CINXE.COM

Search results for: flour blends

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: flour blends</title> <meta name="description" content="Search results for: flour blends"> <meta name="keywords" content="flour blends"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="flour blends" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="flour blends"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 412</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: flour blends</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">202</span> Apatite Flotation Using Fruits&#039; Oil as Collector and Sorghum as Depressant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elenice%20Maria%20Schons%20Silva">Elenice Maria Schons Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Andre%20Carlos%20Silva"> Andre Carlos Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The crescent demand for raw material has increased mining activities. Mineral industry faces the challenge of process more complexes ores, with very small particles and low grade, together with constant pressure to reduce production costs and environment impacts. Froth flotation deserves special attention among the concentration methods for mineral processing. Besides its great selectivity for different minerals, flotation is a high efficient method to process fine particles. The process is based on the minerals surficial physicochemical properties and the separation is only possible with the aid of chemicals such as collectors, frothers, modifiers, and depressants. In order to use sustainable and eco-friendly reagents, oils extracted from three different vegetable species (pequi’s pulp, macauba’s nut and pulp, and Jatropha curcas) were studied and tested as apatite collectors. Since the oils are not soluble in water, an alkaline hydrolysis (or saponification), was necessary before their contact with the minerals. The saponification was performed at room temperature. The tests with the new collectors were carried out at pH 9 and Flotigam 5806, a synthetic mix of fatty acids industrially adopted as apatite collector manufactured by Clariant, was used as benchmark. In order to find a feasible replacement for cornstarch the flour and starch of a graniferous variety of sorghum was tested as depressant. Apatite samples were used in the flotation tests. XRF (X-ray fluorescence), XRD (X-ray diffraction), and SEM/EDS (Scanning Electron Microscopy with Energy Dispersive Spectroscopy) were used to characterize the apatite samples. Zeta potential measurements were performed in the pH range from 3.5 to 12.5. A commercial cornstarch was used as depressant benchmark. Four depressants dosages and pH values were tested. A statistical test was used to verify the pH, dosage, and starch type influence on the minerals recoveries. For dosages equal or higher than 7.5 mg/L, pequi oil recovered almost all apatite particles. In one hand, macauba’s pulp oil showed excellent results for all dosages, with more than 90% of apatite recovery, but in the other hand, with the nut oil, the higher recovery found was around 84%. Jatropha curcas oil was the second best oil tested and more than 90% of the apatite particles were recovered for the dosage of 7.5 mg/L. Regarding the depressant, the lower apatite recovery with sorghum starch were found for a dosage of 1,200 g/t and pH 11, resulting in a recovery of 1.99%. The apatite recovery for the same conditions as 1.40% for sorghum flour (approximately 30% lower). When comparing with cornstarch at the same conditions sorghum flour produced an apatite recovery 91% lower. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collectors" title="collectors">collectors</a>, <a href="https://publications.waset.org/abstracts/search?q=depressants" title=" depressants"> depressants</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation" title=" flotation"> flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20processing" title=" mineral processing"> mineral processing</a> </p> <a href="https://publications.waset.org/abstracts/92877/apatite-flotation-using-fruits-oil-as-collector-and-sorghum-as-depressant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">201</span> The Impact of Enzymatic Treatments on the Pasting Behavior and Its Reflection on Stalling and Quality of Bread</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayed%20Mostafa">Sayed Mostafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Shebl"> Mohamed Shebl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of bread stalling is still one of the most troubling problems for those interested in manufacturing bakery products, as increasing the freshness period of bread is considered one of the most important factors that help encourage this industry due to its important role in reducing expected losses. Therefore, this study aims to improve the quality of pan bread and increase its freshness period by enzymatic treatments, including maltogenic α-amylase (MAA), amyloglucosidase (AGS), glucoseoxidase (GOX) and phospholipase (PhL). Rheological and pasting behavior of wheat flour were estimated in addition to the physical, texture, and sensory parameters of the final product. The addition of MAA resulted in a decrease in peak viscosity, breakdown, setback, and pasting temperature. The addition of MAA also led to a reduction in falling number values. Enzymatic treatments (MAA and PhL) exhibited higher alkaline water retention capacity of pan bread compared to untreated pan bread (control) throughout different storage periods. Furthermore, other enzymes displayed varying effects on bread quality; for instance, AGS enhanced the crust color, while a high concentration of GOX improved the specific volume of the bread. Conclusion: The research findings demonstrate that the enzymatic treatments can significantly improve its quality attributes, such as specific volume, increase the alkaline water retention capacity with lower hardness value, which reflects bread freshness during storage periods, and improve sensory characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-stalling%20agents" title="anti-stalling agents">anti-stalling agents</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20treatments" title=" enzymatic treatments"> enzymatic treatments</a>, <a href="https://publications.waset.org/abstracts/search?q=maltogenic%20%CE%B1-amylase" title=" maltogenic α-amylase"> maltogenic α-amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=amyloglucosidase" title=" amyloglucosidase"> amyloglucosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=glucoseoxidase" title=" glucoseoxidase"> glucoseoxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=phospholipase" title=" phospholipase"> phospholipase</a>, <a href="https://publications.waset.org/abstracts/search?q=pasting%20behavior" title=" pasting behavior"> pasting behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20flour" title=" wheat flour"> wheat flour</a> </p> <a href="https://publications.waset.org/abstracts/194424/the-impact-of-enzymatic-treatments-on-the-pasting-behavior-and-its-reflection-on-stalling-and-quality-of-bread" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">200</span> Development of Standard Thai Appetizer in Rattanakosin Era‘s Standard: Case Study of Thai Steamed Dumpling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nunyong%20Fuengkajornfung">Nunyong Fuengkajornfung</a>, <a href="https://publications.waset.org/abstracts/search?q=Pattama%20Hirunyophat"> Pattama Hirunyophat</a>, <a href="https://publications.waset.org/abstracts/search?q=Tidarat%20Sanphom"> Tidarat Sanphom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objectives of this research were: To study of the recipe standard of Thai steamed dumpling, to study the ratio of modified starch in Thai steamed dumpling, to study chemical elements analyzing and Escherichia coli in Thai steamed dumpling. The experimental processes were designed in two stages as follows: To study the recipe standard of Thai steamed dumpling and to study the ratio of rice flour: modify starch by three levels 90:10, 73:30, and 50:50. The evaluation test used 9 Points Hedonic Scale method by the sensory evaluation test such as color, smell, taste, texture and overall liking. An experimental by Randomized Complete Block Design (RCBD). The statistics used in data analyses were means, standard deviation, one-way ANOVA and Duncan’s New Multiple Range Test. Regression equation, at a statistically significant level of .05. The results showed that the recipe standard was studied from three recipes by the sensory evaluation test such as color, odor, taste, spicy, texture and total acceptance. The result showed that the recipe standard of second was suitably to development. The ratio of rice flour: modified starch had 3 levels 90:10, 73:30, and 50:50 which the process condition of 50:50 had well scores (like moderately to like very much; used 9 Points Hedonic Scale method for the sensory test). Chemical elements analyzing, it showed that moisture 58.63%, fat 5.45%, protein 4.35%, carbohydrate 30.45%, and Ash 1.12%. The Escherichia coli is not found in lab testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thai%20snack%20in%20Rattanakosin%20era" title="Thai snack in Rattanakosin era">Thai snack in Rattanakosin era</a>, <a href="https://publications.waset.org/abstracts/search?q=Thai%20steamed%20dumpling" title=" Thai steamed dumpling"> Thai steamed dumpling</a>, <a href="https://publications.waset.org/abstracts/search?q=modify%20starch" title=" modify starch"> modify starch</a>, <a href="https://publications.waset.org/abstracts/search?q=recipe%20standard" title=" recipe standard "> recipe standard </a> </p> <a href="https://publications.waset.org/abstracts/16491/development-of-standard-thai-appetizer-in-rattanakosin-eras-standard-case-study-of-thai-steamed-dumpling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">199</span> Production of Mycelial Biomass, Exopolysaccharide, and Enzyme during Solid-State Fermentation of Plant Raw Materials by Medicinal Mushrooms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Khardziani">Tamar Khardziani</a>, <a href="https://publications.waset.org/abstracts/search?q=Violeta%20Berikashvili"> Violeta Berikashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Amrosi%20Chkuaseli"> Amrosi Chkuaseli</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Elisashvili"> Vladimir Elisashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objectives of this proposal are to develop low-cost, innovative, and competitive technologies for the production of mycelial biomass of medicinal mushrooms as a natural food supplement for poultry. To fulfill this task, industrial strains of Lentinus edodes, Ganoderma lucidum, and Pleurotus ostreatus were used in this study. The solid-state fermentation (SSF) of wheat grains, wheat bran, and soy flour was performed in flasks and bags. Among nine mushroom strains, P. ostreatus 2191 appeared to be the most productive in protein biomass accumulation in the SSF of wheat bran. All mushrooms produced exopolysaccharide with the highest yield of 5-8 mg/mL depending on fungal strain and growth substrate. Supplementation of medium with 1% glycerol and 2-4% peptone favored mushroom growth and protein accumulation. Among inorganic nitrogen sources, KNO₃ also provided high biomass and protein production. The SSF of all growth substrates was accompanied by the secretion of cellulase and xylanase activities. The highest CMCase activity (12-13 U/g) was revealed in the cultivation of P. ostreatus 2191 using wheat bran as a growth substrate and ammonium sulfate or yeast extract as a nitrogen source, whereas the highest xylanase activity was detected in the fermentation of soy flour supplemented with peptone. Acknowledgments: This work was supported by the Shota Rustaveli National Science Foundation of Georgia (Grant number STEM-22-2077). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mushrooms" title="mushrooms">mushrooms</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20raw%20materials" title=" plant raw materials"> plant raw materials</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20protein" title=" biomass protein"> biomass protein</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulase" title=" cellulase"> cellulase</a> </p> <a href="https://publications.waset.org/abstracts/179758/production-of-mycelial-biomass-exopolysaccharide-and-enzyme-during-solid-state-fermentation-of-plant-raw-materials-by-medicinal-mushrooms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">198</span> Environmental Benefits of Corn Cob Ash in Lateritic Soil Cement Stabilization for Road Works in a Sub-Tropical Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20O.%20Apampa">Ahmed O. Apampa</a>, <a href="https://publications.waset.org/abstracts/search?q=Yinusa%20A.%20Jimoh"> Yinusa A. Jimoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The potential economic viability and environmental benefits of using a biomass waste, such as corn cob ash (CCA) as pozzolan in stabilizing soils for road pavement construction in a sub-tropical region was investigated. Corn cob was obtained from Maya in South West Nigeria and processed to ash of characteristics similar to Class C Fly Ash pozzolan as specified in ASTM C618-12. This was then blended with ordinary Portland cement in the CCA:OPC ratios of 1:1, 1:2 and 2:1. Each of these blends was then mixed with lateritic soil of ASHTO classification A-2-6(3) in varying percentages from 0 – 7.5% at 1.5% intervals. The soil-CCA-Cement mixtures were thereafter tested for geotechnical index properties including the BS Proctor Compaction, California Bearing Ratio (CBR) and the Unconfined Compression Strength Test. The tests were repeated for soil-cement mix without any CCA blending. The cost of the binder inputs and optimal blends of CCA:OPC in the stabilized soil were thereafter analyzed by developing algorithms that relate the experimental data on strength parameters (Unconfined Compression Strength, UCS and California Bearing Ratio, CBR) with the bivariate independent variables CCA and OPC content, using Matlab R2011b. An optimization problem was then set up minimizing the cost of chemical stabilization of laterite with CCA and OPC, subject to the constraints of minimum strength specifications. The Evolutionary Engine as well as the Generalized Reduced Gradient option of the Solver of MS Excel 2010 were used separately on the cells to obtain the optimal blend of CCA:OPC. The optimal blend attaining the required strength of 1800 kN/m2 was determined for the 1:2 CCA:OPC as 5.4% mix (OPC content 3.6%) compared with 4.2% for the OPC only option; and as 6.2% mix for the 1:1 blend (OPC content 3%). The 2:1 blend did not attain the required strength, though over a 100% gain in UCS value was obtained over the control sample with 0% binder. Upon the fact that 0.97 tonne of CO2 is released for every tonne of cement used (OEE, 2001), the reduced OPC requirement to attain the same result indicates the possibility of reducing the net CO2 contribution of the construction industry to the environment ranging from 14 – 28.5% if CCA:OPC blends are widely used in soil stabilization, going by the results of this study. The paper concludes by recommending that Nigeria and other developing countries in the sub-tropics with abundant stock of biomass waste should look in the direction of intensifying the use of biomass waste as fuel and the derived ash for the production of pozzolans for road-works, thereby reducing overall green house gas emissions and in compliance with the objectives of the United Nations Framework on Climate Change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corn%20cob%20ash" title="corn cob ash">corn cob ash</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20waste" title=" biomass waste"> biomass waste</a>, <a href="https://publications.waset.org/abstracts/search?q=lateritic%20soil" title=" lateritic soil"> lateritic soil</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compression%20strength" title=" unconfined compression strength"> unconfined compression strength</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20emission" title=" CO2 emission"> CO2 emission</a> </p> <a href="https://publications.waset.org/abstracts/12603/environmental-benefits-of-corn-cob-ash-in-lateritic-soil-cement-stabilization-for-road-works-in-a-sub-tropical-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">197</span> Development and Evaluation of New Complementary Food from Maize, Soya Bean and Moringa for Young Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berhan%20Fikru">Berhan Fikru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to develop new complementary food from maize, soybean and moringa for young children. The complementary foods were formulated with linear programming (LP Nutri-survey software) and Faffa (corn soya blend) use as control. Analysis were made for formulated blends and compared with the control and recommended daily intake (RDI). Three complementary foods composed of maize, soya bean, moringa and sugar with ratio of 65:20:15:0, 55:25:15:5 and 65:20:10:5 for blend 1, 2 and 3, respectively. The blends were formulated based on the protein, energy, mineral (iron, zinc an calcium) and vitamin (vitamin A and C) content of foods. The overall results indicated that nutrient content of faffa (control) was 16.32 % protein, 422.31 kcal energy, 64.47 mg calcium, 3.8 mg iron, 1.87mg zinc, 0.19 mg vitamin A and 1.19 vitamin C; blend 1 had 17.16 % protein, 429.84 kcal energy, 330.40 mg calcium, 6.19 mg iron, 1.62 mg zinc, 6.33 mg vitamin A and 4.05 mg vitamin C; blend 2 had 20.26 % protein, 418.79 kcal energy, 417.44 mg calcium, 9.26 mg iron, 2.16 mg zinc, 8.43 mg vitamin A and 4.19 mg vitamin C whereas blend 3 exhibited 16.44 % protein, 417.42 kcal energy, 242.4 mg calcium, 7.09 mg iron, 2.22 mg zinc, 3.69 mg vitamin A and 4.72 mg vitamin C, respectively. The difference was found between all means statically significance (P < 0.05). Sensory evaluation showed that the faffa control and blend 3 were preferred by semi-trained panelists. Blend 3 had better in terms of its mineral and vitamin content than FAFFA corn soya blend and comparable with WFP proprietary products CSB+, CSB++ and fulfills the WHO recommendation for protein, energy and calcium. The suggested formulation with Moringa powder can therefore be used as a complementary food to improve the nutritional status and also help solve problems associated with protein energy and micronutrient malnutrition for young children in developing countries, particularly in Ethiopia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corn%20soya%20blend" title="corn soya blend">corn soya blend</a>, <a href="https://publications.waset.org/abstracts/search?q=proximate%20composition" title=" proximate composition"> proximate composition</a>, <a href="https://publications.waset.org/abstracts/search?q=micronutrient" title=" micronutrient"> micronutrient</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20chelating%20agents" title=" mineral chelating agents"> mineral chelating agents</a>, <a href="https://publications.waset.org/abstracts/search?q=complementary%20foods" title=" complementary foods"> complementary foods</a> </p> <a href="https://publications.waset.org/abstracts/44110/development-and-evaluation-of-new-complementary-food-from-maize-soya-bean-and-moringa-for-young-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">196</span> Medium-Scale Multi-Juice Extractor for Food Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flordeliza%20L.%20Mercado">Flordeliza L. Mercado</a>, <a href="https://publications.waset.org/abstracts/search?q=Teresito%20G.%20Aguinaldo"> Teresito G. Aguinaldo</a>, <a href="https://publications.waset.org/abstracts/search?q=Helen%20F.%20Gavino"> Helen F. Gavino</a>, <a href="https://publications.waset.org/abstracts/search?q=Victorino%20T.%20Taylan"> Victorino T. Taylan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most fruits and vegetables are available in large quantities during peak season which are oftentimes marketed at low price and left to rot or fed to farm animals. The lack of efficient storage facilities, and the additional cost and unavailability of small machinery for food processing, results to low price and wastage. Incidentally, processed fresh fruits and vegetables are gaining importance nowadays and health conscious people are also into ‘juicing’. One way to reduce wastage and ensure an all-season availability of crop juices at reasonable costs is to develop equipment for effective extraction of juice. The study was conducted to design, fabricate and evaluate a multi-juice extractor using locally available materials, making it relatively cheaper and affordable for medium-scale enterprises. The study was also conducted to formulate juice blends using extracted juices and calamansi juice at different blending percentage, and evaluate its chemical properties and sensory attributes. Furthermore, the chemical properties of extracted meals were evaluated for future applications. The multi-juice extractor has an overall dimension of 963mm x 300mm x 995mm, a gross weight of 82kg and 5 major components namely; feeding hopper, extracting chamber, juice and meal outlet, transmission assembly, and frame. The machine performance was evaluated based on juice recovery, extraction efficiency, extraction rate, extraction recovery, and extraction loss considering type of crop as apple and carrot with three replications each and was analyzed using T-test. The formulated juice blends were subjected to sensory evaluation and data gathered were analyzed using Analysis of Variance appropriate for Complete Randomized Design. Results showed that the machine’s juice recovery (73.39%), extraction rate (16.40li/hr), and extraction efficiency (88.11%) for apple were significantly higher than for carrot while extraction recovery (99.88%) was higher for apple than for carrot. Extraction loss (0.12%) was lower for apple than for carrot, but was not significantly affected by crop. Based on adding percentage mark-up on extraction cost (Php 2.75/kg), the breakeven weight and payback period for a 35% mark-up is 4,710.69kg and 1.22 years, respectively and for a 50% mark-up, the breakeven weight is 3,492.41kg and the payback period is 0.86 year (10.32 months). Results on the sensory evaluation of juice blends showed that the type of juice significantly influenced all the sensory parameters while the blending percentage including their respective interaction, had no significant effect on all sensory parameters, making the apple-calamansi juice blend more preferred than the carrot-calamansi juice blend in terms of all the sensory parameter. The machine’s performance is higher for apple than for carrot and the cost analysis on the use of the machine revealed that it is financially viable with a payback period of 1.22 years (35% mark-up) and 0.86 year (50% mark-up) for machine cost, generating an income of Php 23,961.60 and Php 34,444.80 per year using 35% and 50% mark-up, respectively. The juice blends were of good qualities based on the values obtained in the chemical analysis and the extracted meal could also be used to produce another product based on the values obtained from proximate analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20processing" title="food processing">food processing</a>, <a href="https://publications.waset.org/abstracts/search?q=fruits%20and%20vegetables" title=" fruits and vegetables"> fruits and vegetables</a>, <a href="https://publications.waset.org/abstracts/search?q=juice%20extraction" title=" juice extraction"> juice extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-juice%20extractor" title=" multi-juice extractor"> multi-juice extractor</a> </p> <a href="https://publications.waset.org/abstracts/49245/medium-scale-multi-juice-extractor-for-food-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">195</span> Single Ion Conductors for Lithium-Ion Battery Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyda%20Tugba%20Gunday%20Anil">Seyda Tugba Gunday Anil</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayhan%20Bozkurt"> Ayhan Bozkurt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Next generation lithium batteries are taking more attention and single-ion polymer electrolytes are expected to play a significant role in the development of these kinds of energy storage systems. In the present work we used a different strategy to design of novel solid single-ion conducting inorganic polymer electrolytes based on lithium polyvinyl alcohol oxalate borate (Li(PVAOB), lithium polyacrylic acid oxalate borate (LiPAAOB) and poly (ethylene glycol) methacrylate (PEGMA). Free radical polymerization was used to convert PEGMA into PPEGMA and LiPAAOB is prepared from poly (acrylic acid), oxalic acid and boric acid. Blend polymer electrolytes were produced by mixing of LiPAAOB or Li (PVAOB with PPEGMA at different stoichiometric ratios to enhance the single ion conductivity of the systems. To exploit the flexible chemistry and increase the segmental mobility of the blend electrolyte, the composition was changed up to 80% with respect to the guest polymer, PPEGMA. FT-IR and differential scanning calorimeter techniques confirmed the interaction between the host and guest polymers. TGA verified that the thermal stability of the blends increased up to approximately 200 C. Scanning electron microscopy images confirm the homogeneity of the blend electrolytes. CV studies showed that electrochemical stability electrochemical stability window is approximately 5 V versus Li/Li⁺. The effect of PPEGMA on to the Lithium-ion conductivity was investigated using dielectric impedance analyzer. The maximum single ion conductivity was measured as 1.3 × 10⁻⁴ S/cm at 100 C for the sample LiPAAOB-80PPEGMA. Clearly, the results confirmed the positive effect to the increment in ionic conductivity of the blend electrolytes with the addition of PPEGMA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-ion%20conductor" title="single-ion conductor">single-ion conductor</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic%20polymer" title=" inorganic polymer"> inorganic polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=blends" title=" blends"> blends</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20electrolyte" title=" polymer electrolyte"> polymer electrolyte</a> </p> <a href="https://publications.waset.org/abstracts/94830/single-ion-conductors-for-lithium-ion-battery-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">194</span> Combined Effect of Gluten-Free Superfoods and by-Products from Ecuador to Evaluate the Functional and Sensory Properties of Breadmaking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Vasquez">Andrea Vasquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Maldonado-Alvarado"> Pedro Maldonado-Alvarado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In general, 'gluten-free' foods like breadmaking products provide functional or nutraceutical benefits for the consumer's health and increased their demand on the market. In Ecuador, there is an overproduction of superfoods, and the food by-products are undervalued. For the first time, to the author's best knowledge, gluten-free bread mixtures from quinoa and banana flour, cassava starch, lupine flour (LF), or whey protein (WP) with hydroxypropylmethylcellulose (HPMC) and transglutaminase (TG) were evaluated on their functional and sensory properties. Free amino groups and thiols, rheology, and electrophoresis SDS PAGE were performed to analyze the crosslinking of TG at different concentrations with HC or PL proteins. Dough characterization, pasting properties were evaluated, respectively, by a MIXOLAB and a rheometer with a pasting cell. The texture, porosity, and loaf volume were characterized using a texturometer, ImageJ software, and breadmaking ability, respectively. Finally, a breadmaking aptitude and sensorial bread acceptability were performed. A significant decrease in the content of free amino groups (0.16 to 0.11 and 0.46 to 0.36 mM/mg of protein) and free thiol groups (0.37 to 0.21 and 1.79 to 1.32 mM/mg protein) was observed when 1.0% and 0.5% TG were added to LF and WP, respectively. In apparent viscosity analysis, the action of TG on HC proteins changes their viscosity, while the viscosity of LF is not modified by TG. Results of electrophoresis in PL showed bands of higher molecular weight of different fragments of proteins with 1% TG. Formulation with 59.8, 39.9, 160.8, 6.0, 1.0, and 1.5% of, respectively, QF, BF, CS, LF or WP, TG, and HPMC had the best properties in dough parameters, pasting parameters (lower pasting temperature and higher peak viscosity), best crumb structure, lower crumb hardness and higher loaf volume (2.24 and 2.28 mL/g). All the loaves of bread were acceptable in baking aptitude and general acceptability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breadmaking" title="breadmaking">breadmaking</a>, <a href="https://publications.waset.org/abstracts/search?q=gluten-free" title=" gluten-free"> gluten-free</a>, <a href="https://publications.waset.org/abstracts/search?q=superfoods" title=" superfoods"> superfoods</a>, <a href="https://publications.waset.org/abstracts/search?q=by-products" title=" by-products"> by-products</a>, <a href="https://publications.waset.org/abstracts/search?q=Ecuador" title=" Ecuador"> Ecuador</a> </p> <a href="https://publications.waset.org/abstracts/131014/combined-effect-of-gluten-free-superfoods-and-by-products-from-ecuador-to-evaluate-the-functional-and-sensory-properties-of-breadmaking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">193</span> Enzyme Treatment of Sorghum Dough: Modifications of Rheological Properties and Product Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20K.%20Sruthi">G. K. Sruthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sila%20Bhattacharya"> Sila Bhattacharya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sorghum is an important food crop in the dry tropical areas of the world, and possesses significant levels of phytochemicals and dietary fiber to offer health benefits. However, the absence of gluten is a limitation for converting the sorghum dough into sheeted/flattened/rolled products. Chapathi/roti (flat unleavened bread prepared conventionally from whole wheat flour dough) was attempted from sorghum as wheat gluten causes allergic reactions leading to celiac disease. Dynamic oscillatory rheology of sorghum flour dough (control sample) and enzyme treated sorghum doughs were studied and linked to the attributes of the finished ready-to-eat product. Enzymes like amylase, xylanase, and a mix of amylase and xylanase treated dough affected drastically the rheological behaviour causing a lowering of dough consistency. In the case of amylase treated dough, marked decrease of the storage modulus (G') values from 85513 Pa to 23041 Pa and loss modulus (G") values from 8304 Pa to 7370 Pa was noticed while the phase angle (δ) increased from 5.6 to 10.1o for treated doughs. There was a 2 and 3 fold increase in the total sugar content after α-amylase and xylanase treatment, respectively, with simultaneous changes in the structure of the dough and finished product. Scanning electron microscopy exhibited enhanced extent of changes in starch granules. Amylase and mixed enzyme treatment produced a sticky dough which was difficult to roll/flatten. The dough handling properties were improved by the use of xylanase and quality attributes of the chapath/roti. It is concluded that enzyme treatment can offer improved rheological status of gluten free doughs and products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sorghum%20dough" title="sorghum dough">sorghum dough</a>, <a href="https://publications.waset.org/abstracts/search?q=amylase" title=" amylase"> amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20oscillatory%20rheology" title=" dynamic oscillatory rheology"> dynamic oscillatory rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20assessment" title=" sensory assessment"> sensory assessment</a> </p> <a href="https://publications.waset.org/abstracts/26226/enzyme-treatment-of-sorghum-dough-modifications-of-rheological-properties-and-product-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">192</span> Fluidised Bed Gasification of Multiple Agricultural Biomass-Derived Briquettes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rukayya%20Ibrahim%20Muazu">Rukayya Ibrahim Muazu</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiduan%20Li%20Borrion"> Aiduan Li Borrion</a>, <a href="https://publications.waset.org/abstracts/search?q=Julia%20A.%20Stegemann"> Julia A. Stegemann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biomass briquette gasification is regarded as a promising route for efficient briquette use in energy generation, fuels and other useful chemicals, however, previous research work has focused on briquette gasification in fixed bed gasifiers such as updraft and downdraft gasifiers. Fluidised bed gasifier has the potential to be effectively sized for medium or large scale. This study investigated the use of fuel briquettes produced from blends of rice husks and corn cobs biomass residues, in a bubbling fluidised bed gasifier. The study adopted a combination of numerical equations and Aspen Plus simulation software to predict the product gas (syngas) composition based on briquette's density and biomass composition (blend ratio of rice husks to corn cobs). The Aspen Plus model was based on an experimentally validated model from the literature. The results based on a briquette size of 32 mm diameter and relaxed density range of 500 to 650 kg/m3 indicated that fluidisation air required in the gasifier increased with an increase in briquette density, and the fluidisation air showed to be the controlling factor compared with the actual air required for gasification of the biomass briquettes. The mass flowrate of CO2 in the predicted syngas composition, increased with an increase in the air flow rate, while CO production decreased and H2 was almost constant. The H2/CO ratio for various blends of rice husks and corn cobs did not significantly change at the designed process air, but a significant difference of 1.0 for H2/CO ratio was observed at higher air flow rate, and between 10/90 to 90/10 blend ratio of rice husks to corn cobs. This implies the need for further understanding of biomass variability and hydrodynamic parameters on syngas composition in biomass briquette gasification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspen%20plus" title="aspen plus">aspen plus</a>, <a href="https://publications.waset.org/abstracts/search?q=briquettes" title=" briquettes"> briquettes</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidised%20bed" title=" fluidised bed"> fluidised bed</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a> </p> <a href="https://publications.waset.org/abstracts/31740/fluidised-bed-gasification-of-multiple-agricultural-biomass-derived-briquettes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">191</span> Translation of the Bible into the Yoruba Language: A Functionalist Approach in Resolving Cultural Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ifeoluwa%20Omotehinse%20Oloruntoba">Ifeoluwa Omotehinse Oloruntoba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Through comparative and causal models of translation, this paper examined the translation of ‘bread’ into the Yoruba language in three Yoruba versions of the Bible: Bibeli Yoruba Atoka (YBA), Bibeli Mimo ni Ede Yoruba Oni (BMY) and Bibeli Mimo (BM). In biblical times, bread was a very important delicacy that it was synonymous with food in general and in the Bible, bread sometimes refers to a type of food (a mixture of flour, water, and yeast that is baked) or food in general. However, this is not the case in the Yoruba culture. In fact, some decades ago, bread was not known in Nigeria and had no name in the Yoruba language until the 1900s when it was codified as burẹdi in Yoruba, a term borrowed from English and transliterated. Nevertheless, in Nigeria presently, bread is not a special food and it is not appreciated or consumed like in the West. This makes it difficult to translate bread in the Bible into Yoruba. From an investigation on the translation of this term, it was discovered that bread which has 330 occurrences in the English Bible translation (King James) has few occurrences in the three Yoruba Bible versions. In the first version (YBA) published in the 1880s, where bread is synonymous with food in general, it is mostly translated as oúnjẹ (food) or the verb jẹ (to eat), revealing that something is eaten but not indicating what it is. However, when the bread is a type of food, it is rendered as akara, a special delicacy of the Yoruba people made from beans flour. In the later version (BMY) published in the 1990s, bread as food, in general, is also mainly translated as oúnjẹ or the verb jẹ, but when it is a type of food, it is translated as akara with few occurrences of burẹdi. In the latest edition (BM), bread as food is either rendered as ounje or literally translated as burẹdi. Where it is a type of food in this version, it is mainly rendered as burẹdi with few occurrences of akara, indicating the assimilation of bread into the Yoruba culture. This result, although limited, shows that the Bible was translated into Yoruba to make it accessible to Yoruba speakers in their everyday language, hence the application of both domesticating and foreignising strategies. This research also emphasizes the role of the translator as an intermediary between two cultures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=translation" title="translation">translation</a>, <a href="https://publications.waset.org/abstracts/search?q=Bible" title=" Bible"> Bible</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoruba" title=" Yoruba"> Yoruba</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20problems" title=" cultural problems"> cultural problems</a> </p> <a href="https://publications.waset.org/abstracts/89171/translation-of-the-bible-into-the-yoruba-language-a-functionalist-approach-in-resolving-cultural-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">190</span> New Insights Into Gluten-Free Bread Staling Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayed%20Mostafa">Sayed Mostafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Siham%20Mostafa%20Mohamed%20Faheid"> Siham Mostafa Mohamed Faheid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Rizk%20Sayed%20Ahmed"> Ibrahim Rizk Sayed Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Fehry%20Mohamed%20Kishk"> Yasser Fehry Mohamed Kishk</a>, <a href="https://publications.waset.org/abstracts/search?q=Gamal%20Hassan%20Ragab"> Gamal Hassan Ragab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gluten-free foods are still the only treatment for gluten-allergic patients. Consequently, this study is concerned with improving the quality attributes of gluten-free bread using different concentrations (0, 20, 40, 60 and 80ppm) of all maltogenic α-amylase (MA) and xylanase (XY) compared with wheat flour Balady bread and untreated gluten-free Balady bread (GFBB). Pasting properties, falling number, water activity, alkaline water retention capacity (AWRC) and sensory properties (fresh bread, after 24h, after 48h and after 72h) of gluten-free bread were evaluated. Additionally, the effect of merging different concentrations of maltogenic α-amylase and xylanase on stalling behavior (AWRC) and sensory properties of gluten-free Balady bread was investigated. The addition of MA led to a gradually decreased peak viscosity, breakdown, setback and pasting temperature of GFBB with the increasing level of MA. Maltogenic α-amylase and xylanase addition led to a reduction in the FN values compared to the untreated gluten-free sample, noting that the MA-treated samples showed a significant decrease compared to the XY-treated and untreated samples. Wheat flour Balady bread significantly showed a higher value of AWRC compared to untreated gluten-free Balady bread at different storage periods (zero time, after 24h, after 48h and after 72h). MA-treated samples showed higher water binding capacity and water activity (aw)in comparison with XY-treated samples, with significance during all storage periods. Concerning the overall acceptability during the third day, the highest score (4.6) was observed by the GFBB sample containing 40ppm MA, followed by 4.3, which was investigated by the GFBB sample containing 80ppm XY with no significance between them and with significance compared to the other samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=celiac%20disease" title="celiac disease">celiac disease</a>, <a href="https://publications.waset.org/abstracts/search?q=gluten-free%20products" title=" gluten-free products"> gluten-free products</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-stalling%20agents" title=" anti-stalling agents"> anti-stalling agents</a>, <a href="https://publications.waset.org/abstracts/search?q=maltogenic%20%CE%B1-amylase" title=" maltogenic α-amylase"> maltogenic α-amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a> </p> <a href="https://publications.waset.org/abstracts/173389/new-insights-into-gluten-free-bread-staling-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">189</span> Solid State Fermentation: A Technological Alternative for Enriching Bioavailability of Underutilized Crops </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vipin%20Bhandari">Vipin Bhandari</a>, <a href="https://publications.waset.org/abstracts/search?q=Anupama%20Singh"> Anupama Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kopal%20Gupta"> Kopal Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid state fermentation, an eminent bioconversion technique for converting many biological substrates into a value-added product, has proven its role in the biotransformation of crops by nutritionally enriching them. Hence, an effort was made for nutritional enhancement of underutilized crops viz. barnyard millet, amaranthus and horse gram based composite flour using SSF. The grains were given pre-treatments before fermentation and these pre-treatments proved quite effective in diminishing the level of antinutrients in grains and in improving their nutritional characteristics. The present study deals with the enhancement of nutritional characteristics of underutilized crops viz. barnyard millet, amaranthus and horsegram based composite flour using solid state fermentation (SSF) as the principle bioconversion technique to convert the composite flour substrate into a nutritionally enriched value added product. Response surface methodology was used to design the experiments. The variables selected for the fermentation experiments were substrate particle size, substrate blend ratio, fermentation time, fermentation temperature and moisture content having three levels of each. Seventeen designed experiments were conducted randomly to find the effect of these variables on microbial count, reducing sugar, pH, total sugar, phytic acid and water absorption index. The data from all experiments were analyzed using Design Expert 8.0.6 and the response functions were developed using multiple regression analysis and second order models were fitted for each response. Results revealed that pretreatments proved quite handful in diminishing the level of antinutrients and thus enhancing the nutritional value of the grains appreciably, for instance, there was about 23% reduction in phytic acid levels after decortication of barnyard millet. The carbohydrate content of the decorticated barnyard millet increased to 81.5% from initial value of 65.2%. Similarly popping and puffing of horsegram and amaranthus respectively greatly reduced the trypsin inhibitor activity. Puffing of amaranthus also reduced the tannin content appreciably. Bacillus subtilis was used as the inoculating specie since it is known to produce phytases in solid state fermentation systems. These phytases remarkably reduce the phytic acid content which acts as a major antinutritional factor in food grains. Results of solid state fermentation experiments revealed that phytic acid levels reduced appreciably when fermentation was allowed to continue for 72 hours at a temperature of 35°C. Particle size and substrate blend ratio also affected the responses positively. All the parameters viz. substrate particle size, substrate blend ratio, fermentation time, fermentation temperature and moisture content affected the responses namely microbial count, reducing sugar, pH, total sugar, phytic acid and water absorption index but the effect of fermentation time was found to be most significant on all the responses. Statistical analysis resulted in the optimum conditions (particle size 355µ, substrate blend ratio 50:20:30 of barnyard millet, amaranthus and horsegram respectively, fermentation time 68 hrs, fermentation temperature 35°C and moisture content 47%) for maximum reduction in phytic acid. The model F- value was found to be highly significant at 1% level of significance in case of all the responses. Hence, second order model could be fitted to predict all the dependent parameters. The effect of fermentation time was found to be most significant as compared to other variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20flour" title="composite flour">composite flour</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20state%20fermentation" title=" solid state fermentation"> solid state fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=underutilized%20crops" title=" underutilized crops"> underutilized crops</a>, <a href="https://publications.waset.org/abstracts/search?q=cereals" title=" cereals"> cereals</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation%20technology" title=" fermentation technology"> fermentation technology</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20processing" title=" food processing"> food processing</a> </p> <a href="https://publications.waset.org/abstracts/35405/solid-state-fermentation-a-technological-alternative-for-enriching-bioavailability-of-underutilized-crops" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">188</span> Preparation and Properties of Polylactic Acid/MDI Modified Thermoplastic Starch Blends </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukhila%20Krishnan">Sukhila Krishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Smita%20Mohanty"> Smita Mohanty</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20K.%20Nayak"> Sanjay K. Nayak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polylactide (PLA) and thermoplastic starch (TPS) are the most promising bio-based materials presently available on the market. Polylactic acid is one of the versatile biodegradable polyester showing wide range of applications in various fields and starch is a biopolymer which is renewable, cheap as well as extensively available. The usual increase in the cost of petroleum-based commodities in the next decades opens bright future for these materials. Their biodegradability and compostability was an added advantage in applications that are difficult to recycle. Currently, thermoplastic starch (TPS) has been used as a substitute for synthetic plastic in several commercial products. But, TPS shows some limitations mainly due to its brittle and hydrophilic nature, which has to be resolved to widen its application.The objective of the work we report here was to initiate chemical modifications on TPS and to build up a process to control its chemical structure using a solution process which can reduce its water sensitive properties and then blended it with PLA to improve compatibility between PLA and TPS. The method involves in cleavage of starch amylose and amylopectin chain backbone to plasticize with glycerol and water in batch mixer and then the prepared TPS was reacted in solution with diisocyanates i.e, 4,4'-Methylenediphenyl Diisocyanate (MDI).This diisocyanate was used before with great success for the chemical modification of TPS surface. The method utilized here will form an urethane-linkages between reactive isocyanate groups (–NCO) and hydroxyl groups (-OH) of starch as well as of glycerol. New polymer synthesised shows a reduced crystallinity, less hydrophilic and enhanced compatibility with other polymers. The TPS was prepared by Haake Rheomix 600 batch mixer with roller rotors operating at 50 rpm. The produced material is then refluxed for 5hrs with MDI in toluene with constant stirring. Finally, the modified TPS was melt blended with PLA in different compositions. Blends obtained shows an improved mechanical properties. These materials produced are characterized by Fourier Transform Infrared Spectra (FTIR), DSC, X-Ray diffraction and mechanical tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polylactic%20acid" title="polylactic acid">polylactic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20starch" title=" thermoplastic starch"> thermoplastic starch</a>, <a href="https://publications.waset.org/abstracts/search?q=Methylenediphenyl%20Diisocyanate" title=" Methylenediphenyl Diisocyanate"> Methylenediphenyl Diisocyanate</a>, <a href="https://publications.waset.org/abstracts/search?q=Polylactide%20%28PLA%29" title=" Polylactide (PLA)"> Polylactide (PLA)</a> </p> <a href="https://publications.waset.org/abstracts/20919/preparation-and-properties-of-polylactic-acidmdi-modified-thermoplastic-starch-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">187</span> Statistical Modeling of Constituents in Ash Evolved From Pulverized Coal Combustion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esam%20Jassim">Esam Jassim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industries using conventional fossil fuels have an interest in better understanding the mechanism of particulate formation during combustion since such is responsible for emission of undesired inorganic elements that directly impact the atmospheric pollution level. Fine and ultrafine particulates have tendency to escape the flue gas cleaning devices to the atmosphere. They also preferentially collect on surfaces in power systems resulting in ascending in corrosion inclination, descending in the heat transfer thermal unit, and severe impact on human health. This adverseness manifests particularly in the regions of world where coal is the dominated source of energy for consumption. This study highlights the behavior of calcium transformation as mineral grains verses organically associated inorganic components during pulverized coal combustion. The influence of existing type of calcium on the coarse, fine and ultrafine mode formation mechanisms is also presented. The impact of two sub-bituminous coals on particle size and calcium composition evolution during combustion is to be assessed. Three mixed blends named Blends 1, 2, and 3 are selected according to the ration of coal A to coal B by weight. Calcium percentage in original coal increases as going from Blend 1 to 3. A mathematical model and a new approach of describing constituent distribution are proposed. Analysis of experiments of calcium distribution in ash is also modeled using Poisson distribution. A novel parameter, called elemental index λ, is introduced as a measuring factor of element distribution. Results show that calcium in ash that originally in coal as mineral grains has index of 17, whereas organically associated calcium transformed to fly ash shown to be best described when elemental index λ is 7. As an alkaline-earth element, calcium is considered the fundamental element responsible for boiler deficiency since it is the major player in the mechanism of ash slagging process. The mechanism of particle size distribution and mineral species of ash particles are presented using CCSEM and size-segregated ash characteristics. Conclusions are drawn from the analysis of pulverized coal ash generated from a utility-scale boiler. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal%20combustion" title="coal combustion">coal combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic%20element" title=" inorganic element"> inorganic element</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20evolution" title=" calcium evolution"> calcium evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20dynamics" title=" fluid dynamics"> fluid dynamics</a> </p> <a href="https://publications.waset.org/abstracts/2376/statistical-modeling-of-constituents-in-ash-evolved-from-pulverized-coal-combustion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">186</span> Effect of the Incorporation of Modified Starch on the Physicochemical Properties and Consumer Acceptance of Puff Pastry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alejandra%20Castillo-Arias">Alejandra Castillo-Arias</a>, <a href="https://publications.waset.org/abstracts/search?q=Santiago%20Am%C3%A9zquita-Murcia"> Santiago Amézquita-Murcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Golber%20Carvajal-Lavi"> Golber Carvajal-Lavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20M.%20Zuluaga-Dom%C3%ADnguez"> Carlos M. Zuluaga-Domínguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The intricate relationship between health and nutrition has driven the food industry to seek healthier and more sustainable alternatives. A key strategy currently employed is the reduction of saturated fats and the incorporation of ingredients that align with new consumer trends. Modified starch, a polysaccharide widely used in baking, also serves as a functional ingredient to boost dietary fiber content. However, its use in puff pastry remains challenging due to the technological difficulties in achieving a buttery pastry with the necessary strength to create thin, flaky layers. This study explored the potential of incorporating modified starch into puff pastry formulations. To evaluate the physicochemical properties of wheat flour mixed with modified starch, five different flour samples were prepared: T1, T2, T3, and T4, containing 10g, 20g, 30g, and 40g of modified starch per 100 g mixture, respectively, alongside a control sample (C) with no added starch. The analysis focused on various physicochemical indices, including the Water Absorption Index (WAI), Water Solubility Index (WSI), Swelling Power (SP), and Water Retention Capacity (WRC). The puff pastry was further characterized by color measurement and sensory analysis. For the preparation of the puff pastry dough, the flour, modified starch, and salt were mixed, followed by the addition of water until a homogenous dough was achieved. The margarine was later incorporated into the dough, which was folded and rolled multiple times to create the characteristic layers of puff pastry. The dough was then cut into equal pieces, baked at 170°C, and allowed to cool. The results indicated that the addition of modified starch did not significantly alter the specific volume or texture of the puff pastries, as reflected by the stable WAI and SP values across the samples. However, the WRC increased with higher starch content, highlighting the hydrophilic nature of the modified starch, which necessitated additional water during dough preparation. Color analysis revealed significant variations in the L* (lightness) and a* (red-green) parameters, with no consistent relationship between the modified starch treatments and the control. However, the b* (yellow-blue) parameter showed a strong correlation across most samples, except for treatment T3. Thus, modified starch affected the a* component of the CIELAB color spectrum, influencing the reddish hue of the puff pastries. Variations in baking time due to increased water content in the dough likely contributed to differences in lightness among the samples. Sensory analysis revealed that consumers preferred the sample with a 20% starch substitution (T2), which was rated similarly to the control in terms of texture. However, treatment T3 exhibited unusual behavior in texture analysis, and the color analysis showed that treatment T1 most closely resembled the control, indicating that starch addition is most noticeable to consumers in the visual aspect of the product. In conclusion, while the modified starch successfully maintained the desired texture and internal structure of puff pastry, its impact on water retention and color requires careful consideration in product formulation. This study underscores the importance of balancing product quality with consumer expectations when incorporating modified starches in baked goods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consumer%20preferences" title="consumer preferences">consumer preferences</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20starch" title=" modified starch"> modified starch</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20properties" title=" physicochemical properties"> physicochemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=puff%20pastry" title=" puff pastry"> puff pastry</a> </p> <a href="https://publications.waset.org/abstracts/190063/effect-of-the-incorporation-of-modified-starch-on-the-physicochemical-properties-and-consumer-acceptance-of-puff-pastry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">27</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">185</span> Product Placement and Advertising in Chinese Internet Dramas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patricia%20Portugal%20Marques%20de%20Carvalho%20Lourenco">Patricia Portugal Marques de Carvalho Lourenco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the richness of product placement usage in Chinese IP dramas. It shows the artistry of storytellers in craftily intertwining the drama’s storyline with the items promoted, resulting in a flawless Chinese tapestry that perfectly blends internet visual entertainment with advertising, significantly enhancing the production’s worth. Successful IQIYI drama We are all alone, is a flawless example of that, attracting collaborative interest from products and brands across a spectrum of market segments, motivated to showcase their utility, value, benefits, and appeal to viewers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=product%20placement" title="product placement">product placement</a>, <a href="https://publications.waset.org/abstracts/search?q=band-aid%20ads" title=" band-aid ads"> band-aid ads</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20ads" title=" post ads"> post ads</a>, <a href="https://publications.waset.org/abstracts/search?q=barrage%20advertising" title=" barrage advertising"> barrage advertising</a>, <a href="https://publications.waset.org/abstracts/search?q=China" title=" China"> China</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20drama%20series" title=" internet drama series"> internet drama series</a>, <a href="https://publications.waset.org/abstracts/search?q=Latin%20Europe" title=" Latin Europe"> Latin Europe</a> </p> <a href="https://publications.waset.org/abstracts/166569/product-placement-and-advertising-in-chinese-internet-dramas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">184</span> Algae Biofertilizers Promote Sustainable Food Production and Nutrient Efficiency: An Integrated Empirical-Modeling Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeenat%20Rupawalla">Zeenat Rupawalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicole%20Robinson"> Nicole Robinson</a>, <a href="https://publications.waset.org/abstracts/search?q=Susanne%20Schmidt"> Susanne Schmidt</a>, <a href="https://publications.waset.org/abstracts/search?q=Sijie%20Li"> Sijie Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Selina%20Carruthers"> Selina Carruthers</a>, <a href="https://publications.waset.org/abstracts/search?q=Elodie%20Buisset"> Elodie Buisset</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Roles"> John Roles</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Hankamer"> Ben Hankamer</a>, <a href="https://publications.waset.org/abstracts/search?q=Juliane%20Wolf"> Juliane Wolf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agriculture has radically changed the global biogeochemical cycle of nitrogen (N). Fossil fuel-enabled synthetic N-fertiliser is a foundation of modern agriculture but applied to soil crops only use about half of it. To address N-pollution from cropping and the large carbon and energy footprint of N-fertiliser synthesis, new technologies delivering enhanced energy efficiency, decarbonisation, and a circular nutrient economy are needed. We characterised algae fertiliser (AF) as an alternative to synthetic N-fertiliser (SF) using empirical and modelling approaches. We cultivated microalgae in nutrient solution and modelled up-scaled production in nutrient-rich wastewater. Over four weeks, AF released 63.5% of N as ammonium and nitrate, and 25% of phosphorous (P) as phosphate to the growth substrate, while SF released 100% N and 20% P. To maximise crop N-use and minimise N-leaching, we explored AF and SF dose-response-curves with spinach in glasshouse conditions. AF-grown spinach produced 36% less biomass than SF-grown plants due to AF’s slower and linear N-release, while SF resulted in 5-times higher N-leaching loss than AF. Optimised blends of AF and SF boosted crop yield and minimised N-loss due to greater synchrony of N-release and crop uptake. Additional benefits of AF included greener leaves, lower leaf nitrate concentration, and higher microbial diversity and water holding capacity in the growth substrate. Life-cycle-analysis showed that replacing the most effective SF dosage with AF lowered the carbon footprint of fertiliser production from 2.02 g CO₂ (C-producing) to -4.62 g CO₂ (C-sequestering), with a further 12% reduction when AF is produced on wastewater. Embodied energy was lowest for AF-SF blends and could be reduced by 32% when cultivating algae on wastewater. We conclude that (i) microalgae offer a sustainable alternative to synthetic N-fertiliser in spinach production and potentially other crop systems, and (ii) microalgae biofertilisers support the circular nutrient economy and several sustainable development goals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioeconomy" title="bioeconomy">bioeconomy</a>, <a href="https://publications.waset.org/abstracts/search?q=decarbonisation" title=" decarbonisation"> decarbonisation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20footprint" title=" energy footprint"> energy footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a> </p> <a href="https://publications.waset.org/abstracts/135242/algae-biofertilizers-promote-sustainable-food-production-and-nutrient-efficiency-an-integrated-empirical-modeling-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">183</span> Wheat Production and Market in Afghanistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fayiz%20Saifurahman">Fayiz Saifurahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Noori%20Fida%20Mohammad"> Noori Fida Mohammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Afghanistan produces the highest rate of wheat, it is the first source of food, and food security in Afghanistan is dependent on the availability of wheat. Although Afghanistan is the main producer of wheat, on the other hand, Afghanistan is the largest importers of flour. The objective of this study is to assess the structure and dynamics of the wheat market in Afghanistan, can compute with foreign markets, and increase the level of production. To complete this, a broad series of secondary data was complied with, group discussions and interviews with farmers, agricultural and market experts. The research findings propose that; the government should adopt different policies to support the local market. The government should distribute the seed, support financially and technically to increase wheat production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afghanistan" title="Afghanistan">Afghanistan</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production "> production </a>, <a href="https://publications.waset.org/abstracts/search?q=import" title=" import "> import </a> </p> <a href="https://publications.waset.org/abstracts/128290/wheat-production-and-market-in-afghanistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">182</span> The Effect of the Structural Arrangement of Binary Bisamide Organogelators on their Self-Assembly Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elmira%20Ghanbari">Elmira Ghanbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20%20Van%20Esch"> Jan Van Esch</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20%20J.%20Picken"> Stephen J. Picken</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahil%20%20Aggarwal"> Sahil Aggarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low-molecular-weight organogelators form gels by self-assembly into the crystalline network which immobilizes the organic solvent. For single bisamide organogelator systems, the effect of the molecular structure on the molecular interaction and their self-assembly behavior has been explored. The spatial arrangement of bisamide molecules in the gel-state is driven by a combination of hydrogen bonding and Van der Waals interactions. The hydrogen-bonding pattern between the amide groups of bisamide molecules is regulated by the number of methylene spacers; the even number of methylene spacers between two amide groups, in even-spaced bisamides, leads to the antiparallel position of amide groups within a molecule. An even-spaced bisamide molecule with antiparallel amide groups can make two pairs of hydrogen bonding with the molecules on the same plane. The odd-spaced bisamide with a parallel directionality of amide groups can form four independent hydrogen bonds with four other bisamide molecules on different planes. The arrangement of bisamide molecules in the crystalline state and the interaction of these molecules depends on the molecular structure, particularly the parity of the spacer length between the amide groups in the bisamide molecule. In this study, the directionality of amide groups has been exploited as a structural characteristic to affect the arrangement of molecules in the crystalline state and produce different binary bisamide gelators with different degrees of crystallinities. Single odd- and even-spaced single bisamides were synthesized and blended to produce binary bisamide organogelators to be characterized in order to understand the effect of the different directionality of amide groups on the molecular interaction in the crystalline state. The pattern of molecular interactions between these blended molecules, mixing or phase separation, has been monitored via differential scanning calorimetry (DSC) and crystallography techniques; X-ray powder diffraction (XRD) and Small-angle X-ray scattering (SAXS). The formation of lamellar structures for odd- and even-spaced bisamide gelators was confirmed by using SAXS and XRD techniques. DSC results have shown that binary bisamide organogelators with different parity of methylene spacers (odd-even binary blends) have a higher tendency for phase separation compared to the binary bisamides with the same parity (odd-odd or even-even binary blends). Phase separation in binary odd-even bisamides was confirmed by the presence of individual (100) reflections of odd and even lamellar structures. The structural characteristic of bisamide organogelators, the parity of spacer length in binary systems, is a promising tool to control the arrangement of molecules and their crystalline structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20bisamide%20organogelators" title="binary bisamide organogelators">binary bisamide organogelators</a>, <a href="https://publications.waset.org/abstracts/search?q=crystalline%20structure" title=" crystalline structure"> crystalline structure</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20separation" title=" phase separation"> phase separation</a>, <a href="https://publications.waset.org/abstracts/search?q=self-assembly%20behavior" title=" self-assembly behavior"> self-assembly behavior</a> </p> <a href="https://publications.waset.org/abstracts/138559/the-effect-of-the-structural-arrangement-of-binary-bisamide-organogelators-on-their-self-assembly-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">181</span> Phosphorus Reduction in Plain and Fully Formulated Oils Using Fluorinated Additives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabi%20N.%20Nehme">Gabi N. Nehme</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reduction of phosphorus and sulfur in engine oil are the main topics of this paper. Very reproducible boundary lubrication tests were conducted as part of Design of Experiment software (DOE) to study the behavior of fluorinated catalyst iron fluoride (FeF3), and polutetrafluoroethylene or Teflon (PTFE) in developing environmentally friendly (reduced P and S) anti-wear additives for future engine oil formulations. Multi-component Chevron fully formulated oil (GF3) and Chevron plain oil were used with the addition of PTFE and catalyst to characterize and analyze their performance. Lower phosphorus blends were the goal of the model solution. Experiments indicated that new sub-micron FeF3 catalyst played an important role in preventing breakdown of the tribofilm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wear" title="wear">wear</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=EDS" title=" EDS"> EDS</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=lubricants" title=" lubricants"> lubricants</a> </p> <a href="https://publications.waset.org/abstracts/31982/phosphorus-reduction-in-plain-and-fully-formulated-oils-using-fluorinated-additives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">180</span> Effect of Germination on Nutritional Values of Isolates from Two Varieties (DAS and BS) of Under-Utilized Nigerian Cultivated Solojo Cowpea (Vigna Unguiculata L. Walp)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Henry%20O.%20Chibudike">Henry O. Chibudike</a>, <a href="https://publications.waset.org/abstracts/search?q=Olubamike%20A.%20Adeyoju"> Olubamike A. Adeyoju</a>, <a href="https://publications.waset.org/abstracts/search?q=Bolanle%20O.%20Oluwole"> Bolanle O. Oluwole</a>, <a href="https://publications.waset.org/abstracts/search?q=Kayode%20O.%20Adebowale"> Kayode O. Adebowale</a>, <a href="https://publications.waset.org/abstracts/search?q=Bamidele%20I.%20Olu-Owolabi"> Bamidele I. Olu-Owolabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinedum%20E.%20Chibudike">Chinedum E. Chibudike</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studies on the Mineral Content of Solojo Flour and Protein Isolates from the two varieties (DAS and BS) of Nigeria cultivated solojo cowpeas were conducted to determine their nutritional value. These inorganic elements or minerals were classified into 3 categories: the ultra-trace minerals, which are the third category; the microelements, also known as the trace minerals, in the second category; while the first category is the macro elements, also known as major minerals. Some of the macro-elements are Ca, P, Na and Cl; the second category, micro-elements include iron, copper, cobalt, potassium, magnesium, iodine, zinc, manganese, molybdenum, F, Cr, Se and S. Results show that the proportion of Sodium (Na) which is ingested into the body in the form of NaCl through food intake maintenance of body pH and to retain water ranged from 728.97 to 253.37 ppm (72.90 to 25.34 mg/100 g); 715.24 to 235.45 ppm; 735.28 to 270.37 ppm; 726.59 to 264.35ppm, for FFDAS, FFBS, DAS and BS respectively with all values of the germinated samples all bellow the control. While FFDAS iron content ranged from 4.25 to 13.50 mg/100 g; FFBS ranged from 3.15 to 12.56 mg/100 g; DAS ranged from 3.81 to 12.90 mg/100g; BS ranged from 3.42 to 9.40 mg/100 g. The values of the germinated flours were all greater than the ungerminated flour. Iron helps to transport oxygen round the body and also helps in red blood cells building and to convert food into needed energy by the body. While Manganese an element that is needed in micro quantity but necessary to convert food into energy, is also crucial for healthy bone and cartilage creation. Results also show that zinc quantity increased as germination proceeded, and the values ranged from 38.80 ppm to 230.00 ppm (3.880 mg/100 g to 23.00 mg/100 g; 0.003880% to 0.0230%); 40.84 to 250.01 ppm; 32.85 to 93.41 ppm; 37.07 to 115.00 ppm, for FFDAS, FFBS, DAS and BS respectively. The Ca content improved significantly (p<0.05) with sprouting; the value extended from 250.56 ppm to 760.03 ppm (25.056 to 76.00 mg/100g or 0.0251 to 0.0760 %); 400.40 to 998.22 ppm; 116.87 to 195.69 ppm; 113.48 to 220.75 ppm, for FFDAS, FFBS, DAS and BS respectively. Zinc element although needed at the micro level in the body, is essential for a strong immune system to keep the body in good health. It is also crucial for the maintenance of a healthy sense of taste and odor, while Calcium is critical for strong bones and teeth, blood coagulation, and muscle tightening and relaxation. Magnesium is needed to build enzymes and antioxidants and also for healthy bones, while Potassium is needed to maintain water balance, muscle movement, and nerve impulses. It functions in conjunction with Na to regulate blood pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Solojo%20cowpea" title="Solojo cowpea">Solojo cowpea</a>, <a href="https://publications.waset.org/abstracts/search?q=underutilized%20legumes" title=" underutilized legumes"> underutilized legumes</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20isolates" title=" protein isolates"> protein isolates</a>, <a href="https://publications.waset.org/abstracts/search?q=BS" title=" BS"> BS</a>, <a href="https://publications.waset.org/abstracts/search?q=DAS" title=" DAS"> DAS</a>, <a href="https://publications.waset.org/abstracts/search?q=ungerminated" title=" ungerminated"> ungerminated</a> </p> <a href="https://publications.waset.org/abstracts/183315/effect-of-germination-on-nutritional-values-of-isolates-from-two-varieties-das-and-bs-of-under-utilized-nigerian-cultivated-solojo-cowpea-vigna-unguiculata-l-walp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">179</span> Comparative Analysis between Corn and Ramon (Brosimum alicastrum) Starches to Be Used as Sustainable Bio-Based Plastics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20R.%20R%C3%ADos-Soberanis">C. R. Ríos-Soberanis</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20M.%20Moo-Huchin"> V. M. Moo-Huchin</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20J.%20Estrada-Leon"> R. J. Estrada-Leon</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Perez-Pacheco"> E. Perez-Pacheco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymers from renewable resources have attracted an increasing amount of attention over the last two decades, predominantly due to two major reasons: firstly environmental concerns, and secondly the realization that our petroleum resources are finite. Finding new uses for agricultural commodities is also an important area of research. Therefore, it is crucial to get new sources of natural materials that can be used in different applications. Ramon tree (Brosimum alicastrum) is a tropical plant that grows freely in Yucatan countryside. This paper focuses on the seeds recollection, processing and starch extraction and characterization in order to find out about its suitability as biomaterial. Results demonstrated that it has a high content of qualities to be used not only as comestible but also as an important component in polymeric blends. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomaterials" title="biomaterials">biomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization%20techniques" title=" characterization techniques"> characterization techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20resource" title=" natural resource"> natural resource</a>, <a href="https://publications.waset.org/abstracts/search?q=starch" title=" starch"> starch</a> </p> <a href="https://publications.waset.org/abstracts/42740/comparative-analysis-between-corn-and-ramon-brosimum-alicastrum-starches-to-be-used-as-sustainable-bio-based-plastics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">178</span> Analysis of Performance-Emission Characteristics of a Single Cylinder Diesel Engine Fueled with Coconut Oil </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Purna%20Singh">Purna Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaibhav%20Tripathi"> Vaibhav Tripathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinayak%20Kalluri"> Vinayak Kalluri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumit%20Roy"> Sumit Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present experimental work was carried out to investigate performance and emission characteristics of single cylinder diesel engine operating under dual-fuel mode with coconut oil blended with diesel. Coconut oil is one of the edible oil which is abundant in tropical countries and has properties like diesel. To this end, performance and emission parameters of diesel-coconut oil blends were reported in the current study. The results were drawn at different load steps of engine operation with 10% and 20% of coconut oil linearly blended with diesel. From the results, it was evident that coconut oil can be successfully replaced up to 20% of diesel without hampering the performance-emission characteristics of the existing diesel engine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20oil" title="coconut oil">coconut oil</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20fuel" title=" alternative fuel"> alternative fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-fuel" title=" dual-fuel"> dual-fuel</a> </p> <a href="https://publications.waset.org/abstracts/101439/analysis-of-performance-emission-characteristics-of-a-single-cylinder-diesel-engine-fueled-with-coconut-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">177</span> Evaluation of the Energy Performance and Emissions of an Aircraft Engine: J69 Using Fuel Blends of Jet A1 and Biodiesel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Fernando%20Talero%20Rojas">Gabriel Fernando Talero Rojas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Silva%20Leal"> Vladimir Silva Leal</a>, <a href="https://publications.waset.org/abstracts/search?q=Camilo%20Bayona-Roa"> Camilo Bayona-Roa</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Pava"> Juan Pava</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20Lopez%20Gomez"> Mauricio Lopez Gomez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The substitution of conventional aviation fuels with biomass-derived alternative fuels is an emerging field of study in the aviation transport, mainly due to its energy consumption, the contribution to the global Greenhouse Gas - GHG emissions and the fossil fuel price fluctuations. Nevertheless, several challenges remain as the biofuel production cost and its degradative effect over the fuel systems that alter the operating safety. Moreover, experimentation on full-scale aeronautic turbines are expensive and complex, leading to most of the research to the testing of small-size turbojets with a major absence of information regarding the effects in the energy performance and the emissions. The main purpose of the current study is to present the results of experimentation in a full-scale military turbojet engine J69-T-25A (presented in Fig. 1) with 640 kW of power rating and using blends of Jet A1 with oil palm biodiesel. The main findings are related to the thrust specific fuel consumption – TSFC, the engine global efficiency – η, the air/fuel ratio – AFR and the volume fractions of O2, CO2, CO, and HC. Two fuels are used in the present study: a commercial Jet A1 and a Colombian palm oil biodiesel. The experimental plan is conducted using the biodiesel volume contents - w_BD from 0 % (B0) to 50 % (B50). The engine operating regimes are set to Idle, Cruise, and Take-off conditions. The turbojet engine J69 is used by the Colombian Air Force and it is installed in a testing bench with the instrumentation that corresponds to the technical manual of the engine. The increment of w_BD from 0 % to 50 % reduces the η near 3,3 % and the thrust force in a 26,6 % at Idle regime. These variations are related to the reduction of the 〖HHV〗_ad of the fuel blend. The evolved CO and HC tend to be reduced in all the operating conditions when increasing w_BD. Furthermore, a reduction of the atomization angle is presented in Fig. 2, indicating a poor atomization in the fuel nozzle injectors when using a higher biodiesel content as the viscosity of fuel blend increases. An evolution of cloudiness is also observed during the shutdown procedure as presented in Fig. 3a, particularly after 20 % of biodiesel content in the fuel blend. This promotes the contamination of some components of the combustion chamber of the J69 engine with soot and unburned matter (Fig. 3). Thus, the substitution of biodiesel content above 20 % is not recommended in order to avoid a significant decrease of η and the thrust force. A more detail examination of the mechanical wearing of the main components of the engine is advised in further studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aviation" title="aviation">aviation</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20to%20fuel%20ratio" title=" air to fuel ratio"> air to fuel ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20performance" title=" energy performance"> energy performance</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20atomization" title=" fuel atomization"> fuel atomization</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title=" gas turbine"> gas turbine</a> </p> <a href="https://publications.waset.org/abstracts/121430/evaluation-of-the-energy-performance-and-emissions-of-an-aircraft-engine-j69-using-fuel-blends-of-jet-a1-and-biodiesel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">176</span> Alkali Activation of Fly Ash, Metakaolin and Slag Blends: Fresh and Hardened Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weiliang%20Gong">Weiliang Gong</a>, <a href="https://publications.waset.org/abstracts/search?q=Lissa%20Gomes"> Lissa Gomes</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucile%20Raymond"> Lucile Raymond</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Xu"> Hui Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Werner%20Lutze"> Werner Lutze</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20L.%20Pegg">Ian L. Pegg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alkali-activated materials, particularly geopolymers, have attracted much interest in academia. Commercial applications are on the rise, as well. Geopolymers are produced typically by a reaction of one or two aluminosilicates with an alkaline solution at room temperature. Fly ash is an important aluminosilicate source. However, using low-Ca fly ash, the byproduct of burning hard or black coal reacts and sets slowly at room temperature. The development of mechanical durability, e.g., compressive strength, is slow as well. The use of fly ashes with relatively high contents ( > 6%) of unburned carbon, i.e., high loss on ignition (LOI), is particularly disadvantageous as well. This paper will show to what extent these impediments can be mitigated by mixing the fly ash with one or two more aluminosilicate sources. The fly ash used here is generated at the Orlando power plant (Florida, USA). It is low in Ca ( < 1.5% CaO) and has a high LOI of > 6%. The additional aluminosilicate sources are metakaolin and blast furnace slag. Binary fly ash-metakaolin and ternary fly ash-metakaolin-slag geopolymers were prepared. Properties of geopolymer pastes before and after setting have been measured. Fresh mixtures of aluminosilicates with an alkaline solution were studied by Vicat needle penetration, rheology, and isothermal calorimetry up to initial setting and beyond. The hardened geopolymers were investigated by SEM/EDS and the compressive strength was measured. Initial setting (fluid to solid transition) was indicated by a rapid increase in yield stress and plastic viscosity. The rheological times of setting were always smaller than the Vicat times of setting. Both times of setting decreased with increasing replacement of fly ash with blast furnace slag in a ternary fly ash-metakaolin-slag geopolymer system. As expected, setting with only Orlando fly ash was the slowest. Replacing 20% fly ash with metakaolin shortened the set time. Replacing increasing fractions of fly ash in the binary system by blast furnace slag (up to 30%) shortened the time of setting even further. The 28-day compressive strength increased drastically from < 20 MPa to 90 MPa. The most interesting finding relates to the calorimetric measurements. The use of two or three aluminosilicates generated significantly more heat (20 to 65%) than the calculated from the weighted sum of the individual aluminosilicates. This synergetic heat contributes or may be responsible for most of the increase of compressive strength of our binary and ternary geopolymers. The synergetic heat effect may be also related to increased incorporation of calcium in sodium aluminosilicate hydrate to form a hybrid (N,C)A-S-H) gel. The time of setting will be correlated with heat release and maximum heat flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali-activated%20materials" title="alkali-activated materials">alkali-activated materials</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20and%20ternary%0D%0Ageopolymers" title=" binary and ternary geopolymers"> binary and ternary geopolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=blends%20of%20fly%20ash" title=" blends of fly ash"> blends of fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=metakaolin%20and%20blast%20furnace%20slag" title=" metakaolin and blast furnace slag"> metakaolin and blast furnace slag</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=synergetic%20heats" title=" synergetic heats "> synergetic heats </a> </p> <a href="https://publications.waset.org/abstracts/115972/alkali-activation-of-fly-ash-metakaolin-and-slag-blends-fresh-and-hardened-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">175</span> Detection of Mustard Traces in Food by an Official Food Safety Laboratory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clara%20Tramuta">Clara Tramuta</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucia%20Decastelli"> Lucia Decastelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Elisa%20Barcucci"> Elisa Barcucci</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Fragassi"> Sandra Fragassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Samantha%20Lupi"> Samantha Lupi</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrico%20Arletti"> Enrico Arletti</a>, <a href="https://publications.waset.org/abstracts/search?q=Melissa%20Bizzarri"> Melissa Bizzarri</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Manila%20Bianchi"> Daniela Manila Bianchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introdution: Food allergies occurs, in the Western World, 2% of adults and up to 8% of children. The protection of allergic consumers is guaranted, in Eurrope, by Regulation (EU) No 1169/2011 of the European Parliament which governs the consumer's right to information and identifies 14 food allergens to be mandatory indicated on the label. Among these, mustard is a popular spice added to enhance the flavour and taste of foods. It is frequently present as an ingredient in spice blends, marinades, salad dressings, sausages, and other products. Hypersensitivity to mustard is a public health problem since the ingestion of even low amounts can trigger severe allergic reactions. In order to protect the allergic consumer, high performance methods are required for the detection of allergenic ingredients. Food safety laboratories rely on validated methods that detect hidden allergens in food to ensure the safety and health of allergic consumers. Here we present the test results for the validation and accreditation of a Real time PCR assay (RT-PCR: SPECIALfinder MC Mustard, Generon), for the detection of mustard traces in food. Materials and Methods. The method was tested on five classes of food matrices: bakery and pastry products (chocolate cookies), meats (ragù), ready-to-eat (mixed salad), dairy products (yogurt), grains, and milling products (rice and barley flour). Blank samples were spiked starting with the mustard samples (Sinapis Alba), lyophilized and stored at -18 °C, at a concentration of 1000 ppm. Serial dilutions were then prepared to a final concentration of 0.5 ppm, using the DNA extracted by ION Force FAST (Generon) from the blank samples. The Real Time PCR reaction was performed by RT-PCR SPECIALfinder MC Mustard (Generon), using CFX96 System (BioRad). Results. Real Time PCR showed a limit of detection (LOD) of 0.5 ppm in grains and milling products, ready-to-eat, meats, bakery, pastry products, and dairy products (range Ct 25-34). To determine the exclusivity parameter of the method, the ragù matrix was contaminated with Prunus dulcis (almonds), peanut (Arachis hypogaea), Glycine max (soy), Apium graveolens (celery), Allium cepa (onion), Pisum sativum (peas), Daucus carota (carrots), and Theobroma cacao (cocoa) and no cross-reactions were observed. Discussion. In terms of sensitivity, the Real Time PCR confirmed, even in complex matrix, a LOD of 0.5 ppm in five classes of food matrices tested; these values are compatible with the current regulatory situation that does not consider, at international level, to establish a quantitative criterion for the allergen considered in this study. The Real Time PCR SPECIALfinder kit for the detection of mustard proved to be easy to use and particularly appreciated for the rapid response times considering that the amplification and detection phase has a duration of less than 50 minutes. Method accuracy was rated satisfactory for sensitivity (100%) and specificity (100%) and was fully validated and accreditated. It was found adequate for the needs of the laboratory as it met the purpose for which it was applied. This study was funded in part within a project of the Italian Ministry of Health (IZS PLV 02/19 RC). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allergens" title="allergens">allergens</a>, <a href="https://publications.waset.org/abstracts/search?q=food" title=" food"> food</a>, <a href="https://publications.waset.org/abstracts/search?q=mustard" title=" mustard"> mustard</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time%20PCR" title=" real time PCR"> real time PCR</a> </p> <a href="https://publications.waset.org/abstracts/144177/detection-of-mustard-traces-in-food-by-an-official-food-safety-laboratory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">174</span> NOx Emission and Computational Analysis of Jatropha Curcus Fuel and Crude Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vipan%20Kumar%20Sohpal">Vipan Kumar Sohpal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20K%20Sharma"> Rajesh K Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diminishing of conventional fuels and hysterical vehicles emission leads to deterioration of the environment, which emphasize the research to work on biofuels. Biofuels from different sources attract the attention of research due to low emission and biodegradability. Emission of carbon monoxide, carbon dioxide and H-C reduced drastically using Biofuels (B-20) combustion. Contrary to the conventional fuel, engine emission results indicated that nitrous oxide emission is higher in Biofuels. So this paper examines and compares the nitrogen oxide emission of Jatropha Curcus (JCO) B-20% blends with the vegetable oil. In addition to that computational analysis of crude non edible oil performed to assess the impact of composition on emission quality. In conclusion, JCO have the potential feedstock for the biodiesel production after the genetic modification in the plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jatropha%20curcus" title="jatropha curcus">jatropha curcus</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20analysis" title=" computational analysis"> computational analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=NOx%20biofuels" title=" NOx biofuels"> NOx biofuels</a> </p> <a href="https://publications.waset.org/abstracts/48173/nox-emission-and-computational-analysis-of-jatropha-curcus-fuel-and-crude-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">173</span> Drug Delivery Cationic Nano-Containers Based on Pseudo-Proteins </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sophio%20Kobauri">Sophio Kobauri</a>, <a href="https://publications.waset.org/abstracts/search?q=Temur%20Kantaria"> Temur Kantaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Nina%20Kulikova"> Nina Kulikova</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Tugushi"> David Tugushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramaz%20Katsarava"> Ramaz Katsarava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The elaboration of effective drug delivery vehicles is still topical nowadays since targeted drug delivery is one of the most important challenges of the modern nanomedicine. The last decade has witnessed enormous research focused on synthetic cationic polymers (CPs) due to their flexible properties, in particular as non-viral gene delivery systems, facile synthesis, robustness, not oncogenic and proven gene delivery efficiency. However, the toxicity is still an obstacle to the application in pharmacotherapy. For overcoming the problem, creation of new cationic compounds including the polymeric nano-size particles – nano-containers (NCs) loading with different pharmaceuticals and biologicals is still relevant. In this regard, a variety of NCs-based drug delivery systems have been developed. We have found that amino acid-based biodegradable polymers called as pseudo-proteins (PPs), which can be cleared from the body after the fulfillment of their function are highly suitable for designing pharmaceutical NCs. Among them, one of the most promising are NCs made of biodegradable Cationic PPs (CPPs). For preparing new cationic NCs (CNCs), we used CPPs composed of positively charged amino acid L-arginine (R). The CNCs were fabricated by two approaches using: (1) R-based homo-CPPs; (2) Blends of R-based CPPs with regular (neutral) PPs. According to the first approach NCs we prepared from CPPs 8R3 (composed of R, sebacic acid and 1,3-propanediol) and 8R6 (composed of R, sebacic acid and 1,6-hexanediol). The NCs prepared from these CPPs were 72-101 nm in size with zeta potential within +30 ÷ +35 mV at a concentration 6 mg/mL. According to the second approach, CPPs 8R6 was blended in organic phase with neutral PPs 8L6 (composed of leucine, sebacic acid and 1,6-hexanediol). The NCs prepared from the blends were 130-140 nm in size with zeta potential within +20 ÷ +28 mV depending on 8R6/8L6 ratio. The stability studies of fabricated NCs showed that no substantial change of the particle size and distribution and no big particles’ formation is observed after three months storage. In vitro biocompatibility study of the obtained NPs with four different stable cell lines: A549 (human), U-937 (human), RAW264.7 (murine), Hepa 1-6 (murine) showed both type cathionic NCs are biocompatible. The obtained data allow concluding that the obtained CNCs are promising for the application as biodegradable drug delivery vehicles. This work was supported by the joint grant from the Science and Technology Center in Ukraine and Shota Rustaveli National Science Foundation of Georgia #6298 'New biodegradable cationic polymers composed of arginine and spermine-versatile biomaterials for various biomedical applications'. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20polymers" title="biodegradable polymers">biodegradable polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=cationic%20pseudo-proteins" title=" cationic pseudo-proteins"> cationic pseudo-proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-containers" title=" nano-containers"> nano-containers</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery%20vehicles" title=" drug delivery vehicles"> drug delivery vehicles</a> </p> <a href="https://publications.waset.org/abstracts/104678/drug-delivery-cationic-nano-containers-based-on-pseudo-proteins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flour%20blends&amp;page=7" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flour%20blends&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flour%20blends&amp;page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flour%20blends&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flour%20blends&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flour%20blends&amp;page=7">7</a></li> <li class="page-item active"><span class="page-link">8</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flour%20blends&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flour%20blends&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flour%20blends&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flour%20blends&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flour%20blends&amp;page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flour%20blends&amp;page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flour%20blends&amp;page=9" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10