CINXE.COM
Search results for: Tanmoy Modok Shuvra
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Tanmoy Modok Shuvra</title> <meta name="description" content="Search results for: Tanmoy Modok Shuvra"> <meta name="keywords" content="Tanmoy Modok Shuvra"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Tanmoy Modok Shuvra" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Tanmoy Modok Shuvra"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Tanmoy Modok Shuvra</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Breeding Biology and Induced Breeding Status of Freshwater Mud Eel, Monopterus cuchia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faruque%20Miah">Faruque Miah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafij%20Ali"> Hafij Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Enaya%20Jannat"> Enaya Jannat</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanmoy%20Modok%20Shuvra"> Tanmoy Modok Shuvra</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Niamul%20Naser"> M. Niamul Naser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, breeding biology and induced breeding of freshwater mud eel, Monopterus cuchia was observed during the experimental period from February to June, 2013. Breeding biology of freshwater mud eel, Monopterus cuchia was considered in terms of gonadosomatic index, length-weight relationship of gonad, ova diameter and fecundity. The ova diameter was recorded from 0.3 mm to 4.30 mm and the individual fecundity was recorded from 155 to 1495 while relative fecundity was found from 2.64 to 12.45. The fecundity related to body weight and length of fish was also discussed. A peak of GSI was observed 2.14卤0.2 in male and 5.1 卤1.09 in female. Induced breeding of freshwater mud eel, Monopterus cuchia was also practiced with different doses of different inducing agents like pituitary gland (PG), human chorionic gonadotropin (HCG), Gonadotropin releasing hormone (GnRH) and Ovuline-a synthetic hormone in different environmental conditions. However, it was observed that the artificial breeding of freshwater mud eel, Monopterus cuchia was not yet succeeded through inducing agents in captive conditions, rather the inducing agent showed negative impacts on fecundity and ovarian tissues. It was seen that mature eggs in the oviduct were reduced, absorbed and some eggs were found in spoiled condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breeding%20biology" title="breeding biology">breeding biology</a>, <a href="https://publications.waset.org/abstracts/search?q=induced%20breeding" title=" induced breeding"> induced breeding</a>, <a href="https://publications.waset.org/abstracts/search?q=Monopterus%20cuchia" title=" Monopterus cuchia"> Monopterus cuchia</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20chorionic%20gonadotropin" title=" human chorionic gonadotropin"> human chorionic gonadotropin</a> </p> <a href="https://publications.waset.org/abstracts/22005/breeding-biology-and-induced-breeding-status-of-freshwater-mud-eel-monopterus-cuchia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">774</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Comparative Analysis of Different Land Use Land Cover (LULC) Maps in WRF Modelling Over Indian Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sen%20Tanmoy">Sen Tanmoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Jain%20Sarika"> Jain Sarika</a>, <a href="https://publications.waset.org/abstracts/search?q=Panda%20Jagabandhu"> Panda Jagabandhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The studies regarding the impact of urbanization using the WRF-ARW model rely heavily on the static geographical information selected, including domain configuration and land use land cover (LULC) data. Accurate representation of LULC data provides essential information for understanding urban growth and simulating meteorological parameters such as temperature, precipitation etc. Researchers are using different LULC data as per availability and their requirements. As far as India is concerned, we have very limited resources and data availability. So, it is important to understand how we can optimize our results using limited LULC data. In this review article, we explored how a LULC map is generated from different sources in the Indian context and what its significance is in WRF-ARW modeling to study urbanization/Climate change or any other meteorological parameters. Bibliometric analyses were also performed in this review article based on countries of study and indexed keywords. Finally, some key points are marked out for selecting the most suitable LULC map for any urbanization-related study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LULC" title="LULC">LULC</a>, <a href="https://publications.waset.org/abstracts/search?q=LULC%20mapping" title=" LULC mapping"> LULC mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=LANDSAT" title=" LANDSAT"> LANDSAT</a>, <a href="https://publications.waset.org/abstracts/search?q=WRF-ARW" title=" WRF-ARW"> WRF-ARW</a>, <a href="https://publications.waset.org/abstracts/search?q=ISRO" title=" ISRO"> ISRO</a>, <a href="https://publications.waset.org/abstracts/search?q=bibliometric%20Analysis." title=" bibliometric Analysis."> bibliometric Analysis.</a> </p> <a href="https://publications.waset.org/abstracts/188209/comparative-analysis-of-different-land-use-land-cover-lulc-maps-in-wrf-modelling-over-indian-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">28</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Molecular Characterization of White Spot Syndrome Virus in Some Cultured Penaeid Shrimps of Coastal Regions in Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Baki%20Billah">Md. Baki Billah</a>, <a href="https://publications.waset.org/abstracts/search?q=Suraiya%20Parveen"> Suraiya Parveen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuvra%20Kanti%20Dey"> Shuvra Kanti Dey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bangladesh is earning a lot of foreign currency by exporting shrimp, but this industry is facing a tremendous problem due to the infection of white spot syndrome virus (WSSV). This study was undermined to develop rapid detection method of WSSV. A total of shrimp samples 240 collected from the 12 shrimp farms of different coastal regions (Satkhira, Khulna, and Bagerhat) were analyzed by conventional PCR using VP28 and VP664 gene-specific primers. In satkhira, Bagerhat and Khulna 39, 41 and 29 samples were found WSSV positive respectively. Real-time PCR using 71-bp amplicon for VP664 gene correlated well with conventional PCR data. The prevalence rates of WSSV among the collected 240 samples were Satkhira 38%, Khulna 47% and Bagerhat 50%. Molecular analysis of the VP28 gene sequences of WSSV revealed that Bangladeshi strains phylogenetically affiliated to the strains belong to India. This work concluded that WSSV infections are widely distributed in the coastal regions cultured shrimp in Bangladesh. Physico-chemical parameters were within the range of fish culture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coastal%20regions%20of%20Bangladesh" title="coastal regions of Bangladesh">coastal regions of Bangladesh</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR" title=" PCR"> PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=shrimp" title=" shrimp"> shrimp</a>, <a href="https://publications.waset.org/abstracts/search?q=white%20spot%20syndrome%20virus" title=" white spot syndrome virus"> white spot syndrome virus</a> </p> <a href="https://publications.waset.org/abstracts/95250/molecular-characterization-of-white-spot-syndrome-virus-in-some-cultured-penaeid-shrimps-of-coastal-regions-in-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Establishment of High-Temperature Simultaneous Saccharification and Fermentation Process by Co-Culturing of Thermally Adapted Thermosensitive Saccharomyces Cerevisiae and Bacillus amyloliquefaciens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Azam%20Talukder">Ali Azam Talukder</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamsheda%20Ferdous%20Tuli"> Jamsheda Ferdous Tuli</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanzina%20Islam%20Reba"> Tanzina Islam Reba</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuvra%20Kanti%20Dey"> Shuvra Kanti Dey</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamoru%20Yamada"> Mamoru Yamada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent global warming created by various pollutants prompted us to find new energy sources instead of fossil fuels. Fossil fuels are one of the key factors to emit various toxic gases in this planet. To solve this problem, along with the scarcity of the worldwide energy crisis, scientists are looking for various alternative options to mitigate the necessity of required future fuels. In this context, bioethanol can be one of the most suitable alternative energy sources. Bioethanol is a renewable, environment-friendly and carbon-neutral sustainable energy. In our previous study, we identified several bioethanol-producing microbes from the natural fermented sources of Bangladesh. Among them, the strain 4C encoded Saccharomyces cerevisiae produced maximum bioethanol when the fermentation temperature was 25藲C. In this study, we have established high-temperature simultaneous saccharification and fermentation process (HTSSF) by co-culturing of thermally adapted thermosensitive 4C as a fermenting agent and Bacillus amyloliquefaciens (C7), as a saccharifying agent under various physiological conditions or treatments. Conventional methods were applied for cell culture, media preparation and other experimental purposes. High-temperature adaptation of strain 4C was made from 30-42岬扖, using either YPD or YPS media. In brief, for thermal adaptation, the temperature was periodically increased by 2岬扖, 1岬扖 and 0.5岬扖 when medium growth temperatures were 30-36岬扖, 36-40岬扖, and 40-42岬扖, respectively, where applicable. Amylase activity and bioethanol content were measured by DNS (3, 5-dinitrosalicylic acid) and solvent extraction and dichromate oxidation method, respectively. Among the various growth parameters like temperatures (30藲C, 37藲C and 42藲C), pHs (5.0, 6.0 and 7.0), carbon sources (5.0-10.0%) and ethanol stress tolerance (0.0-12.0%) etc. were tested, maximum Amylase activity (4.0 IU/ml/min) was recorded for Bacillus amyloliquefaciens (C7) at 42藲C, pH 6.0 and 10% starch. On the other hand, 4.10% bioethanol content was recorded when the thermally adapted strain 4C was co-cultured with C7 at 37岬扖, pH 6.0 and 10.0% starch for 72 hours at HTSSF process. On the other hand, thermally non-adapted strains gave only 0.5-2.0% bioethanol content under the same physiological conditions. The thermally adapted strain 4C and strain C7, both can tolerate ethanol stress up to 12%. Altogether, a comparative study revealed that our established HTSSF process may be suitable for pilot scale and subsequently at industrial level bioethanol production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title="bioethanol">bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=co-culture" title=" co-culture"> co-culture</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=saccharification" title=" saccharification"> saccharification</a> </p> <a href="https://publications.waset.org/abstracts/172671/establishment-of-high-temperature-simultaneous-saccharification-and-fermentation-process-by-co-culturing-of-thermally-adapted-thermosensitive-saccharomyces-cerevisiae-and-bacillus-amyloliquefaciens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Power Recovery from Waste Air of Mine Ventilation Fans Using Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soumyadip%20Banerjee">Soumyadip Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanmoy%20Maity"> Tanmoy Maity</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recovery of power from waste air generated by mine ventilation fans presents a promising avenue for enhancing energy efficiency in mining operations. This abstract explores the feasibility and benefits of utilizing turbine generators to capture the kinetic energy present in waste air and convert it into electrical power. By integrating turbine generator systems into mine ventilation infrastructures, the potential to harness and utilize the previously untapped energy within the waste air stream is realized. This study examines the principles underlying turbine generator technology and its application within the context of mine ventilation systems. The process involves directing waste air from ventilation fans through specially designed turbines, where the kinetic energy of the moving air is converted into rotational motion. This mechanical energy is then transferred to connected generators, which convert it into electrical power. The recovered electricity can be employed for various on-site applications, including powering mining equipment, lighting, and control systems. The benefits of power recovery from waste air using turbine generators are manifold. Improved energy efficiency within the mining environment results in reduced dependence on external power sources and associated cost savings. Additionally, this approach contributes to environmental sustainability by utilizing a previously wasted resource for power generation. Resource conservation is further enhanced, aligning with modern principles of sustainable mining practices. However, successful implementation requires careful consideration of factors such as waste air characteristics, turbine design, generator efficiency, and integration into existing mine infrastructure. Maintenance and monitoring protocols are necessary to ensure consistent performance and longevity of the turbine generator systems. While there is an initial investment associated with equipment procurement, installation, and integration, the long-term benefits of reduced energy costs and environmental impact make this approach economically viable. In conclusion, the recovery of power from waste air from mine ventilation fans using turbine generators offers a tangible solution to enhance energy efficiency and sustainability within mining operations. By capturing and converting the kinetic energy of waste air into usable electrical power, mines can optimize resource utilization, reduce operational costs, and contribute to a greener future for the mining industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20to%20energy" title="waste to energy">waste to energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20power%20generation" title=" wind power generation"> wind power generation</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20air" title=" exhaust air"> exhaust air</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20recovery" title=" power recovery"> power recovery</a> </p> <a href="https://publications.waset.org/abstracts/186813/power-recovery-from-waste-air-of-mine-ventilation-fans-using-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">35</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Integration of EEG and Motion Tracking Sensors for Objective Measure of Attention-Deficit Hyperactivity Disorder in Pre-Schoolers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Bhattacharyya">Neha Bhattacharyya</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumendra%20Singh"> Soumendra Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Amrita%20Banerjee"> Amrita Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ria%20Ghosh"> Ria Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Oindrila%20Sinha"> Oindrila Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Nairit%20Das"> Nairit Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Gayen"> Rajkumar Gayen</a>, <a href="https://publications.waset.org/abstracts/search?q=Somya%20Subhra%20Pal"> Somya Subhra Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahely%20Ganguly"> Sahely Ganguly</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanmoy%20Dasgupta"> Tanmoy Dasgupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanusree%20Dasgupta"> Tanusree Dasgupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Pulak%20Mondal"> Pulak Mondal</a>, <a href="https://publications.waset.org/abstracts/search?q=Aniruddha%20Adhikari"> Aniruddha Adhikari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharmila%20Sarkar"> Sharmila Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Debasish%20Bhattacharyya"> Debasish Bhattacharyya</a>, <a href="https://publications.waset.org/abstracts/search?q=Asim%20Kumar%20Mallick"> Asim Kumar Mallick</a>, <a href="https://publications.waset.org/abstracts/search?q=Om%20Prakash%20Singh"> Om Prakash Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Kumar%20Pal"> Samir Kumar Pal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: We aim to develop an integrated device comprised of single-probe EEG and CCD-based motion sensors for a more objective measure of Attention-deficit Hyperactivity Disorder (ADHD). While the integrated device (MAHD) relies on the EEG signal (spectral density of beta wave) for the assessment of attention during a given structured task (painting three segments of a circle using three different colors, namely red, green and blue), the CCD sensor depicts movement pattern of the subjects engaged in a continuous performance task (CPT). A statistical analysis of the attention and movement patterns was performed, and the accuracy of the completed tasks was analysed using indigenously developed software. The device with the embedded software, called MAHD, is intended to improve certainty with criterion E (i.e. whether symptoms are better explained by another condition). Methods: We have used the EEG signal from a single-channel dry sensor placed on the frontal lobe of the head of the subjects (3-5 years old pre-schoolers). During the painting of three segments of a circle using three distinct colors (red, green, and blue), absolute power for delta and beta EEG waves from the subjects are found to be correlated with relaxation and attention/cognitive load conditions. While the relaxation condition of the subject hints at hyperactivity, a more direct CCD-based motion sensor is used to track the physical movement of the subject engaged in a continuous performance task (CPT) i.e., separation of the various colored balls from one table to another. We have used our indigenously developed software for the statistical analysis to derive a scale for the objective assessment of ADHD. We have also compared our scale with clinical ADHD evaluation. Results: In a limited clinical trial with preliminary statistical analysis, we have found a significant correlation between the objective assessment of the ADHD subjects with that of the clinician鈥檚 conventional evaluation. Conclusion: MAHD, the integrated device, is supposed to be an auxiliary tool to improve the accuracy of ADHD diagnosis by supporting greater criterion E certainty. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ADHD" title="ADHD">ADHD</a>, <a href="https://publications.waset.org/abstracts/search?q=CPT" title=" CPT"> CPT</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG%20signal" title=" EEG signal"> EEG signal</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20sensor" title=" motion sensor"> motion sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=psychometric%20test" title=" psychometric test"> psychometric test</a> </p> <a href="https://publications.waset.org/abstracts/152917/integration-of-eeg-and-motion-tracking-sensors-for-objective-measure-of-attention-deficit-hyperactivity-disorder-in-pre-schoolers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Evaluation of Functional Properties of Protein Hydrolysate from the Fresh Water Mussel Lamellidens marginalis for Nutraceutical Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jana%20Chakrabarti">Jana Chakrabarti</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhushrita%20Das"> Madhushrita Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankhi%20Haldar"> Ankhi Haldar</a>, <a href="https://publications.waset.org/abstracts/search?q=Roshni%20Chatterjee"> Roshni Chatterjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanmoy%20Dey"> Tanmoy Dey</a>, <a href="https://publications.waset.org/abstracts/search?q=Pubali%20Dhar"> Pubali Dhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High incidences of Protein Energy Malnutrition as a consequence of low protein intake are quite prevalent among the children in developing countries. Thus prevention of under-nutrition has emerged as a critical challenge to India鈥檚 developmental Planners in recent times. Increase in population over the last decade has led to greater pressure on the existing animal protein sources. But these resources are currently declining due to persistent drought, diseases, natural disasters, high-cost of feed, and low productivity of local breeds and this decline in productivity is most evident in some developing countries. So the need of the hour is to search for efficient utilization of unconventional low-cost animal protein resources. Molluscs, as a group is regarded as under-exploited source of health-benefit molecules. Bivalve is the second largest class of phylum Mollusca. Annual harvests of bivalves for human consumption represent about 5% by weight of the total world harvest of aquatic resources. The freshwater mussel Lamellidens marginalis is widely distributed in ponds and large bodies of perennial waters in the Indian sub-continent and well accepted as food all over India. Moreover, ethno-medicinal uses of the flesh of Lamellidens among the rural people to treat hypertension have been documented. Present investigation thus attempts to evaluate the potential of Lamellidens marginalis as functional food. Mussels were collected from freshwater ponds and brought to the laboratory two days before experimentation for acclimatization in laboratory conditions. Shells were removed and fleshes were preserved at- 20oC until analysis. Tissue homogenate was prepared for proximate studies. Fatty acids and amino acids composition were analyzed. Vitamins, Minerals and Heavy metal contents were also studied. Mussel Protein hydrolysate was prepared using Alcalase 2.4 L and degree of hydrolysis was evaluated to analyze its Functional properties. Ferric Reducing Antioxidant Power (FRAP) and DPPH Antioxidant assays were performed. Anti-hypertensive property was evaluated by measuring Angiotensin Converting Enzyme (ACE) inhibition assay. Proximate analysis indicates that mussel meat contains moderate amount of protein (8.30卤0.67%), carbohydrate (8.01卤0.38%) and reducing sugar (4.75卤0.07%), but less amount of fat (1.02卤0.20%). Moisture content is quite high but ash content is very low. Phospholipid content is significantly high (19.43 %). Lipid constitutes, substantial amount of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) which have proven prophylactic values. Trace elements are found present in substantial amount. Comparative study of proximate nutrients between Labeo rohita, Lamellidens and cow鈥檚 milk indicates that mussel meat can be used as complementary food source. Functionality analyses of protein hydrolysate show increase in Fat absorption, Emulsification, Foaming capacity and Protein solubility. Progressive anti-oxidant and anti-hypertensive properties have also been documented. Lamellidens marginalis can thus be regarded as a functional food source as this may combine effectively with other food components for providing essential elements to the body. Moreover, mussel protein hydrolysate provides opportunities for utilizing it in various food formulations and pharmaceuticals. The observations presented herein should be viewed as a prelude to what future holds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functional%20food" title="functional food">functional food</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20properties" title=" functional properties"> functional properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamellidens%20marginalis" title=" Lamellidens marginalis"> Lamellidens marginalis</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20hydrolysate" title=" protein hydrolysate"> protein hydrolysate</a> </p> <a href="https://publications.waset.org/abstracts/22410/evaluation-of-functional-properties-of-protein-hydrolysate-from-the-fresh-water-mussel-lamellidens-marginalis-for-nutraceutical-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>