CINXE.COM
Search results for: residual modulus of elasticity
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: residual modulus of elasticity</title> <meta name="description" content="Search results for: residual modulus of elasticity"> <meta name="keywords" content="residual modulus of elasticity"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="residual modulus of elasticity" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="residual modulus of elasticity"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1643</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: residual modulus of elasticity</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1643</span> Residual Modulus of Elasticity of Self-Compacting Concrete Incorporated Unprocessed Waste Fly Ash after Expose to the Elevated Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Abed">Mohammed Abed</a>, <a href="https://publications.waset.org/abstracts/search?q=Rita%20Nemes"> Rita Nemes</a>, <a href="https://publications.waset.org/abstracts/search?q=Salem%20Nehme"> Salem Nehme</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study experimentally investigated the impact of incorporating unprocessed waste fly ash (UWFA) on the residual mechanical properties of self-compacting concrete (SCC) after exposure to elevated temperature. Three mixtures of SCC have been produced by replacing the cement mass by 0%, 15% and 30% of UWFA. Generally, the fire resistance of SCC has been enhanced by replacing the cement up to 15% of UWFA, especially in case of residual modulus of elasticity which considers more sensitive than other mechanical properties at elevated temperature. However, a strong linear relationship has been observed between the residual flexural strength and modulus of elasticity, where both of them affected significantly by the cracks appearance and propagation as a result of elevated temperature. Sustainable products could be produced by incorporating unprocessed waste powder materials in the production of concrete, where the waste materials, CO<sub>2</sub> emissions, and the energy needed for processing are reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-compacting%20high-performance%20concrete" title="self-compacting high-performance concrete">self-compacting high-performance concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=unprocessed%20waste%20fly%20ash" title=" unprocessed waste fly ash"> unprocessed waste fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20resistance" title=" fire resistance"> fire resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20modulus%20of%20elasticity" title=" residual modulus of elasticity"> residual modulus of elasticity</a> </p> <a href="https://publications.waset.org/abstracts/111302/residual-modulus-of-elasticity-of-self-compacting-concrete-incorporated-unprocessed-waste-fly-ash-after-expose-to-the-elevated-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1642</span> Modeling Residual Modulus of Elasticity of Self-Compacted Concrete Using Artificial Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Ashteyat">Ahmed M. Ashteyat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Artificial Neural Network (ANN) models have been widely used in material modeling, inter-correlations, as well as behavior and trend predictions when the nonlinear relationship between system parameters cannot be quantified explicitly and mathematically. In this paper, ANN was used to predict the residual modulus of elasticity (RME) of self compacted concrete (SCC) damaged by heat. The ANN model was built, trained, tested and validated using a total of 112 experimental data sets, gathered from available literature. The data used in model development included temperature, relative humidity conditions, mix proportions, filler types, and fiber type. The result of ANN training, testing, and validation indicated that the RME of SCC, exposed to different temperature and relative humidity levels, could be predicted accurately with ANN techniques. The reliability between the predicated outputs and the actual experimental data was 99%. This show that ANN has strong potential as a feasible tool for predicting residual elastic modulus of SCC damaged by heat within the range of input parameter. The ANN model could be used to estimate the RME of SCC, as a rapid inexpensive substitute for the much more complicated and time consuming direct measurement of the RME of SCC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20modulus%20of%20elasticity" title="residual modulus of elasticity">residual modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=self%20compacted-concrete" title=" self compacted-concrete"> self compacted-concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20modeling" title=" material modeling"> material modeling</a> </p> <a href="https://publications.waset.org/abstracts/22992/modeling-residual-modulus-of-elasticity-of-self-compacted-concrete-using-artificial-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1641</span> Selected Technological Factors Influencing the Modulus of Elasticity of Concrete </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Klara%20Krizova">Klara Krizova</a>, <a href="https://publications.waset.org/abstracts/search?q=Rudolf%20Hela"> Rudolf Hela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The topic of the article focuses on the evaluation of selected technological factors and their influence on resulting elasticity modulus of concrete. A series of various factors enter into the manufacturing process which, more or less, influences the elasticity modulus. This paper presents the results of concrete in which the influence of water coefficient and the size of maximum fraction of the aggregate on the static elasticity modulus were monitored. Part of selected results of the long-term programme was discussed in which a wide scope of various variants of proposals for the composition of concretes was evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mix%20design" title="mix design">mix design</a>, <a href="https://publications.waset.org/abstracts/search?q=water-cement%20ratio" title=" water-cement ratio"> water-cement ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregate" title=" aggregate"> aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a> </p> <a href="https://publications.waset.org/abstracts/6495/selected-technological-factors-influencing-the-modulus-of-elasticity-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1640</span> Impact of the Quality of Aggregate on the Elasticity Modulus of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Krizova">K. Krizova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This objective of this article is to present concrete that differs by the size of the aggregate used. The set of concrete contained six concrete recipes manufactured as traditional vibrated concrete containing identical basic components of concrete. The experiment focused on monitoring the resulting properties of hardened concrete, specifically the primary strength and modulus of the concrete elasticity and the developing parameters from 7 to 180 days were assessed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregate" title="aggregate">aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=cement" title=" cement"> cement</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=elasticity%20modulus" title=" elasticity modulus"> elasticity modulus</a> </p> <a href="https://publications.waset.org/abstracts/38600/impact-of-the-quality-of-aggregate-on-the-elasticity-modulus-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1639</span> Calcium Silicate Bricks – Ultrasonic Pulse Method: Effects of Natural Frequency of Transducers on Measurement Results</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Brozovsky">Jiri Brozovsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modulus of elasticity is one of the important parameters of construction materials, which considerably influence their deformation properties and which can also be determined by means of non-destructive test methods like ultrasonic pulse method. However, measurement results of ultrasonic pulse methods are influenced by various factors, one of which is the natural frequency of the transducers. The paper states knowledge about influence of natural frequency of the transducers (54; 82 and 150kHz) on ultrasonic pulse velocity and dynamic modulus of elasticity (Young's Dynamic modulus of elasticity). Differences between ultrasonic pulse velocity and dynamic modulus of elasticity were found with the same smallest dimension of test specimen in the direction of sounding and density their value decreases as the natural frequency of transducers grew. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20silicate%20brick" title="calcium silicate brick">calcium silicate brick</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20pulse%20method" title=" ultrasonic pulse method"> ultrasonic pulse method</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20pulse%20velocity" title=" ultrasonic pulse velocity"> ultrasonic pulse velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20modulus%20of%20elasticity" title=" dynamic modulus of elasticity"> dynamic modulus of elasticity</a> </p> <a href="https://publications.waset.org/abstracts/12508/calcium-silicate-bricks-ultrasonic-pulse-method-effects-of-natural-frequency-of-transducers-on-measurement-results" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1638</span> Evaluation of Static Modulus of Elasticity Depending on Concrete Compressive Strength</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Klara%20Krizova">Klara Krizova</a>, <a href="https://publications.waset.org/abstracts/search?q=Rudolf%20Hela"> Rudolf Hela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper is focused on monitoring of dependencies of different composition concretes on elastic modulus values. To obtain a summary of elastic modulus development independence of concrete composition design variability was the objective of the experiment. Essential part of this work was initiated as a reaction to building practice when questions of elastic moduli arose at the same time and which mostly did not obtain the required and expected values from concrete constructions. With growing interest in this theme the elastic modulus questions have been developing further. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20%0D%0Aof%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=EuroCode%202" title=" EuroCode 2"> EuroCode 2</a> </p> <a href="https://publications.waset.org/abstracts/30167/evaluation-of-static-modulus-of-elasticity-depending-on-concrete-compressive-strength" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1637</span> Experimental Modal Analysis of a Suspended Composite Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=First%20A.%20Lahmar%20Lahbib">First A. Lahmar Lahbib</a>, <a href="https://publications.waset.org/abstracts/search?q=Second%20B.%20Abdeldjebar%20Rabi%C3%A2"> Second B. Abdeldjebar Rabiâ</a>, <a href="https://publications.waset.org/abstracts/search?q=Third%20C.%20Moudden%20B"> Third C. Moudden B</a>, <a href="https://publications.waset.org/abstracts/search?q=forth%20D.%20Missoum%20L"> forth D. Missoum L</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vibration tests are used to identify the elasticity modulus in two directions. This strategy is applied to composite materials glass / polyester. Experimental results made on a specimen in free vibration showed the efficiency of this method. Obtained results were validated by a comparison to results stemming from static tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beam" title="beam">beam</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=elasticity%20modulus" title=" elasticity modulus"> elasticity modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration." title=" vibration."> vibration.</a> </p> <a href="https://publications.waset.org/abstracts/21151/experimental-modal-analysis-of-a-suspended-composite-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1636</span> Measurement of the Dynamic Modulus of Elasticity of Cylindrical Concrete Specimens Used for the Cyclic Indirect Tensile Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20G.%20Bolz">Paul G. Bolz</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20G.%20Lindner"> Paul G. Lindner</a>, <a href="https://publications.waset.org/abstracts/search?q=Frohmut%20Wellner"> Frohmut Wellner</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Schulze"> Christian Schulze</a>, <a href="https://publications.waset.org/abstracts/search?q=Joern%20Huebelt"> Joern Huebelt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete, as a result of its use as a construction material, is not only subject to static loads but is also exposed to variables, time-variant, and oscillating stresses. In order to ensure the suitability of construction materials for resisting these cyclic stresses, different test methods are used for the systematic fatiguing of specimens, like the cyclic indirect tensile test. A procedure is presented that allows the estimation of the degradation of cylindrical concrete specimens during the cyclic indirect tensile test by measuring the dynamic modulus of elasticity in different states of the specimens’ fatigue process. Two methods are used in addition to the cyclic indirect tensile test in order to examine the dynamic modulus of elasticity of cylindrical concrete specimens. One of the methods is based on the analysis of eigenfrequencies, whilst the other one uses ultrasonic pulse measurements to estimate the material properties. A comparison between the dynamic moduli obtained using the three methods that operate in different frequency ranges shows good agreement. The concrete specimens’ fatigue process can therefore be monitored effectively and reliably. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20indirect%20tensile%20test" title=" cyclic indirect tensile test"> cyclic indirect tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20modulus%20of%20elasticity" title=" dynamic modulus of elasticity"> dynamic modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenfrequency" title=" eigenfrequency"> eigenfrequency</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic" title=" ultrasonic"> ultrasonic</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%E2%80%99s%20modulus" title=" Young’s modulus"> Young’s modulus</a> </p> <a href="https://publications.waset.org/abstracts/133563/measurement-of-the-dynamic-modulus-of-elasticity-of-cylindrical-concrete-specimens-used-for-the-cyclic-indirect-tensile-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1635</span> Effects of Sn and Al on Phase Stability and Mechanical Properties of Metastable Beta Ti Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yonosuke%20Murayama">Yonosuke Murayama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have developed and studied a metastable beta Ti alloy, which shows super-elasticity and low Young’s modulus according to the phase stability of its beta phase. The super-elasticity and low Young’s modulus are required in a wide range of applications in various industrial fields. For example, the metallic implant with low Young’s modulus and non-toxicity is desirable because the large difference of Young’s modulus between the human bone and the implant material may cause a stress-shielding phenomenon. We have investigated the role of Sn and Al in metastable beta Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys. The metastable beta Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys form during quenching from the beta field at high temperature. While Cr and V act as beta stabilizers, Sn and Al are considered as elements to suppress the athermal omega phase produced during quenching. The athermal omega phase degrades the properties of super-elasticity and Young’s modulus. Although Al and Sn as single elements are considered as an alpha stabilizer and neutral, respectively, Sn and Al acted also as beta stabilizers when added simultaneously with beta stabilized element of Cr or V in this experiment. The quenched microstructure of Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys shifts from martensitic structure to beta single-phase structure with increasing Cr or V. The Young’s modulus of Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys decreased and then increased with increasing Cr or V, each showing its own minimum value of Young's modulus respectively. The composition of the alloy with the minimum Young’s modulus is a near border composition where the quenched microstructure shifts from martensite to beta. The border composition of Ti-Cr-Sn and Ti-V-Sn alloys required only less amount of each beta stabilizer, Cr or V, than Ti-Cr-Al and Ti-V-Al alloys. This indicates that the effect of Sn as a beta stabilizer is stronger than Al. Sn and Al influenced the competitive relation between stress-induced martensitic transformation and slip deformation. Thus, super-elastic properties of metastable beta Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys varied depending on the alloyed element, Sn or Al. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metastable%20beta%20Ti%20alloy" title="metastable beta Ti alloy">metastable beta Ti alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=super-elasticity" title=" super-elasticity"> super-elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20Young%E2%80%99s%20modulus" title=" low Young’s modulus"> low Young’s modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=stress-induced%20martensitic%20transformation" title=" stress-induced martensitic transformation"> stress-induced martensitic transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=beta%20stabilized%20element" title=" beta stabilized element"> beta stabilized element</a> </p> <a href="https://publications.waset.org/abstracts/123727/effects-of-sn-and-al-on-phase-stability-and-mechanical-properties-of-metastable-beta-ti-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1634</span> Analysis of Contact Width and Contact Stress of Three-Layer Corrugated Metal Gasket</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Made%20Gatot%20Karohika">I. Made Gatot Karohika</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeyuki%20Haruyama"> Shigeyuki Haruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Ken%20Kaminishi"> Ken Kaminishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Oke%20Oktavianty"> Oke Oktavianty</a>, <a href="https://publications.waset.org/abstracts/search?q=Didik%20Nurhadiyanto"> Didik Nurhadiyanto </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contact width and contact stress are important parameters related to the leakage behavior of corrugated metal gasket. In this study, contact width and contact stress of three-layer corrugated metal gasket are investigated due to the modulus of elasticity and thickness of surface layer for 2 type gasket (0-MPa and 400-MPa mode). A finite element method was employed to develop simulation solution to analysis the effect of each parameter. The result indicated that lowering the modulus of elasticity ratio of surface layer will result in better contact width but the average contact stresses are smaller. When the modulus of elasticity ratio is held constant with thickness ratio increase, its contact width has an increscent trend otherwise the average contact stress has decreased trend. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20width" title="contact width">contact width</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20stress" title=" contact stress"> contact stress</a>, <a href="https://publications.waset.org/abstracts/search?q=layer" title=" layer"> layer</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20gasket" title=" metal gasket"> metal gasket</a>, <a href="https://publications.waset.org/abstracts/search?q=corrugated" title=" corrugated"> corrugated</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/64226/analysis-of-contact-width-and-contact-stress-of-three-layer-corrugated-metal-gasket" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1633</span> Determination of Elasticity Constants of Isotropic Thin Films Using Impulse Excitation Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20Slim">M. F. Slim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Alhussein"> A. Alhussein</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Sanchette"> F. Sanchette</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Fran%C3%A7ois"> M. François</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thin films are widely used in various applications to enhance the surface properties and characteristics of materials. They are used in many domains such as: biomedical, automotive, aeronautics, military, electronics and energy. Depending on the elaboration technique, the elastic behavior of thin films may be different from this of bulk materials. This dependence on the elaboration techniques and their parameters makes the control of the elasticity constants of coated components necessary. Our work is focused on the characterization of the elasticity constants of isotropic thin films by means of Impulse Excitation Techniques. The tests rely on the measurement of the sample resonance frequency before and after deposition. In this work, a finite element model was performed with ABAQUS software. This model was then compared with the analytical approaches used to determine the Young’s and shear moduli. The best model to determine the film Young’s modulus was identified and a relation allowing the determination of the shear modulus of thin films of any thickness was developed. In order to confirm the model experimentally, Tungsten films were deposited on glass substrates by DC magnetron sputtering of a 99.99% purity tungsten target. The choice of tungsten was done because it is well known that its elastic behavior at crystal scale is ideally isotropic. The macroscopic elasticity constants, Young’s and shear moduli and Poisson’s ratio of the deposited film were determined by means of Impulse Excitation Technique. The Young’s modulus obtained from IET was compared with measurements by the nano-indentation technique. We did not observe any significant difference and the value is in accordance with the one reported in the literature. This work presents a new methodology on the determination of the elasticity constants of thin films using Impulse Excitation Technique. A formulation allowing the determination of the shear modulus of a coating, whatever the thickness, was developed and used to determine the macroscopic elasticity constants of tungsten films. The developed model was validated numerically and experimentally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical%20resonant%20method" title=" dynamical resonant method"> dynamical resonant method</a>, <a href="https://publications.waset.org/abstracts/search?q=Poisson%27s%20ratio" title=" Poisson's ratio"> Poisson's ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=PVD" title=" PVD"> PVD</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20modulus" title=" shear modulus"> shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%27s%20modulus" title=" Young's modulus"> Young's modulus</a> </p> <a href="https://publications.waset.org/abstracts/61317/determination-of-elasticity-constants-of-isotropic-thin-films-using-impulse-excitation-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1632</span> Laser Shock Peening of Additively Manufactured Nickel-Based Superalloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Munther">Michael Munther</a>, <a href="https://publications.waset.org/abstracts/search?q=Keivan%20Davami"> Keivan Davami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One significant roadblock for additively manufactured (AM) parts is the buildup of residual tensile stresses during the fabrication process. These residual stresses are formed due to the intense localized thermal gradients and high cooling rates that cause non-uniform material expansion/contraction and mismatched strain profiles during powder-bed fusion techniques, such as direct metal laser sintering (DMLS). The residual stresses adversely affect the fatigue life of the AM parts. Moreover, if the residual stresses become higher than the material’s yield strength, they will lead to acute geometric distortion. These are limiting the applications and acceptance of AM components for safety-critical applications. Herein, we discuss laser shock peening method as an advanced technique for the manipulation of the residual stresses in AM parts. An X-ray diffraction technique is used for the measurements of the residual stresses before and after the laser shock peening process. Also, the hardness of the structures is measured using a nanoindentation technique. Maps of nanohardness and modulus are obtained from the nanoindentation, and a correlation is made between the residual stresses and the mechanical properties. The results indicate that laser shock peening is able to induce compressive residual stresses in the structure that mitigate the tensile residual stresses and increase the hardness of AM IN718, a superalloy, almost 20%. No significant changes were observed in the modulus after laser shock peening. The results strongly suggest that laser shock peening can be used as an advanced post-processing technique to optimize the service lives of critical components for various applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=Inconel%20718" title=" Inconel 718"> Inconel 718</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20shock%20peening" title=" laser shock peening"> laser shock peening</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stresses" title=" residual stresses"> residual stresses</a> </p> <a href="https://publications.waset.org/abstracts/111318/laser-shock-peening-of-additively-manufactured-nickel-based-superalloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1631</span> Effect of Rubber Treatment on Compressive Strength and Modulus of Elasticity of Self-Compacting Rubberized Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Mili%C4%8Devi%C4%87">I. Miličević</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hadzima%20Nyarko"> M. Hadzima Nyarko</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Bu%C5%A1i%C4%87"> R. Bušić</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Simonovi%C4%87%20Radosavljevi%C4%87"> J. Simonović Radosavljević</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Prokopijevi%C4%87"> M. Prokopijević</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Vojisavljevi%C4%87"> K. Vojisavljević</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the effects of different treatment methods of rubber aggregates for self-compacting concrete (SCC) on compressive strength and modulus of elasticity. SCC mixtures with 10% replacement of fine aggregate with crumb rubber by total aggregate volume and with different aggregate treatment methods were investigated. The rubber aggregate was treated in three different methods: dry process, water-soaking, and NaOH treatment plus water soaking. Properties of SCC in a fresh and hardened state were tested and evaluated. Scanning electron microscope (SEM) analysis of three different SCC patches were made and discussed. It was observed that applying the proposed NaOH plus water soaking method resulted in the improvement of fresh and hardened concrete properties. It resulted in a more uniform distribution of rubber particles in the cement matrix, a better bond between rubber particles and the cement matrix, and higher compressive strength of SCC rubberized concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=NaOH%20treatment" title=" NaOH treatment"> NaOH treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber%20aggregate" title=" rubber aggregate"> rubber aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=self-compacting%20rubberized%20concrete" title=" self-compacting rubberized concrete"> self-compacting rubberized concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope%20analysis" title=" scanning electron microscope analysis"> scanning electron microscope analysis</a> </p> <a href="https://publications.waset.org/abstracts/128606/effect-of-rubber-treatment-on-compressive-strength-and-modulus-of-elasticity-of-self-compacting-rubberized-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1630</span> Variations of Testing Concrete Mechanical Properties by European Standard and American Code</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20Seyam">Ahmed M. Seyam</a>, <a href="https://publications.waset.org/abstracts/search?q=Rita%20Nemes"> Rita Nemes</a>, <a href="https://publications.waset.org/abstracts/search?q=Salem%20Georges%20Nehme"> Salem Georges Nehme</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Europe and the United States have a worldwide significance in the field of concrete control and construction; according to that, a lot of countries adopted their standards and regulations in the concrete field, as proof of the Europe and US strong standards and due to lack of own regulations. The main controlled property of concrete are the compressive strength, flexure tensile strength, and modulus of elasticity as it relates both to its bearing capacity and to the durability of the elements built with it, so in this paper, ASTM standard and EN standards method of testing those properties were put under the microscope to compare the variations between them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=ASTM" title=" ASTM"> ASTM</a>, <a href="https://publications.waset.org/abstracts/search?q=EU%20standards" title=" EU standards"> EU standards</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a> </p> <a href="https://publications.waset.org/abstracts/151902/variations-of-testing-concrete-mechanical-properties-by-european-standard-and-american-code" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1629</span> Mechanical Properties of Aspen Wood of Structural Dimensions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barbora%20Herdov%C3%A1">Barbora Herdová</a>, <a href="https://publications.waset.org/abstracts/search?q=Rastislav%20Laga%C5%88a"> Rastislav Lagaňa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper investigates the mechanical properties of European aspen (Populus tremula L.) as a potential replacement for load-bearing elements in historical structures. One of the main aims of the research has been the quantification of mechanical properties via destructive testing and the subsequent calculation of characteristic values of these properties. The research encompasses experimental testing of wood specimens for the determination of dynamic modulus of elasticity (MOEdyn), modulus of elasticity (MOE), modulus of rupture (MOR), and density. The results were analyzed and compared to established standards for structural timber. The results confirmed statistically significant dependence between MOR and MOEdyn. The correlation between the MOR and the dynamic MOEdyn enabled non-destructive strength grading using the Sylvatest Duo® system. The findings of this research contribute to the potential use of European aspen as a structural timber, which could have implications for the sustainable use of this abundant and renewable resource in the construction industry. They also show the usability of European aspen in the reconstruction of historical buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=populus%20tremula" title="populus tremula">populus tremula</a>, <a href="https://publications.waset.org/abstracts/search?q=MOE" title=" MOE"> MOE</a>, <a href="https://publications.waset.org/abstracts/search?q=MOR" title=" MOR"> MOR</a>, <a href="https://publications.waset.org/abstracts/search?q=sylvatest%20Duo%C2%AE." title=" sylvatest Duo®."> sylvatest Duo®.</a> </p> <a href="https://publications.waset.org/abstracts/179309/mechanical-properties-of-aspen-wood-of-structural-dimensions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1628</span> A Study on FWD Deflection Bowl Parameters for Condition Assessment of Flexible Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ujjval%20J.%20Solanki">Ujjval J. Solanki</a>, <a href="https://publications.waset.org/abstracts/search?q=Prof.%28Dr.%29%20P.J.%20Gundaliya">Prof.(Dr.) P.J. Gundaliya</a>, <a href="https://publications.waset.org/abstracts/search?q=Prof.M.D.%20Barasara"> Prof.M.D. Barasara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of Falling Weight Deflectometer is to evaluate structural performance of the flexible pavement. The exercise of back calculation is required to know the modulus of elasticity of existing in-service pavement. The process of back calculation needs in-depth field experience for the input of range of modulus of elasticity of bituminous, granular and subgrade layer, and its required number of trial to find such matching moduli with the observed FWD deflection on the field. The study carried out at Barnala-Mansa State Highway Punjab-India using FWD before and after overlay; the deflections obtained at 0 on the load cell, 300, 600, 900,1200, 1500 and 1800 mm interval from the load cell these seven deflection results used to calculate Surface Curvature Index (SCI), Base damage Index (BDI), Base curvature index (BCI). This SCI, BCI and BDI indices are useful to predict the structural performance of in-service pavement and also useful to identify homogeneous section for condition assessment. The SCI, BCI and BDI range are determined for before and after overlay the range of SCI 520 to 51 BDI 294 to 63 BCI 83 to 0.27 for old pavement and SCI 272 to 23 BDI 228 to 28, BCI 25.85 to 4.60 for new pavement. It also shows good correlation with back calculated modulus of elasticity of all the three layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=back%20calculation" title="back calculation">back calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20damage%20index" title=" base damage index"> base damage index</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20curvature%20index" title=" base curvature index"> base curvature index</a>, <a href="https://publications.waset.org/abstracts/search?q=FWD%20%28Falling%20Weight%20Deflectometer%29" title=" FWD (Falling Weight Deflectometer)"> FWD (Falling Weight Deflectometer)</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20curvature%20index" title=" surface curvature index"> surface curvature index</a> </p> <a href="https://publications.waset.org/abstracts/45963/a-study-on-fwd-deflection-bowl-parameters-for-condition-assessment-of-flexible-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1627</span> Durability Aspects of Recycled Aggregate Concrete: An Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Smitha%20Yadav">Smitha Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Snehal%20Pathak"> Snehal Pathak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aggregate compositions in the construction and demolition (C&D) waste have potential to replace normal aggregates. However, to re-utilise these aggregates, the concrete produced with these recycled aggregates needs to provide the desired compressive strength and durability. This paper examines the performance of recycled aggregate concrete made up of 60% recycled aggregates of 20 mm size in terms of durability tests namely rapid chloride permeability, drying shrinkage, water permeability, modulus of elasticity and creep without compromising the compressive strength. The experimental outcome indicates that recycled aggregate concrete provides strength and durability same as controlled concrete when processed for removal of adhered mortar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20aggregate" title=" recycled aggregate"> recycled aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinkage" title=" shrinkage"> shrinkage</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20chloride%20permeation%20test" title=" rapid chloride permeation test"> rapid chloride permeation test</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20permeability" title=" water permeability"> water permeability</a> </p> <a href="https://publications.waset.org/abstracts/80925/durability-aspects-of-recycled-aggregate-concrete-an-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1626</span> Finite Eigenstrains in Nonlinear Elastic Solid Wedges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Golgoon">Ashkan Golgoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Souhayl%20Sadik"> Souhayl Sadik</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Yavari"> Arash Yavari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eigenstrains in nonlinear solids are created due to anelastic effects such as non-uniform temperature distributions, growth, remodeling, and defects. Eigenstrains understanding is indispensable, as they can generate residual stresses and strongly affect the overall response of solids. Here, we study the residual stress and deformation fields of an incompressible isotropic infinite wedge with a circumferentially-symmetric distribution of finite eigenstrains. We construct a material manifold, whose Riemannian metric explicitly depends on the eigenstrain distribution, thereby we turn the problem into a classical nonlinear elasticity problem, where we find an embedding of the Riemannian material manifold into the ambient Euclidean space. In particular, we find exact solutions for the residual stress and deformation fields of a neo-Hookean wedge having a symmetric inclusion with finite radial and circumferential eigenstrains. Moreover, we numerically solve a similar problem when a symmetric Mooney-Rivlin inhomogeneity with finite eigenstrains is placed in a neo-Hookean wedge. Generalization of the eigenstrain problem to other geometries are also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20eigenstrains" title="finite eigenstrains">finite eigenstrains</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20mechanics" title=" geometric mechanics"> geometric mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=inclusion" title=" inclusion"> inclusion</a>, <a href="https://publications.waset.org/abstracts/search?q=inhomogeneity" title=" inhomogeneity"> inhomogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20elasticity" title=" nonlinear elasticity"> nonlinear elasticity</a> </p> <a href="https://publications.waset.org/abstracts/58993/finite-eigenstrains-in-nonlinear-elastic-solid-wedges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1625</span> Evaluation of Modulus of Elasticity by Non-Destructive Method of Hybrid Fiber Reinforced Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erjola%20Reufi">Erjola Reufi</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Beer"> Thomas Beer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plain, unreinforced concrete is a brittle material, with a low tensile strength, limited ductility and little resistance to cracking. In order to improve the inherent tensile strength of concrete there is a need of multi directional and closely spaced reinforcement, which can be provided in the form of randomly distributed fibers. Fiber reinforced concrete (FRC) is a composite material consisting of cement, sand, coarse aggregate, water and fibers. In this composite material, short discrete fibers are randomly distributed throughout the concrete mass. The behavioral efficiency of this composite material is far superior to that of plain concrete and many other construction materials of equal cost. The present experimental study considers the effect of steel fibers and polypropylene fiber on the modulus of elasticity of concrete. Hook end steel fibers of length 5 cm and 3 cm at volume fraction of 0.25%, 0.5% and 1.% were used. Also polypropylene fiber of length 12, 6, 3 mm at volume fraction 0.1, 0.25, and 0.4 % were used. Fifteen mixtures has been prepared to evaluate the effect of fiber on modulus of elasticity of concrete. Ultrasonic pulse velocity (UPV) and resonant frequency methods which are two non-destructive testing techniques have been used to measure the elastic properties of fiber reinforced concrete. This study found that ultrasonic wave propagation is the most reliable, easy and cost effective testing technique to use in the determination of the elastic properties of the FRC mix used in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20concrete%28FRC%29" title="fiber reinforced concrete(FRC)">fiber reinforced concrete(FRC)</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene%20fiber" title=" polypropylene fiber"> polypropylene fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=resonance" title=" resonance"> resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20pulse%20velocity" title=" ultrasonic pulse velocity"> ultrasonic pulse velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fiber" title=" steel fiber"> steel fiber</a> </p> <a href="https://publications.waset.org/abstracts/43558/evaluation-of-modulus-of-elasticity-by-non-destructive-method-of-hybrid-fiber-reinforced-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1624</span> Production of Friendly Environmental Material as Building Element from Plastic Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dheyaa%20Wajid%20Abbood">Dheyaa Wajid Abbood</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohanad%20Salih%20Farhan"> Mohanad Salih Farhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Awadh%20E.%20Ajeel"> Awadh E. Ajeel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The basic goal of this study is the production of cheap building elements from plastic waste. environmentally friendly and of good thermal insulation. The study depends on the addition of plastic waste as aggregates to the mixes of concrete at different percentages by weight (12 percentages) to produce lightweight aggregate concrete the density (1095 - 1892) kg/m3.The experimental work includes 120 specimens of concrete 72 cubes (150*150*150)mm, 48 cylinder (150*300) mm. The results obtained for concrete were for local raw materials without any additional materials or treatment. The mechanical and thermal properties determined were (compressive strength, static modulus of elasticity, density, thermal conductivity (k), specific heat capacity (Cp), thermal expansion (α) after (7) days of curing at 20 0C. The increase in amount of plastic waste decreases the density of concrete which leads to decrease in the mechanical and to improvement in thermal properties. The average measured static modulus of elasticity are found less than the predicted static modulus of elasticity and splitting tensile strength (ACI 318-2008 and ACI 213R-2003). All cubes specimens when exposed to heat at (200, 400, 600 0C), the compressive strength of all mixes decreases gradually at 600 0C, the strength of lightweight aggregate concrete were disintegrated. Lightweight aggregate concrete is about 25% lighter than normal concrete in dead load, and to the improve the properties of thermal insulation of building blocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LWAC" title="LWAC">LWAC</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20waste" title=" plastic waste"> plastic waste</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20property" title=" thermal property"> thermal property</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulation" title=" thermal insulation"> thermal insulation</a> </p> <a href="https://publications.waset.org/abstracts/28791/production-of-friendly-environmental-material-as-building-element-from-plastic-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1623</span> Improvement of Performance for R. C. Beams Made from Recycled Aggregate by Using Non-Traditional Admixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Yehia">A. H. Yehia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Rashwan"> M. M. Rashwan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Assaf"> K. A. Assaf</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Abd%20el%20Samee"> K. Abd el Samee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to use an environmental, cheap; organic non-traditional admixture to improve the structural behavior of sustainable reinforced concrete beams contains different ratios of recycled concrete aggregate. The used admixture prepared by using wastes from vegetable oil industry. Under and over reinforced concrete beams made from natural aggregate and different ratios of recycled concrete aggregate were tested under static load until failure. Eight beams were tested to investigate the performance and mechanism effect of admixture on improving deformation characteristics, modulus of elasticity and toughness of tested beams. Test results show efficiency of organic admixture on improving flexural behavior of beams contains 20% recycled concrete aggregate more over the other ratios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deflection" title="deflection">deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=non-traditional%20admixture" title=" non-traditional admixture"> non-traditional admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20aggregate" title=" recycled concrete aggregate"> recycled concrete aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=strain" title=" strain"> strain</a>, <a href="https://publications.waset.org/abstracts/search?q=toughness" title=" toughness"> toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=under%20and%20over%20reinforcement" title=" under and over reinforcement"> under and over reinforcement</a> </p> <a href="https://publications.waset.org/abstracts/7134/improvement-of-performance-for-r-c-beams-made-from-recycled-aggregate-by-using-non-traditional-admixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1622</span> Properties of Epoxy Composite Reinforced with Amorphous and Crystalline Silica from Rice Husk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norul%20Hisham%20Hamid">Norul Hisham Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Affan"> Amir Affan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ummi%20Hani%20Abdullah"> Ummi Hani Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Paridah%20Md.%20Tahir"> Paridah Md. Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Khairul%20Akmal%20Azhar"> Khairul Akmal Azhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahmat%20Nawai"> Rahmat Nawai</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20B.%20H.%20Wan%20Sulwani%20Izzati"> W. B. H. Wan Sulwani Izzati </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dimensional stability and static bending properties of epoxy composite reinforced with amorphous and crystalline silica were investigated. The amorphous and crystalline silica was obtained by the precipitation method from carbonisation process of the rice husk at a temperature of 600 °C and 1000 °C for 7 hours respectively. The epoxy resin was mixed with 5%, 10% and 15% concentrations of amorphous and crystalline silica. The mixture was stirred for 10 minutes and cured at 28 °C for 72 hours and oven dried at 80 °C for 72 hours. The scanning electron microscope image showed the silica sized of 10-30nm was obtained. The water absorption and thickness swelling of epoxy/amorphous silica composite was not significantly different with silica concentration ranged from 0.08% to 0.09% and 0.17% to 0.20% respectively. The maximum modulus of rupture (85 MPa) and modulus of elasticity (3284 MPa) were achieved for 10% silica concentration. For epoxy/crystalline silica composite; the water absorption and thickness swelling were also not significantly different with silica concentration, ranged from 0.08% to 0.11% and 0.16% to 0.18% respectively. The maximum modulus of rupture (47.9 MPa) and modulus of elasticity (2760 MPa) were achieved for 10% silica concentration. Overall, the water absorption and thickness swelling were almost identical for epoxy composite made from either amorphous or crystalline silica. The epoxy composite made from amorphous silica was stronger than crystalline silica. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy" title="epoxy">epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensional%20stability" title=" dimensional stability"> dimensional stability</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20bending" title=" static bending"> static bending</a>, <a href="https://publications.waset.org/abstracts/search?q=silica" title=" silica"> silica</a> </p> <a href="https://publications.waset.org/abstracts/84173/properties-of-epoxy-composite-reinforced-with-amorphous-and-crystalline-silica-from-rice-husk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1621</span> Non-linear Model of Elasticity of Compressive Strength of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charles%20Horace%20Ampong">Charles Horace Ampong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-linear models have been found to be useful in modeling the elasticity (measure of degree of responsiveness) of a dependent variable with respect to a set of independent variables ceteris paribus. This constant elasticity principle was applied to the dependent variable (Compressive Strength of Concrete in MPa) which was found to be non-linearly related to the independent variable (Water-Cement ratio in kg/m3) for given Ages of Concrete in days (3, 7, 28) at different levels of admixtures Superplasticizer (in kg/m3), Blast Furnace Slag (in kg/m3) and Fly Ash (in kg/m3). The levels of the admixtures were categorized as: S1=Some Plasticizer added & S0=No Plasticizer added; B1=some Blast Furnace Slag added & B0=No Blast Furnace Slag added; F1=Some Fly Ash added & F0=No Fly Ash added. The number of observations (samples) used for the research was one-hundred and thirty-two (132) in all. For Superplasticizer, it was found that Compressive Strength of Concrete was more elastic with regards to Water-Cement ratio at S1 level than at S0 level for the given ages of concrete 3, 7and 28 days. For Blast Furnace Slag, Compressive Strength with regards to Water-Cement ratio was more elastic at B0 level than at B1 level for concrete ages 3, 7 and 28 days. For Fly Ash, Compressive Strength with regards to Water-Cement ratio was more elastic at B0 level than at B1 level for Ages 3, 7 and 28 days. The research also tested for different combinations of the levels of Superplasticizer, Blast Furnace Slag and Fly Ash. It was found that Compressive Strength elasticity with regards to Water-Cement ratio was lowest (Elasticity=-1.746) with a combination of S0, B0 and F0 for concrete age of 3 days. This was followed by Elasticity of -1.611 with a combination of S0, B0 and F0 for a concrete of age 7 days. Next, the highest was an Elasticity of -1.414 with combination of S0, B0 and F0 for a concrete age of 28 days. Based on preceding outcomes, three (3) non-linear model equations for predicting the output elasticity of Compressive Strength of Concrete (in %) or the value of Compressive Strength of Concrete (in MPa) with regards to Water to Cement was formulated. The model equations were based on the three different ages of concrete namely 3, 7 and 28 days under investigation. The three models showed that higher elasticity translates into higher compressive strength. And the models revealed a trend of increasing concrete strength from 3 to 28 days for a given amount of water to cement ratio. Using the models, an increasing modulus of elasticity from 3 to 28 days was deduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=elasticity" title=" elasticity"> elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=water-cement" title=" water-cement"> water-cement</a> </p> <a href="https://publications.waset.org/abstracts/48933/non-linear-model-of-elasticity-of-compressive-strength-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1620</span> Mechanical Properties of Class F Fly Ash Blended Concrete Incorporation with Natural Admixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Ramesh%20Babu">T. S. Ramesh Babu</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Neeraja"> D. Neeraja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research work revealed that effect of Natural admixture (NAD) on Conventional Concrete (CC) and Class F Fly Ash(FA) blended concrete. Broiler hen egg white albumen and yellow yolk were used as Natural Admixture. Cement was replaced by Class F fly ash at various levels of 0%, 25%, 35%, 45% and 55% by its mass and NAD was added to concrete at different replacement dosages of 0%, 0.25%, 0.5%, 0.75% and 1.00% by its volume to water content and liquid to binder ratio was maintained at 0.5. For all replacement levels of FA and NAD, the mechanical properties viz unit weight, compressive strength, splitting tensile strength and modulus of elasticity of CC and Class F fly ash (FA) were studied at 7, 28, 56 and 112 days. From the results, it was concluded that 0.25% of NAD dosage was considered as optimum dosage for both CC and class F fly ash blended concrete. The studies revealed that 35% Class F fly ash blended concrete mix is concluded as optimum mix and 55% Class F fly ash blended concrete mix is concluded as economical mix with 0.25% NAD dosage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Class%20F%20fly%20ash" title="Class F fly ash">Class F fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20admixture" title=" natural admixture"> natural admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20tensile%20strength" title=" splitting tensile strength"> splitting tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=unit%20weight" title=" unit weight"> unit weight</a> </p> <a href="https://publications.waset.org/abstracts/47902/mechanical-properties-of-class-f-fly-ash-blended-concrete-incorporation-with-natural-admixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1619</span> Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsin%20Talib%20Mohammed">Mohsin Talib Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahid%20A.%20Khan"> Zahid A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Arshad%20N.%20Siddiquee"> Arshad N. Siddiquee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biometallic materials are the most important materials for use in biomedical applications especially in manufacturing a variety of biological artificial replacements in a modern worlds, e.g. hip, knee or shoulder joints, due to their advanced characteristics. Titanium (Ti) and its alloys are used extensively in biomedical applications based on their high specific strength and excellent corrosion resistance. Beta-Ti alloys containing completely biocompatible elements are exceptionally prospective materials for manufacturing of bioimplants. They have superior mechanical, chemical and electrochemical properties for use as biomaterials. These biomaterials have the ability to introduce the most important property of biochemical compatibility which is low elastic modulus. This review examines current information on the recent developments in alloying elements leading to improvements of beta Ti alloys for use as biomaterials. Moreover, this paper focuses mainly on the evolution, evaluation and development of the modulus of elasticity as an effective factor on the performance of beta alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beta%20alloys" title="beta alloys">beta alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title=" biomedical applications"> biomedical applications</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title=" titanium alloys"> titanium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%27s%20modulus" title=" Young's modulus"> Young's modulus</a> </p> <a href="https://publications.waset.org/abstracts/6030/beta-titanium-alloys-the-lowest-elastic-modulus-for-biomedical-applications-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1618</span> Enhancement of Cement Mortar Mechanical Properties with Replacement of Seashell Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdoullah%20Namdar">Abdoullah Namdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadzil%20Mat%20Yahaya"> Fadzil Mat Yahaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many synthetic additives have been using for improve cement mortar and concrete characteristics, but natural additive is a friendly environment option. The quantity of (2% and 4%) seashell powder has been replaced in cement mortar, and compared with plain cement mortar in early age of 7 days. The strain gauges have been installed on beams and cube, for monitoring fluctuation of flexural and compressive strength. Main objective of this paper is to study effect of linear static force on flexural and compressive strength of modified cement mortar. The results have been indicated that the replacement of appropriate proportion of seashell powder enhances cement mortar mechanical properties. The replacement of 2% seashell causes improvement of deflection, time to failure and maximum load to failure on concrete beam and cube, the same occurs for compressive modulus elasticity. Increase replacement of seashell to 4% reduces all flexural strength, compressive strength and strain of cement mortar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20modulus%20elasticity" title=" compressive modulus elasticity"> compressive modulus elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20to%20failure" title=" time to failure"> time to failure</a>, <a href="https://publications.waset.org/abstracts/search?q=deflection" title=" deflection"> deflection</a> </p> <a href="https://publications.waset.org/abstracts/3726/enhancement-of-cement-mortar-mechanical-properties-with-replacement-of-seashell-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1617</span> A Finite Memory Residual Generation Filter for Fault Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pyung%20Soo%20Kim">Pyung Soo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eung%20Hyuk%20Lee"> Eung Hyuk Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Mun%20Suck%20Jang"> Mun Suck Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current paper, a residual generation filter with finite memory structure is proposed for fault detection. The proposed finite memory residual generation filter provides the residual by real-time filtering of fault vector using only the most recent finite observations and inputs on the window. It is shown that the residual given by the proposed residual generation filter provides the exact fault for noise-free systems. Finally, to illustrate the capability of the proposed residual generation filter, numerical examples are performed for the discretized DC motor system having the multiple sensor faults. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20generation%20filter" title="residual generation filter">residual generation filter</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20memory%20structure" title=" finite memory structure"> finite memory structure</a>, <a href="https://publications.waset.org/abstracts/search?q=kalman%20filter" title=" kalman filter"> kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20detection" title=" fast detection"> fast detection</a> </p> <a href="https://publications.waset.org/abstracts/35140/a-finite-memory-residual-generation-filter-for-fault-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">698</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1616</span> The Influence of Residual Stress on Hardness and Microstructure in Railway Rails</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammet%20Emre%20Turan">Muhammet Emre Turan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sait%20%C3%96z%C3%A7elik"> Sait Özçelik</a>, <a href="https://publications.waset.org/abstracts/search?q=Yavuz%20Sun"> Yavuz Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In railway rails, residual stress was measured and the values of residual stress were associated with hardness and micro structure in this study. At first, three rails as one meter long were taken and residual stresses were measured by cutting method according to the EN 13674-1 standardization. In this study, strain gauge that is an electrical apparatus was used. During the cutting, change in resistance in rail gave us residual stress value via computer program. After residual stress measurement, Brinell hardness distribution were performed for head parts of rails. Thus, the relationship between residual stress and hardness were established. In addition to that, micro structure analysis was carried out by optical microscope. The results show that, the micro structure and hardness value was changed with residual stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title="residual stress">residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20structure" title=" micro structure"> micro structure</a>, <a href="https://publications.waset.org/abstracts/search?q=rail" title=" rail"> rail</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20gauge" title=" strain gauge "> strain gauge </a> </p> <a href="https://publications.waset.org/abstracts/15651/the-influence-of-residual-stress-on-hardness-and-microstructure-in-railway-rails" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15651.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">602</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1615</span> Determination of Elastic Constants for Scots Pine Grown in Turkey Using Ultrasound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ergun%20Guntekin">Ergun Guntekin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated elastic constants of scots pine (Pinus sylvestris L.) grown in Turkey by means of ultrasonic waves. Three Young’s modulus, three shear modulus and six Poisson ratios were determined at constant moisture content (12 %). Three longitudinal and six shear wave velocities propagating along the principal axes of anisotropy, and additionally, three quasi-shear wave velocities at 45° with respect to the principal axes of anisotropy were measured using EPOCH 650 ultrasonic flaw detector. The measured average longitudinal wave velocities for the sapwood in L, R, T directions were 4795, 1713 and 1117 m/s, respectively. The measured average shear wave velocities ranged from 682 to 1382 m/s. The measured quasi-shear wave velocities varied between 642 and 1280 m/s. The calculated average modulus of elasticity values for the sapwood in L, R, T directions were 11913, 1565 and 663 N/mm2, respectively. The calculated shear modulus in LR, LT and RT planes were 1031, 541, 415 N/mm2. Comparing with available literature, the predicted elastic constants are acceptable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20constants" title="elastic constants">elastic constants</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=Scots%20pine" title=" Scots pine"> Scots pine</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/50083/determination-of-elastic-constants-for-scots-pine-grown-in-turkey-using-ultrasound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1614</span> Using the Nonlocal Theory of Free Vibrations Nanobeam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Oveysi%20Sarabi">Ali Oveysi Sarabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dimensions of nanostructures are in the range of inter-atomic spacing of the structures which makes them impossible to be modeled as a continuum. Nanoscale size-effects on vibration analysis of nanobeams embedded in an elastic medium is investigated using different types of beam theory. To this end, Eringen’s nonlocal elasticity is incorporated to various beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy beam theory (RBT), and Levinson beam theory (LBT). The surrounding elastic medium is simulated with both Winkler and Pasternak foundation models and the difference between them is studies. Explicit formulas are presented to obtain the natural frequencies of nanobeam corresponding to each nonlocal beam theory. Selected numerical results are given for different values of the non-local parameter, Winkler modulus parameter, Pasternak modulus parameter and aspect ratio of the beam that imply the effects of them, separately. It is observed that the values of natural frequency are strongly dependent on the stiffness of elastic medium and the value of the non-local parameter and these dependencies varies with the value of aspect ratio and mode number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanobeams" title="nanobeams">nanobeams</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibration" title=" free vibration"> free vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlocal%20elasticity" title=" nonlocal elasticity"> nonlocal elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=winkler%20foundation%20model" title=" winkler foundation model"> winkler foundation model</a>, <a href="https://publications.waset.org/abstracts/search?q=Pasternak%20foundation%20model" title=" Pasternak foundation model"> Pasternak foundation model</a>, <a href="https://publications.waset.org/abstracts/search?q=beam%20theories" title=" beam theories "> beam theories </a> </p> <a href="https://publications.waset.org/abstracts/19886/using-the-nonlocal-theory-of-free-vibrations-nanobeam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">536</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residual%20modulus%20of%20elasticity&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residual%20modulus%20of%20elasticity&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residual%20modulus%20of%20elasticity&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residual%20modulus%20of%20elasticity&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residual%20modulus%20of%20elasticity&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residual%20modulus%20of%20elasticity&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residual%20modulus%20of%20elasticity&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residual%20modulus%20of%20elasticity&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residual%20modulus%20of%20elasticity&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residual%20modulus%20of%20elasticity&page=54">54</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residual%20modulus%20of%20elasticity&page=55">55</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=residual%20modulus%20of%20elasticity&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>