CINXE.COM
Search results for: mechanical measurement
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: mechanical measurement</title> <meta name="description" content="Search results for: mechanical measurement"> <meta name="keywords" content="mechanical measurement"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="mechanical measurement" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="mechanical measurement"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6202</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: mechanical measurement</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6202</span> Use of EPR in Experimental Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Siko%C5%84">M. Sikoń</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Bidzi%C5%84ska"> E. Bidzińska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An attempt to apply EPR (Electron Paramagnetic Resonance) spectroscopy to experimental analysis of the mechanical state of the loaded material is considered in this work. Theory concerns the participation of electrons in transfer of mechanical action. The model of measurement is shown by applying classical mechanics and quantum mechanics. Theoretical analysis is verified using EPR spectroscopy twice, once for the free spacemen and once for the mechanical loaded spacemen. Positive results in the form of different spectra for free and loaded materials are used to describe the mechanical state in continuum based on statistical mechanics. Perturbation of the optical electrons in the field of the mechanical interactions inspires us to propose new optical properties of the materials with mechanical stresses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cosserat%20medium" title="Cosserat medium">Cosserat medium</a>, <a href="https://publications.waset.org/abstracts/search?q=EPR%20spectroscopy" title=" EPR spectroscopy"> EPR spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20active%20electrons" title=" optical active electrons"> optical active electrons</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20activity" title=" optical activity"> optical activity</a> </p> <a href="https://publications.waset.org/abstracts/39245/use-of-epr-in-experimental-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6201</span> A Simple Low-Cost 2-D Optical Measurement System for Linear Guideways</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen-Yuh%20Jywe">Wen-Yuh Jywe</a>, <a href="https://publications.waset.org/abstracts/search?q=Bor-Jeng%20Lin"> Bor-Jeng Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing-Chung%20Shen"> Jing-Chung Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeng-Dao%20Lee"> Jeng-Dao Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsueh-Liang%20Huang"> Hsueh-Liang Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tung-Hsien%20Hsieh"> Tung-Hsien Hsieh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a simple 2-D measurement system based on optical design was developed to measure the motion errors of the linear guideway. Compared with the transitional methods about the linear guideway for measuring the motion errors, our proposed 2-D optical measurement system can simultaneously measure horizontal and vertical running straightness errors for the linear guideway. The performance of the 2-D optical measurement system is verified by experimental results. The standard deviation of the 2-D optical measurement system is about 0.4 μm in the measurement range of 100 mm. The maximum measuring speed of the proposed automatic measurement instrument is 1 m/sec. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2-D%20measurement" title="2-D measurement">2-D measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20guideway" title=" linear guideway"> linear guideway</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20errors" title=" motion errors"> motion errors</a>, <a href="https://publications.waset.org/abstracts/search?q=running%20straightness" title=" running straightness"> running straightness</a> </p> <a href="https://publications.waset.org/abstracts/2973/a-simple-low-cost-2-d-optical-measurement-system-for-linear-guideways" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6200</span> A Comparative Study of Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) for Airflow Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sijie%20Fu">Sijie Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Pascal-Henry%20Biwol%C3%A9"> Pascal-Henry Biwolé</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Mathis"> Christian Mathis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among modern airflow measurement methods, Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV), as visualized and non-instructive measurement techniques, are playing more important role. This paper conducts a comparative experimental study for airflow measurement employing both techniques with the same condition. Velocity vector fields, velocity contour fields, voticity profiles and turbulence profiles are selected as the comparison indexes. The results show that the performance of both PIV and PTV techniques for airflow measurement is satisfied, but some differences between the both techniques are existed, it suggests that selecting the measurement technique should be based on a comprehensive consideration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airflow%20measurement" title="airflow measurement">airflow measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=comparison" title=" comparison"> comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=PIV" title=" PIV"> PIV</a>, <a href="https://publications.waset.org/abstracts/search?q=PTV" title=" PTV"> PTV</a> </p> <a href="https://publications.waset.org/abstracts/17111/a-comparative-study-of-particle-image-velocimetry-piv-and-particle-tracking-velocimetry-ptv-for-airflow-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6199</span> Vibration Measurements of Single-Lap Cantilevered SPR Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaocong%20He">Xiaocong He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Self-pierce riveting (SPR) is a new high-speed mechanical fastening technique which is suitable for point joining dissimilar sheet materials, as well as coated and pre-painted sheet materials. Mechanical structures assembled by SPR are expected to possess a high damping capacity. In this study, experimental measurement techniques were proposed for the prediction of vibration behavior of single-lap cantilevered SPR beams. The dynamic test software and the data acquisition hardware were used in the experimental measurement of the dynamic response of the single-lap cantilevered SPR beams. Free and forced vibration behavior of the single-lap cantilevered SPR beams was measured using the LMS CADA-X experimental modal analysis software and the LMS-DIFA Scadas II data acquisition hardware. The frequency response functions of the SPR beams of different rivet number were compared. The main goal of the paper is to provide a basic measuring method for further research on vibration based non-destructive damage detection in single-lap cantilevered SPR beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-piercing%20riveting" title="self-piercing riveting">self-piercing riveting</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response" title=" dynamic response"> dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20measurement" title=" experimental measurement"> experimental measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20response%20functions" title=" frequency response functions"> frequency response functions</a> </p> <a href="https://publications.waset.org/abstracts/21181/vibration-measurements-of-single-lap-cantilevered-spr-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6198</span> A Measuring Industrial Resiliency by Using Data Envelopment Analysis Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ida%20Bagus%20Made%20Putra%20Jandhana">Ida Bagus Made Putra Jandhana</a>, <a href="https://publications.waset.org/abstracts/search?q=Teuku%20Yuri%20M.%20Zagloel"> Teuku Yuri M. Zagloel</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahmat%20Nurchayo"> Rahmat Nurchayo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Having several crises that affect industrial sector performance in the past decades, decision makers should utilize measurement application that enables them to measure industrial resiliency more precisely. It provides not only a framework for the development of resilience measurement application, but also several theories for the concept building blocks, such as performance measurement management, and resilience engineering in real world environment. This research is a continuation of previously published paper on performance measurement in the industrial sector. Finally, this paper contributes an alternative performance measurement method in industrial sector based on resilience concept. Moreover, this research demonstrates how applicable the concept of resilience engineering is and its method of measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial" title="industrial">industrial</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement" title=" measurement"> measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience" title=" resilience"> resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=sector" title=" sector"> sector</a> </p> <a href="https://publications.waset.org/abstracts/79172/a-measuring-industrial-resiliency-by-using-data-envelopment-analysis-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6197</span> Arterial Compliance Measurement Using Split Cylinder Sensor/Actuator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swati%20Swati">Swati Swati</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuhang%20Chen"> Yuhang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Reuben"> Robert Reuben</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coronary stents are devices resembling the shape of a tube which are placed in coronary arteries, to keep the arteries open in the treatment of coronary arterial diseases. Coronary stents are routinely deployed to clear atheromatous plaque. The stent essentially applies an internal pressure to the artery because its structure is cylindrically symmetrical and this may introduce some abnormalities in final arterial shape. The goal of the project is to develop segmented circumferential arterial compliance measuring devices which can be deployed (eventually) in vivo. The segmentation of the device will allow the mechanical asymmetry of any stenosis to be assessed. The purpose will be to assess the quality of arterial tissue for applications in tailored stents and in the assessment of aortic aneurism. Arterial distensibility measurement is of utmost importance to diagnose cardiovascular diseases and for prediction of future cardiac events or coronary artery diseases. In order to arrive at some generic outcomes, a preliminary experimental set-up has been devised to establish the measurement principles for the device at macro-scale. The measurement methodology consists of a strain gauge system monitored by LABVIEW software in a real-time fashion. This virtual instrument employs a balloon within a gelatine model contained in a split cylinder with strain gauges fixed on it. The instrument allows automated measurement of the effect of air-pressure on gelatine and measurement of strain with respect to time and pressure during inflation. Compliance simple creep model has been applied to the results for the purpose of extracting some measures of arterial compliance. The results obtained from the experiments have been used to study the effect of air pressure on strain at varying time intervals. The results clearly demonstrate that with decrease in arterial volume and increase in arterial pressure, arterial strain increases thereby decreasing the arterial compliance. The measurement system could lead to development of portable, inexpensive and small equipment and could prove to be an efficient automated compliance measurement device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arterial%20compliance" title="arterial compliance">arterial compliance</a>, <a href="https://publications.waset.org/abstracts/search?q=atheromatous%20plaque" title=" atheromatous plaque"> atheromatous plaque</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20symmetry" title=" mechanical symmetry"> mechanical symmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20measurement" title=" strain measurement"> strain measurement</a> </p> <a href="https://publications.waset.org/abstracts/58695/arterial-compliance-measurement-using-split-cylinder-sensoractuator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6196</span> Success Measurement in Corporate Venturing: Integrating Three Decades of Research</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maurice%20Steinhoff">Maurice Steinhoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucas%20Costantino"> Lucas Costantino</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominik%20Kanbach"> Dominik Kanbach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Measurement approaches to corporate venturing (CV) success are highly diverse in the extant literature. Furthermore, these approaches rarely build on each other, making it difficult to derive comparable conclusions about CV outcomes. Employing a systematic literature review of three decades of research, the objective of this study is to provide transparency and structure in the broad field of CV research. Subsequently, the paper examines 28 studies in detail, resulting in two main contributions to the research field. First, three structural dimensions of measurement approaches are derived from the studies in the sample, namely, “level of analysis” (parent, program, and venture levels), “measurement perspective” (objective, subjective, and mixed measurement), and “locus of opportunity” (internal, external, and general CV activities). Second, an integrated overview of nine unique clusters structures the different measurement approaches. These clusters allow to encapsulate measurement approaches, but also make visible the approaches’ heterogeneity, as well as specific measurement items. Thereby, the study contributes to CV research by revealing and reconciling the variety of CV success-measurement approaches. The study also provides relevant insights for practitioners, by making transparent the various approaches to measuring the success of CV activities and presenting a list of 114 concrete and distinct measurement items. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corporate%20venturing" title="corporate venturing">corporate venturing</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement%20items" title=" measurement items"> measurement items</a>, <a href="https://publications.waset.org/abstracts/search?q=success%20measurement" title=" success measurement"> success measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=structured%20literature%20review" title=" structured literature review"> structured literature review</a> </p> <a href="https://publications.waset.org/abstracts/134933/success-measurement-in-corporate-venturing-integrating-three-decades-of-research" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6195</span> Determination of Mechanical Properties of Adhesives via Digital Image Correlation (DIC) Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Murat%20Demir%20Aydin">Murat Demir Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=Elanur%20Celebi"> Elanur Celebi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adhesively bonded joints are used as an alternative to traditional joining methods due to the important advantages they provide. The most important consideration in the use of adhesively bonded joints is that these joints have appropriate requirements for their use in terms of safety. In order to ensure control of this condition, damage analysis of the adhesively bonded joints should be performed by determining the mechanical properties of the adhesives. When the literature is investigated; it is generally seen that the mechanical properties of adhesives are determined by traditional measurement methods. In this study, to determine the mechanical properties of adhesives, the Digital Image Correlation (DIC) method, which can be an alternative to traditional measurement methods, has been used. The DIC method is a new optical measurement method which is used to determine the parameters of displacement and strain in an appropriate and correct way. In this study, tensile tests of Thick Adherent Shear Test (TAST) samples formed using DP410 liquid structural adhesive and steel materials and bulk tensile specimens formed using and DP410 liquid structural adhesive was performed. The displacement and strain values of the samples were determined by DIC method and the shear stress-strain curves of the adhesive for TAST specimens and the tensile strain curves of the bulk adhesive specimens were obtained. Various methods such as numerical methods are required as conventional measurement methods (strain gauge, mechanic extensometer, etc.) are not sufficient in determining the strain and displacement values of the very thin adhesive layer such as TAST samples. As a result, the DIC method removes these requirements and easily achieves displacement measurements with sufficient accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20adhesive" title="structural adhesive">structural adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesively%20bonded%20joints" title=" adhesively bonded joints"> adhesively bonded joints</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation" title=" digital image correlation"> digital image correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=thick%20adhered%20shear%20test%20%28TAST%29" title=" thick adhered shear test (TAST)"> thick adhered shear test (TAST)</a> </p> <a href="https://publications.waset.org/abstracts/90385/determination-of-mechanical-properties-of-adhesives-via-digital-image-correlation-dic-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6194</span> Electrodermal Activity Measurement Using Constant Current AC Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cristian%20Chacha">Cristian Chacha</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Asiain"> David Asiain</a>, <a href="https://publications.waset.org/abstracts/search?q=Jes%C3%BAs%20Ponce%20de%20Le%C3%B3n"> Jesús Ponce de León</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Ram%C3%B3n%20Beltr%C3%A1n"> José Ramón Beltrán</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work explores and characterizes the behavior of the AFE AD5941 in impedance measurement using an embedded algorithm with a constant current AC source. The main aim of this research is to improve the exact measurement of impedance values for their application in EDA-focused wearable devices. Through comprehensive study and characterization, it has been observed that employing a measurement sequence with a constant current source produces results with increased dispersion but higher accuracy. As a result, this approach leads to a more accurate system for impedance measurement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EDA" title="EDA">EDA</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20current%20AC%20source" title=" constant current AC source"> constant current AC source</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable" title=" wearable"> wearable</a>, <a href="https://publications.waset.org/abstracts/search?q=precision" title=" precision"> precision</a>, <a href="https://publications.waset.org/abstracts/search?q=accuracy" title=" accuracy"> accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance" title=" impedance"> impedance</a> </p> <a href="https://publications.waset.org/abstracts/168848/electrodermal-activity-measurement-using-constant-current-ac-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6193</span> Study on Angle Measurement Interferometer around Any Axis Direction Selected by Transmissive Liquid Crystal Device </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Furutani">R. Furutani</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Kikuchi"> G. Kikuchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generally, the optical interferometer system is too complicated and difficult to change the measurement items, pitch, yaw, and row, etc. In this article, the optical interferometer system using the transmissive Liquid Crystal Device (LCD) as the switch of the optical path was proposed. At first, the normal optical interferometer, Michelson interferometer, was constructed to measure the pitch angle and the yaw angle. In this optical interferometer, the ball lenses with the refractive indices of 2.0 were used as the retroreflectors. After that, the transmissive LCD was introduced as the switch to select the adequate optical path. In this article, these optical systems were constructed. Pitch measurement interferometer and yaw measurement interferometer were switched by the transmissive LCD. When the LCD was open for the yaw measurement, the yaw was sufficiently measured and optical path for the pitch measurement was blocked. On the other hand, when the LCD was open for the pitch measurement, the pitch was measured and the optical path for the yaw measurement was also blocked. In this article, the results of both of pitch measurement and yaw measurement were shown, and the result of blocked yaw measurement and pitch measurement were shown. As this measurement system was based on Michelson interferometer, the other measuring items, the deviation along the optical axis, the vertical deviation to the optical axis and row angle, could be measured by the additional ball lenses and the additional switching in future work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=any%20direction%20angle" title="any direction angle">any direction angle</a>, <a href="https://publications.waset.org/abstracts/search?q=ball%20lens" title=" ball lens"> ball lens</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20interferometer" title=" laser interferometer"> laser interferometer</a>, <a href="https://publications.waset.org/abstracts/search?q=transmissive%20liquid%20crystal%20device" title=" transmissive liquid crystal device"> transmissive liquid crystal device</a> </p> <a href="https://publications.waset.org/abstracts/106989/study-on-angle-measurement-interferometer-around-any-axis-direction-selected-by-transmissive-liquid-crystal-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6192</span> Measurement of Acoustic Loss in Nano-Layered Coating Developed for Thermal Noise Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Cesarini">E. Cesarini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lorenzini"> M. Lorenzini</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Cardarelli"> R. Cardarelli</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chao"> S. Chao</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Coccia"> E. Coccia</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Fafone"> V. Fafone</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Minenkow"> Y. Minenkow</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Nardecchia"> I. Nardecchia</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20M.%20Pinto"> I. M. Pinto</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rocchi"> A. Rocchi</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sequino"> V. Sequino</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Taranto"> C. Taranto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural relaxation processes in optical coatings represent a fundamental limit to the sensitivity of gravitational waves detectors, MEMS, optical metrology and entangled state experiments. To face this problem, many research lines are now active, in particular the characterization of new materials and novel solutions to be employed as coatings in future gravitational wave detectors. Nano-layered coating deposition is among the most promising techniques. We report on the measurement of acoustic loss of nm-layered composites (Ti<sub>2</sub>O/SiO<sub>2</sub>), performed with the GeNS nodal suspension, compared with sputtered λ/4 thin films nowadays employed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20measurement" title="mechanical measurement">mechanical measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20coating" title=" optical coating"> optical coating</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20noise" title=" thermal noise"> thermal noise</a> </p> <a href="https://publications.waset.org/abstracts/45331/measurement-of-acoustic-loss-in-nano-layered-coating-developed-for-thermal-noise-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6191</span> Calibration of the Radical Installation Limit Error of the Accelerometer in the Gravity Gradient Instrument</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danni%20Cong">Danni Cong</a>, <a href="https://publications.waset.org/abstracts/search?q=Meiping%20Wu"> Meiping Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaofeng%20He"> Xiaofeng He</a>, <a href="https://publications.waset.org/abstracts/search?q=Junxiang%20Lian"> Junxiang Lian</a>, <a href="https://publications.waset.org/abstracts/search?q=Juliang%20Cao"> Juliang Cao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaokuncai"> Shaokuncai</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Qin"> Hao Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gravity gradient instrument (GGI) is the core of the gravity gradiometer, so the structural error of the sensor has a great impact on the measurement results. In order not to affect the aimed measurement accuracy, limit error is required in the installation of the accelerometer. In this paper, based on the established measuring principle model, the radial installation limit error is calibrated, which is taken as an example to provide a method to calculate the other limit error of the installation under the premise of ensuring the accuracy of the measurement result. This method provides the idea for deriving the limit error of the geometry structure of the sensor, laying the foundation for the mechanical precision design and physical design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gravity%20gradient%20sensor" title="gravity gradient sensor">gravity gradient sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20installation%20limit%20error" title=" radial installation limit error"> radial installation limit error</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerometer" title=" accelerometer"> accelerometer</a>, <a href="https://publications.waset.org/abstracts/search?q=uniaxial%20rotational%20modulation" title=" uniaxial rotational modulation"> uniaxial rotational modulation</a> </p> <a href="https://publications.waset.org/abstracts/75475/calibration-of-the-radical-installation-limit-error-of-the-accelerometer-in-the-gravity-gradient-instrument" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6190</span> A Simple and Efficient Method for Accurate Measurement and Control of Power Frequency Deviation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Arif">S. J. Arif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the presented technique, a simple method is given for accurate measurement and control of power frequency deviation. The sinusoidal signal for which the frequency deviation measurement is required is transformed to a low voltage level and passed through a zero crossing detector to convert it into a pulse train. Another stable square wave signal of 10 KHz is obtained using a crystal oscillator and decade dividing assemblies (DDA). These signals are combined digitally and then passed through decade counters to give a unique combination of pulses or levels, which are further encoded to make them equally suitable for both control applications and display units. The developed circuit using discrete components has a resolution of 0.5 Hz and completes measurement within 20 ms. The realized circuit is simulated and synthesized using Verilog HDL and subsequently implemented on FPGA. The results of measurement on FPGA are observed on a very high resolution logic analyzer. These results accurately match the simulation results as well as the results of same circuit implemented with discrete components. The proposed system is suitable for accurate measurement and control of power frequency deviation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20encoder%20for%20frequency%20measurement" title="digital encoder for frequency measurement">digital encoder for frequency measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20deviation%20measurement" title=" frequency deviation measurement"> frequency deviation measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement%20and%20control%20systems" title=" measurement and control systems"> measurement and control systems</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20systems" title=" power systems"> power systems</a> </p> <a href="https://publications.waset.org/abstracts/44000/a-simple-and-efficient-method-for-accurate-measurement-and-control-of-power-frequency-deviation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6189</span> Software Quality Measurement System for Telecommunication Industry in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nor%20Fazlina%20Iryani%20Abdul%20Hamid">Nor Fazlina Iryani Abdul Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Khatim%20Hasan"> Mohamad Khatim Hasan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evolution of software quality measurement has been started since McCall introduced his quality model in year 1977. Starting from there, several software quality models and software quality measurement methods had emerged but none of them focused on telecommunication industry. In this paper, the implementation of software quality measurement system for telecommunication industry was compulsory to accommodate the rapid growth of telecommunication industry. The quality value of the telecommunication related software could be calculated using this system by entering the required parameters. The system would calculate the quality value of the measured system based on predefined quality metrics and aggregated by referring to the quality model. It would classify the quality level of the software based on Net Satisfaction Index (NSI). Thus, software quality measurement system was important to both developers and users in order to produce high quality software product for telecommunication industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20quality" title="software quality">software quality</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20measurement" title=" quality measurement"> quality measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20model" title=" quality model"> quality model</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20metric" title=" quality metric"> quality metric</a>, <a href="https://publications.waset.org/abstracts/search?q=net%20satisfaction%20index" title=" net satisfaction index"> net satisfaction index</a> </p> <a href="https://publications.waset.org/abstracts/15875/software-quality-measurement-system-for-telecommunication-industry-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">592</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6188</span> A Gamification Teaching Method for Software Measurement Process </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lennon%20Furtado">Lennon Furtado</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandro%20Oliveira"> Sandro Oliveira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The importance of an effective measurement program lies in the ability to control and predict what can be measured. Thus, the measurement program has the capacity to provide bases in decision-making to support the interests of an organization. Therefore, it is only possible to apply for an effective measurement program with a team of software engineers well trained in the measurement area. However, the literature indicates that are few computer science courses that have in their program the teaching of the software measurement process. And even these, generally present only basic theoretical concepts of said process and little or no measurement in practice, which results in the student's lack of motivation to learn the measurement process. In this context, according to some experts in software process improvements, one of the most used approaches to maintaining the motivation and commitment to software process improvements program is the use of the gamification. Therefore, this paper aims to present a proposal of teaching the measurement process by gamification. Which seeks to improve student motivation and performance in the assimilation of tasks related to software measurement, by incorporating elements of games into the practice of measurement process, making it more attractive for learning. And as a way of validating the proposal will be made a comparison between two distinct groups of 20 students of Software Quality class, a control group, and an experiment group. The control group will be the students that will not make use of the gamification proposal to learn software measurement process, while the experiment group, will be the students that will make use of the gamification proposal to learn software measurement process. Thus, this paper will analyze the objective and subjective results of each group. And as objective result will be analyzed the student grade reached at the end of the course, and as subjective results will be analyzed a post-course questionnaire with the opinion of each student about the teaching method. Finally, this paper aims to prove or refute the following hypothesis: If the gamification proposal to teach software measurement process does appropriate motivate the student, in order to attribute the necessary competence to the practical application of the measurement process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=education" title="education">education</a>, <a href="https://publications.waset.org/abstracts/search?q=gamification" title=" gamification"> gamification</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20measurement%20process" title=" software measurement process"> software measurement process</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20engineering" title=" software engineering"> software engineering</a> </p> <a href="https://publications.waset.org/abstracts/63537/a-gamification-teaching-method-for-software-measurement-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6187</span> Modified Evaluation of the Hydro-Mechanical Dependency of the Water Coefficient of Permeability of a Clayey Sand with a Novel Permeameter for Unsaturated Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Adelian">G. Adelian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mirzaii"> A. Mirzaii</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Yasrobi"> S. S. Yasrobi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper represents data of an extensive experimental laboratory testing program for the measurement of the water coefficient of permeability of clayey sand in different hydraulic and mechanical boundary conditions. A novel permeameter was designed and constructed for the experimental testing program, suitable for the study of flow in unsaturated soils in different hydraulic and mechanical loading conditions. In this work, the effect of hydraulic hysteresis, net isotropic confining stress, water flow condition, and sample dimensions are evaluated on the water coefficient of permeability of understudying soil. The experimental results showed a hysteretic variation for the water coefficient of permeability versus matrix suction and degree of saturation, with higher values in drying portions of the SWCC. The measurement of the water permeability in different applied net isotropic stress also signified that the water coefficient of permeability increased within the increment of net isotropic consolidation stress. The water coefficient of permeability also appeared to be independent of different applied flow heads, water flow condition, and sample dimensions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20permeability" title="water permeability">water permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20soils" title=" unsaturated soils"> unsaturated soils</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20hysteresis" title=" hydraulic hysteresis"> hydraulic hysteresis</a>, <a href="https://publications.waset.org/abstracts/search?q=void%20ratio" title=" void ratio"> void ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20suction" title=" matrix suction"> matrix suction</a>, <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20saturation" title=" degree of saturation"> degree of saturation</a> </p> <a href="https://publications.waset.org/abstracts/4905/modified-evaluation-of-the-hydro-mechanical-dependency-of-the-water-coefficient-of-permeability-of-a-clayey-sand-with-a-novel-permeameter-for-unsaturated-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6186</span> A Comparison Study of Fabric Objective Measurement (FOM) Using KES-FB and PhabrOmeter System on Warp Knitted Fabrics Handle: Smoothness, Stiffness and Softness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ka-Yan%20Yim">Ka-Yan Yim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Wai%20Kan"> Chi-Wai Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper conducts a comparison study using KES-FB and PhabrOmeter to measure 58 selected warp knitted fabric hand properties. Fabric samples were selected and measured by both KES-FB and PhabrOmeter. Results show differences between these two measurement methods. Smoothness and stiffness values obtained by KES-FB were found significant correlated (p value = 0.003 and 0.022) to the PhabrOmeter results while softness values between two measurement methods did not show significant correlation (p value = 0.828). Disagreements among these two measurement methods imply limitations on different mechanism principles when facing warp knitted fabrics. Subjective measurement methods and further studies are suggested in order to ascertain deeper investigation on the mechanisms of fabric hand perceptions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fabric%20hand" title="fabric hand">fabric hand</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric%20objective%20measurement" title=" fabric objective measurement"> fabric objective measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=KES-FB" title=" KES-FB"> KES-FB</a>, <a href="https://publications.waset.org/abstracts/search?q=PhabrOmeter" title=" PhabrOmeter"> PhabrOmeter</a> </p> <a href="https://publications.waset.org/abstracts/13092/a-comparison-study-of-fabric-objective-measurement-fom-using-kes-fb-and-phabrometer-system-on-warp-knitted-fabrics-handle-smoothness-stiffness-and-softness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6185</span> The Mechanical and Electrochemical Properties of DC-Electrodeposited Ni-Mn Alloy Coating with Low Internal Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun-Ying%20Lee">Chun-Ying Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuan-Hui%20Cheng"> Kuan-Hui Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei-Wen%20Wu"> Mei-Wen Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nickel-manganese (Ni-Mn) alloy coating prepared from DC electrodeposition process in sulphamate bath was studied. The effects of process parameters, such as current density and electrolyte composition, on the cathodic current efficiency, microstructure, internal stress and mechanical properties were investigated. Because of its crucial effect on the application to the electroforming of microelectronic components, the development of low internal stress coating with high leveling power was emphasized. It was found that both the coating’s manganese content and the cathodic current efficiency increased with the raise in current density. In addition, the internal stress of the deposited coating showed compressive nature at low current densities while changed to tensile one at higher current densities. Moreover, the metallographic observation, X-ray diffraction measurement, transmission electron microscope (TEM) examination, and polarization curve measurement were conducted. It was found that the Ni-Mn coating consisted of nano-sized columnar grains and the maximum hardness of the coating was associated with (111) preferred orientation in the microstructure. The grain size was refined along with the increase in the manganese content of the coating, which accordingly, raised its hardness and mechanical tensile strength. In summary, the Ni-Mn coating prepared at lower current density of 1-2 A/dm2 had low internal stress, high leveling power, and better corrosion resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ni-Mn%20coating" title="Ni-Mn coating">Ni-Mn coating</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20plating" title=" DC plating"> DC plating</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20stress" title=" internal stress"> internal stress</a>, <a href="https://publications.waset.org/abstracts/search?q=leveling%20power" title=" leveling power"> leveling power</a> </p> <a href="https://publications.waset.org/abstracts/24914/the-mechanical-and-electrochemical-properties-of-dc-electrodeposited-ni-mn-alloy-coating-with-low-internal-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6184</span> Mechanical Properties of Ancient Timber Structure Based on the Non Destructive Test Method: A Study to Feiyun Building, Shanxi, China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Annisa%20Dewanti%20Putri">Annisa Dewanti Putri</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Juan"> Wang Juan</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Qing%20Shan"> Y. Qing Shan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The structural assessment is one of a crucial part for ancient timber structure, in which this phase will be the reference for the maintenance and preservation phase. The mechanical properties of a structure are one of an important component of the structural assessment of building. Feiyun as one of the particular preserved building in China will become one of the Pioneer of Timber Structure Building Assessment. The 3-storey building which is located in Shanxi Province consists of complex ancient timber structure. Due to condition and preservation purpose, assessments (visual inspections, Non-Destructive Test and a Semi Non-Destructive test) were conducted. The stress wave measurement, moisture content analyzer, and the micro-drilling resistance meter data will overview the prediction of Mechanical Properties. As a result, the mechanical properties can be used for the next phase as reference for structural damage solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ancient%20structure" title="ancient structure">ancient structure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20destructive%20test" title=" non destructive test"> non destructive test</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20wave" title=" stress wave"> stress wave</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20assessment" title=" structural assessment"> structural assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=timber%20structure" title=" timber structure"> timber structure</a> </p> <a href="https://publications.waset.org/abstracts/81641/mechanical-properties-of-ancient-timber-structure-based-on-the-non-destructive-test-method-a-study-to-feiyun-building-shanxi-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6183</span> Software Improvements of the Accuracy in the Air-Electronic Measurement Systems for Geometrical Dimensions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miroslav%20H.%20Hristov">Miroslav H. Hristov</a>, <a href="https://publications.waset.org/abstracts/search?q=Velizar%20A.%20Vassilev"> Velizar A. Vassilev</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgi%20K.%20Dukendjiev"> Georgi K. Dukendjiev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the constant development of measurement systems and the aim for computerization, unavoidable improvements are made for the main disadvantages of air gauges. With the appearance of the air-electronic measuring devices, some of their disadvantages are solved. The output electrical signal allows them to be included in the modern systems for measuring information processing and process management. Producer efforts are aimed at reducing the influence of supply pressure and measurement system setup errors. Increased accuracy requirements and preventive error measures are due to the main uses of air electronic systems - measurement of geometric dimensions in the automotive industry where they are applied as modules in measuring systems to measure geometric parameters, form, orientation and location of the elements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air-electronic" title="air-electronic">air-electronic</a>, <a href="https://publications.waset.org/abstracts/search?q=geometrical%20parameters" title=" geometrical parameters"> geometrical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=improvement" title=" improvement"> improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement%20systems" title=" measurement systems"> measurement systems</a> </p> <a href="https://publications.waset.org/abstracts/82283/software-improvements-of-the-accuracy-in-the-air-electronic-measurement-systems-for-geometrical-dimensions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6182</span> Relative Navigation with Laser-Based Intermittent Measurement for Formation Flying Satellites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jongwoo%20Lee">Jongwoo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae-Eun%20Kang"> Dae-Eun Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Young%20Park"> Sang-Young Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a precise relative navigational method for satellites flying in formation using laser-based intermittent measurement data. The measurement data for the relative navigation between two satellites consist of a relative distance measured by a laser instrument and relative attitude angles measured by attitude determination. The relative navigation solutions are estimated by both the Extended Kalman filter (EKF) and unscented Kalman filter (UKF). The solutions estimated by the EKF may become inaccurate or even diverge as measurement outage time gets longer because the EKF utilizes a linearization approach. However, this study shows that the UKF with the appropriate scaling parameters provides a stable and accurate relative navigation solutions despite the long measurement outage time and large initial error as compared to the relative navigation solutions of the EKF. Various navigation results have been analyzed by adjusting the scaling parameters of the UKF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=satellite%20relative%20navigation" title="satellite relative navigation">satellite relative navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=laser-based%20measurement" title=" laser-based measurement"> laser-based measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=intermittent%20measurement" title=" intermittent measurement"> intermittent measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=unscented%20Kalman%20filter" title=" unscented Kalman filter"> unscented Kalman filter</a> </p> <a href="https://publications.waset.org/abstracts/80146/relative-navigation-with-laser-based-intermittent-measurement-for-formation-flying-satellites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6181</span> Study of Error Analysis and Sources of Uncertainty in the Measurement of Residual Stresses by the X-Ray Diffraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20T.%20Carvalho%20Filho">E. T. Carvalho Filho</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20T.%20N.%20Medeiros"> J. T. N. Medeiros</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20G.%20Martinez"> L. G. Martinez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Residual stresses are self equilibrating in a rigid body that acts on the microstructure of the material without application of an external load. They are elastic stresses and can be induced by mechanical, thermal and chemical processes causing a deformation gradient in the crystal lattice favoring premature failure in mechanicals components. The search for measurements with good reliability has been of great importance for the manufacturing industries. Several methods are able to quantify these stresses according to physical principles and the response of the mechanical behavior of the material. The diffraction X-ray technique is one of the most sensitive techniques for small variations of the crystalline lattice since the X-ray beam interacts with the interplanar distance. Being very sensitive technique is also susceptible to variations in measurements requiring a study of the factors that influence the final result of the measurement. Instrumental, operational factors, form deviations of the samples and geometry of analyzes are some variables that need to be considered and analyzed in order for the true measurement. The aim of this work is to analyze the sources of errors inherent to the residual stress measurement process by X-ray diffraction technique making an interlaboratory comparison to verify the reproducibility of the measurements. In this work, two specimens were machined, differing from each other by the surface finishing: grinding and polishing. Additionally, iron powder with particle size less than 45 µm was selected in order to be a reference (as recommended by ASTM E915 standard) for the tests. To verify the deviations caused by the equipment, those specimens were positioned and with the same analysis condition, seven measurements were carried out at 11Ψ tilts. To verify sample positioning errors, seven measurements were performed by positioning the sample at each measurement. To check geometry errors, measurements were repeated for the geometry and Bragg Brentano parallel beams. In order to verify the reproducibility of the method, the measurements were performed in two different laboratories and equipments. The results were statistically worked out and the quantification of the errors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title="residual stress">residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=x-ray%20diffraction" title=" x-ray diffraction"> x-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=repeatability" title=" repeatability"> repeatability</a>, <a href="https://publications.waset.org/abstracts/search?q=reproducibility" title=" reproducibility"> reproducibility</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20analysis" title=" error analysis"> error analysis</a> </p> <a href="https://publications.waset.org/abstracts/75093/study-of-error-analysis-and-sources-of-uncertainty-in-the-measurement-of-residual-stresses-by-the-x-ray-diffraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6180</span> Influence of Measurement System on Negative Bias Temperature Instability Characterization: Fast BTI vs Conventional BTI vs Fast Wafer Level Reliability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vincent%20King%20Soon%20Wong">Vincent King Soon Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Seng%20Ng"> Hong Seng Ng</a>, <a href="https://publications.waset.org/abstracts/search?q=Florinna%20Sim"> Florinna Sim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Negative Bias Temperature Instability (NBTI) is one of the critical degradation mechanisms in semiconductor device reliability that causes shift in the threshold voltage (Vth). However, thorough understanding of this reliability failure mechanism is still unachievable due to a recovery characteristic known as NBTI recovery. This paper will demonstrate the severity of NBTI recovery as well as one of the effective methods used to mitigate, which is the minimization of measurement system delays. Comparison was done in between two measurement systems that have significant differences in measurement delays to show how NBTI recovery causes result deviations and how fast measurement systems can mitigate NBTI recovery. Another method to minimize NBTI recovery without the influence of measurement system known as Fast Wafer Level Reliability (FWLR) NBTI was also done to be used as reference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fast%20vs%20slow%20BTI" title="fast vs slow BTI">fast vs slow BTI</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20wafer%20level%20reliability%20%28FWLR%29" title=" fast wafer level reliability (FWLR)"> fast wafer level reliability (FWLR)</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20bias%20temperature%20instability%20%28NBTI%29" title=" negative bias temperature instability (NBTI)"> negative bias temperature instability (NBTI)</a>, <a href="https://publications.waset.org/abstracts/search?q=NBTI%20measurement%20system" title=" NBTI measurement system"> NBTI measurement system</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-oxide-semiconductor%20field-effect%20transistor%20%28MOSFET%29" title=" metal-oxide-semiconductor field-effect transistor (MOSFET)"> metal-oxide-semiconductor field-effect transistor (MOSFET)</a>, <a href="https://publications.waset.org/abstracts/search?q=NBTI%20recovery" title=" NBTI recovery"> NBTI recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a> </p> <a href="https://publications.waset.org/abstracts/61786/influence-of-measurement-system-on-negative-bias-temperature-instability-characterization-fast-bti-vs-conventional-bti-vs-fast-wafer-level-reliability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6179</span> Microstructural Mechanical Properties of Human Trabecular Bone Based on Nanoindentation Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Jankowski">K. Jankowski</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pawlikowski"> M. Pawlikowski</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Makuch"> A. Makuch</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Skalski"> K. Skalski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Depth-sensing indentation (DSI) or nanoindentation is becoming a more and more popular method of measuring mechanical properties of various materials and tissues at a micro-scale. This technique allows measurements without complicated sample preparation procedures which makes this method very useful. As a result of measurement force and displacement of the intender are obtained. It is also possible to determine three measures of hardness i.e. Martens hardness (HM), nanohardness (HIT), Vickers hardness (HV) and Young modulus EIT. In this work trabecular bone mechanical properties were investigated. The bone samples were harvested from human femoral heads during hip replacement surgery. Patients were of different age, sexes and stages of tissue degeneration caused by osteoarthritis. The specimens were divided into three groups. Each group contained samples harvested from patients of different range of age. All samples were investigated with the same measurement conditions. The maximum load was Pmax=500 mN and the loading rate was 500 mN/min. The tests were held without hold at the peak force. The tests were conducted with indenter Vickers tip and spherical tip of the diameter 0.2 mm. Each trabecular bone sample was tested 7 times in a close area of the same trabecula. The measured loading P as a function of indentation depth allowed to obtain hysteresis loop and HM, HIT, HV, EIT. Results for arbitrarily chosen sample are HM=289.95 ± 42.31 MPa, HIT=430.75 ± 45.37 MPa, HV=40.66 ± 4.28 Vickers, EIT=7.37 ± 1.84 GPa for Vickers tip and HM=115.19 ± 15.03 MPa, HIT=165.80 ± 19.30 MPa, HV=16.90 ± 1.97 Vickers, EIT=5.30 ± 1.31 GPa for spherical tip. Results of nanoindentation tests show that this method is very useful and is perfect for obtaining mechanical properties of trabecular bone. Estimated values of elastic modulus are similar. The differences between hardness are significant but it is a result of using two different types of tips. However, it has to be emphasised that the differences in the values of elastic modulus and hardness result from different testing protocols, anisotropy and asymmetry of the micro-samples and the hydration of bone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20bone" title="human bone">human bone</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20hardness%20nanoindentation" title=" nano hardness nanoindentation"> nano hardness nanoindentation</a>, <a href="https://publications.waset.org/abstracts/search?q=trabecular%20bone" title=" trabecular bone"> trabecular bone</a> </p> <a href="https://publications.waset.org/abstracts/75064/microstructural-mechanical-properties-of-human-trabecular-bone-based-on-nanoindentation-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6178</span> Wear Measurement of Thermomechanical Parameters of the Metal Carbide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riad%20Harouz">Riad Harouz</a>, <a href="https://publications.waset.org/abstracts/search?q=Brahim%20Mahfoud"> Brahim Mahfoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The threads and the circles on reinforced concrete are obtained by process of hot rolling with pebbles finishers in metal carbide which present a way of rolling around the outside diameter. Our observation is that this throat presents geometrical wear after the end of its cycle determined in tonnage. In our study, we have determined, in a first step, experimentally measurements of the wear in terms of thermo-mechanical parameters (Speed, Load, and Temperature) and the influence of these parameters on the wear. In the second stage, we have developed a mathematical model of lifetime useful for the prognostic of the wear and their changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lifetime" title="lifetime">lifetime</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20carbides" title=" metal carbides"> metal carbides</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo-mechanical" title=" thermo-mechanical"> thermo-mechanical</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/26931/wear-measurement-of-thermomechanical-parameters-of-the-metal-carbide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6177</span> Mechanical Properties of Powder Metallurgy Processed Biodegradable Zn-Based Alloy for Biomedical Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maruf%20Yinka%20Kolawole">Maruf Yinka Kolawole</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacob%20Olayiwola%20Aweda"> Jacob Olayiwola Aweda</a>, <a href="https://publications.waset.org/abstracts/search?q=Farasat%20Iqbal"> Farasat Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Asif%20Ali"> Asif Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20Abdulkareem"> Sulaiman Abdulkareem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc is a non-ferrous metal with potential application in orthopaedic implant materials. However, its poor mechanical properties were major challenge to its application. Therefore, this paper studies the mechanical properties of biodegradable Zn-based alloy for biomedical application. Pure zinc powder with varying (0, 1, 2, 3 & 6) wt% of magnesium powders were ball milled using ball-to-powder ratio (B:P) of 10:1 at 350 rpm for 4 hours. The resulting milled powders were compacted and sintered at 300 MPa and 350 °C respectively. Microstructural, phase and mechanical properties analyses were performed following American standard of testing and measurement. The results show that magnesium has influence on the mechanical properties of zinc. The compressive strength, hardness and elastic modulus of 210 ± 8.878 MPa, 76 ± 5.707 HV and 45 ± 11.616 GPa respectively as obtained in Zn-2Mg alloy were optimum and meet the minimum requirement of biodegradable metal for orthopaedics application. These results indicate an increase of 111, 93 and 93% in compressive strength, hardness and elastic modulus respectively as compared to pure zinc. The increase in mechanical properties was adduced to effectiveness of compaction pressure and intermetallic phase formation within the matrix resulting in high dislocation density for improving strength. The study concluded that, Zn-2Mg alloy with optimum mechanical properties can therefore be considered a potential candidate for orthopaedic application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Biodegradable%20metal" title="Biodegradable metal">Biodegradable metal</a>, <a href="https://publications.waset.org/abstracts/search?q=Biomedical%20application" title=" Biomedical application"> Biomedical application</a>, <a href="https://publications.waset.org/abstracts/search?q=Mechanical%20properties" title=" Mechanical properties"> Mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=Powder%20Metallurgy" title=" Powder Metallurgy"> Powder Metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=Zinc" title=" Zinc"> Zinc</a> </p> <a href="https://publications.waset.org/abstracts/115000/mechanical-properties-of-powder-metallurgy-processed-biodegradable-zn-based-alloy-for-biomedical-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6176</span> Measurement Tools of the Maturity Model for IT Service Outsourcing in Higher Education Institutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victoriano%20Valencia%20Garc%C3%ADa">Victoriano Valencia García</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Usero%20Aragon%C3%A9s"> Luis Usero Aragonés</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugenio%20J.%20Fern%C3%A1ndez%20Vicente"> Eugenio J. Fernández Vicente</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the successful implementation of ICTs is vital for almost any kind of organization. Good governance and ICT management are essential for delivering value, managing technological risks, managing resources and performance measurement. In addition, outsourcing is a strategic IT service solution which complements IT services provided internally in organizations. This paper proposes the measurement tools of a new holistic maturity model based on standards ISO/IEC 20000 and ISO/IEC 38500, and the frameworks and best practices of ITIL and COBIT, with a specific focus on IT outsourcing. These measurement tools allow independent validation and practical application in the field of higher education, using a questionnaire, metrics tables, and continuous improvement plan tables as part of the measurement process. Guidelines and standards are proposed in the model for facilitating adaptation to universities and achieving excellence in the outsourcing of IT services. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IT%20governance" title="IT governance">IT governance</a>, <a href="https://publications.waset.org/abstracts/search?q=IT%20management" title=" IT management"> IT management</a>, <a href="https://publications.waset.org/abstracts/search?q=IT%20services" title=" IT services"> IT services</a>, <a href="https://publications.waset.org/abstracts/search?q=outsourcing" title=" outsourcing"> outsourcing</a>, <a href="https://publications.waset.org/abstracts/search?q=maturity%20model" title=" maturity model"> maturity model</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement%20tools" title=" measurement tools"> measurement tools</a> </p> <a href="https://publications.waset.org/abstracts/17602/measurement-tools-of-the-maturity-model-for-it-service-outsourcing-in-higher-education-institutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">592</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6175</span> Inter Laboratory Comparison with Coordinate Measuring Machine and Uncertainty Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tugrul%20%20Torun">Tugrul Torun</a>, <a href="https://publications.waset.org/abstracts/search?q=Ihsan%20A.%20Yuksel"> Ihsan A. Yuksel</a>, <a href="https://publications.waset.org/abstracts/search?q=Si%CC%87nem%20On%20Aktan"> Si̇nem On Aktan</a>, <a href="https://publications.waset.org/abstracts/search?q=Taha%20K.%20Vezi%CC%87roglu"> Taha K. Vezi̇roglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the quality control processes in some industries, the usage of CMM has increased in recent years. Consequently, the CMMs play important roles in the acceptance or rejection of manufactured parts. For parts, it’s important to be able to make decisions by performing fast measurements. According to related technical drawing and its tolerances, measurement uncertainty should also be considered during assessment. Since uncertainty calculation is difficult and time-consuming, most companies ignore the uncertainty value in their routine inspection method. Although studies on measurement uncertainty have been carried out on CMM’s in recent years, there is still no applicable method for analyzing task-specific measurement uncertainty. There are some standard series for calculating measurement uncertainty (ISO-15530); it is not possible to use it in industrial measurement because it is not a practical method for standard measurement routine. In this study, the inter-laboratory comparison test has been carried out in the ROKETSAN A.Ş. with all dimensional inspection units. The reference part that we used is traceable to the national metrology institute TUBİTAK UME. Each unit has measured reference parts according to related technical drawings, and the task-specific measuring uncertainty has been calculated with related parameters. According to measurement results and uncertainty values, the En values have been calculated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coordinate%20measurement" title="coordinate measurement">coordinate measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=CMM" title=" CMM"> CMM</a>, <a href="https://publications.waset.org/abstracts/search?q=comparison" title=" comparison"> comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/136496/inter-laboratory-comparison-with-coordinate-measuring-machine-and-uncertainty-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6174</span> Dual-Task–Immersion in the Interactions of Simultaneously Performed Tasks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Liebherr">M. Liebherr</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Schubert"> P. Schubert</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kersten"> S. Kersten</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Dietz"> C. Dietz</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Franz"> L. Franz</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20T.%20Haas"> C. T. Haas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With a long history, dual-task has become one of the most intriguing research fields regarding human brain functioning and cognition. However, findings considering effects of task-interrelations are limited (especially, in combined motor and cognitive tasks). Therefore, we aimed at developing a measurement system in order to analyse interrelation effects of cognitive and motor tasks. On the one hand, the present study demonstrates the applicability of the measurement system and on the other hand first results regarding a systematization of different task combinations are shown. Future investigations should combine imagine technologies and this developed measurement system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual-task" title="dual-task">dual-task</a>, <a href="https://publications.waset.org/abstracts/search?q=interference" title=" interference"> interference</a>, <a href="https://publications.waset.org/abstracts/search?q=cognition" title=" cognition"> cognition</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement" title=" measurement"> measurement</a> </p> <a href="https://publications.waset.org/abstracts/14066/dual-task-immersion-in-the-interactions-of-simultaneously-performed-tasks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6173</span> Investigation of Learning Challenges in Building Measurement Unit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Argaw%20T.%20Gurmu">Argaw T. Gurmu</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20N.%20Mahmood"> Muhammad N. Mahmood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research is to identify the architecture and construction management students’ learning challenges of the building measurement. This research used the survey data obtained collected from the students who completed the building measurement unit. NVivo qualitative data analysis software was used to identify relevant themes. The analysis of the qualitative data revealed the major learning difficulties such as inadequacy of practice questions for the examination, inability to work as a team, lack of detailed understanding of the prerequisite units, insufficiency of the time allocated for tutorials and incompatibility of lecture and tutorial schedules. The output of this research can be used as a basis for improving the teaching and learning activities in construction measurement units. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20measurement" title="building measurement">building measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20management" title=" construction management"> construction management</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20challenges" title=" learning challenges"> learning challenges</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluate%20survey" title=" evaluate survey"> evaluate survey</a> </p> <a href="https://publications.waset.org/abstracts/116469/investigation-of-learning-challenges-in-building-measurement-unit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanical%20measurement&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanical%20measurement&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanical%20measurement&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanical%20measurement&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanical%20measurement&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanical%20measurement&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanical%20measurement&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanical%20measurement&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanical%20measurement&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanical%20measurement&page=206">206</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanical%20measurement&page=207">207</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanical%20measurement&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>