CINXE.COM
Schrödingerova rovnice – Wikipedie
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="cs" dir="ltr"> <head> <meta charset="UTF-8"> <title>Schrödingerova rovnice – Wikipedie</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )cswikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"ČSN basic dt","wgMonthNames":["","leden","únor","březen","duben","květen","červen","červenec","srpen","září","říjen","listopad","prosinec"],"wgRequestId":"b839f5a4-21c0-4cd0-962f-a673052367b6","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Schrödingerova_rovnice","wgTitle":"Schrödingerova rovnice","wgCurRevisionId":24172121,"wgRevisionId":24172121,"wgArticleId":113765,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Monitoring:Články s identifikátorem NKC","Monitoring:Články s identifikátorem PSH","Monitoring:Články s identifikátorem BNF","Monitoring:Články s identifikátorem GND","Monitoring:Články s identifikátorem LCCN","Monitoring:Články s identifikátorem NLI","Kvantová fyzika","Kvantová mechanika"],"wgPageViewLanguage":"cs","wgPageContentLanguage":"cs","wgPageContentModel":"wikitext","wgRelevantPageName": "Schrödingerova_rovnice","wgRelevantArticleId":113765,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"cs","pageLanguageDir":"ltr","pageVariantFallbacks":"cs"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q165498","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"], "GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":true,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.WikiMiniAtlas","ext.gadget.OSMmapa","ext.gadget.direct-links-to-commons","ext.gadget.ReferenceTooltips","ext.gadget.courses","ext.urlShortener.toolbar","ext.centralauth.centralautologin", "mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=cs&modules=ext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=cs&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=cs&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Schrödingerova rovnice – Wikipedie"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//cs.m.wikipedia.org/wiki/Schr%C3%B6dingerova_rovnice"> <link rel="alternate" type="application/x-wiki" title="Editovat" href="/w/index.php?title=Schr%C3%B6dingerova_rovnice&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedie (cs)"> <link rel="EditURI" type="application/rsd+xml" href="//cs.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://cs.wikipedia.org/wiki/Schr%C3%B6dingerova_rovnice"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.cs"> <link rel="alternate" type="application/atom+xml" title="Atom kanál Wikipedie." href="/w/index.php?title=Speci%C3%A1ln%C3%AD:Posledn%C3%AD_zm%C4%9Bny&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Schrödingerova_rovnice rootpage-Schrödingerova_rovnice skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Přeskočit na obsah</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Projekt"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Hlavní menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Hlavní menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Hlavní menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">přesunout do postranního panelu</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">skrýt</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigace </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage" class="mw-list-item"><a href="/wiki/Hlavn%C3%AD_strana" title="Navštívit Hlavní stranu [z]" accesskey="z"><span>Hlavní strana</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/N%C3%A1pov%C4%9Bda:Obsah" title="Místo, kde najdete pomoc"><span>Nápověda</span></a></li><li id="n-helpdesk" class="mw-list-item"><a href="/wiki/Wikipedie:Pot%C5%99ebuji_pomoc" title="Pokud si nevíte rady, zeptejte se ostatních"><span>Potřebuji pomoc</span></a></li><li id="n-featuredcontent" class="mw-list-item"><a href="/wiki/Wikipedie:Nejlep%C5%A1%C3%AD_%C4%8Dl%C3%A1nky" title="Přehled článků, které jsou považovány za nejlepší na české Wikipedii"><span>Nejlepší články</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Speci%C3%A1ln%C3%AD:N%C3%A1hodn%C3%A1_str%C3%A1nka" title="Přejít na náhodně vybranou stránku [x]" accesskey="x"><span>Náhodný článek</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Speci%C3%A1ln%C3%AD:Posledn%C3%AD_zm%C4%9Bny" title="Seznam posledních změn na této wiki [r]" accesskey="r"><span>Poslední změny</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedie:Port%C3%A1l_Wikipedie" title="O projektu, jak můžete pomoci, kde hledat"><span>Komunitní portál</span></a></li><li id="n-villagepump" class="mw-list-item"><a href="/wiki/Wikipedie:Pod_l%C3%ADpou" title="Hlavní diskusní fórum"><span>Pod lípou</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Hlavn%C3%AD_strana" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedie" src="/static/images/mobile/copyright/wikipedia-wordmark-cs.svg" style="width: 7.5em; height: 1.1875em;"> <img class="mw-logo-tagline" alt="Wikipedie: Otevřená encyklopedie" src="/static/images/mobile/copyright/wikipedia-tagline-cs.svg" width="118" height="13" style="width: 7.375em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Speci%C3%A1ln%C3%AD:Hled%C3%A1n%C3%AD" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Prohledat tuto wiki [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Hledání</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Hledat na Wikipedii" aria-label="Hledat na Wikipedii" autocapitalize="sentences" title="Prohledat tuto wiki [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Speciální:Hledání"> </div> <button class="cdx-button cdx-search-input__end-button">Hledat</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Osobní nástroje"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Vzhled"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Změnit vzhled velikosti písma, šířky stránky a barvy" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Vzhled" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Vzhled</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_cs.wikipedia.org&uselang=cs" class=""><span>Podpořte Wikipedii</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speci%C3%A1ln%C3%AD:Vytvo%C5%99it_%C3%BA%C4%8Det&returnto=Schr%C3%B6dingerova+rovnice" title="Doporučujeme vytvořit si účet a přihlásit se, ovšem není to povinné" class=""><span>Vytvoření účtu</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speci%C3%A1ln%C3%AD:P%C5%99ihl%C3%A1sit&returnto=Schr%C3%B6dingerova+rovnice" title="Doporučujeme vám přihlásit se, ovšem není to povinné. [o]" accesskey="o" class=""><span>Přihlášení</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Další možnosti" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Osobní nástroje" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Osobní nástroje</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Uživatelské menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_cs.wikipedia.org&uselang=cs"><span>Podpořte Wikipedii</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speci%C3%A1ln%C3%AD:Vytvo%C5%99it_%C3%BA%C4%8Det&returnto=Schr%C3%B6dingerova+rovnice" title="Doporučujeme vytvořit si účet a přihlásit se, ovšem není to povinné"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Vytvoření účtu</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speci%C3%A1ln%C3%AD:P%C5%99ihl%C3%A1sit&returnto=Schr%C3%B6dingerova+rovnice" title="Doporučujeme vám přihlásit se, ovšem není to povinné. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Přihlášení</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Stránky pro odhlášené editory <a href="/wiki/N%C3%A1pov%C4%9Bda:%C3%9Avod" aria-label="Více informací o editování"><span>dozvědět se více</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Speci%C3%A1ln%C3%AD:Moje_p%C5%99%C3%ADsp%C4%9Bvky" title="Seznam editací provedených z této IP adresy [y]" accesskey="y"><span>Příspěvky</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Speci%C3%A1ln%C3%AD:Moje_diskuse" title="Diskuse o editacích provedených z této IP adresy [n]" accesskey="n"><span>Diskuse</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Projekt"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Obsah" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Obsah</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">přesunout do postranního panelu</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">skrýt</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(úvod)</div> </a> </li> <li id="toc-Odvození_rovnice" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Odvození_rovnice"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Odvození rovnice</span> </div> </a> <ul id="toc-Odvození_rovnice-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Obecné_vyjádření" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Obecné_vyjádření"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Obecné vyjádření</span> </div> </a> <ul id="toc-Obecné_vyjádření-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Stacionární_Schrödingerova_rovnice" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Stacionární_Schrödingerova_rovnice"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Stacionární Schrödingerova rovnice</span> </div> </a> <button aria-controls="toc-Stacionární_Schrödingerova_rovnice-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Přepnout podsekci Stacionární Schrödingerova rovnice</span> </button> <ul id="toc-Stacionární_Schrödingerova_rovnice-sublist" class="vector-toc-list"> <li id="toc-Stacionární_stav" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Stacionární_stav"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Stacionární stav</span> </div> </a> <ul id="toc-Stacionární_stav-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Vlastnosti" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Vlastnosti"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Vlastnosti</span> </div> </a> <ul id="toc-Vlastnosti-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Související_články" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Související_články"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Související články</span> </div> </a> <ul id="toc-Související_články-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Externí_odkazy" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Externí_odkazy"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Externí odkazy</span> </div> </a> <ul id="toc-Externí_odkazy-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Obsah" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Přepnout obsah" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Přepnout obsah</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Schrödingerova rovnice</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Přejděte k článku v jiném jazyce. Je dostupný v 72 jazycích" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-72" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">72 jazyků</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Schr%C3%B6dinger-vergelyking" title="Schrödinger-vergelyking – afrikánština" lang="af" hreflang="af" data-title="Schrödinger-vergelyking" data-language-autonym="Afrikaans" data-language-local-name="afrikánština" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%B9%D8%A7%D8%AF%D9%84%D8%A9_%D8%B4%D8%B1%D9%88%D8%AF%D9%86%D8%BA%D8%B1" title="معادلة شرودنغر – arabština" lang="ar" hreflang="ar" data-title="معادلة شرودنغر" data-language-autonym="العربية" data-language-local-name="arabština" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-arz mw-list-item"><a href="https://arz.wikipedia.org/wiki/%D9%85%D8%B9%D8%A7%D8%AF%D9%84%D8%A9_%D8%B4%D8%B1%D9%88%D8%AF%D9%8A%D9%86%D8%AC%D8%B1" title="معادلة شرودينجر – arabština (egyptská)" lang="arz" hreflang="arz" data-title="معادلة شرودينجر" data-language-autonym="مصرى" data-language-local-name="arabština (egyptská)" class="interlanguage-link-target"><span>مصرى</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Ecuaci%C3%B3n_de_Schr%C3%B6dinger" title="Ecuación de Schrödinger – asturština" lang="ast" hreflang="ast" data-title="Ecuación de Schrödinger" data-language-autonym="Asturianu" data-language-local-name="asturština" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/%C5%9Eredinger_t%C9%99nliyi" title="Şredinger tənliyi – ázerbájdžánština" lang="az" hreflang="az" data-title="Şredinger tənliyi" data-language-autonym="Azərbaycanca" data-language-local-name="ázerbájdžánština" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D1%9E%D0%BD%D0%B5%D0%BD%D0%BD%D0%B5_%D0%A8%D1%80%D0%BE%D0%B4%D0%B7%D1%96%D0%BD%D0%B3%D0%B5%D1%80%D0%B0" title="Ураўненне Шродзінгера – běloruština" lang="be" hreflang="be" data-title="Ураўненне Шродзінгера" data-language-autonym="Беларуская" data-language-local-name="běloruština" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D0%BD%D0%B0_%D0%A8%D1%80%D1%8C%D0%BE%D0%B4%D0%B8%D0%BD%D0%B3%D0%B5%D1%80" title="Уравнение на Шрьодингер – bulharština" lang="bg" hreflang="bg" data-title="Уравнение на Шрьодингер" data-language-autonym="Български" data-language-local-name="bulharština" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%B6%E0%A7%8D%E0%A6%B0%E0%A7%8B%E0%A6%A1%E0%A6%BF%E0%A6%99%E0%A6%BE%E0%A6%B0_%E0%A6%B8%E0%A6%AE%E0%A7%80%E0%A6%95%E0%A6%B0%E0%A6%A3" title="শ্রোডিঙার সমীকরণ – bengálština" lang="bn" hreflang="bn" data-title="শ্রোডিঙার সমীকরণ" data-language-autonym="বাংলা" data-language-local-name="bengálština" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Schr%C3%B6dingerova_jedna%C4%8Dina" title="Schrödingerova jednačina – bosenština" lang="bs" hreflang="bs" data-title="Schrödingerova jednačina" data-language-autonym="Bosanski" data-language-local-name="bosenština" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Equaci%C3%B3_de_Schr%C3%B6dinger" title="Equació de Schrödinger – katalánština" lang="ca" hreflang="ca" data-title="Equació de Schrödinger" data-language-autonym="Català" data-language-local-name="katalánština" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A8%D1%80%D1%91%D0%B4%D0%B8%D0%BD%D0%B3%D0%B5%D1%80_%D1%82%D0%B0%D0%BD%D0%BB%C4%83%D1%85%C4%95" title="Шрёдингер танлăхĕ – čuvaština" lang="cv" hreflang="cv" data-title="Шрёдингер танлăхĕ" data-language-autonym="Чӑвашла" data-language-local-name="čuvaština" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Schr%C3%B6dingers_ligning" title="Schrödingers ligning – dánština" lang="da" hreflang="da" data-title="Schrödingers ligning" data-language-autonym="Dansk" data-language-local-name="dánština" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Schr%C3%B6dingergleichung" title="Schrödingergleichung – němčina" lang="de" hreflang="de" data-title="Schrödingergleichung" data-language-autonym="Deutsch" data-language-local-name="němčina" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%95%CE%BE%CE%AF%CF%83%CF%89%CF%83%CE%B7_%CE%A3%CF%81%CE%AD%CE%BD%CF%84%CE%B9%CE%BD%CE%B3%CE%BA%CE%B5%CF%81" title="Εξίσωση Σρέντινγκερ – řečtina" lang="el" hreflang="el" data-title="Εξίσωση Σρέντινγκερ" data-language-autonym="Ελληνικά" data-language-local-name="řečtina" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation" title="Schrödinger equation – angličtina" lang="en" hreflang="en" data-title="Schrödinger equation" data-language-autonym="English" data-language-local-name="angličtina" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Ekvacio_de_Schr%C3%B6dinger" title="Ekvacio de Schrödinger – esperanto" lang="eo" hreflang="eo" data-title="Ekvacio de Schrödinger" data-language-autonym="Esperanto" data-language-local-name="esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Ecuaci%C3%B3n_de_Schr%C3%B6dinger" title="Ecuación de Schrödinger – španělština" lang="es" hreflang="es" data-title="Ecuación de Schrödinger" data-language-autonym="Español" data-language-local-name="španělština" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Schr%C3%B6dingeri_v%C3%B5rrand" title="Schrödingeri võrrand – estonština" lang="et" hreflang="et" data-title="Schrödingeri võrrand" data-language-autonym="Eesti" data-language-local-name="estonština" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Schr%C3%B6dingerren_ekuazioa" title="Schrödingerren ekuazioa – baskičtina" lang="eu" hreflang="eu" data-title="Schrödingerren ekuazioa" data-language-autonym="Euskara" data-language-local-name="baskičtina" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%B9%D8%A7%D8%AF%D9%84%D9%87_%D8%B4%D8%B1%D9%88%D8%AF%DB%8C%D9%86%DA%AF%D8%B1" title="معادله شرودینگر – perština" lang="fa" hreflang="fa" data-title="معادله شرودینگر" data-language-autonym="فارسی" data-language-local-name="perština" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Schr%C3%B6dingerin_yht%C3%A4l%C3%B6" title="Schrödingerin yhtälö – finština" lang="fi" hreflang="fi" data-title="Schrödingerin yhtälö" data-language-autonym="Suomi" data-language-local-name="finština" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/%C3%89quation_de_Schr%C3%B6dinger" title="Équation de Schrödinger – francouzština" lang="fr" hreflang="fr" data-title="Équation de Schrödinger" data-language-autonym="Français" data-language-local-name="francouzština" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Ecuaci%C3%B3n_de_Schr%C3%B6dinger" title="Ecuación de Schrödinger – galicijština" lang="gl" hreflang="gl" data-title="Ecuación de Schrödinger" data-language-autonym="Galego" data-language-local-name="galicijština" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A9%D7%95%D7%95%D7%90%D7%AA_%D7%A9%D7%A8%D7%93%D7%99%D7%A0%D7%92%D7%A8" title="משוואת שרדינגר – hebrejština" lang="he" hreflang="he" data-title="משוואת שרדינגר" data-language-autonym="עברית" data-language-local-name="hebrejština" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B6%E0%A5%8D%E0%A4%B0%E0%A5%8B%E0%A4%A1%E0%A4%BF%E0%A4%82%E0%A4%97%E0%A4%B0_%E0%A4%B8%E0%A4%AE%E0%A5%80%E0%A4%95%E0%A4%B0%E0%A4%A3" title="श्रोडिंगर समीकरण – hindština" lang="hi" hreflang="hi" data-title="श्रोडिंगर समीकरण" data-language-autonym="हिन्दी" data-language-local-name="hindština" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Schr%C3%B6dingerova_jednad%C5%BEba" title="Schrödingerova jednadžba – chorvatština" lang="hr" hreflang="hr" data-title="Schrödingerova jednadžba" data-language-autonym="Hrvatski" data-language-local-name="chorvatština" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Schr%C3%B6dinger-egyenlet" title="Schrödinger-egyenlet – maďarština" lang="hu" hreflang="hu" data-title="Schrödinger-egyenlet" data-language-autonym="Magyar" data-language-local-name="maďarština" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%87%D6%80%D5%B5%D5%B8%D5%A4%D5%AB%D5%B6%D5%A3%D5%A5%D6%80%D5%AB_%D5%B0%D5%A1%D5%BE%D5%A1%D5%BD%D5%A1%D6%80%D5%B8%D6%82%D5%B4" title="Շրյոդինգերի հավասարում – arménština" lang="hy" hreflang="hy" data-title="Շրյոդինգերի հավասարում" data-language-autonym="Հայերեն" data-language-local-name="arménština" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Equation_de_Schr%C3%B6dinger" title="Equation de Schrödinger – interlingua" lang="ia" hreflang="ia" data-title="Equation de Schrödinger" data-language-autonym="Interlingua" data-language-local-name="interlingua" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Persamaan_Schr%C3%B6dinger" title="Persamaan Schrödinger – indonéština" lang="id" hreflang="id" data-title="Persamaan Schrödinger" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonéština" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Jafna_Schr%C3%B6dingers" title="Jafna Schrödingers – islandština" lang="is" hreflang="is" data-title="Jafna Schrödingers" data-language-autonym="Íslenska" data-language-local-name="islandština" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Equazione_di_Schr%C3%B6dinger" title="Equazione di Schrödinger – italština" lang="it" hreflang="it" data-title="Equazione di Schrödinger" data-language-autonym="Italiano" data-language-local-name="italština" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%B7%E3%83%A5%E3%83%AC%E3%83%BC%E3%83%87%E3%82%A3%E3%83%B3%E3%82%AC%E3%83%BC%E6%96%B9%E7%A8%8B%E5%BC%8F" title="シュレーディンガー方程式 – japonština" lang="ja" hreflang="ja" data-title="シュレーディンガー方程式" data-language-autonym="日本語" data-language-local-name="japonština" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%A8%E1%83%A0%E1%83%94%E1%83%93%E1%83%98%E1%83%9C%E1%83%92%E1%83%94%E1%83%A0%E1%83%98%E1%83%A1_%E1%83%92%E1%83%90%E1%83%9C%E1%83%A2%E1%83%9D%E1%83%9A%E1%83%94%E1%83%91%E1%83%90" title="შრედინგერის განტოლება – gruzínština" lang="ka" hreflang="ka" data-title="შრედინგერის განტოლება" data-language-autonym="ქართული" data-language-local-name="gruzínština" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%8A%88%EB%A2%B0%EB%94%A9%EA%B1%B0_%EB%B0%A9%EC%A0%95%EC%8B%9D" title="슈뢰딩거 방정식 – korejština" lang="ko" hreflang="ko" data-title="슈뢰딩거 방정식" data-language-autonym="한국어" data-language-local-name="korejština" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-li mw-list-item"><a href="https://li.wikipedia.org/wiki/Schr%C3%B6dingervergelieking" title="Schrödingervergelieking – limburština" lang="li" hreflang="li" data-title="Schrödingervergelieking" data-language-autonym="Limburgs" data-language-local-name="limburština" class="interlanguage-link-target"><span>Limburgs</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/%C5%A0r%C4%97dingerio_lygtis" title="Šrėdingerio lygtis – litevština" lang="lt" hreflang="lt" data-title="Šrėdingerio lygtis" data-language-autonym="Lietuvių" data-language-local-name="litevština" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/%C5%A0r%C4%93dingera_vien%C4%81dojums" title="Šrēdingera vienādojums – lotyština" lang="lv" hreflang="lv" data-title="Šrēdingera vienādojums" data-language-autonym="Latviešu" data-language-local-name="lotyština" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mk badge-Q17437796 badge-featuredarticle mw-list-item" title="nejlepší článek"><a href="https://mk.wikipedia.org/wiki/%D0%A8%D1%80%D0%B5%D0%B4%D0%B8%D0%BD%D0%B3%D0%B5%D1%80%D0%BE%D0%B2%D0%B0_%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D0%BA%D0%B0" title="Шредингерова равенка – makedonština" lang="mk" hreflang="mk" data-title="Шредингерова равенка" data-language-autonym="Македонски" data-language-local-name="makedonština" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%A8%D1%80%D0%B5%D0%B4%D0%B8%D0%BD%D0%B3%D0%B5%D1%80%D0%B8%D0%B9%D0%BD_%D1%82%D1%8D%D0%B3%D1%88%D0%B8%D1%82%D0%B3%D1%8D%D0%BB" title="Шредингерийн тэгшитгэл – mongolština" lang="mn" hreflang="mn" data-title="Шредингерийн тэгшитгэл" data-language-autonym="Монгол" data-language-local-name="mongolština" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Persamaan_Schr%C3%B6dinger" title="Persamaan Schrödinger – malajština" lang="ms" hreflang="ms" data-title="Persamaan Schrödinger" data-language-autonym="Bahasa Melayu" data-language-local-name="malajština" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mt mw-list-item"><a href="https://mt.wikipedia.org/wiki/Ekwazzjoni_ta%27_Schr%C3%B6dinger" title="Ekwazzjoni ta' Schrödinger – maltština" lang="mt" hreflang="mt" data-title="Ekwazzjoni ta' Schrödinger" data-language-autonym="Malti" data-language-local-name="maltština" class="interlanguage-link-target"><span>Malti</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Schr%C3%B6dingervergelijking" title="Schrödingervergelijking – nizozemština" lang="nl" hreflang="nl" data-title="Schrödingervergelijking" data-language-autonym="Nederlands" data-language-local-name="nizozemština" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Schr%C3%B6dingerlikninga" title="Schrödingerlikninga – norština (nynorsk)" lang="nn" hreflang="nn" data-title="Schrödingerlikninga" data-language-autonym="Norsk nynorsk" data-language-local-name="norština (nynorsk)" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Schr%C3%B6dinger-ligning" title="Schrödinger-ligning – norština (bokmål)" lang="nb" hreflang="nb" data-title="Schrödinger-ligning" data-language-autonym="Norsk bokmål" data-language-local-name="norština (bokmål)" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Equacion_de_Schr%C3%B6dinger" title="Equacion de Schrödinger – okcitánština" lang="oc" hreflang="oc" data-title="Equacion de Schrödinger" data-language-autonym="Occitan" data-language-local-name="okcitánština" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B8%E0%A8%BC%E0%A9%8D%E0%A8%B0%E0%A9%8B%E0%A8%A1%E0%A8%BF%E0%A9%B0%E0%A8%9C%E0%A8%B0_%E0%A8%87%E0%A8%95%E0%A9%81%E0%A8%8F%E0%A8%B8%E0%A8%BC%E0%A8%A8" title="ਸ਼੍ਰੋਡਿੰਜਰ ਇਕੁਏਸ਼ਨ – paňdžábština" lang="pa" hreflang="pa" data-title="ਸ਼੍ਰੋਡਿੰਜਰ ਇਕੁਏਸ਼ਨ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="paňdžábština" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/R%C3%B3wnanie_Schr%C3%B6dingera" title="Równanie Schrödingera – polština" lang="pl" hreflang="pl" data-title="Równanie Schrödingera" data-language-autonym="Polski" data-language-local-name="polština" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%D8%B4%D8%B1%D9%88%DA%88%D9%86%DA%AF%D8%B1_%D9%85%D8%B3%D8%A7%D9%88%D8%A7%D8%AA" title="شروڈنگر مساوات – Western Punjabi" lang="pnb" hreflang="pnb" data-title="شروڈنگر مساوات" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Equa%C3%A7%C3%A3o_de_Schr%C3%B6dinger" title="Equação de Schrödinger – portugalština" lang="pt" hreflang="pt" data-title="Equação de Schrödinger" data-language-autonym="Português" data-language-local-name="portugalština" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Ecua%C8%9Bia_lui_Schr%C3%B6dinger" title="Ecuația lui Schrödinger – rumunština" lang="ro" hreflang="ro" data-title="Ecuația lui Schrödinger" data-language-autonym="Română" data-language-local-name="rumunština" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D0%A8%D1%80%D1%91%D0%B4%D0%B8%D0%BD%D0%B3%D0%B5%D1%80%D0%B0" title="Уравнение Шрёдингера – ruština" lang="ru" hreflang="ru" data-title="Уравнение Шрёдингера" data-language-autonym="Русский" data-language-local-name="ruština" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Schr%C3%B6dingerova_jedna%C4%8Dina" title="Schrödingerova jednačina – srbochorvatština" lang="sh" hreflang="sh" data-title="Schrödingerova jednačina" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="srbochorvatština" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Schr%C3%B6dinger_equation" title="Schrödinger equation – Simple English" lang="en-simple" hreflang="en-simple" data-title="Schrödinger equation" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Schr%C3%B6dingerova_rovnica" title="Schrödingerova rovnica – slovenština" lang="sk" hreflang="sk" data-title="Schrödingerova rovnica" data-language-autonym="Slovenčina" data-language-local-name="slovenština" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Schr%C3%B6dingerjeva_ena%C4%8Dba" title="Schrödingerjeva enačba – slovinština" lang="sl" hreflang="sl" data-title="Schrödingerjeva enačba" data-language-autonym="Slovenščina" data-language-local-name="slovinština" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Ekuacioni_i_Shrodingerit" title="Ekuacioni i Shrodingerit – albánština" lang="sq" hreflang="sq" data-title="Ekuacioni i Shrodingerit" data-language-autonym="Shqip" data-language-local-name="albánština" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%C5%A0redingerova_jedna%C4%8Dina" title="Šredingerova jednačina – srbština" lang="sr" hreflang="sr" data-title="Šredingerova jednačina" data-language-autonym="Српски / srpski" data-language-local-name="srbština" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Schr%C3%B6dingerekvationen" title="Schrödingerekvationen – švédština" lang="sv" hreflang="sv" data-title="Schrödingerekvationen" data-language-autonym="Svenska" data-language-local-name="švédština" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%9A%E0%AF%81%E0%AE%B0%E0%AF%8B%E0%AE%9F%E0%AE%BF%E0%AE%99%E0%AF%8D%E0%AE%95%E0%AE%B0%E0%AF%8D_%E0%AE%9A%E0%AE%AE%E0%AE%A9%E0%AF%8D%E0%AE%AA%E0%AE%BE%E0%AE%9F%E0%AF%81" title="சுரோடிங்கர் சமன்பாடு – tamilština" lang="ta" hreflang="ta" data-title="சுரோடிங்கர் சமன்பாடு" data-language-autonym="தமிழ்" data-language-local-name="tamilština" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%AA%E0%B8%A1%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%8A%E0%B9%80%E0%B8%A3%E0%B8%AD%E0%B8%94%E0%B8%B4%E0%B8%87%E0%B9%80%E0%B8%87%E0%B8%AD%E0%B8%A3%E0%B9%8C" title="สมการชเรอดิงเงอร์ – thajština" lang="th" hreflang="th" data-title="สมการชเรอดิงเงอร์" data-language-autonym="ไทย" data-language-local-name="thajština" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Ekwasyong_Schr%C3%B6dinger" title="Ekwasyong Schrödinger – tagalog" lang="tl" hreflang="tl" data-title="Ekwasyong Schrödinger" data-language-autonym="Tagalog" data-language-local-name="tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Schr%C3%B6dinger_denklemi" title="Schrödinger denklemi – turečtina" lang="tr" hreflang="tr" data-title="Schrödinger denklemi" data-language-autonym="Türkçe" data-language-local-name="turečtina" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%A8%D1%80%D3%A9%D0%B4%D0%B8%D0%BD%D0%B3%D0%B5%D1%80_%D1%82%D0%B8%D0%B3%D0%B5%D0%B7%D0%BB%D3%99%D0%BC%D3%99%D1%81%D0%B5" title="Шрөдингер тигезләмәсе – tatarština" lang="tt" hreflang="tt" data-title="Шрөдингер тигезләмәсе" data-language-autonym="Татарча / tatarça" data-language-local-name="tatarština" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A0%D1%96%D0%B2%D0%BD%D1%8F%D0%BD%D0%BD%D1%8F_%D0%A8%D1%80%D0%B5%D0%B4%D1%96%D0%BD%D0%B3%D0%B5%D1%80%D0%B0" title="Рівняння Шредінгера – ukrajinština" lang="uk" hreflang="uk" data-title="Рівняння Шредінгера" data-language-autonym="Українська" data-language-local-name="ukrajinština" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Shredinger_tenglamasi" title="Shredinger tenglamasi – uzbečtina" lang="uz" hreflang="uz" data-title="Shredinger tenglamasi" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="uzbečtina" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Ph%C6%B0%C6%A1ng_tr%C3%ACnh_Schr%C3%B6dinger" title="Phương trình Schrödinger – vietnamština" lang="vi" hreflang="vi" data-title="Phương trình Schrödinger" data-language-autonym="Tiếng Việt" data-language-local-name="vietnamština" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E8%96%9B%E5%AE%9A%E8%B0%94%E6%96%B9%E7%A8%8B" title="薛定谔方程 – čínština (dialekty Wu)" lang="wuu" hreflang="wuu" data-title="薛定谔方程" data-language-autonym="吴语" data-language-local-name="čínština (dialekty Wu)" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%A9%D7%A8%D7%A2%D7%93%D7%99%D7%A0%D7%92%D7%A2%D7%A8_%D7%92%D7%9C%D7%99%D7%99%D7%9B%D7%95%D7%A0%D7%92" title="שרעדינגער גלייכונג – jidiš" lang="yi" hreflang="yi" data-title="שרעדינגער גלייכונג" data-language-autonym="ייִדיש" data-language-local-name="jidiš" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zh badge-Q17437798 badge-goodarticle mw-list-item" title="dobrý článek"><a href="https://zh.wikipedia.org/wiki/%E8%96%9B%E5%AE%9A%E8%B0%94%E6%96%B9%E7%A8%8B" title="薛定谔方程 – čínština" lang="zh" hreflang="zh" data-title="薛定谔方程" data-language-autonym="中文" data-language-local-name="čínština" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E8%96%9B%E5%AE%9A%E8%AB%A4%E6%96%B9%E7%A8%8B" title="薛定諤方程 – čínština (klasická)" lang="lzh" hreflang="lzh" data-title="薛定諤方程" data-language-autonym="文言" data-language-local-name="čínština (klasická)" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E8%96%9B%E5%AE%9A%E8%AB%A4%E6%96%B9%E7%A8%8B%E5%BC%8F" title="薛定諤方程式 – kantonština" lang="yue" hreflang="yue" data-title="薛定諤方程式" data-language-autonym="粵語" data-language-local-name="kantonština" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q165498#sitelinks-wikipedia" title="Editovat mezijazykové odkazy" class="wbc-editpage">Upravit odkazy</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Jmenné prostory"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Schr%C3%B6dingerova_rovnice" title="Zobrazit obsahovou stránku [c]" accesskey="c"><span>Článek</span></a></li><li id="ca-talk" class="new vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Diskuse:Schr%C3%B6dingerova_rovnice&action=edit&redlink=1" rel="discussion" class="new" title="Diskuse ke stránce (stránka neexistuje) [t]" accesskey="t"><span>Diskuse</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Změnit variantu jazyka" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">čeština</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Zobrazení"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Schr%C3%B6dingerova_rovnice"><span>Číst</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Schr%C3%B6dingerova_rovnice&veaction=edit" title="Editovat tuto stránku [v]" accesskey="v"><span>Editovat</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Schr%C3%B6dingerova_rovnice&action=edit" title="Editovat zdrojový kód této stránky [e]" accesskey="e"><span>Editovat zdroj</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Schr%C3%B6dingerova_rovnice&action=history" title="Starší verze této stránky. [h]" accesskey="h"><span>Zobrazit historii</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Nástroje ke stránce"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Nástroje" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Nástroje</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Nástroje</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">přesunout do postranního panelu</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">skrýt</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Další možnosti" > <div class="vector-menu-heading"> Akce </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Schr%C3%B6dingerova_rovnice"><span>Číst</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Schr%C3%B6dingerova_rovnice&veaction=edit" title="Editovat tuto stránku [v]" accesskey="v"><span>Editovat</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Schr%C3%B6dingerova_rovnice&action=edit" title="Editovat zdrojový kód této stránky [e]" accesskey="e"><span>Editovat zdroj</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Schr%C3%B6dingerova_rovnice&action=history"><span>Zobrazit historii</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Obecné </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Speci%C3%A1ln%C3%AD:Co_odkazuje_na/Schr%C3%B6dingerova_rovnice" title="Seznam všech wikistránek, které sem odkazují [j]" accesskey="j"><span>Odkazuje sem</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Speci%C3%A1ln%C3%AD:Souvisej%C3%ADc%C3%AD_zm%C4%9Bny/Schr%C3%B6dingerova_rovnice" rel="nofollow" title="Nedávné změny stránek, na které je odkazováno [k]" accesskey="k"><span>Související změny</span></a></li><li id="t-upload" class="mw-list-item"><a href="//commons.wikimedia.org/wiki/Special:UploadWizard?uselang=cs" title="Nahrát obrázky či jiná multimédia [u]" accesskey="u"><span>Načíst soubor</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Speci%C3%A1ln%C3%AD:Speci%C3%A1ln%C3%AD_str%C3%A1nky" title="Seznam všech speciálních stránek [q]" accesskey="q"><span>Speciální stránky</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Schr%C3%B6dingerova_rovnice&oldid=24172121" title="Trvalý odkaz na současnou verzi této stránky"><span>Trvalý odkaz</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Schr%C3%B6dingerova_rovnice&action=info" title="Více informací o této stránce"><span>Informace o stránce</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1ln%C3%AD:Citovat&page=Schr%C3%B6dingerova_rovnice&id=24172121&wpFormIdentifier=titleform" title="Informace o tom, jak citovat tuto stránku"><span>Citovat stránku</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1ln%C3%AD:UrlShortener&url=https%3A%2F%2Fcs.wikipedia.org%2Fwiki%2FSchr%25C3%25B6dingerova_rovnice"><span>Získat zkrácené URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1ln%C3%AD:QrCode&url=https%3A%2F%2Fcs.wikipedia.org%2Fwiki%2FSchr%25C3%25B6dingerova_rovnice"><span>Stáhnout QR kód</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Tisk/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1ln%C3%AD:Kniha&bookcmd=book_creator&referer=Schr%C3%B6dingerova+rovnice"><span>Vytvořit knihu</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1ln%C3%AD:DownloadAsPdf&page=Schr%C3%B6dingerova_rovnice&action=show-download-screen"><span>Stáhnout jako PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Schr%C3%B6dingerova_rovnice&printable=yes" title="Tato stránka v podobě vhodné k tisku [p]" accesskey="p"><span>Verze k tisku</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Na jiných projektech </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Schr%C3%B6dinger_equation" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q165498" title="Odkaz na propojenou položku datového úložiště [g]" accesskey="g"><span>Položka Wikidat</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Nástroje ke stránce"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Vzhled"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Vzhled</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">přesunout do postranního panelu</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">skrýt</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Z Wikipedie, otevřené encyklopedie</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="cs" dir="ltr"><p><b>Schrödingerova rovnice</b> je <a href="/wiki/Pohybov%C3%A1_rovnice" title="Pohybová rovnice">pohybová rovnice</a> nerelativistické <a href="/wiki/Kvantov%C3%A1_fyzika" title="Kvantová fyzika">kvantové teorie</a>. V roce <a href="/wiki/1925" title="1925">1925</a> ji formuloval <a href="/wiki/Erwin_Schr%C3%B6dinger" title="Erwin Schrödinger">Erwin Schrödinger</a>. Popisuje časový a prostorový vývoj <a href="/wiki/Vlnov%C3%A1_funkce" title="Vlnová funkce">vlnové funkce</a> <a href="/wiki/%C4%8C%C3%A1stice" title="Částice">částice</a>, která se <a href="/wiki/Mechanick%C3%BD_pohyb" title="Mechanický pohyb">pohybuje</a> v <a href="/wiki/Fyzik%C3%A1ln%C3%AD_pole" title="Fyzikální pole">poli sil</a>. Tato rovnice má v <a href="/wiki/Kvantov%C3%A1_mechanika" title="Kvantová mechanika">kvantové mechanice</a> stejné postavení jako <a href="/wiki/Newtonovy_pohybov%C3%A9_z%C3%A1kony" title="Newtonovy pohybové zákony">druhý Newtonův zákon</a> v <a href="/wiki/Klasick%C3%A1_mechanika" title="Klasická mechanika">klasické mechanice</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Odvození_rovnice"><span id="Odvozen.C3.AD_rovnice"></span>Odvození rovnice</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dingerova_rovnice&veaction=edit&section=1" title="Editace sekce: Odvození rovnice" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Schr%C3%B6dingerova_rovnice&action=edit&section=1" title="Editovat zdrojový kód sekce Odvození rovnice"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Schrödingerova rovnice ve své době přirozeně vyplynula z předchozích výzkumů. </p><p>V roce <a href="/wiki/1905" title="1905">1905</a> došel <a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a> při studiu <a href="/wiki/Fotoelektrick%C3%BD_jev" title="Fotoelektrický jev">fotoelektrického jevu</a> ke vztahu </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=hf\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi>h</mi> <mi>f</mi> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=hf\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6293994cd4801bc2e58aa92ab156216de6946002" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.137ex; height:2.509ex;" alt="{\displaystyle E=hf\;}"></span>,</dd></dl> <p>který vyjadřuje vztah mezi <a href="/wiki/Energie" title="Energie">energií</a> <i>E</i> a <a href="/wiki/Frekvence" title="Frekvence">frekvencí</a> <i>f</i> <a href="/wiki/Kvantum" title="Kvantum">kvanta</a> <a href="/wiki/Elektromagnetick%C3%A9_z%C3%A1%C5%99en%C3%AD" title="Elektromagnetické záření">elektromagnetického záření</a> (<a href="/wiki/Foton" title="Foton">fotonu</a>), přičemž <i>h</i> označuje <a href="/wiki/Planckova_konstanta" title="Planckova konstanta">Planckovu konstantu</a>. </p><p>V roce <a href="/wiki/1924" title="1924">1924</a> přišel <a href="/wiki/Louis_de_Broglie" title="Louis de Broglie">Louis de Broglie</a> s <a href="/wiki/Hypot%C3%A9za" title="Hypotéza">hypotézou</a>, podle které přísluší <i>všem</i> <a href="/wiki/%C4%8C%C3%A1stice" title="Částice">částicím</a> (nejen fotonům) <a href="/wiki/Vlnov%C3%A1_funkce" title="Vlnová funkce">vlnová funkce</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span>, přičemž vztah mezi <a href="/wiki/Hybnost" title="Hybnost">hybností</a> částice a <a href="/wiki/Vlnov%C3%A1_d%C3%A9lka" title="Vlnová délka">vlnovou délkou</a> vlny, která byla částici přiřazena (tzv. <b><a href="/wiki/De_Broglieova_vlna" title="De Broglieova vlna">de Broglieho vlna</a></b>) vyjádřil vztahem </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p=h/\lambda \;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>=</mo> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>λ<!-- λ --></mi> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p=h/\lambda \;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90965a07ea3255c9d83487f92d61a19744301056" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:8.859ex; height:2.843ex;" alt="{\displaystyle p=h/\lambda \;}"></span>.</dd></dl> <p>De Broglie pomocí těchto <a href="/wiki/Vln%C4%9Bn%C3%AD" title="Vlnění">vln</a> také ukázal, že Einsteinův vztah <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=hf}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi>h</mi> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=hf}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f39fac3593bb1e2dec0282c112c4dff7a99007f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.492ex; height:2.509ex;" alt="{\displaystyle E=hf}"></span> platí nejen pro fotony, ale pro všechny částice. </p><p>Pro energii a hybnost lze pomocí <a href="/wiki/%C3%9Ahlov%C3%A1_frekvence" title="Úhlová frekvence">úhlové frekvence</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega =2\pi f\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ω<!-- ω --></mi> <mo>=</mo> <mn>2</mn> <mi>π<!-- π --></mi> <mi>f</mi> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega =2\pi f\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b110a0b8fdb5dde2ddd3cb47479d82b56e17fc79" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.962ex; height:2.509ex;" alt="{\displaystyle \omega =2\pi f\;}"></span> a <a href="/wiki/Vlnov%C3%A9_%C4%8D%C3%ADslo" title="Vlnové číslo">vlnového čísla</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k=2\pi /\lambda \;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mo>=</mo> <mn>2</mn> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>λ<!-- λ --></mi> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k=2\pi /\lambda \;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b35033f8f2c6f20dbd39d8d18306d2fc044777dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.967ex; height:2.843ex;" alt="{\displaystyle k=2\pi /\lambda \;}"></span>, kde <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \hbar }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \hbar }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de68de3a92517953436c93b5a76461d49160cc41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.306ex; height:2.176ex;" alt="{\displaystyle \hbar }"></span> je <a href="/wiki/Planckova_konstanta" title="Planckova konstanta">redukovaná Planckova konstanta</a> získat vztahy </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=\hbar \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=\hbar \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb16565f02349106457258633097e0d0414a8e2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.626ex; height:2.176ex;" alt="{\displaystyle E=\hbar \omega }"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {p} =\hbar \mathbf {k} \;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>=</mo> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {p} =\hbar \mathbf {k} \;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73189af80c4decdca96caf2a71724dcbd3e678ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.946ex; height:2.509ex;" alt="{\displaystyle \mathbf {p} =\hbar \mathbf {k} \;}"></span>.</dd></dl> <p><br /> Schrödinger vyšel z předpokladu, že pohyb částice můžeme spojovat s de Broglieho vlnou. Vlnu šířící se ve směru osy <i>x</i> lze popsat <a href="/wiki/Vlnov%C3%A1_rovnice" title="Vlnová rovnice">vlnovou rovnicí</a>, jejíž řešení lze vyjádřit jako </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi =A\mathrm {e} ^{-\mathrm {i} \omega \left(t-{\frac {x}{v}}\right)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo>=</mo> <mi>A</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mi>ω<!-- ω --></mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mi>v</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi =A\mathrm {e} ^{-\mathrm {i} \omega \left(t-{\frac {x}{v}}\right)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/521365ad84a2fc8c322e15c2cbba4c097e545cb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:15.65ex; height:3.009ex;" alt="{\displaystyle \Psi =A\mathrm {e} ^{-\mathrm {i} \omega \left(t-{\frac {x}{v}}\right)}}"></span>,</dd></dl> <p>kde <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48eff443f9de7a985bb94ca3bde20813ea737be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:1.676ex;" alt="{\displaystyle \omega }"></span> je <a href="/wiki/%C3%9Ahlov%C3%A1_frekvence" title="Úhlová frekvence">úhlová frekvence</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> je <a href="/wiki/F%C3%A1zov%C3%A1_rychlost" title="Fázová rychlost">fázová rychlost</a> a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> je <a href="/wiki/Integr%C3%A1l" title="Integrál">integrační konstanta</a>. Toto řešení lze také přepsat do tvaru </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi =A\mathrm {e} ^{-{\frac {\mathrm {i} }{\hbar }}\left(Et-px\right)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo>=</mo> <mi>A</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>E</mi> <mi>t</mi> <mo>−<!-- − --></mo> <mi>p</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi =A\mathrm {e} ^{-{\frac {\mathrm {i} }{\hbar }}\left(Et-px\right)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2f175df5e3ce51edf63a0b74ad0f1929a86fefc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:16.953ex; height:3.509ex;" alt="{\displaystyle \Psi =A\mathrm {e} ^{-{\frac {\mathrm {i} }{\hbar }}\left(Et-px\right)}}"></span>.</dd></dl> <p>Tento vztah popisuje částici s celkovou energií <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> a hybností <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>, která se pohybuje ve směru osy <i>x</i>. Označujeme ji také jako <i>vlnovou funkci <a href="/wiki/Voln%C3%A1_%C4%8D%C3%A1stice" title="Volná částice">volné částice</a></i>. Tento vztah však také představuje řešení Schrödingerovy rovnice, jejíž tvar z něj můžeme získat. </p><p>Celkovou energii (nerelativistické) částice v <a href="/wiki/Fyzik%C3%A1ln%C3%AD_pole" title="Fyzikální pole">potenciálním poli</a> lze zapsat jako </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=E_{k}+E_{p}={\frac {p^{2}}{2m}}+V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=E_{k}+E_{p}={\frac {p^{2}}{2m}}+V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3f4b45e30f2edc6ac4be5108ac8a01cefba5290" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:25.058ex; height:5.676ex;" alt="{\displaystyle E=E_{k}+E_{p}={\frac {p^{2}}{2m}}+V}"></span>,</dd></dl> <p>kde <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7587849b44d775263271e89499f4327eeac5dc81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.804ex; height:2.509ex;" alt="{\displaystyle E_{k}}"></span> je <a href="/wiki/Kinetick%C3%A1_energie" title="Kinetická energie">kinetická energie</a> částice, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V=E_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>=</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V=E_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d18299703e61d86d8f24c11290dfc8230195e5fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.66ex; height:2.843ex;" alt="{\displaystyle V=E_{p}}"></span> je <a href="/wiki/Potenci%C3%A1ln%C3%AD_energie" title="Potenciální energie">potenciální energie</a> částice (v kvantové mechanice je zvykem potenciální energii značit jako <i>V</i>, kinetickou energii jako <i>T</i>), <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> je <a href="/wiki/Hybnost" title="Hybnost">hybnost</a> a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> je <a href="/wiki/Hmotnost" title="Hmotnost">hmotnost</a> částice. </p><p>Derivací vlnové funkce volné částice získáme následující vztahy </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial ^{2}\Psi }{\partial x^{2}}}=-{\frac {p^{2}}{\hbar ^{2}}}\Psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial ^{2}\Psi }{\partial x^{2}}}=-{\frac {p^{2}}{\hbar ^{2}}}\Psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1aa814f7f78b33cf43414d1dc174122ef4a53f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:14.969ex; height:6.009ex;" alt="{\displaystyle {\frac {\partial ^{2}\Psi }{\partial x^{2}}}=-{\frac {p^{2}}{\hbar ^{2}}}\Psi }"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial \Psi }{\partial t}}=-\mathrm {i} {\frac {E}{\hbar }}\Psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>E</mi> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mfrac> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial \Psi }{\partial t}}=-\mathrm {i} {\frac {E}{\hbar }}\Psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/455815215826858b6cc146cc2093b67d03d44726" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:13.936ex; height:5.509ex;" alt="{\displaystyle {\frac {\partial \Psi }{\partial t}}=-\mathrm {i} {\frac {E}{\hbar }}\Psi }"></span>.</dd></dl> <p>Dosazením do výrazu pro celkovou energii získáme </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\Psi =\mathrm {i} \hbar {\frac {\partial \Psi }{\partial t}}={\frac {p^{2}}{2m}}\Psi +V\Psi =-{\frac {\hbar ^{2}}{2m}}{\frac {\partial ^{2}\Psi }{\partial x^{2}}}+V\Psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </mfrac> </mrow> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo>+</mo> <mi>V</mi> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>V</mi> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\Psi =\mathrm {i} \hbar {\frac {\partial \Psi }{\partial t}}={\frac {p^{2}}{2m}}\Psi +V\Psi =-{\frac {\hbar ^{2}}{2m}}{\frac {\partial ^{2}\Psi }{\partial x^{2}}}+V\Psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1d4f8e7dc3020b527451904f84dd160a900cbca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:48.402ex; height:6.009ex;" alt="{\displaystyle E\Psi =\mathrm {i} \hbar {\frac {\partial \Psi }{\partial t}}={\frac {p^{2}}{2m}}\Psi +V\Psi =-{\frac {\hbar ^{2}}{2m}}{\frac {\partial ^{2}\Psi }{\partial x^{2}}}+V\Psi }"></span>.</dd></dl> <p>Časově závislý tvar jednorozměrné Schrödingerovy rovnice lze tedy zapsat jako </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {i} \hbar {\frac {\partial \Psi }{\partial t}}=-{\frac {\hbar ^{2}}{2m}}{\frac {\partial ^{2}\Psi }{\partial x^{2}}}+V\Psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>V</mi> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {i} \hbar {\frac {\partial \Psi }{\partial t}}=-{\frac {\hbar ^{2}}{2m}}{\frac {\partial ^{2}\Psi }{\partial x^{2}}}+V\Psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9eee59934184198c929d5ba7447d0344c5156361" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:26.339ex; height:6.009ex;" alt="{\displaystyle \mathrm {i} \hbar {\frac {\partial \Psi }{\partial t}}=-{\frac {\hbar ^{2}}{2m}}{\frac {\partial ^{2}\Psi }{\partial x^{2}}}+V\Psi }"></span>.</dd></dl> <p><br /> V trojrozměrném prostoru má časová Schrödingerova rovnice tvar </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {i} \hbar {\frac {\partial \psi }{\partial t}}=-{\frac {\hbar ^{2}}{2m}}{\nabla ^{2}}\psi +V\psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>ψ<!-- ψ --></mi> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="normal">∇<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mi>ψ<!-- ψ --></mi> <mo>+</mo> <mi>V</mi> <mi>ψ<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {i} \hbar {\frac {\partial \psi }{\partial t}}=-{\frac {\hbar ^{2}}{2m}}{\nabla ^{2}}\psi +V\psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee2b6e41cbabcdc6d24fdd007a88308b0e3fa8b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:25.21ex; height:5.843ex;" alt="{\displaystyle \mathrm {i} \hbar {\frac {\partial \psi }{\partial t}}=-{\frac {\hbar ^{2}}{2m}}{\nabla ^{2}}\psi +V\psi }"></span>,</dd></dl> <p>kde <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32769037c408874e1890f77554c65f39c523ebe2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \Delta }"></span> je <a href="/wiki/Laplace%C5%AFv_oper%C3%A1tor" title="Laplaceův operátor">Laplaceův operátor</a>. </p><p><br /> Schrödinger pomocí této rovnice spočítal <a href="/wiki/Spektr%C3%A1ln%C3%AD_%C4%8D%C3%A1ra" title="Spektrální čára">spektrální čáry</a> <a href="/wiki/Vod%C3%ADk" title="Vodík">vodíku</a>, kdy popsal <a href="/wiki/Elektron" title="Elektron">elektron</a> jako vlnu nacházející se v <a href="/wiki/Potenci%C3%A1lov%C3%A1_j%C3%A1ma" title="Potenciálová jáma">potenciálové jámě</a> vytvořené <a href="/wiki/Proton" title="Proton">protonem</a> (tedy <a href="/wiki/Atomov%C3%A9_j%C3%A1dro" title="Atomové jádro">jádrem atomu</a>). Tento výpočet souhlasil s <a href="/wiki/Experiment" title="Experiment">experimenty</a>, výsledky <a href="/wiki/Bohr%C5%AFv_model_atomu" title="Bohrův model atomu">Bohrova modelu atomu</a> a také s <a href="/wiki/Maticov%C3%A1_kvantov%C3%A1_mechanika" title="Maticová kvantová mechanika">maticovou mechanikou</a> <a href="/wiki/Werner_Heisenberg" title="Werner Heisenberg">Wernera Heisenberga</a>, přičemž Schrödinger nepotřeboval uvažovat s <a href="/w/index.php?title=Nekomutativnost&action=edit&redlink=1" class="new" title="Nekomutativnost (stránka neexistuje)">nekomutativností</a> <a href="/w/index.php?title=Pozorovateln%C3%A1_veli%C4%8Dina&action=edit&redlink=1" class="new" title="Pozorovatelná veličina (stránka neexistuje)">pozorovatelných</a>, jak tomu bylo právě v maticové mechanice. Schrödinger svou práci o vlnové funkci a spektrálních čarách publikoval v roce <a href="/wiki/1926" title="1926">1926</a>. </p><p>Schrödingerova rovnice určuje chování vlnové funkce, avšak neurčuje, co vlastně vlnová funkce je. Interpretaci vlnové funkce jako <a href="/wiki/Amplituda_pravd%C4%9Bpodobnosti" title="Amplituda pravděpodobnosti">amplitudy pravděpodobnosti</a> předložil v roce <a href="/wiki/1926" title="1926">1926</a> <a href="/wiki/Max_Born" title="Max Born">Max Born</a>. Jsou však i jiné <a href="/wiki/Interpretace_kvantov%C3%A9_mechaniky" title="Interpretace kvantové mechaniky">interpretace kvantové mechaniky</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Obecné_vyjádření"><span id="Obecn.C3.A9_vyj.C3.A1d.C5.99en.C3.AD"></span>Obecné vyjádření</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dingerova_rovnice&veaction=edit&section=2" title="Editace sekce: Obecné vyjádření" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Schr%C3%B6dingerova_rovnice&action=edit&section=2" title="Editovat zdrojový kód sekce Obecné vyjádření"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>V obecném tvaru se Schrödingerova rovnice zapisuje jako </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {H}}(t)\Psi (\mathbf {r} ,t)=\mathrm {i} \hbar {\frac {\partial \Psi (\mathbf {r} ,t)}{\partial t}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>H</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {H}}(t)\Psi (\mathbf {r} ,t)=\mathrm {i} \hbar {\frac {\partial \Psi (\mathbf {r} ,t)}{\partial t}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd3601232884cfe7c182bedb9faa906717766877" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:25.105ex; height:5.843ex;" alt="{\displaystyle {\hat {H}}(t)\Psi (\mathbf {r} ,t)=\mathrm {i} \hbar {\frac {\partial \Psi (\mathbf {r} ,t)}{\partial t}}}"></span>,</dd></dl> <p>kde <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {H}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>H</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {H}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bb06de5217295d7fbdbf68fb9c5309a513fc99e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.843ex;" alt="{\displaystyle {\hat {H}}}"></span> je časově závislý <a href="/wiki/Hamilton%C5%AFv_oper%C3%A1tor" title="Hamiltonův operátor">Hamiltonův operátor (hamiltonián)</a> popisující pohyb částice v časově závislých vnějších polích. Ten vyjadřuje ve formě <a href="/wiki/Oper%C3%A1tor" title="Operátor">operátoru</a> celkovou <a href="/wiki/Energie" title="Energie">energii</a> částice jako součet <a href="/wiki/Kinetick%C3%A1_energie" title="Kinetická energie">kinetické</a> a <a href="/wiki/Potenci%C3%A1ln%C3%AD_energie" title="Potenciální energie">potenciální</a> energie. Výraz na pravé straně vyjadřuje časovou změnu vlnové funkce. Tato obecná Schrödingerova rovnice bývá také označována jako <b>časová</b> nebo <b>nestacionární</b>. </p><p>Obecné nestacionární řešení časové Schrödingerovy rovnice s časově nezávislým hamiltoniánem lze vyjádřit prostřednictvím rozvoje do ortonormálních stacionárních stavů, tzn. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi (\mathbf {r} ,t)=\sum _{n}c_{n}\psi _{n}(\mathbf {r} )\mathrm {e} ^{-{\frac {\mathrm {i} }{\hbar }}E_{n}t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munder> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mfrac> </mrow> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>t</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi (\mathbf {r} ,t)=\sum _{n}c_{n}\psi _{n}(\mathbf {r} )\mathrm {e} ^{-{\frac {\mathrm {i} }{\hbar }}E_{n}t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ba753f31f92f9962812cd8440f38719a831ad75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:28.203ex; height:6.176ex;" alt="{\displaystyle \Psi (\mathbf {r} ,t)=\sum _{n}c_{n}\psi _{n}(\mathbf {r} )\mathrm {e} ^{-{\frac {\mathrm {i} }{\hbar }}E_{n}t}}"></span>,</dd></dl> <p>kde <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b7e944bcb1be88e9a6a940638f2adce0ec4211a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.225ex; height:2.009ex;" alt="{\displaystyle c_{n}}"></span> jsou časově nezávislá <a href="/wiki/Komplexn%C3%AD_%C4%8D%C3%ADslo" title="Komplexní číslo">komplexní čísla</a> určená počáteční podmínkou <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi (\mathbf {r} ,t=t_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo>=</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi (\mathbf {r} ,t=t_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8f60bf8e051c2d9900f8882fe7943c6d3090656" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.585ex; height:2.843ex;" alt="{\displaystyle \Psi (\mathbf {r} ,t=t_{0})}"></span>. <a href="/wiki/St%C5%99edn%C3%AD_hodnota" title="Střední hodnota">Střední hodnota</a> energie těchto stavů je na čase nezávislá. </p> <div class="mw-heading mw-heading2"><h2 id="Stacionární_Schrödingerova_rovnice"><span id="Stacion.C3.A1rn.C3.AD_Schr.C3.B6dingerova_rovnice"></span>Stacionární Schrödingerova rovnice</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dingerova_rovnice&veaction=edit&section=3" title="Editace sekce: Stacionární Schrödingerova rovnice" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Schr%C3%B6dingerova_rovnice&action=edit&section=3" title="Editovat zdrojový kód sekce Stacionární Schrödingerova rovnice"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Zvláštním případem Schrödingerovy rovnice je tzv. <b>stacionární</b> (<b>časově nezávislá</b>, <b>bezčasová</b> nebo <b>nečasová</b>) <b>Schrödingerova rovnice</b>, kterou lze získat za předpokladu, že vývoj systému je popsán Schrödingerovou rovnicí, v níž je <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {H}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>H</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {H}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bb06de5217295d7fbdbf68fb9c5309a513fc99e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.843ex;" alt="{\displaystyle {\hat {H}}}"></span> <a href="/wiki/%C4%8Cas" title="Čas">časově</a> nezávislý hamiltonián popisující pohyb částice v časově nezávislých vnějších polích. </p><p>V takovém případě lze provést <a href="/wiki/Separace_prom%C4%9Bnn%C3%BDch" title="Separace proměnných">separaci proměnných</a> a hledat vlnovou funkci ve tvaru </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi (\mathbf {r} ,t)=\psi (\mathbf {r} )\varphi (t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi (\mathbf {r} ,t)=\psi (\mathbf {r} )\varphi (t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d13a2e1dcf350309077eab21e5b2f64a6c9ed39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.285ex; height:2.843ex;" alt="{\displaystyle \Psi (\mathbf {r} ,t)=\psi (\mathbf {r} )\varphi (t)}"></span>.</dd></dl> <p>S tímto předpokladem dostaneme po dosazení do Schrödingerovy rovnice: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {i} \hbar {\frac {\frac {\mathrm {d} \varphi (t)}{\mathrm {d} t}}{\varphi (t)}}={\frac {{\hat {H}}\psi (\mathbf {r} )}{\psi (\mathbf {r} )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> <mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>H</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {i} \hbar {\frac {\frac {\mathrm {d} \varphi (t)}{\mathrm {d} t}}{\varphi (t)}}={\frac {{\hat {H}}\psi (\mathbf {r} )}{\psi (\mathbf {r} )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2dfa4a41fbb7578b4d3495e2439a0cb026a9f8f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:17.91ex; height:7.843ex;" alt="{\displaystyle \mathrm {i} \hbar {\frac {\frac {\mathrm {d} \varphi (t)}{\mathrm {d} t}}{\varphi (t)}}={\frac {{\hat {H}}\psi (\mathbf {r} )}{\psi (\mathbf {r} )}}}"></span>.</dd></dl> <p>Obě strany výsledné rovnice se musí rovnat <a href="/wiki/Konstanta" title="Konstanta">konstantě</a>, kterou označíme <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span>. Tato konstanta má <a href="/wiki/Fyzik%C3%A1ln%C3%AD_rozm%C4%9Br_veli%C4%8Diny" title="Fyzikální rozměr veličiny">rozměr</a> <a href="/wiki/Energie" title="Energie">energie</a>. Za uvedených předpokladů tak dostáváme dvě rovnice, přičemž první z nich se označuje jako <i>stacionární Schrödingerova rovnice</i> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {H}}\psi (\mathbf {r} )=E\psi (\mathbf {r} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>H</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>E</mi> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {H}}\psi (\mathbf {r} )=E\psi (\mathbf {r} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c69ca8d7736d45f762198b31b31155747d7011a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.787ex; height:3.343ex;" alt="{\displaystyle {\hat {H}}\psi (\mathbf {r} )=E\psi (\mathbf {r} )}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {i} \hbar {\frac {\mathrm {d} \varphi (t)}{\mathrm {d} t}}=E\varphi (t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>E</mi> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {i} \hbar {\frac {\mathrm {d} \varphi (t)}{\mathrm {d} t}}=E\varphi (t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bcdaa1c612f6a3c0f207052bee30535266629dcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:17.294ex; height:5.843ex;" alt="{\displaystyle \mathrm {i} \hbar {\frac {\mathrm {d} \varphi (t)}{\mathrm {d} t}}=E\varphi (t)}"></span>.</dd></dl> <p>Rozepsáním hamiltoniánu lze získat: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \Psi +{\frac {2m}{\hbar ^{2}}}(E-V)\Psi =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Δ<!-- Δ --></mi> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>m</mi> </mrow> <msup> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>E</mi> <mo>−<!-- − --></mo> <mi>V</mi> <mo stretchy="false">)</mo> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta \Psi +{\frac {2m}{\hbar ^{2}}}(E-V)\Psi =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8c7955afffa8bd87a03e0d56a38a4f94485d431" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:24.905ex; height:5.509ex;" alt="{\displaystyle \Delta \Psi +{\frac {2m}{\hbar ^{2}}}(E-V)\Psi =0}"></span>.</dd></dl> <p><br /> Vzhledem k tomu, že časově nezávislý hamiltonián se vyskytuje např. u popisu chování <a href="/wiki/Elektron" title="Elektron">elektronu</a> v <a href="/wiki/Atom" title="Atom">atomu</a>, představuje stacionární Schrödingerova rovnice velmi významnou rovnici kvantové mechaniky. </p> <div class="mw-heading mw-heading3"><h3 id="Stacionární_stav"><span id="Stacion.C3.A1rn.C3.AD_stav"></span>Stacionární stav</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dingerova_rovnice&veaction=edit&section=4" title="Editace sekce: Stacionární stav" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Schr%C3%B6dingerova_rovnice&action=edit&section=4" title="Editovat zdrojový kód sekce Stacionární stav"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Podle stacionární rovnice jsou energie <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> <a href="/wiki/Vlastn%C3%AD_vektory_a_vlastn%C3%AD_%C4%8D%C3%ADsla" title="Vlastní vektory a vlastní čísla">vlastními čísly</a> hamiltoniánu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {H}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>H</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {H}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6bb06de5217295d7fbdbf68fb9c5309a513fc99e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.843ex;" alt="{\displaystyle {\hat {H}}}"></span> (hovoří se též o <b>vlastních energiích</b>). K určení vlastních energií lze <a href="/wiki/Integr%C3%A1l" title="Integrál">integrovat</a> druhou rovnici, čímž získáme </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{n}(t)=N\mathrm {e} ^{-{\frac {\mathrm {i} }{\hbar }}E_{n}t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>N</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mfrac> </mrow> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>t</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{n}(t)=N\mathrm {e} ^{-{\frac {\mathrm {i} }{\hbar }}E_{n}t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7194989e2c3cfe34a1746997d498e1e4c973001f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.45ex; height:4.009ex;" alt="{\displaystyle \varphi _{n}(t)=N\mathrm {e} ^{-{\frac {\mathrm {i} }{\hbar }}E_{n}t}}"></span>,</dd></dl> <p>kde <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> je normovací konstanta, kterou lze obvykle položit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85982022b9eb1f295b44de55023687a490db0a39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.325ex; height:2.176ex;" alt="{\displaystyle N=1}"></span>. </p><p>Stavy s vlastními energiemi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad6b82f2a00af6c9efd4c16d4e99329605645c0c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.934ex; height:2.509ex;" alt="{\displaystyle E_{n}}"></span> lze tedy popsat vlnovými funkcemi </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi _{n}(\mathbf {r} ,t)=\psi _{n}(\mathbf {r} )\mathrm {e} ^{-{\frac {\mathrm {i} }{\hbar }}E_{n}t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mi class="MJX-variant">ℏ<!-- ℏ --></mi> </mfrac> </mrow> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>t</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi _{n}(\mathbf {r} ,t)=\psi _{n}(\mathbf {r} )\mathrm {e} ^{-{\frac {\mathrm {i} }{\hbar }}E_{n}t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54cefec1b0ed0e5becf5b6ca9dd3ab1378cbf1ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.454ex; height:4.009ex;" alt="{\displaystyle \Psi _{n}(\mathbf {r} ,t)=\psi _{n}(\mathbf {r} )\mathrm {e} ^{-{\frac {\mathrm {i} }{\hbar }}E_{n}t}}"></span>.</dd></dl> <p>Takové stavy se označují jako <b>stacionární stavy</b>. Stacionární stavy jsou zvláštností kvantové fyziky. V <a href="/wiki/Klasick%C3%A1_mechanika" title="Klasická mechanika">klasické mechanice</a> se sice také vyskytují (např. nehybný <a href="/wiki/Hmotn%C3%BD_bod" title="Hmotný bod">hmotný bod</a>), jedná se však vždy o případy z hlediska klasické mechaniky nezajímavé. </p><p><a href="/wiki/Hustota_pravd%C4%9Bpodobnosti" title="Hustota pravděpodobnosti">Hustota pravděpodobnosti</a> stacionárního stavu na čase nezávisí, tzn. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\left|\Psi _{n}(\mathbf {r} ,t)\right|}^{2}={\left|\psi _{n}(\mathbf {r} )\right|}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mrow> <msub> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mrow> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>|</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\left|\Psi _{n}(\mathbf {r} ,t)\right|}^{2}={\left|\psi _{n}(\mathbf {r} )\right|}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8789714f70329a9eab147343e3f8120bc21fd9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.249ex; height:3.343ex;" alt="{\displaystyle {\left|\Psi _{n}(\mathbf {r} ,t)\right|}^{2}={\left|\psi _{n}(\mathbf {r} )\right|}^{2}}"></span>.</dd></dl> <p><a href="/wiki/St%C5%99edn%C3%AD_hodnota" title="Střední hodnota">Střední hodnota</a> libovolného časově nezávislého <a href="/wiki/Oper%C3%A1tor" title="Operátor">operátoru</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f595a6c73d1183d6a1b2ac21fe47ac28c1483821" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.843ex;" alt="{\displaystyle {\hat {A}}}"></span> ve stacionárních stavech <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e979a931bf82db45f2c63353f9bc8bbbbee102b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.027ex; height:2.509ex;" alt="{\displaystyle \Psi _{n}}"></span> nezávisí na čase, tedy </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle {\hat {A}}\rangle _{n}=\int \Psi _{n}^{\star }(\mathbf {r} ,t){\hat {A}}\Psi _{n}(\mathbf {r} ,t)\mathrm {d} V=\int \psi _{n}^{\star }(\mathbf {r} ){\hat {A}}\psi _{n}(\mathbf {r} )\mathrm {d} V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mo>∫<!-- ∫ --></mo> <msubsup> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>⋆<!-- ⋆ --></mo> </mrow> </msubsup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <msub> <mi mathvariant="normal">Ψ<!-- Ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>,</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>V</mi> <mo>=</mo> <mo>∫<!-- ∫ --></mo> <msubsup> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>⋆<!-- ⋆ --></mo> </mrow> </msubsup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle {\hat {A}}\rangle _{n}=\int \Psi _{n}^{\star }(\mathbf {r} ,t){\hat {A}}\Psi _{n}(\mathbf {r} ,t)\mathrm {d} V=\int \psi _{n}^{\star }(\mathbf {r} ){\hat {A}}\psi _{n}(\mathbf {r} )\mathrm {d} V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/196fec6ae5c96d36213f57f460db6085e837dffe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:52.782ex; height:5.676ex;" alt="{\displaystyle \langle {\hat {A}}\rangle _{n}=\int \Psi _{n}^{\star }(\mathbf {r} ,t){\hat {A}}\Psi _{n}(\mathbf {r} ,t)\mathrm {d} V=\int \psi _{n}^{\star }(\mathbf {r} ){\hat {A}}\psi _{n}(\mathbf {r} )\mathrm {d} V}"></span>.</dd></dl> <p>Pro stacionární stavy je také <a href="/wiki/Hustota_toku_pravd%C4%9Bpodobnosti" title="Hustota toku pravděpodobnosti">hustota toku pravděpodobnosti</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle j}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>j</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle j}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f461e54f5c093e92a55547b9764291390f0b5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.027ex; width:0.985ex; height:2.509ex;" alt="{\displaystyle j}"></span> nezávislá na čase. </p> <div class="mw-heading mw-heading2"><h2 id="Vlastnosti">Vlastnosti</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dingerova_rovnice&veaction=edit&section=5" title="Editace sekce: Vlastnosti" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Schr%C3%B6dingerova_rovnice&action=edit&section=5" title="Editovat zdrojový kód sekce Vlastnosti"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Protože Schrödingerova rovnice obsahuje na jedné straně první <a href="/wiki/Parci%C3%A1ln%C3%AD_derivace" title="Parciální derivace">parciální derivace</a> vlnové funkce podle <a href="/wiki/%C4%8Cas" title="Čas">času</a> a na druhé straně druhé derivace podle prostorových souřadnic (<a href="/wiki/Laplace%C5%AFv_oper%C3%A1tor" title="Laplaceův operátor">Laplaceův operátor</a>), není tato rovnice <a href="/wiki/Invariance" title="Invariance">invariantní</a> vůči <a href="/wiki/Lorentzova_transformace" title="Lorentzova transformace">Lorentzově transformaci</a>. Není tedy v souladu se <a href="/wiki/Speci%C3%A1ln%C3%AD_teorie_relativity" title="Speciální teorie relativity">speciální teorií relativity</a>. Nejedná se tedy o <a href="/wiki/Teorie_relativity" title="Teorie relativity">relativistickou</a> rovnici. Relativistickou obdobou Schrödingerovy rovnice jsou např. <a href="/wiki/Diracova_rovnice" title="Diracova rovnice">Diracova rovnice</a> nebo <a href="/wiki/Kleinova%E2%80%93Gordonova_rovnice" title="Kleinova–Gordonova rovnice">Kleinova–Gordonova rovnice</a>. </p><p>Schrödingerova rovnice umožňuje jednoduše formulovat a vyřešit v <a href="/wiki/Kvantov%C3%A1_mechanika" title="Kvantová mechanika">kvantové mechanice</a> problémy jako <a href="/wiki/Kvantov%C3%BD_harmonick%C3%BD_oscil%C3%A1tor" title="Kvantový harmonický oscilátor">lineární harmonický oscilátor</a>, částice v <a href="/wiki/Potenci%C3%A1lov%C3%A1_j%C3%A1ma" title="Potenciálová jáma">potenciálové jámě</a> nebo <a href="/wiki/Vod%C3%ADk" title="Vodík">vodíku</a> podobný <a href="/wiki/Atom" title="Atom">atom</a>. Vysvětluje <a href="/wiki/Stabilita" title="Stabilita">stabilitu</a> atomů, která byla pro <a href="/wiki/Klasick%C3%A1_fyzika" title="Klasická fyzika">klasickou fyziku</a> <a href="/wiki/Z%C3%A1hada" title="Záhada">záhadou</a>. Umožnila pevné propojení <a href="/wiki/Fyzika" title="Fyzika">fyziky</a> s <a href="/wiki/Chemie" title="Chemie">chemií</a>, protože vysvětlila nejen <a href="/wiki/Ioniza%C4%8Dn%C3%AD_potenci%C3%A1l" title="Ionizační potenciál">ionizační energie</a> <a href="/wiki/Chemick%C3%BD_prvek" title="Chemický prvek">prvků</a>, ale i různorodost jejich chemického chování pomocí <a href="/wiki/Atomov%C3%BD_orbital" title="Atomový orbital">orbitalů</a> tvořících atomový obal. Tyto poznatky umožnily vysvětlit <a href="/wiki/Spektr%C3%A1ln%C3%AD_%C4%8D%C3%A1ra" title="Spektrální čára">čáry</a> ve <a href="/wiki/Spektr%C3%A1ln%C3%AD_klasifikace" title="Spektrální klasifikace">spektru</a> zářících těles a pochopit tak stavbu a vývoj <a href="/wiki/Hv%C4%9Bzda" title="Hvězda">hvězd</a> analýzou jejich <a href="/wiki/Sv%C4%9Btlo" title="Světlo">světla</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Související_články"><span id="Souvisej.C3.ADc.C3.AD_.C4.8Dl.C3.A1nky"></span>Související články</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dingerova_rovnice&veaction=edit&section=6" title="Editace sekce: Související články" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Schr%C3%B6dingerova_rovnice&action=edit&section=6" title="Editovat zdrojový kód sekce Související články"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Vlnov%C3%A1_rovnice" title="Vlnová rovnice">Vlnová rovnice</a></li> <li><a href="/wiki/Kvantov%C3%A9_%C4%8D%C3%ADslo" title="Kvantové číslo">Kvantové číslo</a></li> <li><a href="/wiki/Diracova_rovnice" title="Diracova rovnice">Diracova rovnice</a></li> <li><a href="/wiki/Kleinova%E2%80%93Gordonova_rovnice" title="Kleinova–Gordonova rovnice">Kleinova–Gordonova rovnice</a></li> <li><a href="/wiki/Schr%C3%B6dingerova_ko%C4%8Dka" title="Schrödingerova kočka">Schrödingerova kočka</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Externí_odkazy"><span id="Extern.C3.AD_odkazy"></span>Externí odkazy</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Schr%C3%B6dingerova_rovnice&veaction=edit&section=7" title="Editace sekce: Externí odkazy" class="mw-editsection-visualeditor"><span>editovat</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Schr%C3%B6dingerova_rovnice&action=edit&section=7" title="Editovat zdrojový kód sekce Externí odkazy"><span>editovat zdroj</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="wd"><span class="sisterproject sisterproject-commons"><span class="sisterproject_image"><span typeof="mw:File"><a href="/wiki/Wikimedia_Commons" title="Wikimedia Commons"><img alt="Logo Wikimedia Commons" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span></span> <span class="sisterproject_text">Obrázky, zvuky či videa k tématu <span class="sisterproject_text_target"><a href="https://commons.wikimedia.org/wiki/Category:Schr%C3%B6dinger_equation" class="extiw" title="c:Category:Schrödinger equation">Schrödingerova rovnice</a></span> na <a href="/wiki/Wikimedia_Commons" title="Wikimedia Commons">Wikimedia Commons</a></span></span></span><i> </i></li> <li><span style="cursor:help;" data-lang="cs" title="Jazyk cíle odkazu: čeština">(česky)</span> <a rel="nofollow" class="external text" href="http://artemis.osu.cz/mmfyz/qm/qm_4_3.htm">Nestacionární Schödingerova rovnice</a></li> <li><a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/SchroedingerEquation.html">Schrödingerova rovnice</a> v encyklopedii <a href="/wiki/MathWorld" title="MathWorld">MathWorld</a> (anglicky)</li></ul> <style data-mw-deduplicate="TemplateStyles:r23078045">.mw-parser-output .navbox2{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox2 .navbox2{margin-top:0}.mw-parser-output .navbox2+.navbox2{margin-top:-1px}.mw-parser-output .navbox2-inner,.mw-parser-output .navbox2-subgroup{width:100%}.mw-parser-output .navbox2-group,.mw-parser-output .navbox2-title,.mw-parser-output .navbox2-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output th.navbox2-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox2,.mw-parser-output .navbox2-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox2-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output tr+tr>.navbox2-abovebelow,.mw-parser-output tr+tr>.navbox2-group,.mw-parser-output tr+tr>.navbox2-image,.mw-parser-output tr+tr>.navbox2-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox2 th,.mw-parser-output .navbox2-title{background-color:#e0e0e0}.mw-parser-output .navbox2-abovebelow,.mw-parser-output th.navbox2-group,.mw-parser-output .navbox2-subgroup .navbox2-title{background-color:#e7e7e7}.mw-parser-output .navbox2-subgroup .navbox2-title{font-size:88%}.mw-parser-output .navbox2-subgroup .navbox2-group,.mw-parser-output .navbox2-subgroup .navbox2-abovebelow{background-color:#f0f0f0}.mw-parser-output .navbox2-even{background-color:#f7f7f7}.mw-parser-output .navbox2-odd{background-color:transparent}.mw-parser-output .navbox2 .hlist td dl,.mw-parser-output .navbox2 .hlist td ol,.mw-parser-output .navbox2 .hlist td ul,.mw-parser-output .navbox2 td.hlist dl,.mw-parser-output .navbox2 td.hlist ol,.mw-parser-output .navbox2 td.hlist ul{padding:0.125em 0}</style><div role="navigation" class="navbox2" aria-labelledby="Autoritní_data_frameless_&#124;text-top_&#124;10px_&#124;alt=Editovat_na_Wikidatech_&#124;link=https&#58;//www.wikidata.org/wiki/Q165498#identifiers&#124;Editovat_na_Wikidatech" style="padding:2px"><table class="nowraplinks hlist navbox2-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th id="Autoritní_data_frameless_&#124;text-top_&#124;10px_&#124;alt=Editovat_na_Wikidatech_&#124;link=https&#58;//www.wikidata.org/wiki/Q165498#identifiers&#124;Editovat_na_Wikidatech" scope="row" class="navbox2-group" style="width:1%"><a href="/wiki/Autoritn%C3%AD_kontrola" title="Autoritní kontrola">Autoritní data</a> <span class="mw-valign-text-top" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q165498#identifiers" title="Editovat na Wikidatech"><img alt="Editovat na Wikidatech" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox2-list navbox2-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span class="nowrap"><a href="/wiki/N%C3%A1rodn%C3%AD_knihovna_%C4%8Cesk%C3%A9_republiky" title="Národní knihovna České republiky">NKC</a>: <span class="uid"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph195849">ph195849</a></span></span></li> <li><span class="nowrap"><a href="/wiki/Polytematick%C3%BD_strukturovan%C3%BD_hesl%C3%A1%C5%99" title="Polytematický strukturovaný heslář">PSH</a>: <span class="uid"><a rel="nofollow" class="external text" href="https://psh.techlib.cz/skos/PSH7609">7609</a></span></span></li> <li><span class="nowrap"><a href="/wiki/Francouzsk%C3%A1_n%C3%A1rodn%C3%AD_knihovna" title="Francouzská národní knihovna">BNF</a>: <span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb119702345">cb119702345</a> <a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb119702345">(data)</a></span></span></li> <li><span class="nowrap"><a href="/wiki/Gemeinsame_Normdatei" title="Gemeinsame Normdatei">GND</a>: <span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4053332-3">4053332-3</a></span></span></li> <li><span class="nowrap"><a href="/wiki/Library_of_Congress_Control_Number" title="Library of Congress Control Number">LCCN</a>: <span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/subjects/sh85118495">sh85118495</a></span></span></li> <li><span class="nowrap"><a href="/wiki/N%C3%A1rodn%C3%AD_knihovna_Izraele" title="Národní knihovna Izraele">NLI</a>: <span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007560881205171">987007560881205171</a></span></span></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐568dbbbfd9‐8zkxw Cached time: 20241110182546 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.192 seconds Real time usage: 0.364 seconds Preprocessor visited node count: 530/1000000 Post‐expand include size: 6582/2097152 bytes Template argument size: 73/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 6/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 3663/5000000 bytes Lua time usage: 0.061/10.000 seconds Lua memory usage: 1760775/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 187.034 1 -total 47.32% 88.501 1 Šablona:Commonscat 37.39% 69.923 1 Šablona:Autoritní_data 12.70% 23.756 1 Šablona:Cs 7.28% 13.615 1 Šablona:Cíl_odkazu 5.64% 10.556 2 Šablona:Jazykem 4.68% 8.751 2 Šablona:První_neprázdný 2.43% 4.536 1 Šablona:MathWorld --> <!-- Saved in parser cache with key cswiki:pcache:idhash:113765-0!canonical and timestamp 20241110182546 and revision id 24172121. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Citováno z „<a dir="ltr" href="https://cs.wikipedia.org/w/index.php?title=Schrödingerova_rovnice&oldid=24172121">https://cs.wikipedia.org/w/index.php?title=Schrödingerova_rovnice&oldid=24172121</a>“</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/N%C3%A1pov%C4%9Bda:Kategorie" title="Nápověda:Kategorie">Kategorie</a>: <ul><li><a href="/wiki/Kategorie:Kvantov%C3%A1_fyzika" title="Kategorie:Kvantová fyzika">Kvantová fyzika</a></li><li><a href="/wiki/Kategorie:Kvantov%C3%A1_mechanika" title="Kategorie:Kvantová mechanika">Kvantová mechanika</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Skryté kategorie: <ul><li><a href="/wiki/Kategorie:Monitoring:%C4%8Cl%C3%A1nky_s_identifik%C3%A1torem_NKC" title="Kategorie:Monitoring:Články s identifikátorem NKC">Monitoring:Články s identifikátorem NKC</a></li><li><a href="/wiki/Kategorie:Monitoring:%C4%8Cl%C3%A1nky_s_identifik%C3%A1torem_PSH" title="Kategorie:Monitoring:Články s identifikátorem PSH">Monitoring:Články s identifikátorem PSH</a></li><li><a href="/wiki/Kategorie:Monitoring:%C4%8Cl%C3%A1nky_s_identifik%C3%A1torem_BNF" title="Kategorie:Monitoring:Články s identifikátorem BNF">Monitoring:Články s identifikátorem BNF</a></li><li><a href="/wiki/Kategorie:Monitoring:%C4%8Cl%C3%A1nky_s_identifik%C3%A1torem_GND" title="Kategorie:Monitoring:Články s identifikátorem GND">Monitoring:Články s identifikátorem GND</a></li><li><a href="/wiki/Kategorie:Monitoring:%C4%8Cl%C3%A1nky_s_identifik%C3%A1torem_LCCN" title="Kategorie:Monitoring:Články s identifikátorem LCCN">Monitoring:Články s identifikátorem LCCN</a></li><li><a href="/wiki/Kategorie:Monitoring:%C4%8Cl%C3%A1nky_s_identifik%C3%A1torem_NLI" title="Kategorie:Monitoring:Články s identifikátorem NLI">Monitoring:Články s identifikátorem NLI</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Stránka byla naposledy editována 18. 8. 2024 v 10:08.</li> <li id="footer-info-copyright">Text je dostupný pod <a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.cs">licencí Creative Commons Uveďte původ – Zachovejte licenci</a>, případně za dalších podmínek. Podrobnosti naleznete na stránce <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/cs">Podmínky užití</a>.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Ochrana osobních údajů</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedie">O Wikipedii</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedie:Vylou%C4%8Den%C3%AD_odpov%C4%9Bdnosti">Vyloučení odpovědnosti</a></li> <li id="footer-places-contact"><a href="//cs.wikipedia.org/wiki/Wikipedie:Kontakt">Kontaktujte Wikipedii</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Kodex chování</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Vývojáři</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/cs.wikipedia.org">Statistiky</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Prohlášení o cookies</a></li> <li id="footer-places-mobileview"><a href="//cs.m.wikipedia.org/w/index.php?title=Schr%C3%B6dingerova_rovnice&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobilní verze</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-pdn6j","wgBackendResponseTime":183,"wgPageParseReport":{"limitreport":{"cputime":"0.192","walltime":"0.364","ppvisitednodes":{"value":530,"limit":1000000},"postexpandincludesize":{"value":6582,"limit":2097152},"templateargumentsize":{"value":73,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":6,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":3663,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 187.034 1 -total"," 47.32% 88.501 1 Šablona:Commonscat"," 37.39% 69.923 1 Šablona:Autoritní_data"," 12.70% 23.756 1 Šablona:Cs"," 7.28% 13.615 1 Šablona:Cíl_odkazu"," 5.64% 10.556 2 Šablona:Jazykem"," 4.68% 8.751 2 Šablona:První_neprázdný"," 2.43% 4.536 1 Šablona:MathWorld"]},"scribunto":{"limitreport-timeusage":{"value":"0.061","limit":"10.000"},"limitreport-memusage":{"value":1760775,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-568dbbbfd9-8zkxw","timestamp":"20241110182546","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Schr\u00f6dingerova rovnice","url":"https:\/\/cs.wikipedia.org\/wiki\/Schr%C3%B6dingerova_rovnice","sameAs":"http:\/\/www.wikidata.org\/entity\/Q165498","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q165498","author":{"@type":"Organization","name":"P\u0159isp\u011bvatel\u00e9 projekt\u016f Wikimedia"},"publisher":{"@type":"Organization","name":"nadace Wikimedia","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-08-17T13:00:03Z","dateModified":"2024-08-18T09:08:20Z","headline":"Schr\u00f6dingerova pohybov\u00e1 rovnice nerelativistick\u00e9 kvantov\u00e9 teorie"}</script> </body> </html>