a>, <a href="https://publications.waset.org/abstracts/search?q=application%20in%20industry" title=" application in industry"> application in industry</a> </p> <a href="https://publications.waset.org/abstracts/67589/a-genetic-algorithm-based-permutation-and-non-permutation-scheduling-heuristics-for-finite-capacity-material-requirement-planning-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">372</span> On q-Non-extensive Statistics with Non-Tsallisian Entropy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Petr%20Jizba">Petr Jizba</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Korbel"> Jan Korbel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We combine an axiomatics of Rényi with the q-deformed version of Khinchin axioms to obtain a measure of information (i.e., entropy) which accounts both for systems with embedded self-similarity and non-extensivity. We show that the entropy thus obtained is uniquely solved in terms of a one-parameter family of information measures. The ensuing maximal-entropy distribution is phrased in terms of a special function known as the Lambert W-function. We analyze the corresponding ‘high’ and ‘low-temperature’ asymptotics and reveal a non-trivial structure of the parameter space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multifractals" title="multifractals">multifractals</a>, <a href="https://publications.waset.org/abstracts/search?q=R%C3%A9nyi%20information%20entropy" title=" Rényi information entropy"> Rényi information entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=THC%20entropy" title=" THC entropy"> THC entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=MaxEnt" title=" MaxEnt"> MaxEnt</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy-tailed%20distributions" title=" heavy-tailed distributions"> heavy-tailed distributions</a> </p> <a href="https://publications.waset.org/abstracts/36758/on-q-non-extensive-statistics-with-non-tsallisian-entropy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">371</span> Entropy Measures on Neutrosophic Soft Sets and Its Application in Multi Attribute Decision Making</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Arockiarani">I. Arockiarani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The focus of the paper is to furnish the entropy measure for a neutrosophic set and neutrosophic soft set which is a measure of uncertainty and it permeates discourse and system. Various characterization of entropy measures are derived. Further we exemplify this concept by applying entropy in various real time decision making problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy%20measure" title="entropy measure">entropy measure</a>, <a href="https://publications.waset.org/abstracts/search?q=Hausdorff%20distance" title=" Hausdorff distance"> Hausdorff distance</a>, <a href="https://publications.waset.org/abstracts/search?q=neutrosophic%20set" title=" neutrosophic set"> neutrosophic set</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20set" title=" soft set"> soft set</a> </p> <a href="https://publications.waset.org/abstracts/58101/entropy-measures-on-neutrosophic-soft-sets-and-its-application-in-multi-attribute-decision-making" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">370</span> On the Topological Entropy of Nonlinear Dynamical Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Graziano%20Chesi">Graziano Chesi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The topological entropy plays a key role in linear dynamical systems, allowing one to establish the existence of stabilizing feedback controllers for linear systems in the presence of communications constraints. This paper addresses the determination of a robust value of the topological entropy in nonlinear dynamical systems, specifically the largest value of the topological entropy over all linearized models in a region of interest of the state space. It is shown that a sufficient condition for establishing upper bounds of the sought robust value of the topological entropy can be given in terms of a semidefinite program (SDP), which belongs to the class of convex optimization problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-linear%20system" title="non-linear system">non-linear system</a>, <a href="https://publications.waset.org/abstracts/search?q=communication%20constraint" title=" communication constraint"> communication constraint</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20entropy" title=" topological entropy"> topological entropy</a> </p> <a href="https://publications.waset.org/abstracts/45742/on-the-topological-entropy-of-nonlinear-dynamical-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">369</span> The Permutation of Symmetric Triangular Equilateral Group in the Cryptography of Private and Public Key</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fola%20John%20Adeyeye">Fola John Adeyeye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a cryptosystem private and public key base on symmetric group Pn and validates its theoretical formulation. This proposed system benefits from the algebraic properties of Pn such as noncommutative high logical, computational speed and high flexibility in selecting key which makes the discrete permutation multiplier logic (DPML) resist to attack by any algorithm such as Pohlig-Hellman. One of the advantages of this scheme is that it explore all the possible triangular symmetries. Against these properties, the only disadvantage is that the law of permutation multiplicity only allow an operation from left to right. Many other cryptosystems can be transformed into their symmetric group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryptosystem" title="cryptosystem">cryptosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=private%20and%20public%20key" title=" private and public key"> private and public key</a>, <a href="https://publications.waset.org/abstracts/search?q=DPML" title=" DPML"> DPML</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetric%20group%20Pn" title=" symmetric group Pn"> symmetric group Pn</a> </p> <a href="https://publications.waset.org/abstracts/103766/the-permutation-of-symmetric-triangular-equilateral-group-in-the-cryptography-of-private-and-public-key" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">368</span> Linear Study of Electrostatic Ion Temperature Gradient Mode with Entropy Gradient Drift and Sheared Ion Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yaqub%20Khan">M. Yaqub Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Shabbir"> Usman Shabbir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> History of plasma reveals that continuous struggle of experimentalists and theorists are not fruitful for confinement up to now. It needs a change to bring the research through entropy. Approximately, all the quantities like number density, temperature, electrostatic potential, etc. are connected to entropy. Therefore, it is better to change the way of research. In ion temperature gradient mode with the help of Braginskii model, Boltzmannian electrons, effect of velocity shear is studied inculcating entropy in the magnetoplasma. New dispersion relation is derived for ion temperature gradient mode, and dependence on entropy gradient drift is seen. It is also seen velocity shear enhances the instability but in anomalous transport, its role is not seen significantly but entropy. This work will be helpful to the next step of tokamak and space plasmas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy" title="entropy">entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20shear" title=" velocity shear"> velocity shear</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20temperature%20gradient%20mode" title=" ion temperature gradient mode"> ion temperature gradient mode</a>, <a href="https://publications.waset.org/abstracts/search?q=drift" title=" drift"> drift</a> </p> <a href="https://publications.waset.org/abstracts/70221/linear-study-of-electrostatic-ion-temperature-gradient-mode-with-entropy-gradient-drift-and-sheared-ion-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">367</span> Reasons for Non-Applicability of Software Entropy Metrics for Bug Prediction in Android </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arvinder%20Kaur">Arvinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepti%20Chopra"> Deepti Chopra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Software Entropy Metrics for bug prediction have been validated on various software systems by different researchers. In our previous research, we have validated that Software Entropy Metrics calculated for Mozilla subsystem’s predict the future bugs reasonably well. In this study, the Software Entropy metrics are calculated for a subsystem of Android and it is noticed that these metrics are not suitable for bug prediction. The results are compared with a subsystem of Mozilla and a comparison is made between the two software systems to determine the reasons why Software Entropy metrics are not applicable for Android. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=android" title="android">android</a>, <a href="https://publications.waset.org/abstracts/search?q=bug%20prediction" title=" bug prediction"> bug prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=mining%20software%20repositories" title=" mining software repositories"> mining software repositories</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20entropy" title=" software entropy"> software entropy</a> </p> <a href="https://publications.waset.org/abstracts/49619/reasons-for-non-applicability-of-software-entropy-metrics-for-bug-prediction-in-android" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">578</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">366</span> Analysis of EEG Signals Using Wavelet Entropy and Approximate Entropy: A Case Study on Depression Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subha%20D.%20Puthankattil">Subha D. Puthankattil</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20K.%20Joseph"> Paul K. Joseph</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analyzing brain signals of the patients suffering from the state of depression may lead to interesting observations in the signal parameters that is quite different from a normal control. The present study adopts two different methods: Time frequency domain and nonlinear method for the analysis of EEG signals acquired from depression patients and age and sex matched normal controls. The time frequency domain analysis is realized using wavelet entropy and approximate entropy is employed for the nonlinear method of analysis. The ability of the signal processing technique and the nonlinear method in differentiating the physiological aspects of the brain state are revealed using Wavelet entropy and Approximate entropy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EEG" title="EEG">EEG</a>, <a href="https://publications.waset.org/abstracts/search?q=depression" title=" depression"> depression</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20entropy" title=" wavelet entropy"> wavelet entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=approximate%20entropy" title=" approximate entropy"> approximate entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20wavelet%20energy" title=" relative wavelet energy"> relative wavelet energy</a>, <a href="https://publications.waset.org/abstracts/search?q=multiresolution%20decomposition" title=" multiresolution decomposition"> multiresolution decomposition</a> </p> <a href="https://publications.waset.org/abstracts/11836/analysis-of-eeg-signals-using-wavelet-entropy-and-approximate-entropy-a-case-study-on-depression-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">365</span> Entropy Analysis of a Thermo-Acoustic Stack</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmadali%20Shirazytabar">Ahmadali Shirazytabar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Namazi"> Hamidreza Namazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inherent irreversibility of thermo-acoustics primarily in the stack region causes poor efficiency of thermo-acoustic engines which is the major weakness of these devices. In view of the above, this study examines entropy generation in the stack of a thermo-acoustic system. For this purpose two parallel plates representative of the stack is considered. A general equation for entropy generation is derived based on the Second Law of thermodynamics. Assumptions such as Rott’s linear thermo-acoustic approximation, boundary layer type flow, etc. are made to simplify the governing continuity, momentum and energy equations to achieve analytical solutions for velocity and temperature. The entropy generation equation is also simplified based on the same assumptions and then is converted to dimensionless form by using characteristic entropy generation. A time averaged entropy generation rate followed by a global entropy generation rate are calculated and graphically represented for further analysis and inspecting the effect of different parameters on the entropy generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermo-acoustics" title="thermo-acoustics">thermo-acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20law%20of%20thermodynamics" title=" second law of thermodynamics"> second law of thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=Rott%E2%80%99s%20linear%20thermo-acoustic%20approximation" title=" Rott’s linear thermo-acoustic approximation"> Rott’s linear thermo-acoustic approximation</a> </p> <a href="https://publications.waset.org/abstracts/32388/entropy-analysis-of-a-thermo-acoustic-stack" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">364</span> Econophysics: The Use of Entropy Measures in Finance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sheraz">Muhammad Sheraz</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasile%20Preda"> Vasile Preda</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Dedu"> Silvia Dedu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concepts of econophysics are usually used to solve problems related to uncertainty and nonlinear dynamics. In the theory of option pricing the risk neutral probabilities play very important role. The application of entropy in finance can be regarded as the extension of both information entropy and the probability entropy. It can be an important tool in various financial methods such as measure of risk, portfolio selection, option pricing and asset pricing. Gulko applied Entropy Pricing Theory (EPT) for pricing stock options and introduced an alternative framework of Black-Scholes model for pricing European stock option. In this article, we present solutions to maximum entropy problems based on Tsallis, Weighted-Tsallis, Kaniadakis, Weighted-Kaniadakies entropies, to obtain risk-neutral densities. We have also obtained the value of European call and put in this framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=option%20pricing" title="option pricing">option pricing</a>, <a href="https://publications.waset.org/abstracts/search?q=Black-Scholes%20model" title=" Black-Scholes model"> Black-Scholes model</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsallis%20entropy" title=" Tsallis entropy"> Tsallis entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaniadakis%20entropy" title=" Kaniadakis entropy"> Kaniadakis entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20entropy" title=" weighted entropy"> weighted entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=risk-neutral%20density" title=" risk-neutral density"> risk-neutral density</a> </p> <a href="https://publications.waset.org/abstracts/55546/econophysics-the-use-of-entropy-measures-in-finance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">363</span> Closed-Form Sharma-Mittal Entropy Rate for Gaussian Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Septimia%20Sarbu">Septimia Sarbu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The entropy rate of a stochastic process is a fundamental concept in information theory. It provides a limit to the amount of information that can be transmitted reliably over a communication channel, as stated by Shannon's coding theorems. Recently, researchers have focused on developing new measures of information that generalize Shannon's classical theory. The aim is to design more efficient information encoding and transmission schemes. This paper continues the study of generalized entropy rates, by deriving a closed-form solution to the Sharma-Mittal entropy rate for Gaussian processes. Using the squeeze theorem, we solve the limit in the definition of the entropy rate, for different values of alpha and beta, which are the parameters of the Sharma-Mittal entropy. In the end, we compare it with Shannon and Rényi's entropy rates for Gaussian processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20entropies" title="generalized entropies">generalized entropies</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharma-Mittal%20entropy%20rate" title=" Sharma-Mittal entropy rate"> Sharma-Mittal entropy rate</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20processes" title=" Gaussian processes"> Gaussian processes</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalues%20of%20the%20covariance%20matrix" title=" eigenvalues of the covariance matrix"> eigenvalues of the covariance matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=squeeze%20theorem" title=" squeeze theorem "> squeeze theorem </a> </p> <a href="https://publications.waset.org/abstracts/32177/closed-form-sharma-mittal-entropy-rate-for-gaussian-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">362</span> Entropy Risk Factor Model of Exchange Rate Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Darrol%20Stanley">Darrol Stanley</a>, <a href="https://publications.waset.org/abstracts/search?q=Levan%20Efremidze"> Levan Efremidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Jannie%20Rossouw"> Jannie Rossouw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the predictability of the USD/ZAR (South African Rand) exchange rate with sample entropy analytics for the period of 2004-2015. We calculate sample entropy based on the daily data of the exchange rate and conduct empirical implementation of several market timing rules based on these entropy signals. The dynamic investment portfolio based on entropy signals produces better risk adjusted performance than a buy and hold strategy. The returns are estimated on the portfolio values in U.S. dollars. These results are preliminary and do not yet account for reasonable transactions costs, although these are very small in currency markets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=currency%20trading" title="currency trading">currency trading</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=market%20timing" title=" market timing"> market timing</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20factor%20model" title=" risk factor model"> risk factor model</a> </p> <a href="https://publications.waset.org/abstracts/53853/entropy-risk-factor-model-of-exchange-rate-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">361</span> Search for APN Permutations in Rings ℤ_2×ℤ_2^k</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Panario">Daniel Panario</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Santana%20de%20Freitas"> Daniel Santana de Freitas</a>, <a href="https://publications.waset.org/abstracts/search?q=Brett%20Stevens"> Brett Stevens</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Almost Perfect Nonlinear (APN) permutations with optimal resistance against differential cryptanalysis can be found in several domains. The permutation used in the standard for symmetric cryptography (the AES), for example, is based on a special kind of inversion in GF(28). Although very close to APN (2-uniform), this permutation still contains one number 4 in its differential spectrum, which means that, rigorously, it must be classified as 4-uniform. This fact motivates the search for fully APN permutations in other domains of definition. The extremely high complexity associated to this kind of problem precludes an exhaustive search for an APN permutation with 256 elements to be performed without the support of a suitable mathematical structure. On the other hand, in principle, there is nothing to indicate which mathematically structured domains can effectively help the search, and it is necessary to test several domains. In this work, the search for APN permutations in rings ℤ2×ℤ2k is investigated. After a full, exhaustive search with k=2 and k=3, all possible APN permutations in those rings were recorded, together with their differential profiles. Some very promising heuristics in these cases were collected so that, when used as a basis to prune backtracking for the same search in ℤ2×ℤ8 (search space with size 16! ≅244), just a few tenths of a second were enough to produce an APN permutation in a single CPU. Those heuristics were empirically extrapolated so that they could be applied to a backtracking search for APNs over ℤ2×ℤ16 (search space with size 32! ≅2117). The best permutations found in this search were further refined through Simulated Annealing, with a definition of neighbors suitable to this domain. The best result produced with this scheme was a 3-uniform permutation over ℤ2×ℤ16 with only 24 values equal to 3 in the differential spectrum (all the other 968 values were less than or equal 2, as it should be the case for an APN permutation). Although far from being fully APN, this result is technically better than a 4-uniform permutation and demanded only a few seconds in a single CPU. This is a strong indication that the use of mathematically structured domains, like the rings described in this work, together with heuristics based on smaller cases, can lead to dramatic cuts in the computational resources involved in the complexity of the search for APN permutations in extremely large domains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=APN%20permutations" title="APN permutations">APN permutations</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic%20searches" title=" heuristic searches"> heuristic searches</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetric%20cryptography" title=" symmetric cryptography"> symmetric cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=S-box%20design" title=" S-box design"> S-box design</a> </p> <a href="https://publications.waset.org/abstracts/145556/search-for-apn-permutations-in-rings-2-2k" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">360</span> An Alternative Proof for the Topological Entropy of the Motzkin Shift</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Alsharari">Fahad Alsharari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Salmi%20Md.%20Noorani"> Mohd Salmi Md. Noorani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Motzkin shift is a mathematical model for constraints on genetic sequences. In terms of the theory of symbolic dynamics, the Motzkin shift is nonsofic, and therefore, we cannot use the Perron-Frobenius theory to calculate its topological entropy. The Motzkin shift M(M,N) which comes from language theory, is defined to be the shift system over an alphabet A that consists of N negative symbols, N positive symbols and M neutral symbols. For an x in the full shift AZ, x is in M(M,N) if and only if every finite block appearing in x has a non-zero reduced form. Therefore, the constraint for x cannot be bounded in length. K. Inoue has shown that the entropy of the Motzkin shift M(M,N) is log(M + N + 1). In this paper, we find a new method of calculating the topological entropy of the Motzkin shift M(M,N) without any measure theoretical discussion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy" title="entropy">entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=Motzkin%20shift" title=" Motzkin shift"> Motzkin shift</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=theory" title=" theory "> theory </a> </p> <a href="https://publications.waset.org/abstracts/21271/an-alternative-proof-for-the-topological-entropy-of-the-motzkin-shift" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">359</span> Analysis of Spectral Radiative Entropy Generation in a Non-Gray Participating Medium with Heat Source (Furnaces)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asadollah%20Bahrami">Asadollah Bahrami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, spectral radiative entropy generation is analyzed in a furnace filled with a mixture of H₂O, CO₂ and soot at radiative equilibrium. For the angular and spatial discretization of the radiative transfer equation and radiative entropy generation equations, the discrete ordinates method and the finite volume method are used, respectively. Spectral radiative properties are obtained using the correlated-k (CK) non-gray model with updated parameters based on the HITEMP2010 high-resolution database. In order to evaluate the effects of the location of the heat source, boundary condition and wall emissivity on radiative entropy generation, five cases are considered with different conditions. The spectral and total radiative entropy generation in the system are calculated for all cases and the effects of mentioned parameters on radiative entropy generation are attentively analyzed and finally, the optimum condition is especially presented. The most important results can be stated as follows: Results demonstrate that the wall emissivity has a considerable effect on the radiative entropy generation. Also, irreversible radiative transfer at the wall with lower temperatures is the main source of radiative entropy generation in the furnaces. In addition, the effect of the location of the heat source on total radiative entropy generation is less than other factors. Eventually, it can be said that characterizing the effective parameters of radiative entropy generation provides an approach to minimizing the radiative entropy generation and enhancing the furnace's performance practicality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectral%20radiative%20entropy%20generation" title="spectral radiative entropy generation">spectral radiative entropy generation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-gray%20medium" title=" non-gray medium"> non-gray medium</a>, <a href="https://publications.waset.org/abstracts/search?q=correlated%20k%28CK%29%20model" title=" correlated k(CK) model"> correlated k(CK) model</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20source" title=" heat source"> heat source</a> </p> <a href="https://publications.waset.org/abstracts/169050/analysis-of-spectral-radiative-entropy-generation-in-a-non-gray-participating-medium-with-heat-source-furnaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">358</span> Maximum Entropy Based Image Segmentation of Human Skin Lesion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheema%20Shuja%20Khattak">Sheema Shuja Khattak</a>, <a href="https://publications.waset.org/abstracts/search?q=Gule%20Saman"> Gule Saman</a>, <a href="https://publications.waset.org/abstracts/search?q=Imran%20Khan"> Imran Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdus%20Salam"> Abdus Salam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image segmentation plays an important role in medical imaging applications. Therefore, accurate methods are needed for the successful segmentation of medical images for diagnosis and detection of various diseases. In this paper, we have used maximum entropy to achieve image segmentation. Maximum entropy has been calculated using Shannon, Renyi, and Tsallis entropies. This work has novelty based on the detection of skin lesion caused by the bite of a parasite called Sand Fly causing the disease is called Cutaneous Leishmaniasis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shannon" title="shannon">shannon</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20entropy" title=" maximum entropy"> maximum entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=Renyi" title=" Renyi"> Renyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsallis%20entropy" title=" Tsallis entropy"> Tsallis entropy</a> </p> <a href="https://publications.waset.org/abstracts/19990/maximum-entropy-based-image-segmentation-of-human-skin-lesion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">357</span> Entropy Generation of Natural Convection Heat Transfer in a Square Cavity Using Al2O3-Water Nanofluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Alipanah">M. Alipanah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ranjbar"> A. Ranjbar</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Farnad"> E. Farnad</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Alipanah"> F. Alipanah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Entropy generation of an Al2O3-water nanofluid due to heat transfer and fluid friction irreversibility has been investigated in a square cavity subject to different side wall temperatures using a nanofluid for natural convection flow. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number between 104 to 107 and volume fraction between 0 to 0.05. Based on the obtained dimensionless velocity and temperature values, the distributions of local entropy generation, average entropy generation and average Bejan number are determined. The results are compared for a pure fluid and a nanofluid. It is totally found that the heat transfer and entropy generation of the nanofluid is more than the pure fluid and minimum entropy generation and Nusselt number occur in the pure fluid at any Rayleigh number. Results depict that the addition of nanoparticles to the pure fluid has more effect on the entropy generation as the Rayleigh number goes up. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy%20generation" title="entropy generation">entropy generation</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=bejan%20number" title=" bejan number"> bejan number</a>, <a href="https://publications.waset.org/abstracts/search?q=nuselt%20number" title=" nuselt number"> nuselt number</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a> </p> <a href="https://publications.waset.org/abstracts/10068/entropy-generation-of-natural-convection-heat-transfer-in-a-square-cavity-using-al2o3-water-nanofluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">356</span> Religion: The Human Entropy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abul%20Kayum%20Zarzis%20Alam">Abul Kayum Zarzis Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Death is not a terminal; it is just a junction. From Agamas to Vedas, from Buddhism to Judaism, all the major scriptures and religions of the world always do converge to this hypothesis of death. Death is the ultimate catastrophe of life and it is the genesis of every religion on this Earth. Several hundred thousand years ago, the Homo Sapiens in Paleolithic age introduced the notion of religion on this Earth in its most primitive form just to escape from death and natural catastrophes through their belief in supernatural things which created the sense of superstition among the Homo Sapiens which has only increased over time. This sense of superstition and belief in supernatural things are building blocks of religion. Religion is like entropy, a degree of disorder. Entropy for an irreversible system like our own Universe always increases. Same is happening to our human civilization where the disorder had been increasing over time. The degree of this disorder of human civilization is religion divides and conquers over the human civilization of Earth. Religion is the human entropy which had been governing and will govern us. Just like entropy, religion is also an essential intrinsic property of the system which makes the system evolved. We have to optimize this ambivalence of the human entropy to make our civilization an inclusive and sustainable one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=death" title="death">death</a>, <a href="https://publications.waset.org/abstracts/search?q=earth" title=" earth"> earth</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=Homo%20sapiens" title=" Homo sapiens"> Homo sapiens</a>, <a href="https://publications.waset.org/abstracts/search?q=religion%20and%20human%20entropy" title=" religion and human entropy"> religion and human entropy</a> </p> <a href="https://publications.waset.org/abstracts/88127/religion-the-human-entropy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">355</span> Identification of the Main Transition Velocities in a Bubble Column Based on a Modified Shannon Entropy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stoyan%20Nedeltchev">Stoyan Nedeltchev</a>, <a href="https://publications.waset.org/abstracts/search?q=Markus%20Schubert"> Markus Schubert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The gas holdup fluctuations in a bubble column (0.15 m in ID) have been recorded by means of a conductivity wire-mesh sensor in order to extract information about the main transition velocities. These parameters are very important for bubble column design, operation and scale-up. For this purpose, the classical definition of the Shannon entropy was modified and used to identify both the onset (at UG=0.034 m/s) of the transition flow regime and the beginning (at UG=0.089 m/s) of the churn-turbulent flow regime. The results were compared with the Kolmogorov entropy (KE) results. A slight discrepancy was found, namely the transition velocities identified by means of the KE were shifted to somewhat higher (0.045 and 0.101 m/s) superficial gas velocities UG. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bubble%20column" title="bubble column">bubble column</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20holdup%20fluctuations" title=" gas holdup fluctuations"> gas holdup fluctuations</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20Shannon%20entropy" title=" modified Shannon entropy"> modified Shannon entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=Kolmogorov%20entropy" title=" Kolmogorov entropy"> Kolmogorov entropy</a> </p> <a href="https://publications.waset.org/abstracts/42948/identification-of-the-main-transition-velocities-in-a-bubble-column-based-on-a-modified-shannon-entropy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">354</span> Entropy Analysis in a Bubble Column Based on Ultrafast X-Ray Tomography Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stoyan%20Nedeltchev">Stoyan Nedeltchev</a>, <a href="https://publications.waset.org/abstracts/search?q=Markus%20Schubert"> Markus Schubert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By means of the ultrafast X-ray tomography facility, data were obtained at different superficial gas velocities <em>U</em><sub>G</sub> in a bubble column (0.1 m in ID) operated with an air-deionized water system at ambient conditions. Raw reconstructed images were treated by both the information entropy (IE) and the reconstruction entropy (RE) algorithms in order to identify the main transition velocities in a bubble column. The IE values exhibited two well-pronounced minima at <em>U</em><sub>G</sub>=0.025 m/s and <em>U</em><sub>G</sub>=0.085 m/s identifying the boundaries of the homogeneous, transition and heterogeneous regimes. The RE extracted from the central region of the column’s cross-section exhibited only one characteristic peak at <em>U</em><sub>G</sub>=0.03 m/s, which was attributed to the transition from the homogeneous to the heterogeneous flow regime. This result implies that the transition regime is non-existent in the core of the column. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bubble%20column" title="bubble column">bubble column</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafast%20X-ray%20tomography" title=" ultrafast X-ray tomography"> ultrafast X-ray tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20entropy" title=" information entropy"> information entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction%20entropy" title=" reconstruction entropy"> reconstruction entropy</a> </p> <a href="https://publications.waset.org/abstracts/43128/entropy-analysis-in-a-bubble-column-based-on-ultrafast-x-ray-tomography-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">353</span> Time's Arrow and Entropy: Violations to the Second Law of Thermodynamics Disrupt Time Perception</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jason%20Clarke">Jason Clarke</a>, <a href="https://publications.waset.org/abstracts/search?q=Michaela%20Porubanova"> Michaela Porubanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20Mazzoli"> Angela Mazzoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulsah%20Kut"> Gulsah Kut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> What accounts for our perception that time inexorably passes in one direction, from the past to the future, the so-called arrow of time, given that the laws of physics permit motion in one temporal direction to also happen in the reverse temporal direction? Modern physics says that the reason for time’s unidirectional physical arrow is the relationship between time and entropy, the degree of disorder in the universe, which is evolving from low entropy (high order; thermal disequilibrium) toward high entropy (high disorder; thermal equilibrium), the second law of thermodynamics. Accordingly, our perception of the direction of time, from past to future, is believed to emanate as a result of the natural evolution of entropy from low to high, with low entropy defining our notion of ‘before’ and high entropy defining our notion of ‘after’. Here we explored this proposed relationship between entropy and the perception of time’s arrow. We predicted that if the brain has some mechanism for detecting entropy, whose output feeds into processes involved in constructing our perception of the direction of time, presentation of violations to the expectation that low entropy defines ‘before’ and high entropy defines ‘after’ would alert this mechanism, leading to measurable behavioral effects, namely a disruption in duration perception. To test this hypothesis, participants were shown briefly-presented (1000 ms or 500 ms) computer-generated visual dynamic events: novel 3D shapes that were seen either to evolve from whole figures into parts (low to high entropy condition) or were seen in the reverse direction: parts that coalesced into whole figures (high to low entropy condition). On each trial, participants were instructed to reproduce the duration of their visual experience of the stimulus by pressing and releasing the space bar. To ensure that attention was being deployed to the stimuli, a secondary task was to report the direction of the visual event (forward or reverse motion). Participants completed 60 trials. As predicted, we found that duration reproduction was significantly longer for the high to low entropy condition compared to the low to high entropy condition (p=.03). This preliminary data suggests the presence of a neural mechanism that detects entropy, which is used by other processes to construct our perception of the direction of time or time’s arrow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20perception" title="time perception">time perception</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20illusions" title=" temporal illusions"> temporal illusions</a>, <a href="https://publications.waset.org/abstracts/search?q=duration%20perception" title=" duration perception"> duration perception</a> </p> <a href="https://publications.waset.org/abstracts/131449/times-arrow-and-entropy-violations-to-the-second-law-of-thermodynamics-disrupt-time-perception" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">352</span> An Efficient Separation for Convolutive Mixtures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salah%20Al-Din%20I.%20Badran">Salah Al-Din I. Badran</a>, <a href="https://publications.waset.org/abstracts/search?q=Samad%20Ahmadi"> Samad Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dylan%20Menzies"> Dylan Menzies</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Shahin"> Ismail Shahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a new efficient blind source separation method; in this method we use a non-uniform filter bank and a new structure with different sub-bands. This method provides a reduced permutation and increased convergence speed comparing to the full-band algorithm. Recently, some structures have been suggested to deal with two problems: reducing permutation and increasing the speed of convergence of the adaptive algorithm for correlated input signals. The permutation problem is avoided with the use of adaptive filters of orders less than the full-band adaptive filter, which operate at a sampling rate lower than the sampling rate of the input signal. The decomposed signals by analysis bank filter are less correlated in each sub-band than the input signal at full-band, and can promote better rates of convergence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Blind%20source%20separation" title="Blind source separation">Blind source separation</a>, <a href="https://publications.waset.org/abstracts/search?q=estimates" title=" estimates"> estimates</a>, <a href="https://publications.waset.org/abstracts/search?q=full-band" title=" full-band"> full-band</a>, <a href="https://publications.waset.org/abstracts/search?q=mixtures" title=" mixtures"> mixtures</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-band" title=" sub-band"> sub-band</a> </p> <a href="https://publications.waset.org/abstracts/8254/an-efficient-separation-for-convolutive-mixtures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">351</span> Entropy Production in Mixed Convection in a Horizontal Porous Channel Using Darcy-Brinkman Formulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amel%20Tayari">Amel Tayari</a>, <a href="https://publications.waset.org/abstracts/search?q=Atef%20Eljerry"> Atef Eljerry</a>, <a href="https://publications.waset.org/abstracts/search?q=Mourad%20Magherbi"> Mourad Magherbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper reports a numerical investigation of the entropy generation analysis due to mixed convection in laminar flow through a channel filled with porous media. The second law of thermodynamics is applied to investigate the entropy generation rate. The Darcy-Brinkman Model is employed. The entropy generation due to heat transfer and friction dissipations has been determined in mixed convection by solving numerically the continuity, momentum and energy equations, using a control volume finite element method. The effects of Darcy number, modified Brinkman number and the Rayleigh number on averaged entropy generation and averaged Nusselt number are investigated. The Rayleigh number varied between 103 ≤ Ra ≤ 105 and the modified Brinkman number ranges between 10-5 ≤ Br≤ 10-1 with fixed values of porosity and Reynolds number at 0.5 and 10 respectively. The Darcy number varied between 10-6 ≤ Da ≤10. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy%20generation" title="entropy generation">entropy generation</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20methods" title=" numerical methods"> numerical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=darcy" title=" darcy"> darcy</a>, <a href="https://publications.waset.org/abstracts/search?q=brinkman" title=" brinkman"> brinkman</a> </p> <a href="https://publications.waset.org/abstracts/3819/entropy-production-in-mixed-convection-in-a-horizontal-porous-channel-using-darcy-brinkman-formulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">350</span> Generalization of Tsallis Entropy from a Q-Deformed Arithmetic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Juan%20Pe%C3%B1a">J. Juan Peña</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Morales"> J. Morales</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Garc%C3%ADa-Ravelo"> J. García-Ravelo</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Garc%C3%ADa-Mart%C3%ADnez"> J. García-Martínez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is known that by introducing alternative forms of exponential and logarithmic functions, the Tsallis entropy Sᵩ is itself a generalization of Shannon entropy S. In this work, from a deformation through a scaling function applied to the differential operator, it is possible to generate a q-deformed calculus as well as a q-deformed arithmetic, which not only allows generalizing the exponential and logarithmic functions but also any other standard function. The updated q-deformed differential operator leads to an updated integral operator under which the functions are integrated together with a weight function. For each differentiable function, it is possible to identify its q-deformed partner, which is useful to generalize other algebraic relations proper of the original functions. As an application of this proposal, in this work, a generalization of exponential and logarithmic functions is studied in such a way that their relationship with the thermodynamic functions, particularly the entropy, allows us to have a q-deformed expression of these. As a result, from a particular scaling function applied to the differential operator, a q-deformed arithmetic is obtained, leading to the generalization of the Tsallis entropy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=q-calculus" title="q-calculus">q-calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=q-deformed%20arithmetic" title=" q-deformed arithmetic"> q-deformed arithmetic</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20functions" title=" exponential functions"> exponential functions</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20functions" title=" thermodynamic functions"> thermodynamic functions</a> </p> <a href="https://publications.waset.org/abstracts/181635/generalization-of-tsallis-entropy-from-a-q-deformed-arithmetic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">349</span> A Modified Shannon Entropy Measure for Improved Image Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20A.%20U.%20Khan">Mohammad A. U. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20A.%20Kittaneh"> Omar A. Kittaneh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Akbar"> M. Akbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20M.%20Khan"> Tariq M. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Husam%20A.%20Bayoud"> Husam A. Bayoud </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Shannon Entropy measure has been widely used for measuring uncertainty. However, in partial settings, the histogram is used to estimate the underlying distribution. The histogram is dependent on the number of bins used. In this paper, a modification is proposed that makes the Shannon entropy based on histogram consistent. For providing the benefits, two application are picked in medical image processing applications. The simulations are carried out to show the superiority of this modified measure for image segmentation problem. The improvement may be contributed to robustness shown to uneven background in images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shannon%20entropy" title="Shannon entropy">Shannon entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20image%20processing" title=" medical image processing"> medical image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=modification" title=" modification"> modification</a> </p> <a href="https://publications.waset.org/abstracts/19414/a-modified-shannon-entropy-measure-for-improved-image-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">348</span> Complete Enumeration Approach for Calculation of Residual Entropy for Diluted Spin Ice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuriy%20A.%20Shevchenko">Yuriy A. Shevchenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantin%20V.%20Nefedev"> Konstantin V. Nefedev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider the antiferromagnetic systems of Ising spins located at the sites of the hexagonal, triangular and pyrochlore lattices. Such systems can be diluted to a certain concentration level by randomly replacing the magnetic spins with nonmagnetic ones. Quite recently we studied density of states (DOS) was calculated by the Wang-Landau method. Based on the obtained data, we calculated the dependence of the residual entropy (entropy at a temperature tending to zero) on the dilution concentration for quite large systems (more than 2000 spins). In the current study, we obtained the same data for small systems (less than 20 spins) by a complete search of all possible magnetic configurations and compared the result with the result for large systems. The shape of the curve remains unchanged in both cases, but the specific values of the residual entropy are different because of the finite size effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entropy" title="entropy">entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrochlore" title=" pyrochlore"> pyrochlore</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20ice" title=" spin ice"> spin ice</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang-Landau%20algorithm" title=" Wang-Landau algorithm"> Wang-Landau algorithm</a> </p> <a href="https://publications.waset.org/abstracts/81003/complete-enumeration-approach-for-calculation-of-residual-entropy-for-diluted-spin-ice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permutation%20entropy%20%28PE%29&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permutation%20entropy%20%28PE%29&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permutation%20entropy%20%28PE%29&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permutation%20entropy%20%28PE%29&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permutation%20entropy%20%28PE%29&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permutation%20entropy%20%28PE%29&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permutation%20entropy%20%28PE%29&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permutation%20entropy%20%28PE%29&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permutation%20entropy%20%28PE%29&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permutation%20entropy%20%28PE%29&page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permutation%20entropy%20%28PE%29&page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permutation%20entropy%20%28PE%29&page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=permutation%20entropy%20%28PE%29&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>