CINXE.COM
Search results for: rubber nanocomposites
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: rubber nanocomposites</title> <meta name="description" content="Search results for: rubber nanocomposites"> <meta name="keywords" content="rubber nanocomposites"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="rubber nanocomposites" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="rubber nanocomposites"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 591</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: rubber nanocomposites</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">591</span> Development, Characterization and Properties of Novel Quaternary Rubber Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kumar%20Sankaran">Kumar Sankaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Santanu%20Chattopadhyay"> Santanu Chattopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Golok%20Behari%20Nando"> Golok Behari Nando</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujith%20Nair"> Sujith Nair</a>, <a href="https://publications.waset.org/abstracts/search?q=Sreejesh%20Arayambath"> Sreejesh Arayambath</a>, <a href="https://publications.waset.org/abstracts/search?q=Unnikrishnan%20Govindan"> Unnikrishnan Govindan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rubber nanocomposites based on Bromobutyl rubber (BIIR), Polyepichlorohydrin rubber (CO), Carbon black (CB) and organically modified montmorillonite clay (NC) were prepared via melt compounding technique. The developed quaternary nanocomposites were characterized analytically and their properties were compared against the standard BIIR compound. BIIR-CO nanocomposites showed improved physico-mechanical properties as compared to that of the standard BIIR compound. Hybrid microstructure (NC-CB) development, clay exfoliation and better filler dispersion in the quaternary nanocomposite significantly contributed to the overall enhancement of properties. Introduction of CO in the system increased the specific gravity and hardness of the compound as compared to that of the standard compound. XRD analysis, AFM imaging and HR-TEM measurements confirmed exfoliation and a good level of dispersion of the NC in the composites. Permeability of developed BIIR-CO nanocomposites decreases significantly as compared to that of the standard BIIR compound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rubber%20nanocomposites" title="rubber nanocomposites">rubber nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=BIIR" title=" BIIR"> BIIR</a> </p> <a href="https://publications.waset.org/abstracts/15209/development-characterization-and-properties-of-novel-quaternary-rubber-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">590</span> Advanced Materials Based on Ethylene-Propylene-Diene Terpolymers and Organically Modified Montmorillonite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20D.%20Stelescu">M. D. Stelescu</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Manaila"> E. Manaila</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Pelin"> G. Pelin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Georgescu"> M. Georgescu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sonmez"> M. Sonmez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents studies on the development and characterization of nanocomposites based on ethylene-propylene terpolymer rubber (EPDM), chlorobutyl rubber (IIR-Cl) and organically modified montmorillonite (OMMT). Mixtures were made containing 0, 3 and 6 phr (parts per 100 parts rubber) OMMT, respectively. They were obtained by melt intercalation in an internal mixer - Plasti-Corder Brabender, in suitable blending parameters, at high temperature for 11 minutes. Curing agents were embedded on a laboratory roller at 70-100 ºC, friction 1:1.1, processing time 5 minutes. Rubber specimens were obtained by compression, using a hydraulic press at 165 ºC and a pressing force of 300 kN. Curing time, determined using the Monsanto rheometer, decreases with the increased amount of OMMT in the mixtures. At the same time, it was noticed that mixtures containing OMMT show improvement in physical-mechanical properties. These types of nanocomposites may be used to obtain rubber seals for the space application or for other areas of application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chlorobutyl%20rubber" title="chlorobutyl rubber">chlorobutyl rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene-propylene-diene%20terpolymers" title=" ethylene-propylene-diene terpolymers"> ethylene-propylene-diene terpolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=montmorillonite" title=" montmorillonite"> montmorillonite</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber%20seals" title=" rubber seals"> rubber seals</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20application" title=" space application"> space application</a> </p> <a href="https://publications.waset.org/abstracts/101045/advanced-materials-based-on-ethylene-propylene-diene-terpolymers-and-organically-modified-montmorillonite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">589</span> The Role of Halloysite’s Surface Area and Aspect Ratio on Tensile Properties of Ethylene Propylene Diene Monomer Nanocomposites </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pooria%20Pasbakhsh">Pooria Pasbakhsh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rangika%20T.%20De%20Silva"> Rangika T. De Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Vahdat%20Vahedi"> Vahdat Vahedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanafi%20Ismail"> Hanafi Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of three different types of halloysite nanotubes (HNTs) with different dimensions, namely as camel lake (CLA), Jarrahdale (JA) and Matauri Bay (MB), on their reinforcing ability of ethylene propylene dine monomer (EPDM) were investigated by varying the HNTs loading (from 0-15 phr). Mechanical properties of the nanocomposites improved with addition of all three HNTs, but CLA based nanocomposites exhibited a significant enhancement compared to the other HNTs. For instance, tensile properties of EPDM nanocomposites increased by 120%, 256% and 340% for MB, JA, and CLA, respectively with addition of 15 phr of HNTs. This could be due to the higher aspect ratio and higher surface area of CLA compared to others. Scanning electron microscopy (SEM) of nanocomposites at 15 phr of HNT loadings showed low amounts of pulled-out nanotubes which confirmed the presence of more embedded nanotubes inside the EPDM matrix, as well as aggregates within the fracture surface of EPDM/HNT nanocomposites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspect%20ratio" title="aspect ratio">aspect ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=halloysite%20nanotubes%20%28HNTs%29" title=" halloysite nanotubes (HNTs)"> halloysite nanotubes (HNTs)</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber%2Fclay%20nanocomposites" title=" rubber/clay nanocomposites"> rubber/clay nanocomposites</a> </p> <a href="https://publications.waset.org/abstracts/17259/the-role-of-halloysites-surface-area-and-aspect-ratio-on-tensile-properties-of-ethylene-propylene-diene-monomer-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">588</span> The Effect of Ingredients Mixing Sequence in Rubber Compounding on the Formation of Bound Rubber and Cross-Link Density of Natural Rubber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abu%20Hasan">Abu Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rochmadi"> Rochmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hary%20Sulistyo"> Hary Sulistyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Suharto%20Honggokusumo"> Suharto Honggokusumo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research purpose is to study the effect of Ingredients mixing sequence in rubber compounding onto the formation of bound rubber and cross link density of natural rubber and also the relationship of bound rubber and cross link density. Analysis of bound rubber formation of rubber compound and cross link density of rubber vulcanizates were carried out on a natural rubber formula having masticated and mixing, followed by curing. There were four methods of mixing and each mixing process was followed by four mixing sequence methods of carbon black into the rubber. In the first method of mixing sequence, rubber was masticated for 5 min and then rubber chemicals and carbon black N 330 were added simultaneously. In the second one, rubber was masticated for 1 min and followed by addition of rubber chemicals and carbon black N 330 simultaneously using the different method of mixing then the first one. In the third one, carbon black N 660 was used for the same mixing procedure of the second one, and in the last one, rubber was masticated for 3 min, carbon black N 330 and rubber chemicals were added subsequently. The addition of rubber chemicals and carbon black into masticated rubber was distinguished by the sequence and time allocated for each mixing process. Carbon black was added into two stages. In the first stage, 10 phr was added first and the remaining 40 phr was added later along with oil. In the second one to the fourth one, the addition of carbon black in the first and the second stage was added in the phr ratio 20:30, 30:20, and 40:10. The results showed that the ingredients mixing process influenced bound rubber formation and cross link density. In the three methods of mixing, the bound rubber formation was proportional with crosslink density. In contrast in the fourth one, bound rubber formation and cross link density had contradictive relation. Regardless of the mixing method operated, bound rubber had non linear relationship with cross link density. The high cross link density was formed when low bound rubber formation. The cross link density became constant at high bound rubber content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bound-rubber" title="bound-rubber">bound-rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-link%20density" title=" cross-link density"> cross-link density</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20rubber" title=" natural rubber"> natural rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber%20mixing%20process" title=" rubber mixing process"> rubber mixing process</a> </p> <a href="https://publications.waset.org/abstracts/12954/the-effect-of-ingredients-mixing-sequence-in-rubber-compounding-on-the-formation-of-bound-rubber-and-cross-link-density-of-natural-rubber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">587</span> New Approach to Encapsulated Clay/Wax Nanocomposites Inside Polystyrene Particles via Minemulstion Polymerization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagi%20Greesh">Nagi Greesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study highlights a new method to obtain multiphase composites particles containing hydrophobic (wax) and inorganic (clay) compounds. Multiphase polystyrene-clay-wax nanocomposites were successfully synthesized. Styrene monomer were polymerized in the presence of different wax-clay nanocomposites concentrations in miniemulsion. Wax-clay nanocomposites were firstly obtained through ultrasonic mixing at a temperature above the melting point of the wax at different clay loadings. The obtained wax-clay nanocomposites were then used as filler in the preparation of polystyrene-wax-clay nanocomposites via miniemulsion polymerization. The particles morphology of PS/wax-clay nanocomposites latexes was mainly determined by Transmission Electron Microscopy ( TEM) , core/shell morphology was clearly observed, with the encapsulation of most wax-clay nanocomposites inside the PS particles. On the other hand, the morphology of the PS/wax-clay nanocomposites (after film formation) ranged from exfoliated to intercalated structures, depending on the percentage of wax-clay nanocomposites loading. This strategy will allow the preparation materials with tailored properties for specific applications such as paint coatings and adhesives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer-wax" title="polymer-wax">polymer-wax</a>, <a href="https://publications.waset.org/abstracts/search?q=paraffin%20wax" title=" paraffin wax"> paraffin wax</a>, <a href="https://publications.waset.org/abstracts/search?q=miniemulsion" title=" miniemulsion"> miniemulsion</a>, <a href="https://publications.waset.org/abstracts/search?q=core%2Fshell" title=" core/shell"> core/shell</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a> </p> <a href="https://publications.waset.org/abstracts/169298/new-approach-to-encapsulated-claywax-nanocomposites-inside-polystyrene-particles-via-minemulstion-polymerization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">586</span> Useful Lifetime Prediction of Chevron Rubber Spring for Railway Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chang%20Su%20Woo">Chang Su Woo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Sung%20Park"> Hyun Sung Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Useful lifetime evaluation of chevron rubber spring was very important in design procedure to assure the safety and reliability. It is, therefore, necessary to establish a suitable criterion for the replacement period of chevron rubber spring. In this study, we performed characteristic analysis and useful lifetime prediction of chevron rubber spring. Rubber material coefficient was obtained by curve fittings of uni-axial tension, equi bi-axial tension and pure shear test. Computer simulation was executed to predict and evaluate the load capacity and stiffness for chevron rubber spring. In order to useful lifetime prediction of rubber material, we carried out the compression set with heat aging test in an oven at the temperature ranging from 50°C to 100°C during a period 180 days. By using the Arrhenius plot, several useful lifetime prediction equations for rubber material was proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chevron%20rubber%20spring" title="chevron rubber spring">chevron rubber spring</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20coefficient" title=" material coefficient"> material coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=useful%20lifetime%20prediction" title=" useful lifetime prediction"> useful lifetime prediction</a> </p> <a href="https://publications.waset.org/abstracts/33892/useful-lifetime-prediction-of-chevron-rubber-spring-for-railway-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">568</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">585</span> The Effect of Mgo and Rubber Nanofillers on Electrical Treeing Characteristic of XLPE Based Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Amira%20nor%20Arifin">Nur Amira nor Arifin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tashia%20Marie%20Anthony"> Tashia Marie Anthony</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Ruzlin%20Mokhtar"> Mohd Ruzlin Mokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Huzainie%20Shafi%20Abd%20Halim"> Huzainie Shafi Abd Halim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cross-linked polyethylene (XLPE) material is being used as the cable insulation for the past decades due to its higher working temperature of 90 ˚C and some other advantages. However, the use of XLPE as an insulating material for underground distribution cables may have subjected to the unforeseeable weather and uncontrollable environmental condition. These unfavorable condition when combine with high electric field may lead to the initiation and growth of water tree in XLPE insulation. There are several studies on numerous nanofillers incorporate into polymer matrix to hinder the growth of tree propagation. Hence, in this study aims to investigate the effect of MgO and rubber nanofillers at different concentration on the electrical tree of XLPE. The nanofillers and XLPE were mixed and later extruded. After extrusion, the material were then fabricated into the desired shape for experimental purposes. The result shows that the electrical tree propagation of XLPE filled with optimize concentration of nanofillers were much slower compared to pure XLPE. In this paper, the effect of nanofillers towards electrical treeing characteristic will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20trees" title="electrical trees">electrical trees</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofillers" title=" nanofillers"> nanofillers</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposites" title=" polymer nanocomposites"> polymer nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=XLPE" title=" XLPE"> XLPE</a> </p> <a href="https://publications.waset.org/abstracts/128302/the-effect-of-mgo-and-rubber-nanofillers-on-electrical-treeing-characteristic-of-xlpe-based-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">584</span> Rubber Wood as a Potential Biomass Feedstock for Biochar via Slow Pyrolysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adilah%20Shariff">Adilah Shariff</a>, <a href="https://publications.waset.org/abstracts/search?q=Radin%20Hakim"> Radin Hakim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurhayati%20Abdullah"> Nurhayati Abdullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Utilisation of biomass feedstock for biochar has received increasing attention because of their potential for carbon sequestration and soil amendment. The aim of this study is to investigate the characteristics of rubber wood as a biomass feedstock for biochar via slow pyrolysis process. This was achieved by using proximate, ultimate, and thermogravimetric analysis (TGA) as well as heating value, pH and lignocellulosic determination. Rubber wood contains 4.13 mf wt.% moisture, 86.30 mf wt.% volatile matter, 0.60 mf wt.% ash content, and 13.10 mf wt.% fixed carbon. The ultimate analysis shows that rubber wood consists of 44.33 mf wt.% carbon, 6.26 mf wt.% hydrogen, 19.31 mf wt.% nitrogen, 0.31 mf wt.% sulphur, and 29.79 mf wt.% oxygen. The higher heating value of rubber wood is 22.5 MJ/kg, and its lower heating value is 21.2 MJ/kg. At 27 °C, the pH value of rubber wood is 6.83 which is acidic. The lignocellulosic analysis revealed that rubber wood composition consists of 2.63 mf wt.% lignin, 20.13 mf wt.% cellulose, and 65.04 mf wt.% hemicellulose. The volatile matter to fixed carbon ratio is 6.58. This led to a biochar yield of 25.14 wt.% at 500 °C. Rubber wood is an environmental friendly feedstock due to its low sulphur content. Rubber wood therefore is a suitable and a potential feedstock for biochar production via slow pyrolysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochar" title="biochar">biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber%20wood" title=" rubber wood"> rubber wood</a>, <a href="https://publications.waset.org/abstracts/search?q=slow%20pyrolysis" title=" slow pyrolysis"> slow pyrolysis</a> </p> <a href="https://publications.waset.org/abstracts/53243/rubber-wood-as-a-potential-biomass-feedstock-for-biochar-via-slow-pyrolysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">583</span> Studying the Effect of Nanoclays on the Mechanical Properties of Polypropylene/Polyamide Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benalia%20Kouini">Benalia Kouini</a>, <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Serier"> Aicha Serier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanocomposites based on polypropylene/polyamide 66 (PP/PA66) nanoblends containing organophilic montmorillonite (OMMT) and maleic anhydride grafted polypropylene (PP-g-MAH) were prepared by melt compounding method followed by injection molding. Two different types of nanoclays were used in this work. DELLITE LVF is the untreated nanoclay and DELLITE 67G is the treated one. The morphology of the nanocomposites was studied using the XR diffraction (XRD). The results indicate that the incorporation of treated nanoclay has a significant effect on the impact strength of PP/PA66 nanocomposites. Furthermore, it was found that XRD results revealed the intercalation, exfoliation of nanaclays of nanocomposites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nNanoclay" title="nNanoclay">nNanoclay</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanocomposites" title=" Nanocomposites"> Nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=Polypropylene" title=" Polypropylene"> Polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=Polyamide" title=" Polyamide"> Polyamide</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20processing" title=" melt processing"> melt processing</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties." title=" mechanical properties."> mechanical properties.</a> </p> <a href="https://publications.waset.org/abstracts/46381/studying-the-effect-of-nanoclays-on-the-mechanical-properties-of-polypropylenepolyamide-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">582</span> Manufacturing Process of Rubber Cement Composite Paver Block</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratnadip%20Natwarbhai%20Bhoi">Ratnadip Natwarbhai Bhoi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research paper is to study waste tire crumb rubber granules as a partial concrete replacement by the different percentages of facing layer thickness and without facing layer in the production of rubber cement composite paver block. The physical properties of RCCRP compressive strength, flexural strength, abrasion strength density, and water absorption testing by the IS 15658:2006 method. All these physical properties depend upon the ratio of crumb rubber uses. The result showed that the with facing layer at 15 mm, 25 mm, totally rubberized and without facing layer had little effect on compressive strength, flexural strength and abrasion resistance properties. Water absorption is also important for the service life of the product. The crumb rubber paver block also performed quite well in both compressive strength and abrasion resistance. The rubber cement composite rubber paver block is suitable for nonstructural purposes, such as being lightweight and easy installation for the walkway, sidewalks, and playing area applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rubber%20cement" title="rubber cement">rubber cement</a>, <a href="https://publications.waset.org/abstracts/search?q=crumb%20rubber" title=" crumb rubber"> crumb rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=layer" title=" layer"> layer</a> </p> <a href="https://publications.waset.org/abstracts/159551/manufacturing-process-of-rubber-cement-composite-paver-block" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">581</span> Modification Of Rubber Swab Tool With Brush To Reduce Rubber Swab Fraction Fishing Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20R.%20Hidayat">T. R. Hidayat</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Irawan"> G. Irawan</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Kurniawan"> F. Kurniawan</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20H.%20I.%20Prasetya"> E. H. I. Prasetya</a>, <a href="https://publications.waset.org/abstracts/search?q=Suharto"> Suharto</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20F.%20Ridwan"> T. F. Ridwan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Pitoyo"> A. Pitoyo</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Juniantoro"> A. Juniantoro</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20T.%20Hidayat"> R. T. Hidayat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Swab activities is an activity to lift fluid from inside the well with the use of a sand line that aims to find out fluid influx after conducting perforation or to reduce the level of fluid as an effort to get the difference between formation pressure with hydrostatic pressure in the well for underbalanced perforation. During the swab activity, problems occur frequent problems occur with the rubber swab. The rubber swab often breaks and becomes a fish inside the well. This rubber swab fishing activity caused the rig operation takes longer, the swab result data becomes too late and create potential losses of well operation for the company. The average time needed for fishing the fractions of rubber swab plus swab work is 42 hours. Innovation made for such problems is to modify the rubber swab tool. The rubber swab tool is modified by provided a series of brushes at the end part of the tool with a thread of connection in order to improve work safety, so when the rubber swab breaks, the broken swab will be lifted by the brush underneath; therefore, it reduces the loss time for rubber swab fishing. This tool has been applied, it and is proven that with this rubber swab tool modification, the rig operation becomes more efficient because it does not carry out the rubber swab fishing activity. The fish fractions of the rubber swab are lifted up to the surface. Therefore, it saves the fuel cost, and well production potentials are obtained. The average time to do swab work after the application of this modified tool is 8 hours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rubber%20swab" title="rubber swab">rubber swab</a>, <a href="https://publications.waset.org/abstracts/search?q=modifikasi%20swab" title=" modifikasi swab"> modifikasi swab</a>, <a href="https://publications.waset.org/abstracts/search?q=brush" title=" brush"> brush</a>, <a href="https://publications.waset.org/abstracts/search?q=fishing%20rubber%20swab" title=" fishing rubber swab"> fishing rubber swab</a>, <a href="https://publications.waset.org/abstracts/search?q=saving%20cost" title=" saving cost"> saving cost</a> </p> <a href="https://publications.waset.org/abstracts/142856/modification-of-rubber-swab-tool-with-brush-to-reduce-rubber-swab-fraction-fishing-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">580</span> Elastomeric Nanocomposites for Space Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adriana%20Stefan">Adriana Stefan</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristina-Elisabeta%20Pelin"> Cristina-Elisabeta Pelin</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Pelin"> George Pelin</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Daniela%20Stelescu"> Maria Daniela Stelescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Manaila"> Elena Manaila</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elastomeric composites have been known for a long time, but, to our knowledge, space and the aeronautic community has been directing a special attention to them only in the last decade. The required properties of advanced elastomeric materials used in space applications (such as O-rings) are sealing, abrasion, low-temperature flexibility, the long-term compression set properties, impact resistance and low-temperature thermal stability in different environments, such as ionized radiations. Basically, the elastomeric nanocomposites are composed of a rubber matrix and a wide and varied range of nanofillers, added with the aim of improving the physico-mechanical and elasticity modulus properties of the materials as well as their stability in different environments. The paper presents a partial synthesis of the research regarding the use of silicon carbide in nanometric form and/or organophylized montmorillonite as fillers in butyl rubber matrix. The need of composite materials arose from the fact that stand-alone polymers are ineffective in providing all the superior properties required by different applications. These drawbacks can be diminished or even eliminated by incorporating a new range of additives into the organic matrix, fillers that have important roles in modifying properties of various polymers. A composite material can provide superior and unique mechanical and physical properties because it combines the most desirable properties of its constituents while suppressing their least desirable properties. The commercial importance of polymers and the continuous increase of their use results in the continuous demand for improvement in their properties to meet the necessary conditions. To study the performance of the elastomeric nanocomposites were mechanically tested, it will be tested the qualities of tensile at low temperatures and RT and the behavior at the compression at cryogenic to room temperatures and under different environments. The morphology of specimens will be investigated by optical and scanning electronic microscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastomeric%20nanocomposites" title="elastomeric nanocomposites">elastomeric nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=O-rings" title=" O-rings"> O-rings</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20applications" title=" space applications"> space applications</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/82950/elastomeric-nanocomposites-for-space-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">579</span> Polymer-Nanographite Nanocomposites for Biosensor Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Payal%20Mazumdar">Payal Mazumdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunita%20Rattan"> Sunita Rattan</a>, <a href="https://publications.waset.org/abstracts/search?q=Monalisa%20Mukherjee"> Monalisa Mukherjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymer nanocomposites are a special class of materials having unique properties and wide application in diverse areas such as EMI shielding, sensors, photovoltaic cells, membrane separation properties, drug delivery etc. Recently the nanocomposites are being investigated for their use in biomedical fields as biosensors. Though nanocomposites with carbon nanoparticles have received worldwide attention in the past few years, comparatively less work has been done on nanographite although it has in-plane electrical, thermal and mechanical properties comparable to that of carbon nanotubes. The main challenge in the fabrication of these nanocomposites lies in the establishment of homogeneous dispersion of nanographite in polymer matrix. In the present work, attempts have been made to synthesize the nanocomposites of polystyrene and nanographite using click chemistry. The polymer and the nanographite are functionalized prior to the formation of nanocomposites. The polymer, polystyrene, was functionalized with alkyne moeity and nanographite with azide moiety. The fabricating of the nanocomposites was accomplished through click chemistry using Cu (I)-catalyzed Huisgen dipolar cycloaddition. The functionalization of filler and polymer was confirmed by NMR and FTIR. The nanocomposites formed by the click chemistry exhibit better electrical properties and the sensors are evaluated for their application as biosensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title="nanocomposites">nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=click%20chemistry" title=" click chemistry"> click chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=nanographite" title=" nanographite"> nanographite</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensor" title=" biosensor"> biosensor</a> </p> <a href="https://publications.waset.org/abstracts/9241/polymer-nanographite-nanocomposites-for-biosensor-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">578</span> Experimental Study on the Vibration Isolation Performance of Metal-Net Rubber Vibration Absorber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Su%20Yi%20Ming">Su Yi Ming</a>, <a href="https://publications.waset.org/abstracts/search?q=Hou%20Ying"> Hou Ying</a>, <a href="https://publications.waset.org/abstracts/search?q=Zou%20Guang%20Ping"> Zou Guang Ping</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal-net rubber is a new dry friction damping material, compared with the traditional metal rubber, which has high mechanization degree, and the mechanical performance of metal-net rubber is more stable. Through the sine sweep experiment and random vibration experiment of metal-net rubber vibration isolator, the influence of several important factors such as the lines slope, relative density and wire diameter on the transfer rate, natural frequency and root-mean-square response acceleration of metal-net rubber vibration isolation system, were studied through the method of control variables. Also, several relevant change curves under different vibration levels were derived, and the effects of vibration level on the natural frequency and root-mean-square response acceleration were analyzed through the curves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal-net%20rubber%20vibration%20isolator" title="metal-net rubber vibration isolator">metal-net rubber vibration isolator</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20density" title=" relative density"> relative density</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20level" title=" vibration level"> vibration level</a>, <a href="https://publications.waset.org/abstracts/search?q=wire%20diameter" title=" wire diameter"> wire diameter</a> </p> <a href="https://publications.waset.org/abstracts/52749/experimental-study-on-the-vibration-isolation-performance-of-metal-net-rubber-vibration-absorber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">577</span> Comparison of Silica-Filled Rubber Compound Prepared from Unmodified and Modified Silica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thirawudh%20Pongprayoon">Thirawudh Pongprayoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Watcharin%20Rassamee"> Watcharin Rassamee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silica-filled natural rubber compounds were prepared from unmodified and surface-modified silica. The modified silica was coated by ultrathin film of polyisoprene by admicellar polymerization. FTIR and SEM were applied to characterize the modified silica. The cure, mechanic, and dynamics properties were investigated with the comparison of the compounds. Cure characterization of modified silica rubber compound was shorter than that of unmodified silica compound. Strength and abrasion resistance of modified silica compound were better than those of unmodified silica rubber compound. Wet grip and rolling resistance analyzed by DMA from tanδ at 0°C and 60°C using 5 Hz were also better than those of unmodified silica rubber compound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silica" title="silica">silica</a>, <a href="https://publications.waset.org/abstracts/search?q=admicellar%20polymerization" title=" admicellar polymerization"> admicellar polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber%20compounds" title=" rubber compounds"> rubber compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20properties" title=" dynamic properties"> dynamic properties</a> </p> <a href="https://publications.waset.org/abstracts/12331/comparison-of-silica-filled-rubber-compound-prepared-from-unmodified-and-modified-silica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">576</span> Evaluation of Shear Strength Parameters of Rudsar Sandy Soil Stabilized with Waste Rubber Chips</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed">R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hamidzadeh"> M. Hamidzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of waste rubber chips not only can be of great importance in terms of the environment, but also can be used to increase the shear strength of soils. The purpose of this study was to evaluate the variation of the internal friction angle of liquefiable sandy soil using waste rubber chips. For this purpose, the geotechnical properties of unmodified and modified soil samples by waste lining rubber chips have been evaluated and analyzed by performing the triaxial consolidated drained test. In order to prepare the laboratory specimens, the sandy soil in part of Rudsar shores in Gilan province, north of Iran with high liquefaction potential has been replaced by two percent of waste rubber chips. Samples have been compressed until reaching the two levels of density of 15.5 and 16.7 kN/m<sup>3</sup>. Also, in order to find the optimal length of chips in sandy soil, the rectangular rubber chips with the widths of 0.5 and 1 cm and the lengths of 0.5, 1, and 2 cm were used. The results showed that the addition of rubber chips to liquefiable sandy soil greatly increases the shear resistance of these soils. Also, it can be seen that decreasing the width and increasing the length-to-width ratio of rubber chips has a direct impact on the shear strength of the modified soil samples with rubber chips. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=improvement" title="improvement">improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20friction%20angle" title=" internal friction angle"> internal friction angle</a>, <a href="https://publications.waset.org/abstracts/search?q=sandy%20soil" title=" sandy soil"> sandy soil</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber%20chip" title=" rubber chip"> rubber chip</a> </p> <a href="https://publications.waset.org/abstracts/79887/evaluation-of-shear-strength-parameters-of-rudsar-sandy-soil-stabilized-with-waste-rubber-chips" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">575</span> Structural and Electrical Characterization of Polypyrrole and Cobalt Aluminum Oxide Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sutar%20Rani%20Ananda">Sutar Rani Ananda</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Murugendrappa"> M. V. Murugendrappa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To investigate electrical properties of conducting polypyrrole (PPy) and cobalt aluminum oxide (CAO) nanocomposites, impedance analyzer in frequency range of 100 Hz to 5 MHz is used. In this work, PPy/CAO nanocomposites were synthesized by chemical oxidation polymerization method in different weight percent of CAO in PPy. The dielectric properties and AC conductivity studies were carried out for different nanocomposites in temperature range of room temperature to 180 °C. With the increase in frequency, the dielectric constant for all the nanocomposites was observed to decrease. AC conductivity of PPy was improved by addition of CAO nanopowder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title="polypyrrole">polypyrrole</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20constant" title=" dielectric constant"> dielectric constant</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20loss" title=" dielectric loss"> dielectric loss</a>, <a href="https://publications.waset.org/abstracts/search?q=AC%20conductivity" title=" AC conductivity"> AC conductivity</a> </p> <a href="https://publications.waset.org/abstracts/56826/structural-and-electrical-characterization-of-polypyrrole-and-cobalt-aluminum-oxide-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">574</span> Preparation and Properties of Chloroacetated Natural Rubber Rubber Foam Using Corn Starch as Curing Agent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ploenpit%20Boochathum">Ploenpit Boochathum</a>, <a href="https://publications.waset.org/abstracts/search?q=Pitchayanad%20Kaolim"> Pitchayanad Kaolim</a>, <a href="https://publications.waset.org/abstracts/search?q=Phimjutha%20Srisangkaew"> Phimjutha Srisangkaew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In general, rubber foam is produced based on the sulfur curing system. However, the remaining sulfur in the rubber product waste is burned to sulfur dioxide gas causing the environment pollution. To avoid using sulfur as curing agent in the rubber foam products, this research work proposes non-sulfur curing system by using corn starch as a curing agent. The ether crosslinks were proposed to be produced via the functional bonding between hydroxyl groups of the starch molecules and chloroacetate groups added on the natural rubber molecules. The chloroacetated natural rubber (CNR) latex was prepared via the epoxidation reaction of the concentrated natural rubber latex, subsequently, epoxy rings were attacked by chloroacetic acid to produce hydroxyl groups and chloroacetate groups on the rubber molecules. Foaming agent namely NaHCO3 was selected to add in the CNR latex due to the low decomposition temperature at about 50°C. The appropriate curing temperature was assigned to be 90°C that is above gelatinization temperature; 60-70°C, of starch. The effect of weight ratio of starch, i.e., 0 phr, 3 phr and 5 phr, on the physical properties of CNR rubber foam was investigated. It was found that density reduced from 0.81 g/cm3 for 0 phr to 0.75 g/cm3 for 3 phr and 0.79 g/cm3 for 5 phr. The ability to return to its original thickness after prolonged compressive stresses of CNR rubber foam cured with starch loading of 5 phr was found to be considerably better than that of CNR rubber foam cured with starch 3 phr and CNR rubber foam without addition of starch according to the compression set that was determined to decrease from 66.67% to 40% and 26.67% with the increase loading of starch. The mechanical properties including tensile strength and modulus of CNR rubber foams cured using starch were determined to increase except that the elongation at break was found to decrease. In addition, all mechanical properties of CNR rubber foams cured with the starch 3 phr and 5 phr were found to be slightly different and drastically higher than those of CNR rubber foam without the addition of starch. This research work indicates that starch can be applicable as a curing agent for CNR rubber. This is confirmed by the increase of the elastic modulus (G') of CNR rubber foams that was cured with the starch over the CNR rubber foam without curing agent. This type of rubber foam is believed to be one of the biodegradable and environment-friendly product that can be cured at low temperature of 90°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chloroacetated%20natural%20rubber" title="chloroacetated natural rubber">chloroacetated natural rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=corn%20starch" title=" corn starch"> corn starch</a>, <a href="https://publications.waset.org/abstracts/search?q=non-sulfur%20curing%20system" title=" non-sulfur curing system"> non-sulfur curing system</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber%20foam" title=" rubber foam"> rubber foam</a> </p> <a href="https://publications.waset.org/abstracts/60241/preparation-and-properties-of-chloroacetated-natural-rubber-rubber-foam-using-corn-starch-as-curing-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">573</span> Rubber Crumbs in Alkali Activated Clay Roof Tiles at Low Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aswin%20Kumar%20Krishnan">Aswin Kumar Krishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yat%20Choy%20Wong"> Yat Choy Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Reiza%20Mukhlis"> Reiza Mukhlis</a>, <a href="https://publications.waset.org/abstracts/search?q=Zipeng%20Zhang"> Zipeng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Arul%20Arulrajah"> Arul Arulrajah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The continuous increase in vehicle uptake escalates the number of rubber tyre waste which need to be managed to avoid landfilling and stockpiling. The present research focused on the sustainable use of rubber crumbs in clay roof tiles. The properties of roof tiles composed of clay, rubber crumbs, NaOH, and Na₂SiO₃ with a 10% alkaline activator were studied. Tile samples were fabricated by heating the compacted mixtures at 50°C for 72 hours, followed by a higher heating temperature of 200°C for 24 hours. The effect of rubber crumbs aggregates as a substitution for the raw clay materials was investigated by varying their concentration from 0% to 2.5%. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses have been conducted to study the phases and microstructures of the samples. It was found that the optimum rubber crumbs concentration was at 0.5% and 1%, while cracks and larger porosity were found at higher crumbs concentrations. Water absorption and compressive strength test results demonstrated that rubber crumbs and clay satisfied the standard requirement for the roof tiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rubber%20crumbs" title="rubber crumbs">rubber crumbs</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=roof%20tiles" title=" roof tiles"> roof tiles</a>, <a href="https://publications.waset.org/abstracts/search?q=alkaline%20activators" title=" alkaline activators"> alkaline activators</a> </p> <a href="https://publications.waset.org/abstracts/159923/rubber-crumbs-in-alkali-activated-clay-roof-tiles-at-low-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">572</span> Nanoindentation Behavior and Physical Properties of Polyvinyl Chloride /Styrene Co-Maleic Anhydride Blend Reinforced by Nano-Bentonite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalia%20Elsawy%20Abulyazied">Dalia Elsawy Abulyazied</a>, <a href="https://publications.waset.org/abstracts/search?q=Samia%20Mohamad%20Mokhtar"> Samia Mohamad Mokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Magdy%20Motawie"> Ahmed Magdy Motawie </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article studies the effects of nano-bentonite on the structure and properties of polymer blends nanocomposites, based on polyvinyl chloride (PVC) and styrene co-maleic anhydride (SMA) blend. Modification of Egyptian bentonite (EB) is carried out using organo-modifier namely; octadecylamine (ODA). Octadecylamine bentonite (ODA-B) is characterized using FTIR, XRD and TEM. Nanocomposites of PVC/SMA/ODA-B are prepared by solution intercalation polymerization from 0.50 up to 5 phr. The nanocomposites are characterized by XRD and TEM. Thermal behavior of the nanocomposites is studied. The effect of different content of ODA-B on the nano-mechanical properties is investigated by a nano-indentation test method. Also the swelling and electrical properties of the nanocomposites are measured. The morphology of the nanocomposites shows that ODA-B achieved good dispersion in the PVC/SMA matrix. The thermal stability of the nanocomposites is enhanced due to the presence of the ODA-B. Incorporation of 0.5, 1, 3 and 5 phr. ODA-B into the PVC/SMA blends results in an improvement in nano-hardness of 16%, 76%, 92%, and 68% respectively. The elastic modulus increased by 37% from 4.59 GPa for unreinforced PVC/SMA blend to 6.30 GPa for 3 phr. The cross-link density and the electrical conductivity of the nanocomposites are increased with increasing the content of ODA-B. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PVC" title="PVC">PVC</a>, <a href="https://publications.waset.org/abstracts/search?q=SMA" title=" SMA"> SMA</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-bentonite" title=" nano-bentonite"> nano-bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoindentation" title=" nanoindentation"> nanoindentation</a>, <a href="https://publications.waset.org/abstracts/search?q=crosslink%20density" title=" crosslink density"> crosslink density</a> </p> <a href="https://publications.waset.org/abstracts/23611/nanoindentation-behavior-and-physical-properties-of-polyvinyl-chloride-styrene-co-maleic-anhydride-blend-reinforced-by-nano-bentonite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">571</span> Reduction of Dynamic Influences in Composite Rubber-Concrete Block Designed to Walls Construction </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Major">Maciej Major</a>, <a href="https://publications.waset.org/abstracts/search?q=Izabela%20Major"> Izabela Major</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is a numerical analysis of three-layered block design to walls construction subjected to the dynamic load. The block consists of the layers: concrete with rubber pads in shape of crosses, space filled with air and concrete with I-shape rubber pads. The main purpose of rubber inserts embedded during the production process is additional protection against the transversal dynamic load. For the analysis, as rubber, the Zahorski hyperelastic incompressible material model was assumed. A concentrated force as dynamic load applied to the external block surface was investigated. The results for the considered block observed as the stress distribution plot were compared to the results obtained for the solid concrete block. In order to estimate the percentage damping of proposed composite, rubber-concrete block in relation to the solid block the numerical analysis with the use of finite element method based on ADINA software was performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamics" title="dynamics">dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber" title=" rubber"> rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahorski" title=" Zahorski"> Zahorski</a> </p> <a href="https://publications.waset.org/abstracts/81851/reduction-of-dynamic-influences-in-composite-rubber-concrete-block-designed-to-walls-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">570</span> Metal Ions Cross-Linking of Epoxidized Natural Rubber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kriengsak%20Damampai">Kriengsak Damampai</a>, <a href="https://publications.waset.org/abstracts/search?q=Skulrat%20Pichaiyut"> Skulrat Pichaiyut</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Das"> Amit Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Charoen%20Nacason"> Charoen Nacason</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The curing of epoxidized natural rubber (ENR) was performed by using metal ions (Ferric chloride, FeCl₃). Two different mole% of epoxide were used there are 25 mole% (ENR-25) and 50 mole% (ENR-50) epoxizied natural rubber. The main aim of this work was investigated the influence of metal ions on the coordination reaction of epoxidized natural rubber. Also, cure characteristics and mechanical properties of the rubber compounds were investigated. It was found that the ENR-50 compounds indicated superior modulus and tensile strength than the ENR-25 compounds. This was attributed to higher the cross-linking in the rubber via coordination linkages between the oxidation groups in ENR molecule and FeCl₃of metal ions. Various quantities of FeCl3 were also investigated. It is seen that the ENR-25 and 50 mole% compounds with FeCl₃ of more than 3 mmol exhibited higher modulus and tensile strength compare to the pure ENR. Furthermore, the FTIR spectra was used to confirm the cross-linked of ENR with FeCl₃. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Epoxidized%20natural%20rubber" title="Epoxidized natural rubber">Epoxidized natural rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferric%20chloride" title="Ferric chloride">Ferric chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-linking" title="cross-linking">cross-linking</a>, <a href="https://publications.waset.org/abstracts/search?q=Coordination" title="Coordination">Coordination</a> </p> <a href="https://publications.waset.org/abstracts/152865/metal-ions-cross-linking-of-epoxidized-natural-rubber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">569</span> Crumbed Rubber Modified Asphalt </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maanav%20M.%20Patel">Maanav M. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Aarsh%20S.%20Mistry"> Aarsh S. Mistry</a>, <a href="https://publications.waset.org/abstracts/search?q=Yash%20A.%20%20Dhaduk"> Yash A. Dhaduk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, only a small percentage of waste tyres are being land-filled. The Recycled Tyres Rubber is being used in new tyres, in tyre-derived fuel, in civil engineering applications and products, in molded rubber products, in agricultural uses, recreational and sports applications and in rubber modified asphalt applications. The benefits of using rubber modified asphalts are being more widely experienced and recognized, and the incorporation of tyres into asphalt is likely to increase. The technology with much different evidence of success demonstrated by roads built in the last 40 years is the rubberised asphalt mixture obtained through the so-called ‘‘wet process’’ which involves the utilisation of the Recycled Tyre Rubber Modified Bitumen (RTR-MBs). Since 1960s, asphalt mixtures produced with RTRMBs have been used in different parts of the world as solutions for different quality problems and, despite some downsides, in the majority of the cases they have demonstrated to enhance performance of road’s pavement. The present study aims in investigating the experimental performance of the bitumen modified with 15% by weight of crumb rubber varying its sizes. Four different categories of size of crumb rubber will be used, which are coarse (1 mm - 600 μm); medium size (600 μm - 300 μm); fine (300 μm150 μm); and superfine (150 μm - 75 μm). Common laboratory tests will be performed on the modified bitumen using various sizes of crumb rubber and thus analyzed. Marshall Stability method is adopted for mix design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bitumen" title="Bitumen">Bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=CRMB" title=" CRMB"> CRMB</a>, <a href="https://publications.waset.org/abstracts/search?q=Marshall%20Stability%20Test" title=" Marshall Stability Test"> Marshall Stability Test</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavement" title=" Pavement "> Pavement </a> </p> <a href="https://publications.waset.org/abstracts/120803/crumbed-rubber-modified-asphalt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">568</span> Mechanical Properties of Nanocomposites Cobalt Matrix with Nano SiC Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhuha%20Albusalih">Dhuha Albusalih</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Weston"> David Weston</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Gill"> Simon Gill</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanocomposites Co-SiC with well dispersed nanoparticles and Co nano grain size has produced using Pulse Reverse Plating (PRP) and using anionic surfactant. Different particle contents of nanocomposites were produced by altering the plating parameters. The method allows great control over the level of nanoparticles in the coating, without changing bath chemistry. Examination by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX), TEM and X-Ray Diffraction (XRD) analysis was performed to characterize and study the strengthening mechanisms of these nanocomposites. The primary strengthening mechanisms were shown to be grain refinement and dispersion strengthening. Tribological performances of the produced electroplated nanocomposite Co-SiC coatings were examined. Results showed that the coating with the higher volume fraction (vol. %) of SiC and the smallest grain size has the higher hardness and low wear rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title="nanocomposites">nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20reverse%20plating" title=" pulse reverse plating"> pulse reverse plating</a>, <a href="https://publications.waset.org/abstracts/search?q=tribological%20performance%20of%20cobalt%20nanocomposites" title=" tribological performance of cobalt nanocomposites"> tribological performance of cobalt nanocomposites</a> </p> <a href="https://publications.waset.org/abstracts/74419/mechanical-properties-of-nanocomposites-cobalt-matrix-with-nano-sic-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">567</span> Energy Absorption Characteristic of a Coupler Rubber Buffer Used in Rail Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhixiang%20Li">Zhixiang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuguang%20Yao"> Shuguang Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen%20Ma"> Wen Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coupler rubber buffer has been widely applied on the high-speed trains and the main function of the rubber buffer is dissipating the impact energy between vehicles. The rubber buffer consists of two groups of rubbers, which are both pre-compressed and then installed into the frame body. This paper focuses on the energy absorption characteristics of the rubber buffers particularly. Firstly, the quasi-static compression tests were carried out for 1 and 3 pairs of rubber sheets and some energy absorption responses relationship, i.e. Eabn = n×Eab1, Edissn = n×Ediss1, and Ean = Ea1, were obtained. Next, a series of quasi-static tests were performed for 1 pair of rubber sheet to investigate the energy absorption performance with different compression ratio of the rubber buffers. Then the impact tests with five impact velocities were conducted and the coupler knuckle was destroyed when the impact velocity was 10.807 km/h. The impact tests results showed that with the increase of impact velocity, the Eab, Ediss and Ea of rear buffer increased a lot, but the three responses of front buffer had not much increase. Finally, the results of impact tests and quasi-static tests were contrastively analysed and the results showed that with the increase of the stroke, the values of Eab, Ediss, and Ea were all increase. However, the increasing rates of impact tests were all larger than that of quasi-static tests. The maximum value of Ea was 68.76% in impact tests, it was a relatively high value for vehicle coupler buffer. The energy capacity of the rear buffer was determined for dynamic loading, it was 22.98 kJ. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rubber%20buffer" title="rubber buffer">rubber buffer</a>, <a href="https://publications.waset.org/abstracts/search?q=coupler" title=" coupler"> coupler</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20absorption" title=" energy absorption"> energy absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20tests" title=" impact tests"> impact tests</a> </p> <a href="https://publications.waset.org/abstracts/96059/energy-absorption-characteristic-of-a-coupler-rubber-buffer-used-in-rail-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">566</span> Implication of Multi-Walled Carbon Nanotubes on Polymer/MXene Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Aakyiir">Mathias Aakyiir</a>, <a href="https://publications.waset.org/abstracts/search?q=Qunhui%20Zheng"> Qunhui Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20Araby"> Sherif Araby</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Ma"> Jun Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MXene nanosheets stack in polymer matrices, while multi-walled carbon nanotubes (MWCNTs) entangle themselves when used to form composites. These challenges are addressed in this work by forming MXene/MWCNT hybrid nanofillers by electrostatic self-assembly and developing elastomer/MXene/MWCNTs nanocomposites using a latex compounding method. In a 3-phase nanocomposite, MWCNTs serve as bridges between MXene nanosheets, leading to nanocomposites with well-dispersed nanofillers. The high aspect ratio of MWCNTs and the interconnection role of MXene serve as a basis for forming nanocomposites of lower percolation threshold of electrical conductivity from the hybrid fillers compared with the 2-phase composites containing either MXene or MWCNTs only. This study focuses on discussing into detail the interfacial interaction of nanofillers and the elastomer matrix and the outstanding mechanical and functional properties of the resulting nanocomposites. The developed nanocomposites have potential applications in the automotive and aerospace industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastomers" title="elastomers">elastomers</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-walled%20carbon%20nanotubes" title=" multi-walled carbon nanotubes"> multi-walled carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=MXenes" title=" MXenes"> MXenes</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a> </p> <a href="https://publications.waset.org/abstracts/116767/implication-of-multi-walled-carbon-nanotubes-on-polymermxene-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">565</span> Material Characterization and Numerical Simulation of a Rubber Bumper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tam%C3%A1s%20Mankovits">Tamás Mankovits</a>, <a href="https://publications.waset.org/abstracts/search?q=D%C3%A1vid%20Huri"> Dávid Huri</a>, <a href="https://publications.waset.org/abstracts/search?q=Imre%20K%C3%A1llai"> Imre Kállai</a>, <a href="https://publications.waset.org/abstracts/search?q=Imre%20Kocsis"> Imre Kocsis</a>, <a href="https://publications.waset.org/abstracts/search?q=Tam%C3%A1s%20Szab%C3%B3"> Tamás Szabó</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. Rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. In this paper, a comprehensive investigation is introduced including laboratory measurements, mesh density analysis and complex finite element simulations to obtain the load-displacement curve of the chosen rubber bumper. Contact and friction effects are also taken into consideration. The aim of this research is to elaborate an FEM model which is accurate and competitive for a future shape optimization task. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rubber%20bumper" title="rubber bumper">rubber bumper</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20test" title=" compression test"> compression test</a>, <a href="https://publications.waset.org/abstracts/search?q=Mooney-Rivlin%20material%20model" title=" Mooney-Rivlin material model"> Mooney-Rivlin material model</a> </p> <a href="https://publications.waset.org/abstracts/7801/material-characterization-and-numerical-simulation-of-a-rubber-bumper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">564</span> Comparison of Different Data Acquisition Techniques for Shape Optimization Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Attila%20V%C3%A1mosi">Attila Vámosi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tam%C3%A1s%20Mankovits"> Tamás Mankovits</a>, <a href="https://publications.waset.org/abstracts/search?q=D%C3%A1vid%20Huri"> Dávid Huri</a>, <a href="https://publications.waset.org/abstracts/search?q=Imre%20Kocsis"> Imre Kocsis</a>, <a href="https://publications.waset.org/abstracts/search?q=Tam%C3%A1s%20Szab%C3%B3"> Tamás Szabó</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. Rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. The shape optimization problem of rubber parts led to the study of FEM based calculation processes. This type of problems was posed and investigated by several authors. In this paper the time demand of certain calculation methods are studied and the possibilities of time reduction is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rubber%20bumper" title="rubber bumper">rubber bumper</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20acquisition" title=" data acquisition"> data acquisition</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20regression" title=" support vector regression"> support vector regression</a> </p> <a href="https://publications.waset.org/abstracts/21406/comparison-of-different-data-acquisition-techniques-for-shape-optimization-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">563</span> Study on the Morphology and Dynamic Mechanical and Thermal Properties of HIPS/Graphene Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirhosein%20Rostampour">Amirhosein Rostampour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Sharif"> Mehdi Sharif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, a series of high impact polystyrene/graphene (HIPS/Gr) nanocomposites were prepared by solution mixing method and their morphology and dynamic mechanical properties were investigated as a function of graphene content. SEM images and X-Ray diffraction data confirm that the graphene platelets are well dispersed in HIPS matrix for the nanocomposites with Gr contents up to 5.0 wt%. Mechanical properties analysis demonstrates that yielding strength and initial modulus of HIPS/Gr nanocomposites are highly improved with the increment of Gr content compared to pure HIPS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title="nanocomposite">nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20mechanical%20properties" title=" dynamic mechanical properties"> dynamic mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a> </p> <a href="https://publications.waset.org/abstracts/29222/study-on-the-morphology-and-dynamic-mechanical-and-thermal-properties-of-hipsgraphene-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">536</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">562</span> Electrical and Optical Properties of Polyaniline: Cadmium Sulphide Quantum Dots Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akhtar%20Rasool">Akhtar Rasool</a>, <a href="https://publications.waset.org/abstracts/search?q=Tasneem%20Zahra%20Rizvi"> Tasneem Zahra Rizvi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a series of the cadmium sulphide quantum dots/polyaniline nanocomposites with varying compositions were prepared by in-situ polymerization technique and were characterized using X-ray diffraction and Fourier transform infrared spectroscopy. The surface morphology was studied by scanning electron microscopy. UV-Visible spectroscopy was used to find out the energy band gap of the nanoparticles and the nanocomposites. Temperature dependence of DC electrical conductivity and temperature and frequency dependence of AC conductivity were investigated to study the charge transport mechanism in the nanocomposites. DC conductivity was found to be a typical for a semiconducting behavior following Mott’s 1D variable range hoping model. The frequency dependent AC conductivity followed the universal power law. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conducting%20polymers" title="conducting polymers">conducting polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaniline%20composites" title=" polyaniline composites"> polyaniline composites</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a> </p> <a href="https://publications.waset.org/abstracts/78400/electrical-and-optical-properties-of-polyaniline-cadmium-sulphide-quantum-dots-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rubber%20nanocomposites&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rubber%20nanocomposites&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rubber%20nanocomposites&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rubber%20nanocomposites&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rubber%20nanocomposites&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rubber%20nanocomposites&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rubber%20nanocomposites&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rubber%20nanocomposites&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rubber%20nanocomposites&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rubber%20nanocomposites&page=19">19</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rubber%20nanocomposites&page=20">20</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rubber%20nanocomposites&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>