CINXE.COM
algebra over an operad in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> algebra over an operad in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> algebra over an operad </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussions/?CategoryID=0" title="Discuss this page on the nForum. It does not yet have a dedicated thread; feel free to create one, giving it the same name as the title of this page" style="color:black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="categorical_algebra">Categorical algebra</h4> <div class="hide"><div> <p><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a>+<a class="existingWikiWord" href="/nlab/show/algebra">algebra</a></p> <p><strong><a class="existingWikiWord" href="/nlab/show/internalization">internalization</a> and <a class="existingWikiWord" href="/nlab/show/categorical+algebra">categorical algebra</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monoid+object">monoid object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/group+object">group object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ring+object">ring object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+object">algebra object</a> (associative, <a class="existingWikiWord" href="/nlab/show/Lie+algebra+object">Lie</a>, …)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/module+object">module object</a>/<a class="existingWikiWord" href="/nlab/show/action+object">action object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+locale">internal locale</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+category">internal category</a> (<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>→</mo></mrow><annotation encoding="application/x-tex">\to</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/internal+infinity-categories+contents">more</a>)</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+groupoid">internal groupoid</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+site">internal site</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+diagram">internal diagram</a></p> </li> </ul> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/universal+algebra">universal algebra</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+a+Lawvere+theory">algebras over</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/algebraic+theories">algebraic theories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+a+monad">algebras over</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/monads">monads</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+an+operad">algebras over</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mspace width="thinmathspace"></mspace></mrow><annotation encoding="application/x-tex">\,</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/operads">operads</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/categorical+semantics">categorical semantics</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+logic">internal logic</a>, <a class="existingWikiWord" href="/nlab/show/internal+language">internal language</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relation+between+category+theory+and+type+theory">relation between category theory and type theory</a></p> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <li><a href='#examples'>Examples</a></li> <ul> <li><a href='#over_singlecoloured_operads'>Over single-coloured operads</a></li> <li><a href='#over_coloured_operads'>Over coloured operads</a></li> </ul> <li><a href='#literature'>Literature</a></li> <ul> <li><a href='#related_lab_entries'>Related <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>Lab entries</a></li> <li><a href='#generalizations'>Generalizations</a></li> </ul> </ul> </div> <h2 id="idea">Idea</h2> <p>An <a class="existingWikiWord" href="/nlab/show/operad">operad</a> is a structure whose elements are <em>formal operations</em>, closed under the operation of plugging some formal operations into others. An <strong>algebra over an operad</strong> is a structure in which the formal operations are interpreted as actual operations on an object, via a suitable <a class="existingWikiWord" href="/nlab/show/action">action</a>.</p> <p>Accordingly, there is a notion of <a class="existingWikiWord" href="/nlab/show/module+over+an+algebra+over+an+operad">module over an algebra over an operad</a>.</p> <h2 id="definition">Definition</h2> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math> be a <a class="existingWikiWord" href="/nlab/show/closed+monoidal+category">closed symmetric monoidal category</a> with monoidal unit <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>I</mi></mrow><annotation encoding="application/x-tex">I</annotation></semantics></math>, and let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> be any object. There is a canonical or tautological <a class="existingWikiWord" href="/nlab/show/operad">operad</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Op</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Op(X)</annotation></semantics></math> whose <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>n</mi> <mi>th</mi></msup></mrow><annotation encoding="application/x-tex">n^{th}</annotation></semantics></math> component is the internal hom <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi><mo stretchy="false">(</mo><msup><mi>X</mi> <mrow><mo>⊗</mo><mi>n</mi></mrow></msup><mo>,</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">M(X^{\otimes n}, X)</annotation></semantics></math>; the operad identity is the map</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mn>1</mn> <mi>X</mi></msub><mo>:</mo><mi>I</mi><mo>→</mo><mi>M</mi><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">1_X: I \to M(X, X)</annotation></semantics></math></div> <p>and the operad multiplication is given by the composite</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>M</mi><mo stretchy="false">(</mo><msup><mi>X</mi> <mrow><mo>⊗</mo><mi>k</mi></mrow></msup><mo>,</mo><mi>X</mi><mo stretchy="false">)</mo><mo>⊗</mo><mi>M</mi><mo stretchy="false">(</mo><msup><mi>X</mi> <mrow><mo>⊗</mo><msub><mi>n</mi> <mn>1</mn></msub></mrow></msup><mo>,</mo><mi>X</mi><mo stretchy="false">)</mo><mo>⊗</mo><mi>…</mi><mo>⊗</mo><mi>M</mi><mo stretchy="false">(</mo><msup><mi>X</mi> <mrow><mo>⊗</mo><msub><mi>n</mi> <mi>k</mi></msub></mrow></msup><mo>,</mo><mi>X</mi><mo stretchy="false">)</mo></mtd> <mtd><mover><mo>→</mo><mrow><mn>1</mn><mo>⊗</mo><msub><mi>func</mi> <mo>⊗</mo></msub></mrow></mover></mtd> <mtd><mi>M</mi><mo stretchy="false">(</mo><msup><mi>X</mi> <mrow><mo>⊗</mo><mi>k</mi></mrow></msup><mo>,</mo><mi>X</mi><mo stretchy="false">)</mo><mo>⊗</mo><mi>M</mi><mo stretchy="false">(</mo><msup><mi>X</mi> <mrow><mo>⊗</mo><msub><mi>n</mi> <mn>1</mn></msub><mo>+</mo><mi>…</mi><mo>+</mo><msub><mi>n</mi> <mi>k</mi></msub></mrow></msup><mo>,</mo><msup><mi>X</mi> <mrow><mo>⊗</mo><mi>k</mi></mrow></msup><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd></mtd> <mtd><mover><mo>→</mo><mi>comp</mi></mover></mtd> <mtd><mi>M</mi><mo stretchy="false">(</mo><msup><mi>X</mi> <mrow><mo>⊗</mo><msub><mi>n</mi> <mn>1</mn></msub><mo>+</mo><mi>…</mi><mo>+</mo><msub><mi>n</mi> <mi>k</mi></msub></mrow></msup><mo>,</mo><mi>X</mi><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex">\array{ M(X^{\otimes k}, X) \otimes M(X^{\otimes n_1}, X) \otimes \ldots \otimes M(X^{\otimes n_k}, X) & \stackrel{1 \otimes func_\otimes}{\to} & M(X^{\otimes k}, X) \otimes M(X^{\otimes n_1 + \ldots + n_k}, X^{\otimes k}) \\ & \stackrel{comp}{\to} & M(X^{\otimes n_1 + \ldots + n_k}, X) } </annotation></semantics></math></div> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>O</mi></mrow><annotation encoding="application/x-tex">O</annotation></semantics></math> be any operad in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math>. An <strong>algebra over</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>O</mi></mrow><annotation encoding="application/x-tex">O</annotation></semantics></math> is an object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> equipped with an operad map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ξ</mi><mo>:</mo><mi>O</mi><mo>→</mo><mi>Op</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\xi: O \to Op(X)</annotation></semantics></math>. Alternatively, the data of an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>O</mi></mrow><annotation encoding="application/x-tex">O</annotation></semantics></math>-algebra is given by a sequence of maps</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>O</mi><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo><mo>⊗</mo><msup><mi>X</mi> <mrow><mo>⊗</mo><mi>k</mi></mrow></msup><mo>→</mo><mi>X</mi></mrow><annotation encoding="application/x-tex">O(k) \otimes X^{\otimes k} \to X</annotation></semantics></math></div> <p>which specifies an action of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>O</mi></mrow><annotation encoding="application/x-tex">O</annotation></semantics></math> via finitary operations on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>, with compatibility conditions between the operad multiplication and the structure of plugging in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math> finitary operations on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> into a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math>-ary operation (and compatibility with actions by permutations).</p> <p>An <em>algebra over an <a class="existingWikiWord" href="/nlab/show/operad">operad</a></em> can equivalently be defined as a <a class="existingWikiWord" href="/nlab/show/category+over+an+operad">category over an operad</a> which has a single <a class="existingWikiWord" href="/nlab/show/object">object</a>.</p> <p>If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math> is cocomplete, then an operad in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math> may be defined as a monoid in the symmetric monoidal category <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msup><mi>M</mi> <mrow><msup><mi>ℙ</mi> <mi>op</mi></msup></mrow></msup><mo>,</mo><mo>∘</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(M^{\mathbb{P}^{op}}, \circ)</annotation></semantics></math> of permutation representations in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math>, aka <a class="existingWikiWord" href="/nlab/show/species">species</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math>, with respect to the substitution product <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>∘</mo></mrow><annotation encoding="application/x-tex">\circ</annotation></semantics></math>. There is an <a class="existingWikiWord" href="/nlab/show/actegory">actegory</a> structure <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>M</mi> <mrow><msup><mi>ℙ</mi> <mi>op</mi></msup></mrow></msup><mo>×</mo><mi>M</mi><mo>→</mo><mi>M</mi></mrow><annotation encoding="application/x-tex">M^{\mathbb{P}^{op}} \times M \to M</annotation></semantics></math> which arises by restriction of the monoidal product <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>∘</mo></mrow><annotation encoding="application/x-tex">\circ</annotation></semantics></math> if we consider <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math> as fully embedded in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>M</mi> <mrow><msup><mi>ℙ</mi> <mi>op</mi></msup></mrow></msup></mrow><annotation encoding="application/x-tex">M^{\mathbb{P}^{op}}</annotation></semantics></math>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>i</mi><mo>:</mo><mi>M</mi><mo>→</mo><msup><mi>M</mi> <mrow><msup><mi>ℙ</mi> <mi>op</mi></msup></mrow></msup><mo>:</mo><mi>X</mi><mo>↦</mo><mo stretchy="false">(</mo><mi>n</mi><mo>↦</mo><msub><mi>δ</mi> <mrow><mi>n</mi><mn>0</mn></mrow></msub><mo>⋅</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">i: M \to M^{\mathbb{P}^{op}}: X \mapsto (n \mapsto \delta_{n 0} \cdot X)</annotation></semantics></math></div> <p>(interpret <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> as concentrated in the 0-ary or “constants” component), so that an operad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>O</mi></mrow><annotation encoding="application/x-tex">O</annotation></semantics></math> induces a <a class="existingWikiWord" href="/nlab/show/monad">monad</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>O</mi><mo stretchy="false">^</mo></mover></mrow><annotation encoding="application/x-tex">\hat{O}</annotation></semantics></math> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math> via the actegory structure. As a functor, the monad may be defined by a <a class="existingWikiWord" href="/nlab/show/coend">coend</a> formula</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mover><mi>O</mi><mo stretchy="false">^</mo></mover><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo><mo>=</mo><msup><mo>∫</mo> <mrow><mi>k</mi><mo>∈</mo><mi>ℙ</mi></mrow></msup><mi>O</mi><mo stretchy="false">(</mo><mi>k</mi><mo stretchy="false">)</mo><mo>⊗</mo><msup><mi>X</mi> <mrow><mo>⊗</mo><mi>k</mi></mrow></msup></mrow><annotation encoding="application/x-tex">\hat{O}(X) = \int^{k \in \mathbb{P}} O(k) \otimes X^{\otimes k}</annotation></semantics></math></div> <p>An <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>O</mi></mrow><annotation encoding="application/x-tex">O</annotation></semantics></math>-algebra is the same thing as an algebra over the monad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mi>O</mi><mo stretchy="false">^</mo></mover></mrow><annotation encoding="application/x-tex">\hat{O}</annotation></semantics></math>.</p> <p><strong>Remark</strong> If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+category">symmetric monoidal</a> <a class="existingWikiWord" href="/nlab/show/enriched+category">enriching category</a>, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>O</mi></mrow><annotation encoding="application/x-tex">O</annotation></semantics></math> the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>-enriched operad in question, and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo>∈</mo><mi>Obj</mi><mo stretchy="false">(</mo><mi>C</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">A \in Obj(C)</annotation></semantics></math> is the single <a class="existingWikiWord" href="/nlab/show/hom-object">hom-object</a> of the <a class="existingWikiWord" href="/nlab/show/category+over+an+operad">O-category</a> with single object, it makes sense to write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>B</mi></mstyle><mi>A</mi></mrow><annotation encoding="application/x-tex">\mathbf{B}A</annotation></semantics></math> for that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>O</mi></mrow><annotation encoding="application/x-tex">O</annotation></semantics></math>-category. Compare the discussion at <a class="existingWikiWord" href="/nlab/show/monoid">monoid</a> and <a class="existingWikiWord" href="/nlab/show/group">group</a>, which are special cases of this.</p> <h2 id="examples">Examples</h2> <h3 id="over_singlecoloured_operads">Over single-coloured operads</h3> <ul> <li> <p>an <a class="existingWikiWord" href="/nlab/show/associative+algebra">associative algebra</a> is an algebra over the <a class="existingWikiWord" href="/nlab/show/associative+operad">associative operad</a>.</p> <ul> <li>an <a class="existingWikiWord" href="/nlab/show/A-infinity+algebra">A-infinity algebra</a> is an algebra over a cofibrant <a class="existingWikiWord" href="/nlab/show/resolution">resolution</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Assoc</mi></mrow><annotation encoding="application/x-tex">Assoc</annotation></semantics></math>.</li> </ul> </li> <li> <p>a <a class="existingWikiWord" href="/nlab/show/commutative+algebra">commutative algebra</a> is an algebra over the <a class="existingWikiWord" href="/nlab/show/commutative+operad">commutative operad</a>.</p> <ul> <li>an <a class="existingWikiWord" href="/nlab/show/E-infinity+algebra">E-infinity algebra</a> is an algebra over a cofibrant <a class="existingWikiWord" href="/nlab/show/resolution">resolution</a> of the commutative operad</li> </ul> </li> <li> <p>etc.</p> </li> </ul> <h3 id="over_coloured_operads">Over coloured operads</h3> <ul> <li> <p>There is a <a class="existingWikiWord" href="/nlab/show/coloured+operad">coloured operad</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Mod</mi> <mi>P</mi></msub></mrow><annotation encoding="application/x-tex">Mod_P</annotation></semantics></math> whose algebras are pairs consisting of a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math>-algebra <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> and a <a class="existingWikiWord" href="/nlab/show/module">module</a> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math>;</p> </li> <li> <p>For a single-coloured operad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math> there is a coloured operad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>P</mi> <mn>1</mn></msup></mrow><annotation encoding="application/x-tex">P^1</annotation></semantics></math> whose algebras are triples consisting of two <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math> algebras and a <a class="existingWikiWord" href="/nlab/show/morphism">morphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>A</mi> <mn>1</mn></msub><mo>→</mo><msub><mi>A</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">A_1 \to A_2</annotation></semantics></math> between them.</p> </li> <li> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> be a set. There is a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>-coloured operad whose algebras are <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/enriched+categories">enriched categories</a> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> as their set of objects.</p> </li> </ul> <h2 id="literature">Literature</h2> <h3 id="related_lab_entries">Related <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math>Lab entries</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+a+monad">algebra over a monad</a></p> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-algebra+over+an+%28%E2%88%9E%2C1%29-monad">∞-algebra over an (∞,1)-monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+an+algebraic+theory">algebra over an algebraic theory</a></p> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-algebra+over+an+%28%E2%88%9E%2C1%29-algebraic+theory">∞-algebra over an (∞,1)-algebraic theory</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/homotopy+T-algebra">homotopy T-algebra</a> / <a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+T-algebras">model structure on simplicial T-algebras</a></li> </ul> </li> <li> <p><strong>algebra over an operad</strong></p> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-algebra+over+an+%28%E2%88%9E%2C1%29-operad">∞-algebra over an (∞,1)-operad</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/model+structure+on+algebras+over+an+operad">model structure on algebras over an operad</a></li> </ul> </li> </ul> <h3 id="generalizations">Generalizations</h3> <ul> <li>S. N. Tronin, <em>Algebras over multicategories</em>, Russ Math. (2016) 60: 52. <a href="http://dx.doi.org/10.3103/S1066369X16020092">doi</a>; Rus. original: С. Н. Тронин, <em>Об алгебрах над мультикатегориями</em>, Изв. вузов. Матем., 2016, № 2, 62–74</li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on March 22, 2021 at 08:27:11. See the <a href="/nlab/history/algebra+over+an+operad" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/algebra+over+an+operad" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussions/?CategoryID=0">Discuss</a><span class="backintime"><a href="/nlab/revision/algebra+over+an+operad/15" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/algebra+over+an+operad" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/algebra+over+an+operad" accesskey="S" class="navlink" id="history" rel="nofollow">History (15 revisions)</a> <a href="/nlab/show/algebra+over+an+operad/cite" style="color: black">Cite</a> <a href="/nlab/print/algebra+over+an+operad" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/algebra+over+an+operad" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>