CINXE.COM
Search results for: extracellular enzymes
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: extracellular enzymes</title> <meta name="description" content="Search results for: extracellular enzymes"> <meta name="keywords" content="extracellular enzymes"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="extracellular enzymes" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="extracellular enzymes"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 906</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: extracellular enzymes</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">906</span> Optimization of the Culture Medium, Incubation Period, pH and Temperatures for Maximal Dye Bioremoval Using A. Fumigates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wafaa%20M.%20Abd%20El-Rahim">Wafaa M. Abd El-Rahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Magda%20A.%20El-Meleigy"> Magda A. El-Meleigy</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20Refaat"> Eman Refaat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study dealing with optimization the conditions affecting the formation of extracellular lignin- degrading enzymes to achieve maximal decolorization activity of Direct Violet dye by one fungal strain. In this study Aspergillus fumigates fungal strain used for production extracellular ligninolytic enzymes for removing Direct Violet dye under different conditions: culture medium, incubation period, pH and temperatures. The results indicted that the removal efficiency of A. fumigatus was enhanced by addition glucose and peptone to the culture medium. The addition of peptone and glucose was found to increase the decolorization activity of the fungal isolate from 51.38% to 93.74% after 4 days of incubation. The highest production of extracellular lignin degrading enzymes also recorded in Direct Violet dye medium supplemented with peptone and glucose. It was also found the decolorization activity of A. fumigatus was decreased gradually by increasing the incubation period up to 4 days. Also it was found that the fungal strain can grow and produce extracellular ligninolytic enzymes which accompanied by efficient removal of Direct Violet dye in a wide pH range of 4-8. The results also found that the maximal biosynthesis of ligninolytic enzymes which accompanied with maximal removal of Direct Violet dye was obtained at a temperature of 28C. This indicates that the different conditions of culture medium, incubation period, pH and temperatures are effective on dye decolorization on the fungal biomass and played a role in Direct Violet dye removal along with enzymatic activity of A. fumigatus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20fumigates" title="A. fumigates">A. fumigates</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular%20lignin-%20degrading%20enzymes" title=" extracellular lignin- degrading enzymes"> extracellular lignin- degrading enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20dye" title=" textile dye"> textile dye</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20removing" title=" dye removing"> dye removing</a> </p> <a href="https://publications.waset.org/abstracts/17335/optimization-of-the-culture-medium-incubation-period-ph-and-temperatures-for-maximal-dye-bioremoval-using-a-fumigates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">905</span> Extracellular Laccase Production by Co-culture between Galactomyces reesii IFO 10823 and Filamentous Fungal Strains Isolated from Fungus Comb Using Natural Inducer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Chaijak">P. Chaijak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lertworapreecha"> M. Lertworapreecha</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Sukkasem"> C. Sukkasem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extracellular laccases are copper-containing microbial enzymes with many industrial biotechnological applications. This study evaluated the ability of nutrients in coconut coir to enhance the yield of extracellular laccase of <em>Galactomyces reesii</em> IFO 10823 and develop a co-culture between this yeast and other filamentous fungi isolated from the fungus comb of <em>Macrotermes</em> sp. The co-culture between <em>G. reesii</em> IFO 10823 and <em>M. indicus</em> FJ-M-5 (G3) gave the highest activity at 580.20 U/mL. When grown in fermentation media prepared from coconut coir and distilled water at 70% of initial moisture without supplement addition, G3 produced extracellular laccase of 113.99 U/mL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extracellular%20laccase" title="extracellular laccase">extracellular laccase</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20inducer" title=" natural inducer"> natural inducer</a> </p> <a href="https://publications.waset.org/abstracts/65364/extracellular-laccase-production-by-co-culture-between-galactomyces-reesii-ifo-10823-and-filamentous-fungal-strains-isolated-from-fungus-comb-using-natural-inducer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">904</span> Extracellular Enzymes as Promising Soil Health Indicators: Assessing Response to Different Land Uses Using Long-Term Experiments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Munisath%20Khandoker">Munisath Khandoker</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephan%20Haefele"> Stephan Haefele</a>, <a href="https://publications.waset.org/abstracts/search?q=Andy%20Gregory"> Andy Gregory</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extracellular enzymes play a key role in soil organic carbon (SOC) decomposition and nutrient cycling and are known indicators for soil health; however, it is not understood how these enzymes respond to different land uses and their relationships to other soil properties have not been extensively reviewed. The relationships among the activities of three soil enzymes: β-glucosaminidase (NAG), phosphomonoesterase (PHO) and β-glucosidase (GLU), were examined. The impact of soil organic amendments, soil types and land management on soil enzyme activities were reviewed, and it was hypothesized that soils with increased SOC have increased enzyme activity. Long-term experiments at Rothamsted Research Woburn and Harpenden sites in the UK were used to evaluate how different management practices affect enzyme activity involved in carbon (C) and nitrogen (N) cycling in the soil. Samples were collected from soils with different organic treatments such as straw, farmyard manure (FYM), compost additions, cover crops and permanent grass cover to assess whether SOC can be linked with increased levels of enzymatic activity and what influence, if any, enzymatic activity has on total C and N in the soil. Investigating the interactions of important enzymes with soil characteristics and SOC can help to better understand the health of soils. Studies on long-term experiments with known histories and large datasets can better help with this. SOC tends to decrease during land use changes from natural ecosystems to agricultural systems; therefore, it is imperative that agricultural lands find ways to increase and/or maintain SOC in the soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20soil%20health%20indicators" title="biological soil health indicators">biological soil health indicators</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular%20enzymes" title=" extracellular enzymes"> extracellular enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20health" title=" soil health"> soil health</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiology" title=" microbiology"> microbiology</a> </p> <a href="https://publications.waset.org/abstracts/172000/extracellular-enzymes-as-promising-soil-health-indicators-assessing-response-to-different-land-uses-using-long-term-experiments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">903</span> Extracellular Enzymes from Halophilic Bacteria with Potential in Agricultural Secondary Flow Recovery Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madalin%20Enache">Madalin Enache</a>, <a href="https://publications.waset.org/abstracts/search?q=Simona%20Neagu"> Simona Neagu</a>, <a href="https://publications.waset.org/abstracts/search?q=Roxana%20Cojoc"> Roxana Cojoc</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioana%20Gomoiu"> Ioana Gomoiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Delia%20Ionela%20Dobre"> Delia Ionela Dobre</a>, <a href="https://publications.waset.org/abstracts/search?q=Ancuta%20Roxana%20Trifoi"> Ancuta Roxana Trifoi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various types of halophilic and halotolerant microorganisms able to be cultivated in laboratory on culture media with a wide range of sodium chloride content are isolated from several salted environments. The extracellular enzymes of these microorganisms showed the enzymatic activity in these spectrums of salinity thus being attractive for several biotechnological processes developed at high ionic strength. In present work, a number of amylase, protease, esterase, lipase, cellulase, pectinase, xilanases and innulinase were identified for more than 50th bacterial strains isolated from water samples and sapropelic mud from four saline and hypersaline lakes located in Romanian plain. On the other hand, the cellulase and pectinase activity were also detected in some halotolerant microorganisms isolated from secondary agricultural flow of grapes processing. The preliminary data revealed that from totally tested strains seven harbor proteases activity, eight amylase activity, four for esterase and another four for lipase, three for pectinase and for one strain were identified either cellulase or pectinase activity. There were no identified enzymes able to hydrolase innulin added to culture media. Several strains isolated from sapropelic mud showed multiple extracellular enzymatic activities, namely three strains harbor three activities and another seven harbor two activities. The data revealed that amylase and protease activities were frequently detected if compare with other tested enzymes. In the case of pectinase were investigated, their ability to be used for increasing resveratrol recovery from material resulted after grapes processing. In this way, the resulted material from grapes processing was treated with microbial supernatant for several times (two, four and 24 hours) and the content of resveratrol was detected by High Performance Liquid Chromatography method (HPLC). The preliminary data revealed some positive results of this treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=halophilic%20microorganisms" title="halophilic microorganisms">halophilic microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymes" title=" enzymes"> enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=pectinase" title=" pectinase"> pectinase</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a> </p> <a href="https://publications.waset.org/abstracts/76741/extracellular-enzymes-from-halophilic-bacteria-with-potential-in-agricultural-secondary-flow-recovery-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">902</span> Bioprospecting of Marine Actinobacteria: The Leading Way for Industrially Important Enzymes and Bioactive Natural Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Subramani">Ramesh Subramani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathivanan%20Narayanasamy"> Mathivanan Narayanasamy</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Aalbersberg"> William Aalbersberg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well accepted by last 35 years of research and on-going programmes that marine environment harbours abundant and unique biodiversity, which is currently playing as an important source in bioprospecting. It has become apparent that marine microorganisms are lead in the biodiscovery. Among marine organisms, actinobacteria are a target phylum for discovering novel antibiotics against increasing the multi-drug resistant human pathogens because of these taxa representing for novel genera and species. Marine actinomycetes are a proven source of new antibiotic leads and novel enzymes with important industrial applications. A total of 183 streptomycete and 25 non-streptomycete strains were isolated from different marine samples collected from north-eastern part of the Indian Ocean. Among them, 111 isolates displayed antibacterial activity against human pathogens and 151 exhibited antifungal activity against phytopathogens. Importantly, most of them produced various extracellular enzymes and 58 of them produced exopolysaccharides. Totally eight small bioactive compounds and a thermostable alkaline protease have been purified from a selected strain, Streptomyces fungicidicus. Besides, our on-going studies on non-streptomycete strains (rare actinomycetes) are most likely promising resource for new and unique compounds against current emerging drug-resistant pathogens. We have just recognised the chemical diversity in marine microorganisms. Therefore it is worthwhile to continue the exploration of marine microorganisms for new drug leads, novel enzymes and other bioprospecting research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title="bioactive compounds">bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20enzymes" title=" industrial enzymes"> industrial enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20actinobacteria" title=" marine actinobacteria"> marine actinobacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20metabolites" title=" microbial metabolites"> microbial metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20natural%20products" title=" marine natural products"> marine natural products</a> </p> <a href="https://publications.waset.org/abstracts/36849/bioprospecting-of-marine-actinobacteria-the-leading-way-for-industrially-important-enzymes-and-bioactive-natural-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">901</span> Utilization of Whey for the Production of β-Galactosidase Using Yeast and Fungal Culture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rupinder%20Kaur">Rupinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Parmjit%20S.%20Panesar"> Parmjit S. Panesar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20S.%20Singh"> Ram S. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whey is the lactose rich by-product of the dairy industry, having good amount of nutrient reservoir. Most abundant nutrients are lactose, soluble proteins, lipids and mineral salts. Disposing of whey by most of milk plants which do not have proper pre-treatment system is the major issue. As a result of which, there can be significant loss of potential food and energy source. Thus, whey has been explored as the substrate for the synthesis of different value added products such as enzymes. β-galactosidase is one of the important enzymes and has become the major focus of research due to its ability to catalyze both hydrolytic as well as transgalactosylation reaction simultaneously. The enzyme is widely used in dairy industry as it catalyzes the transformation of lactose to glucose and galactose, making it suitable for the lactose intolerant people. The enzyme is intracellular in both bacteria and yeast, whereas for molds, it has an extracellular location. The present work was carried to utilize the whey for the production of β-galactosidase enzyme using both yeast and fungal cultures. The yeast isolate Kluyveromyces marxianus WIG2 and various fungal strains have been used in the present study. Different disruption techniques have also been investigated for the extraction of the enzyme produced intracellularly from yeast cells. Among the different methods tested for the disruption of yeast cells, SDS-chloroform showed the maximum β-galactosidase activity. In case of the tested fungal cultures, Aureobasidium pullulans NCIM 1050, was observed to be the maximum extracellular enzyme producer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-galactosidase" title="β-galactosidase">β-galactosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=fungus" title=" fungus"> fungus</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a>, <a href="https://publications.waset.org/abstracts/search?q=whey" title=" whey"> whey</a> </p> <a href="https://publications.waset.org/abstracts/26112/utilization-of-whey-for-the-production-of-v-galactosidase-using-yeast-and-fungal-culture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">900</span> Extracellular Protein Secreted by Bacillus subtilis ATCC21332 in the Presence of Streptomycin Sulfate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Hanina">M. N. Hanina</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hairul%20Shahril"> M. Hairul Shahril</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Ismatul%20Nurul%20Asyikin"> I. Ismatul Nurul Asyikin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Abdul%20Jalil"> A. K. Abdul Jalil</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Salina"> M. R. Salina</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Maryam"> M. R. Maryam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rosfarizan"> M. Rosfarizan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The extracellular proteins secreted by bacteria may be increased in stressful surroundings, such as in the presence of antibiotics. It appears that many antibiotics, when used at low concentrations, have in common the ability to activate or repress gene transcription, which is distinct from their inhibitory effect. There have been comparatively few studies on the potential of antibiotics as a specific chemical signal that can trigger a variety of biological functions. Therefore, this study was carried out to determine the effect of Streptomycin Sulfate in regulating extracellular proteins secreted by Bacillus subtilis ATCC21332. Results of Microdilution assay showed that the Minimum Inhibition Concentration (MIC) of Streptomycin Sulfate on B. subtilis ATCC21332 was 2.5 mg/ml. The bacteria cells were then exposed to Streptomycin Sulfate at concentration of 0.01 MIC before being further incubated for 48h to 72 h. The extracellular proteins secreted were then isolated and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Proteins profile revealed that three additional bands with approximate sizes of 30 kDa, 22 kDa and 23 kDa were appeared for the treated bacteria with Streptomycin Sulfate. Thus, B. subtilis ATCC21332 in stressful condition with the presence of Streptomycin Sulfate at low concentration could induce the extracellular proteins secretion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20subtilis%20ATCC21332" title="Bacillus subtilis ATCC21332">Bacillus subtilis ATCC21332</a>, <a href="https://publications.waset.org/abstracts/search?q=streptomycin%20sulfate" title=" streptomycin sulfate"> streptomycin sulfate</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular%20proteins" title=" extracellular proteins"> extracellular proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotics" title=" antibiotics"> antibiotics</a> </p> <a href="https://publications.waset.org/abstracts/11187/extracellular-protein-secreted-by-bacillus-subtilis-atcc21332-in-the-presence-of-streptomycin-sulfate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">899</span> Hyaluronan and Hyaluronan-Associated Genes in Human CD8 T Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emily%20Schlebes">Emily Schlebes</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Hundhausen"> Christian Hundhausen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jens%20W.%20Fischer"> Jens W. Fischer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The glycosaminoglycan hyaluronan (HA) is a major component of the extracellular matrix, typically produced by fibroblasts of the connective tissue but also by immune cells. Here, we investigated the capacity of human peripheral blood CD8 T cells from healthy donors to produce HA and to express HA receptors as well as HA degrading enzymes. Further, we evaluated the effect of pharmacological HA inhibition on CD8 T cell function. Using immunocytochemistry together with quantitative PCR analysis, we found that HA synthesis is rapidly induced upon antibody-induced T cell receptor (TCR) activation and almost exclusively mediated by HA synthase 3 (HAS3). TCR activation also resulted in the upregulation of HA receptors CD44, hyaluronan-mediated motility receptor (HMMR), and layilin (LAYN), although kinetics and strength of expression varied greatly between subjects. The HA-degrading enzymes HYAL1 and HYAL2 were detected at low levels and induced by cell activation in some individuals. Interestingly, expression of HAS3, HA receptors, and hyaluronidases were modulated by the proinflammatory cytokines IL-6 and IL-1bβ in most subjects. To assess the functional role of HA in CD8 T cells, we performed carboxyfluorescein succinimidyl ester (CFSE) based proliferation assays and cytokine analysis in the presence of the HA inhibitor 4- Methylumbelliferone (4-MU). Despite significant inter-individual variation with regard to the effective dose, 4-MU resulted in the inhibition of CD8 T cell proliferation and reduced release of TNF-α and IFN-γ. Collectively, these data demonstrate that human CD8 T cells respond to TCR stimulation with a synthesis of HA and expression of HA-related genes. They further suggest that HA inhibition may be helpful in interfering with pathogenic T cell activation in human disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CD8%20T%20cells" title="CD8 T cells">CD8 T cells</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular%20matrix" title=" extracellular matrix"> extracellular matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=hyaluronan" title=" hyaluronan"> hyaluronan</a>, <a href="https://publications.waset.org/abstracts/search?q=hyaluronan%20synthase%203" title=" hyaluronan synthase 3"> hyaluronan synthase 3</a> </p> <a href="https://publications.waset.org/abstracts/153130/hyaluronan-and-hyaluronan-associated-genes-in-human-cd8-t-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">898</span> Extracellular Hydrolase-Producing Bacteria Isolated from Chilca Salterns in Peru</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carol%20N.%20Flores-Fern%C3%A1ndez">Carol N. Flores-Fernández</a>, <a href="https://publications.waset.org/abstracts/search?q=Guadalupe%20Espilco"> Guadalupe Espilco</a>, <a href="https://publications.waset.org/abstracts/search?q=Cynthia%20Esquerre"> Cynthia Esquerre</a>, <a href="https://publications.waset.org/abstracts/search?q=Amparo%20I.%20Zavaleta"> Amparo I. Zavaleta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Saline environments represent a valuable source of enzymes with novel properties and particular features for application in food, pharmaceutical and chemical industry. This study focuses on the isolation and screening of hydrolase-producing bacteria from Chilca salterns and the evaluation of their biotechnological potential. Soil samples were collected from Chilca salterns in Peru. For the isolation, medium containing 0.2 % of yeast extract, 5 % of NaCl and 10 % of the soil sample was used. After 72 h of incubation at 37 °C, serial dilutions were made up to 10−12 dilutions, spread on agar plates with 0.5 % of yeast extract and 5 % of NaCl, and incubated at 37 °C for 48 h. Screening of hydrolase-producing bacteria was carried out for cellulases, amylases, lipases, DNase, and proteases on specific media. Moreover, protease-producing bacteria were tested using protein extracted from the following legumes as substrate: Glycine max, Lupinus mutabilis, Pisum sativum, Erythrina edulis, Cicer arietinum, Phaseolus vulgaris and Vicia faba. A total of 16 strains were isolated from soil samples. On the screening media; 75, 44, 81 and 50 % were cellulase, amylase, DNase and protease producers, respectively. Also, 19 % of the isolates produced all the hydrolytic enzymes above mentioned. Lipase producers were not found. The 37 % and 12 % of the strains grew at 20 % and 30 % of salt concentration, respectively. In addition, 75 % of the strains grew at pH range between 5 and 10. From the total of protease-producing bacteria, 100 % hydrolyzed Glycine max, Lupinus mutabilis, and Pisum sativum protein, while 87 % hydrolyzed Erythrina edulis and Cicer arietinum protein. Finally, 75 % and 50 % of the strains hydrolyzed Phaseolus vulgaris and Vicia faba protein, respectively. Hydrolase-producing bacteria isolated from Chilca salterns in Peru grew at high salt concentrations and wide range of pH. In addition, protease-producing bacteria hydrolyzed protein from different sources such as leguminous. These enzymes have great biotechnological potential and could be used for different industrial processes and applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria" title="bacteria">bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular" title=" extracellular"> extracellular</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrolases" title=" hydrolases"> hydrolases</a>, <a href="https://publications.waset.org/abstracts/search?q=Peru" title=" Peru"> Peru</a>, <a href="https://publications.waset.org/abstracts/search?q=salterns" title=" salterns"> salterns</a> </p> <a href="https://publications.waset.org/abstracts/72791/extracellular-hydrolase-producing-bacteria-isolated-from-chilca-salterns-in-peru" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">897</span> Improvement on the Specific Activities of Immobilized Enzymes by Poly(Ethylene Oxide) Surface Modification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaohua%20Li">Shaohua Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Aihua%20Zhang"> Aihua Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kelly%20Zatopek"> Kelly Zatopek</a>, <a href="https://publications.waset.org/abstracts/search?q=Saba%20Parvez"> Saba Parvez</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20F.%20Gardner"> Andrew F. Gardner</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20R.%20Corr%C3%AAa%20Jr."> Ivan R. Corrêa Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20J.%20Noren"> Christopher J. Noren</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Qun%20Xu"> Ming-Qun Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Covalent immobilization of enzymes on solid supports is an alternative approach to biocatalysis with the added benefits of simple enzyme removal, improved stability, and adaptability to automation and high-throughput applications. Nevertheless, immobilized enzymes generally suffer from reduced activities compared to their soluble counterparts. One major factor leading to activity loss is the intrinsic hydrophobic property of the supporting material surface, which could result in the conformational change/confinement of enzymes. We report a strategy of utilizing flexible poly (ethylene oxide) (PEO) moieties as to improve the surface hydrophilicity of solid supports used for enzyme immobilization. DNA modifying enzymes were covalently conjugated to PEO-coated magnetic-beads. Kinetics studies proved that the activities of the covalently-immobilized DNA modifying enzymes were greatly enhanced by the PEO modification on the bead surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immobilized%20enzymes" title="immobilized enzymes">immobilized enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=biocatalysis" title=" biocatalysis"> biocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28ethylene%20oxide%29" title=" poly(ethylene oxide)"> poly(ethylene oxide)</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a> </p> <a href="https://publications.waset.org/abstracts/79716/improvement-on-the-specific-activities-of-immobilized-enzymes-by-polyethylene-oxide-surface-modification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">896</span> Aspergillus micromycetes as Producers of Hemostatically Active Proteases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20A.%20Osmolovskiy">Alexander A. Osmolovskiy</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastasia%20V.%20Orekhova"> Anastasia V. Orekhova</a>, <a href="https://publications.waset.org/abstracts/search?q=Daria%20M.%20Bednenko"> Daria M. Bednenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Yelyzaveta%20Boiko"> Yelyzaveta Boiko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micromycetes from Aspergillus genus can produce proteases capable of promoting proteolysis of hemostasis proteins or, along with hydrolytic activity, to show the ability to convert proenzymes of this system activating them into an active form. At the same time, practical medicine needs specific activators for quantitation of the level of some plasma enzymes, especially protein C and factor X, the lack of which leads to the development of thromboembolic diseases. Thus, some micromycetes of the genus Aspergillus were screened for the ability to synthesize extracellular proteases with promising activity for designing anti-thrombotic and diagnostic preparations. Such standard methods like salting out, electrophoresis, isoelectrofocusing were used for isolation, purification and study of physicochemical properties of proteases. Enzyme activity was measured spectrophotometrically fibrin as a substrate of the reaction and chromogenic peptide substrates of different proteases of the human hemostasis system. As a result of the screening, four active producers were selected: Aspergillus janus 301, A. flavus 1, A. terreus 2, and A. ochraceus L-1. The enzyme of A. janus 301 showed the greatest fibrinolytic activity (around 329.2 μmol Tyr/(ml × min)). The protease produced by A. terreus 2 had the highest plasmin-like activity (54.1 nmol pNA/(ml × min)), but fibrinolytic activity was lower than A. janus 301 demonstrated (25.2 μmol Tyr/(ml × min)). For extracellular protease of micromycete A. flavus a high plasmin-like activity was also shown (39.8 nmol pNA / (ml × min)). Moreover, according to our results proteases one of the fungi - A. terreus 2 were able to activate protein C of human plasma - the key factor of the human anticoagulant hemostasis system. This type of activity was 39.8 nmol pNA/(ml × min)). It was also shown that A. ochraceus L-1 could produce extracellular proteases with protein C and factor X activator activities (65.9 nmol pNA/(ml × min) and 34.6 nmol pNA/(ml × min) respectively). The maximum accumulation of the proteases falls on the 4th day of cultivation. Using isoelectrofocusing was demonstrated that the activation of both proenzymes might proceed via limited proteolysis induced by proteases of A. ochraceus L-1. The activatory activity of A. ochraceus L-1 proteases toward essential hemostatic proenzymes, protein C and X factor may be useful for practical needs. It is well known that similar enzymes, activators of protein C and X factor isolated from snake venom, South American copperhead Agkistrodon contortrix contortrix and Russell’s viper Daboia russelli russeli, respectively, are used for the in vitro diagnostics of the functional state of these proteins in blood plasma. Thus, the proteases of Aspergillus genus can be used as cheap components for enzyme thrombolytic preparations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-trombotic%20drugs" title="anti-trombotic drugs">anti-trombotic drugs</a>, <a href="https://publications.waset.org/abstracts/search?q=fibrinolysis" title=" fibrinolysis"> fibrinolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostics" title=" diagnostics"> diagnostics</a>, <a href="https://publications.waset.org/abstracts/search?q=proteases" title=" proteases"> proteases</a>, <a href="https://publications.waset.org/abstracts/search?q=micromycetes" title=" micromycetes "> micromycetes </a> </p> <a href="https://publications.waset.org/abstracts/118695/aspergillus-micromycetes-as-producers-of-hemostatically-active-proteases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">895</span> Enhanced Enzymes Production through Immobilization of Filamentous Fungi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhanara%20B.%20Suleimenova">Zhanara B. Suleimenova</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhazira%20K.%20Saduyeva"> Zhazira K. Saduyeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Filamentous fungi are major producers of enzymes that have important applications in the food and beverage industries. The overall objective of this research is a strain improvement technology for efficient industrial enzymes production. The new way of filamentous fungi cultivation method has been developed. Such technology prolong producers’ cultivation period up to 60 days and create the opportunity to obtain enzymes repeatedly in every 2-3 days of fungal cultivation. This method is based on immobilizing enzymes producers with solid support in submerged conditions of growth. Immobilizing has a range of advantages: Decreasing the price of the final product, absence of foreign substances, controlled process of enzyme-genesis, ability of various enzymes simultaneous production, etc. Design of proposed technology gives the opportunity to increase the activity of immobilized cells culture filtrate comparing to free cells, growing in periodic culture conditions. Thus, proposed research focuses on new, more versatile, microorganisms capable of squeezing more end-products as well as proposed cultivation technology led to increased enzymatic productivity by several times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=filamentous%20fungi" title="filamentous fungi">filamentous fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20enzymes%20production" title=" industrial enzymes production"> industrial enzymes production</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20improvement" title=" strain improvement "> strain improvement </a> </p> <a href="https://publications.waset.org/abstracts/27195/enhanced-enzymes-production-through-immobilization-of-filamentous-fungi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">894</span> Molecular Docking of Marrubiin in Candida Rugosa Lipase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benarous%20Khedidja">Benarous Khedidja</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousfi%20Mohamed"> Yousfi Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infections caused by Candida species manifest in a number of diseases, including candidemia, vulvovaginal candidiasis, endocarditis, and peritonitis. These Candida species have been reported to have lipolytic activity by secretion of lipolytic enzymes such as esterases, lipases and phospholipases. These Extracellular hydrolytic enzymes seem to play an important role in Candida overgrowth. Candidiasis is commonly treated with antimycotics such as clotrimazole and nystatin, which bind to a major component of the fungal cell membrane (ergosterol). This binding forms pores in the membrane that lead to death of the fungus. Due to their secondary effects, scientists have thought of another treatment basing on lipase inhibition but we haven’t found any lipase inhibitors used as candidiasis treatment. In this work, we are interested to lipases inhibitors such as alkaloids as another candidiasis treatment. In the first part, we have proceeded to optimize the alkaloid structures and protein 3D structure using Hyperchem software. Secondly, we have docked inhibitors using Genetic algorithm with GOLD software. The results have shown ten possibilities of binding inhibitor to Candida rugosa lipase (CRL) but only one possibility has been accepted depending on the weakest binding energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marrubiin" title="marrubiin">marrubiin</a>, <a href="https://publications.waset.org/abstracts/search?q=candida%20rugosa%20lipase" title=" candida rugosa lipase"> candida rugosa lipase</a>, <a href="https://publications.waset.org/abstracts/search?q=docking" title=" docking"> docking</a>, <a href="https://publications.waset.org/abstracts/search?q=gold" title=" gold"> gold</a> </p> <a href="https://publications.waset.org/abstracts/2333/molecular-docking-of-marrubiin-in-candida-rugosa-lipase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">893</span> Restoration and Conservation of Historical Textiles Using Covalently Immobilized Enzymes on Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Elbehery">Mohamed Elbehery</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Historical textiles in the burial environment or in museums are exposed to many types of stains and dirt that are associated with historical textiles by multiple chemical bonds that cause damage to historical textiles. The cleaning process must be carried out with great care, with no irreversible damage, and sediments removed without affecting the original material of the surface being cleaned. Science and technology continue to provide innovative systems in the bio-cleaning process (using pure enzymes) of historical textiles and artistic surfaces. Lipase and α-amylase were immobilized on nanoparticles of alginate/κ-carrageenan nanoparticle complex and used in historical textiles cleaning. Preparation of nanoparticles, activation, and enzymes immobilization were characterized. Optimization of loading time and units of the two enzymes were done. It was found that, the optimum time and units of amylase were 4 hrs and 25U, respectively. While, the optimum time and units of lipase were 3 hrs and 15U, respectively. The methods used to examine the fibers using a scanning electron microscope equipped with an X-ray energy dispersal unit: SEM with EDX unit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymes" title=" enzymes"> enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=textiles" title=" textiles"> textiles</a> </p> <a href="https://publications.waset.org/abstracts/166234/restoration-and-conservation-of-historical-textiles-using-covalently-immobilized-enzymes-on-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">892</span> Comparative Analysis of Enzyme Activities Concerned in Decomposition of Toluene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayuko%20Itsuki">Ayuko Itsuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachiyo%20Aburatani"> Sachiyo Aburatani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, pollutions of the environment by toxic substances become a serious problem. While there are many methods of environmental clean-up, the methods by microorganisms are considered to be reasonable and safety for environment. Compost is known that it catabolize the meladorous substancess in its production process, however the mechanism of its catabolizing system is not known yet. In the catabolization process, organic matters turn into inorganic by the released enzymes from lots of microorganisms which live in compost. In other words, the cooperative of activated enzymes in the compost decomposes malodorous substances. Thus, clarifying the interaction among enzymes is important for revealing the catabolizing system of meladorous substance in compost. In this study, we utilized statistical method to infer the interaction among enzymes. We developed a method which combined partial correlation with cross correlation to estimate the relevance between enzymes especially from time series data of few variables. Because of using cross correlation, we can estimate not only the associative structure but also the reaction pathway. We applied the developed method to the enzyme measured data and estimated an interaction among the enzymes in decomposition mechanism of toluene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enzyme%20activities" title="enzyme activities">enzyme activities</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20analysis" title=" comparative analysis"> comparative analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=compost" title=" compost"> compost</a>, <a href="https://publications.waset.org/abstracts/search?q=toluene" title=" toluene"> toluene</a> </p> <a href="https://publications.waset.org/abstracts/2728/comparative-analysis-of-enzyme-activities-concerned-in-decomposition-of-toluene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">891</span> Extracellular Phytase from Lactobacillus fermentum spp KA1: Optimization of Enzyme Production and Its Application for Improving the Nutritional Quality of Rice Bran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Sharma">Neha Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanthi%20K.%20Kondepudi"> Kanthi K. Kondepudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveen%20Gupta"> Naveen Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phytases are phytate specific phosphatases catalyzing the step-wise dephosphorylation of phytate, which acts as an anti-nutritional factor in food due to its strong binding capacity to minerals. In recent years microbial phytases have been explored for improving nutritional quality of food. But the major limitation is acceptability of phytases from these microorganisms. Therefore, efforts are being made to isolate organisms which are generally regarded as safe for human consumption such as Lactic Acid Bacteria (LAB). Phytases from these organisms will have an edge over other phytase sources due to its probiotic attributes. Only few LAB have been reported to give phytase activity that too is generally seen as intracellular. LAB producing extracellular phytase will be more useful as it can degrade phytate more effectively. Moreover, enzyme from such isolate will have application in food processing also. Only few species of Lactobacillus producing extracellular phytase have been reported so far. This study reports the isolation of a probiotic strain of Lactobacillus fermentum spp KA1 which produces extracellular phytase. Conditions for the optimal production of phytase have been optimized and the enzyme production resulted in an approximately 13-fold increase in yield. The phytate degradation potential of extracellular phytase in rice bran has been explored and conditions for optimal degradation were optimized. Under optimal conditions, there was 43.26% release of inorganic phosphate and 6.45% decrease of phytate content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lactobacillus" title="Lactobacillus">Lactobacillus</a>, <a href="https://publications.waset.org/abstracts/search?q=phytase" title=" phytase"> phytase</a>, <a href="https://publications.waset.org/abstracts/search?q=phytate%20reduction" title=" phytate reduction"> phytate reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20bran" title=" rice bran"> rice bran</a> </p> <a href="https://publications.waset.org/abstracts/84486/extracellular-phytase-from-lactobacillus-fermentum-spp-ka1-optimization-of-enzyme-production-and-its-application-for-improving-the-nutritional-quality-of-rice-bran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">890</span> Comprehensive Profiling and Characterization of Untargeted Extracellular Metabolites in Fermentation Processes: Insights and Advances in Analysis and Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marianna%20Ciaccia">Marianna Ciaccia</a>, <a href="https://publications.waset.org/abstracts/search?q=Gennaro%20Agrimi"> Gennaro Agrimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabella%20Pisano"> Isabella Pisano</a>, <a href="https://publications.waset.org/abstracts/search?q=Maurizio%20Bettiga"> Maurizio Bettiga</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Rapacioli"> Silvia Rapacioli</a>, <a href="https://publications.waset.org/abstracts/search?q=Giulia%20Mensa"> Giulia Mensa</a>, <a href="https://publications.waset.org/abstracts/search?q=Monica%20Marzagalli"> Monica Marzagalli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Untargeted metabolomic analysis of extracellular metabolites is a powerful approach that focuses on comprehensively profiling in the extracellular space. In this study, we applied extracellular metabolomic analysis to investigate the metabolism of two probiotic microorganisms with health benefits that extend far beyond the digestive tract and the immune system. Methods: Analytical techniques employed in extracellular metabolomic analysis encompass various technologies, including mass spectrometry (MS), which enables the identification of metabolites present in the fermentation media, as well as the comparison of metabolic profiles under different experimental conditions. Multivariate statistical analysis techniques like principal component analysis (PCA) or partial least squares-discriminant analysis (PLS-DA) play a crucial role in uncovering metabolic signatures and understanding the dynamics of metabolic networks. Results: Different types of supernatants from fermentation processes, such as dairy-free, not dairy-free media and media with no cells or pasteurized, were subjected to metabolite profiling, which contained a complex mixture of metabolites, including substrates, intermediates, and end-products. This profiling provided insights into the metabolic activity of the microorganisms. The integration of advanced software tools has facilitated the identification and characterization of metabolites in different fermentation conditions and microorganism strains. Conclusions: In conclusion, untargeted extracellular metabolomic analysis, combined with software tools, allowed the study of the metabolites consumed and produced during the fermentation processes of probiotic microorganisms. Ongoing advancements in data analysis methods will further enhance the application of extracellular metabolomic analysis in fermentation research, leading to improved bioproduction and the advancement of sustainable manufacturing processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biotechnology" title="biotechnology">biotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolomics" title=" metabolomics"> metabolomics</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20bacteria" title=" lactic bacteria"> lactic bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotics" title=" probiotics"> probiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=postbiotics" title=" postbiotics"> postbiotics</a> </p> <a href="https://publications.waset.org/abstracts/181567/comprehensive-profiling-and-characterization-of-untargeted-extracellular-metabolites-in-fermentation-processes-insights-and-advances-in-analysis-and-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">889</span> Production of Lignocellulosic Enzymes by Bacillus safensis LCX Using Agro-Food Wastes in Solid State Fermentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abeer%20A.%20Q.%20Ahmed">Abeer A. Q. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Tracey%20McKay"> Tracey McKay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing demand for renewable fuels and chemicals is pressuring manufacturing industry toward finding more sustainable cost-effective resources. Lignocellulose, such as agro-food wastes, is a suitable equivalent to petroleum for fine chemicals and fuels production. The complex structure of lignocellulose, however, requires a variety of enzymes in order to degrade its components into their respective building blocks that can be used further for the production of various value added products. This study aimed to isolate bacterial strain with the ability to produce a variety of lignocellulosic enzymes. One bacterial isolate was identified by 16S rRNA gene sequencing and phylogenetic analysis as Bacillus safensis LCX found to have CMCase, xylanase, manganese peroxidase, lignin peroxidase, and laccase activities. The enzymes production was induced by growing Bacillus safensis LCX in solid state fermentation using wheat straw, wheat bran, and corn stover. The activities of enzymes were determined by specific colorimetric assays. This study presents Bacillus safensis LCX as a promising source for lignocellulosic enzymes. These findings can extend the knowledge on agro-food wastes valorization strategies toward a sustainable production of fuels and chemicals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20safensis%20LCX" title="Bacillus safensis LCX">Bacillus safensis LCX</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20valued%20chemicals" title=" high valued chemicals"> high valued chemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20enzymes" title=" lignocellulosic enzymes"> lignocellulosic enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20state%20fermentation" title=" solid state fermentation"> solid state fermentation</a> </p> <a href="https://publications.waset.org/abstracts/64985/production-of-lignocellulosic-enzymes-by-bacillus-safensis-lcx-using-agro-food-wastes-in-solid-state-fermentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">888</span> Influence of Heliotropium Undulatum on Hepatic Glutathione Conjugating Enzymes System in Acetylhydrazide-Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ameddah">S. Ameddah</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Deffa"> O. Deffa</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Aissaoui"> H. Aissaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Menad"> A. Menad</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Mekkiou"> R. Mekkiou</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Benayache"> F. Benayache</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Benayache"> S. Benayache </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acetylhydrazide (ACHD) is a metabolite of the anti-tubercular drug isoniazid (INH) that has been implicated in liver damage. This study was designed to evaluate hapatoprotective of n-BuOH extract of Heliotrpium undulatum (HUBE) in ACHD hepatotoxicity in rats. Hepatic damage was induced by administration of ACHD (300 mg/Kg op). The protection was affected by the administration of HUBE (200 mg/Kg op) for 14 days before ACHD administration, caused a decrease in LPO levels and in the transaminase and ALP levels and restored the GSH and its related enzymes (GPx, GST, GR) (50-62 %). Simultaneous administration of HUBE afforded a partial protection in statue of hepatic GSH conjugating enzymes upon administration of ACHD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heliotrpium%20undulatum" title="heliotrpium undulatum">heliotrpium undulatum</a>, <a href="https://publications.waset.org/abstracts/search?q=acetylhydrazide" title=" acetylhydrazide"> acetylhydrazide</a>, <a href="https://publications.waset.org/abstracts/search?q=glutathione%20conjugating%20enzymes" title=" glutathione conjugating enzymes"> glutathione conjugating enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=oxydatif%20stress" title=" oxydatif stress"> oxydatif stress</a>, <a href="https://publications.waset.org/abstracts/search?q=heaptoprotectif%20effect" title=" heaptoprotectif effect"> heaptoprotectif effect</a> </p> <a href="https://publications.waset.org/abstracts/40515/influence-of-heliotropium-undulatum-on-hepatic-glutathione-conjugating-enzymes-system-in-acetylhydrazide-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">887</span> Study of Individual Parameters on the Enzymatic Glycosidation of Betulinic Acid by Novozyme-435</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20U.%20Adamu">A. U. Adamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamisu%20Abdu"> Hamisu Abdu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Saidu"> A. A. Saidu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The enzymatic synthesis of 3-O-β-D-glucopyranoside-betulinic acid using Novozyme-435 as a catalyst was studied. The effect of various parameters such as substrate molar ratio, reaction temperature, reaction time, re-used enzymes and amount of enzymes were investigated. The optimum rection conditions for the enzymatic glycosidation of betulinic acid in an organic solvent using Novozym-435 was found to be at 1:1.2 substrate molar ratio, 55oC, 24 h and 180 mg of enzymes with percentage conversion of 88.69 %. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=betulinic%20acid" title="betulinic acid">betulinic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=glycosidation" title=" glycosidation"> glycosidation</a>, <a href="https://publications.waset.org/abstracts/search?q=novozyme-435" title=" novozyme-435"> novozyme-435</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/22008/study-of-individual-parameters-on-the-enzymatic-glycosidation-of-betulinic-acid-by-novozyme-435" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">886</span> Immobilization of Enzymes and Proteins on Epoxy-Activated Supports</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Khorshidian">Ehsan Khorshidian</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Farahbakhsh"> Afshin Farahbakhsh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sina%20Aghili"> Sina Aghili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enzymes are promising biocatalysts for many organic reactions. They have excellent features like high activity, specificity and selectivity, and can catalyze under mild and environment friendly conditions. Epoxy-activated supports are almost-ideal ones to perform very easy immobilization of proteins and enzymes at both laboratory and industrial scale. The activated epoxy supports (chitosan/alginate, Eupergit C) may be very suitable to achieve the multipoint covalent attachment of proteins and enzymes, therefore, to stabilize their three-dimensional structure. The enzyme is firstly covalently immobilized under conditions pH 7.0 and 10.0. The remaining groups of the support are blocked to stop additional interaction between the enzyme and support by mercaptoethanol or Triton X-100. The results show support allowed obtaining biocatalysts with high immobilized protein amount and hydrolytic activity. The immobilization of lipases on epoxy support may be considered as attractive tool for obtaining highly active biocatalysts to be used in both aqueous and anhydrous aqueous media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immobilization%20of%20enzymes" title="immobilization of enzymes">immobilization of enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20supports" title=" epoxy supports"> epoxy supports</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20multipoint%20covalent%20attachment" title=" enzyme multipoint covalent attachment"> enzyme multipoint covalent attachment</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20lipases" title=" microbial lipases"> microbial lipases</a> </p> <a href="https://publications.waset.org/abstracts/9260/immobilization-of-enzymes-and-proteins-on-epoxy-activated-supports" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">885</span> Isolation, Characterization and Screening of Antimicrobial Producing Actinomycetes from Sediments of Persian Gulf</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Alijani">H. Alijani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jabari"> M. Jabari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Matroodi"> S. Matroodi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Zolqarnein"> H. Zolqarnein</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sharafi"> A. Sharafi</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Zamani"> I. Zamani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Actinomycetes, Gram-positive bacteria, are interesting as a main producer of secondary metabolites and are important industrially and pharmaceutically. The marine environment is a potential source for new actinomycetes, which can provide novel bioactive compounds and industrially important enzymes. The aims of this study were to isolate and identify novel actinomycetes from Persian Gulf sediments and screen these isolates for the production of secondary metabolites, especially antibiotics, Using phylogenetic (16S rRNA gene sequence), morphological and biochemical analyses. 15 different actinomycete strains from Persian Gulf sediments at a depth of 5-10 m were identified. DNA extraction was done using Cinnapure DNA Kit. PCR amplification of 16S rDNA gene was performed using F27 and R1492 primers. Phylogenetic tree analysis was performed using the MEGA 6 software. Most of the isolated strains belong to the genus namely Streptomyces (14), followed by Nocardiopsis (1). Antibacterial assay of the isolates supernatant was performed using a standard disc diffusion assay with replication (n=3). The results of disk diffusion assay showed that most active strain against Proteus volgaris and Bacillus cereus was AMJ1 (16.46±0.2mm and 13.78±0.2mm, respectively), against Salmonella sp. AMJ7 was the most effective strain (10.13±0.2mm), and AMJ1 and AHA5 showed more inhibitory activity against Escherichia coli (8.04±0.02 mm and 8.2±0.03 ). The AMJ6 strain showed best antibacterial activity against Klebsiella sp. (8.03±0.02mm). Antifungal activity of AMJ2 showed that it was most active strain against complex (16.05±0.02mm) and against Aspergillus flavus strain AMJ1 was most active strain (16.4±0.2mm) and highest antifungal activity against Trichophyton mentagrophytes, Microsporum gyp serum and Candida albicans, were shown by AHA1 (21.03±0.02mm), AHA3 and AHA7 (18±0.03mm), AMJ6 (21.03±0.2mm) respectively. Our results revealed that the marine actinomycetes of Persian Gulf sediments were potent source of novel antibiotics and bioactive compounds and indicated that the antimicrobial metabolites were extracellular. Most of the secondary metabolites and antibiotics are extracellular in nature and extracellular products of actinomycetes show potent antimicrobial activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal%20activity" title=" antifungal activity"> antifungal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20actinomycetes" title=" marine actinomycetes"> marine actinomycetes</a>, <a href="https://publications.waset.org/abstracts/search?q=Persian%20Gulf" title=" Persian Gulf "> Persian Gulf </a> </p> <a href="https://publications.waset.org/abstracts/37532/isolation-characterization-and-screening-of-antimicrobial-producing-actinomycetes-from-sediments-of-persian-gulf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">884</span> Purification and Characterization of a Novel Extracellular Chitinase from Bacillus licheniformis LHH100</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laribi-Habchi%20Hasiba">Laribi-Habchi Hasiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouanane-Darenfed%20Amel"> Bouanane-Darenfed Amel</a>, <a href="https://publications.waset.org/abstracts/search?q=Drouiche%20Nadjib"> Drouiche Nadjib</a>, <a href="https://publications.waset.org/abstracts/search?q=Pausse%20Andr%C3%A9"> Pausse André</a>, <a href="https://publications.waset.org/abstracts/search?q=Mameri%20Nabil"> Mameri Nabil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitin, a linear 1, 4-linked N-acetyl-d-glucosamine (GlcNAc) polysaccharide is the major structural component of fungal cell walls, insect exoskeletons and shells of crustaceans. It is one of the most abundant naturally occurring polysaccharides and has attracted tremendous attention in the fields of agriculture, pharmacology and biotechnology. Each year, a vast amount of chitin waste is released from the aquatic food industry, where crustaceans (prawn, crab, Shrimp and lobster) constitute one of the main agricultural products. This creates a serious environmental problem. This linear polymer can be hydrolyzed by bases, acids or enzymes such as chitinase. In this context an extracellular chitinase (ChiA-65) was produced and purified from a newly isolated LHH100. Pure protein was obtained after heat treatment and ammonium sulphate precipitation followed by Sephacryl S-200 chromatography. Based on matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis, the purified enzyme is a monomer with a molecular mass of 65,195.13 Da. The sequence of the 27 N-terminal residues of the mature ChiA-65 showed high homology with family-18 chitinases. Optimal activity was achieved at pH 4 and 75◦C. Among the inhibitors and metals tested p-chloromercuribenzoic acid, N-ethylmaleimide, Hg2+ and Hg + completelyinhibited enzyme activity. Chitinase activity was high on colloidal chitin, glycol chitin, glycol chitosane, chitotriose and chitooligosaccharide. Chitinase activity towards synthetic substrates in the order of p-NP-(GlcNAc) n (n = 2–4) was p-NP-(GlcNAc)2> p-NP-(GlcNAc)4> p-NP-(GlcNAc)3. Our results suggest that ChiA-65 preferentially hydrolyzed the second glycosidic link from the non-reducing end of (GlcNAc) n. ChiA-65 obeyed Michaelis Menten kinetics the Km and kcat values being 0.385 mg, colloidal chitin/ml and5000 s−1, respectively. ChiA-65 exhibited remarkable biochemical properties suggesting that this enzyme is suitable for bioconversion of chitin waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20licheniformis%20LHH100" title="Bacillus licheniformis LHH100">Bacillus licheniformis LHH100</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular%20chitinase" title=" extracellular chitinase"> extracellular chitinase</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification "> purification </a> </p> <a href="https://publications.waset.org/abstracts/27008/purification-and-characterization-of-a-novel-extracellular-chitinase-from-bacillus-licheniformis-lhh100" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">883</span> Isolation and Screening of Fungal Strains for β-Galactosidase Production </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parmjit%20S.%20Panesar">Parmjit S. Panesar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rupinder%20Kaur"> Rupinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20S.%20Singh"> Ram S. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enzymes are the biocatalysts which catalyze the biochemical processes and thus have a wide variety of applications in the industrial sector. <em>β</em>-Galactosidase (E.C. 3.2.1.23) also known as lactase, is one of the prime enzymes, which has significant potential in the dairy and food processing industries. It has the capability to catalyze both the hydrolytic reaction for the production of lactose hydrolyzed milk and transgalactosylation reaction for the synthesis of prebiotics such as lactulose and galactooligosaccharides. These prebiotics have various nutritional and technological benefits. Although, the enzyme is naturally present in almonds, peaches, apricots and other variety of fruits and animals, the extraction of enzyme from these sources increases the cost of enzyme. Therefore, focus has been shifted towards the production of low cost enzyme from the microorganisms such as bacteria, yeast and fungi. As compared to yeast and bacteria, fungal <em>β</em>-galactosidase is generally preferred as being extracellular and thermostable in nature. Keeping the above in view, the present study was carried out for the isolation of the <em>β</em>-galactosidase producing fungal strain from the food as well as the agricultural wastes. A total of more than 100 fungal cultures were examined for their potential in enzyme production. All the fungal strains were screened using X-gal and IPTG as inducers in the modified Czapek Dox Agar medium. Among the various isolated fungal strains, the strain exhibiting the highest enzyme activity was chosen for further phenotypic and genotypic characterization. The strain was identified as <em>Rhizomucor pusillus </em>on the basis of 5.8s RNA gene sequencing data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beta-galactosidase" title="beta-galactosidase">beta-galactosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme" title=" enzyme"> enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=fungal" title=" fungal"> fungal</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation" title=" isolation"> isolation</a> </p> <a href="https://publications.waset.org/abstracts/50588/isolation-and-screening-of-fungal-strains-for-v-galactosidase-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">882</span> Optimizing Cellulase Production from Municipal Solid Wastes (MSW) Following a Solid State Fermentation (SSF) by Trichoderma reesei and Aspergillus niger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jwan%20J.%20Abdullah">Jwan J. Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Greetham%20Darren"> Greetham Darren</a>, <a href="https://publications.waset.org/abstracts/search?q=Gregory%20A"> Gregory A</a>, <a href="https://publications.waset.org/abstracts/search?q=Tucker"> Tucker</a>, <a href="https://publications.waset.org/abstracts/search?q=Chenyu%20Du"> Chenyu Du </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid-state fermentation (SSF) is an alternative to liquid fermentations for the production of commercially important products such as antibiotics, single cell proteins, enzymes, organic acids, or biofuels from lignocellulosic material. This paper describes the optimisation of SSF on municipal solid waste (MSW) for the production of cellulase enzyme. Production of cellulase enzymes was optimised by Trichoderma reesei or Aspergillus niger for temperature, moisture content, inoculation, and period of incubation. Also, presence of minerals, and alternative carbon and nitrogen sources. Optimisation revealed that production of cellulolytic enzymes was optimal when using Trichoderma spp at 30°C with an incubation period of 168 hours with a 60% moisture content. Crude enzymes produced from MSW, by Trichoderma were evaluated for the saccharification of MSW and compared with activity of a commercially available enzyme, results demonstrated that MSW can be used as inexpensive lignocellulosic material for the production of cellulase enzymes using Trichoderma reesei. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SSF" title="SSF">SSF</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20hydrolysis" title=" enzyme hydrolysis"> enzyme hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20solid%20waste%20%28MSW%29" title=" municipal solid waste (MSW)"> municipal solid waste (MSW)</a>, <a href="https://publications.waset.org/abstracts/search?q=optimizing%20conditions" title=" optimizing conditions"> optimizing conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20hydrolysis" title=" enzyme hydrolysis "> enzyme hydrolysis </a> </p> <a href="https://publications.waset.org/abstracts/26580/optimizing-cellulase-production-from-municipal-solid-wastes-msw-following-a-solid-state-fermentation-ssf-by-trichoderma-reesei-and-aspergillus-niger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">881</span> A Mathematical Description of a Growing Cell Colony Based on the Mechanical Bidomain Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debabrata%20Auddya">Debabrata Auddya</a>, <a href="https://publications.waset.org/abstracts/search?q=Bradley%20J.%20Roth"> Bradley J. Roth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mechanical bidomain model is used to describe a colony of cells growing on a substrate. Analytical expressions are derived for the intracellular and extracellular displacements. Mechanotransduction events are driven by the difference between the displacements in the two spaces, corresponding to the force acting on integrins. The equation for the displacement consists of two terms: one proportional to the radius that is the same in the intracellular and extracellular spaces (the monodomain term) and one that is proportional to a modified Bessel function that is responsible for mechanotransduction (the bidomain term). The model predicts that mechanotransduction occurs within a few length constants of the colony’s edge, and an expression for the length constant contains the intracellular and extracellular shear moduli and the spring constant of the integrins coupling the two spaces. The model predictions are qualitatively consistent with experiments on human embryonic stem cell colonies, in which differentiation is localized near the edge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20colony" title="cell colony">cell colony</a>, <a href="https://publications.waset.org/abstracts/search?q=integrin" title=" integrin"> integrin</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20bidomain%20model" title=" mechanical bidomain model"> mechanical bidomain model</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cell" title=" stem cell"> stem cell</a>, <a href="https://publications.waset.org/abstracts/search?q=stress-strain" title=" stress-strain"> stress-strain</a>, <a href="https://publications.waset.org/abstracts/search?q=traction%20force" title=" traction force"> traction force</a> </p> <a href="https://publications.waset.org/abstracts/57982/a-mathematical-description-of-a-growing-cell-colony-based-on-the-mechanical-bidomain-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">880</span> DNAJB6 Chaperone Prevents the Aggregation of Intracellular but not Extracellular Aβ Peptides Associated with Alzheimer’s Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rasha%20M.%20Hussein">Rasha M. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Reem%20M.%20Hashem"> Reem M. Hashem</a>, <a href="https://publications.waset.org/abstracts/search?q=Laila%20A.%20Rashed"> Laila A. Rashed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alzheimer’s disease is the most common dementia disease in the elderly. It is characterized by the accumulation of extracellular amyloid β (Aβ) peptides and intracellular hyper-phosphorylated tau protein. In addition, recent evidence indicates that accumulation of intracellular amyloid β peptides may play a role in Alzheimer’s disease pathogenesis. This suggests that intracellular Heat Shock Proteins (HSP) that maintain the protein quality control in the cell might be potential candidates for disease amelioration. DNAJB6, a member of DNAJ family of HSP, effectively prevented the aggregation of poly glutamines stretches associated with Huntington’s disease both in vitro and in cells. In addition, DNAJB6 was found recently to delay the aggregation of Aβ42 peptides in vitro. In the present study, we investigated the ability of DNAJB6 to prevent the aggregation of both intracellular and extracellular Aβ peptides using transfection of HEK293 cells with Aβ-GFP and recombinant Aβ42 peptides respectively. We performed western blotting and immunofluorescence techniques. We found that DNAJB6 can prevent Aβ-GFP aggregation, but not the seeded aggregation initiated by extracellular Aβ peptides. Moreover, DNAJB6 required interaction with HSP70 to prevent the aggregation of Aβ-GFP protein and its J-domain was essential for this anti-aggregation activity. Interestingly, overexpression of other DNAJ proteins as well as HSPB1 suppressed Aβ-GFP aggregation efficiently. Our findings suggest that DNAJB6 is a promising candidate for the inhibition of Aβ-GFP mediated aggregation through a canonical HSP70 dependent mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=A%CE%B2" title="Aβ">Aβ</a>, <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%E2%80%99s%20disease" title=" Alzheimer’s disease"> Alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=chaperone" title=" chaperone"> chaperone</a>, <a href="https://publications.waset.org/abstracts/search?q=DNAJB6" title=" DNAJB6"> DNAJB6</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregation" title=" aggregation"> aggregation</a> </p> <a href="https://publications.waset.org/abstracts/35650/dnajb6-chaperone-prevents-the-aggregation-of-intracellular-but-not-extracellular-av-peptides-associated-with-alzheimers-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">879</span> Assessment of Diagnostic Enzymes as Indices of Heavy Metal Pollution in Tilapia Fish</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Justina%20I.%20R.%20Udotong">Justina I. R. Udotong</a>, <a href="https://publications.waset.org/abstracts/search?q=Essien%20U.%20Essien"> Essien U. Essien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diagnostic enzymes like aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) were determined as indices of heavy metal pollution in Tilapia guinensis. Three different sets of fishes treated with lead (Pb), iron (Fe) and copper (Cu) were used for the study while a fourth group with no heavy metal served as a control. Fishes in each of the groups were exposed to 2.65 mg/l of Pb, 0.85 mg/l of Fe and 0.35 mg/l of Cu in aerated aquaria for 96 hours. Tissue fractionation of the liver tissues was carried out and the three diagnostic enzymes (AST, ALT, and ALP) were estimated. Serum levels of the same diagnostic enzymes were also measured. The mean values of the serum enzyme activity for ALP in each experimental group were 19.5±1.62, 29.67±2.17 and 1.15±0.27 IU/L for Pb, Fe and Cu groups compared with 9.99±1.34 IU/L enzyme activity in the control. This result showed that Pb and Fe caused increased release of the enzyme into the blood circulation indicating increased tissue damage while Cu caused a reduction in the serum level as compared with the level in the control group. The mean values of enzyme activity obtained in the liver were 102.14±6.12, 140.17±2.06 and 168.23±3.52 IU/L for Pb, Fe and Cu groups, respectively compared to 91.20±9.42 IU/L enzyme activity for the control group. The serum and liver AST and ALT activities obtained in Pb, Fe, Cu and control groups are reported. It was generally noted that the presence of the heavy metal caused liver tissues damage and consequent increased level of the diagnostic enzymes in the serum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diagnostic%20enzymes" title="diagnostic enzymes">diagnostic enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20activity" title=" enzyme activity"> enzyme activity</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=tissues%20investigations" title=" tissues investigations"> tissues investigations</a> </p> <a href="https://publications.waset.org/abstracts/31272/assessment-of-diagnostic-enzymes-as-indices-of-heavy-metal-pollution-in-tilapia-fish" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">878</span> Bioactivity of Peptides from Two Mushrooms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parisa%20Farzaneh">Parisa Farzaneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Azade%20Harati"> Azade Harati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mushrooms, or macro-fungi, as an important superfood, contain many bioactive compounds, particularly bio-peptides. In this research, mushroom proteins were extracted by buffer or buffer plus salt (0.15 M), along with an ultrasound bath to extract the intercellular protein. As a result, the highest amount of proteins in mushrooms were categorized into albumin. Proteins were also hydrolyzed and changed into peptides through endogenous and exogenous proteases, including gastrointestinal enzymes. The potency of endogenous proteases was also higher in Agaricus bisporus than Terfezia claveryi, as their activity ended at 75 for 15 min. The blanching process, endogenous enzymes, the mixture of gastrointestinal enzymes (pepsin-trypsin-α-chymotrypsin or trypsin- α-chymotrypsin) produced the different antioxidant and antibacterial hydrolysates. The peptide fractions produced with different cut-off ultrafilters also had various levels of radical scavenging, lipid peroxidation inhibition, and antibacterial activities. The bio-peptides with superior bioactivities (less than 3 kD of T. claveryi) were resistant to various environmental conditions (pH and temperatures). Therefore, they are good options to be added to nutraceutical and pharmaceutical preparations or functional foods, even during processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-peptide" title="bio-peptide">bio-peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=mushrooms" title=" mushrooms"> mushrooms</a>, <a href="https://publications.waset.org/abstracts/search?q=gastrointestinal%20enzymes" title=" gastrointestinal enzymes"> gastrointestinal enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title=" bioactivity"> bioactivity</a> </p> <a href="https://publications.waset.org/abstracts/183239/bioactivity-of-peptides-from-two-mushrooms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">877</span> Reusability of Coimmobilized Enzymes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksandra%20%C5%81ochowicz">Aleksandra Łochowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Daria%20%C5%9Awi%C4%99tochowska"> Daria Świętochowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Loredano%20Pollegioni"> Loredano Pollegioni</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazim%20Ocal"> Nazim Ocal</a>, <a href="https://publications.waset.org/abstracts/search?q=Franck%20Charmantray"> Franck Charmantray</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurence%20Hecquet"> Laurence Hecquet</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Szyma%C5%84ska"> Katarzyna Szymańska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multienzymatic cascade reactions are nowadays widely used in pharmaceutical, chemical and cosmetics industries to produce high valuable compounds. They can be carried out in two ways, step by step and one-pot. If two or more enzymes are in the same reaction vessel is necessary to work out the compromise to run the reaction in optimal conditions for each enzyme. So far most of the reports of multienzymatic cascades concern on usage of free enzymes. Unfortunately using free enzymes as catalysts of reactions accomplish high cost. What is more, free enzymes are soluble in solvents which makes reuse impossible. To overcome this obstacle enzymes can be immobilized what provides heterogeneity of biocatalyst that enables reuse and easy separation of the enzyme from solvents and reaction products. Usually, immobilization increase also the thermal and operational stability of enzyme. The advantages of using immobilized multienzymes are enhanced enzyme stability, improved cascade enzymatic activity via substrate channeling, and ease of recovery for reuse. The one-pot immobilized multienzymatic cascade can be carried out in mixed or coimmobilized type. When biocatalysts are coimmobilized on the same carrier the are in close contact to each other which increase the reaction rate and catalytic efficiency, and eliminate the lag time. However, in this type providing the optimal conditions both in the process of immobilization and cascade reaction for each enzyme is complicated. Herein, we examined immobilization of 3 enzymes: D-amino acid oxidase from Rhodotorula gracilis, commercially available catalase and transketolase from Geobacillus stearothermophilus. As a support we used silica monoliths with hierarchical structure of pores. Then we checked their stability and reusability in one-pot cascade of L-erythrulose and hydroxypuryvate acid synthesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocatalysts" title="biocatalysts">biocatalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20immobilization" title=" enzyme immobilization"> enzyme immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=multienzymatic%20reaction" title=" multienzymatic reaction"> multienzymatic reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20carriers" title=" silica carriers"> silica carriers</a> </p> <a href="https://publications.waset.org/abstracts/152282/reusability-of-coimmobilized-enzymes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extracellular%20enzymes&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extracellular%20enzymes&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extracellular%20enzymes&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extracellular%20enzymes&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extracellular%20enzymes&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extracellular%20enzymes&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extracellular%20enzymes&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extracellular%20enzymes&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extracellular%20enzymes&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extracellular%20enzymes&page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extracellular%20enzymes&page=31">31</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=extracellular%20enzymes&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>