CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 157 results for author: <span class="mathjax">Antusch, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-ph" aria-role="search"> Searching in archive <strong>hep-ph</strong>. <a href="/search/?searchtype=author&amp;query=Antusch%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Antusch, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Antusch%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Antusch, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Antusch%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Antusch%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Antusch%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Antusch%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Antusch%2C+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.01389">arXiv:2408.01389</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.01389">pdf</a>, <a href="https://arxiv.org/format/2408.01389">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Discovering heavy neutrino-antineutrino oscillations at the $Z$-pole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hajer%2C+J">Jan Hajer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Oliveira%2C+B+M+S">Bruno M. S. Oliveira</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.01389v1-abstract-short" style="display: inline;"> Collider-testable type I seesaw extensions of the Standard Model are generally protected by an approximate lepton number (LN) symmetry. Consequently, they predict pseudo-Dirac heavy neutral leptons (HNLs) composed of two nearly degenerate Majorana fields. The interference between the two mass eigenstates can induce heavy neutrino-antineutrino oscillations (NNOs) leading to observable lepton number&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01389v1-abstract-full').style.display = 'inline'; document.getElementById('2408.01389v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.01389v1-abstract-full" style="display: none;"> Collider-testable type I seesaw extensions of the Standard Model are generally protected by an approximate lepton number (LN) symmetry. Consequently, they predict pseudo-Dirac heavy neutral leptons (HNLs) composed of two nearly degenerate Majorana fields. The interference between the two mass eigenstates can induce heavy neutrino-antineutrino oscillations (NNOs) leading to observable lepton number violation (LNV), even though the LN symmetry is approximately conserved. These NNOs could be resolved in long-lived HNL searches at collider experiments, such as the proposed Future Circular $e^+e^-$ Collider (FCC-$ee$) or Circular Electron Positron Collider (CEPC). However, during their $Z$-pole runs, the LN carried away by the light (anti)neutrinos produced alongside the HNLs prevents LNV from being observed directly. Nevertheless, NNOs materialise as oscillating signatures in final state distributions. We discuss and compare a selection of such oscillating observables, and perform a Monte Carlo simulation to assess the parameter space in which NNOs could be resolved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01389v1-abstract-full').style.display = 'none'; document.getElementById('2408.01389v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17014">arXiv:2406.17014</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.17014">pdf</a>, <a href="https://arxiv.org/format/2406.17014">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Explaining PTA Results by Metastable Cosmic Strings from SO(10) GUT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hinze%2C+K">Kevin Hinze</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Saad%2C+S">Shaikh Saad</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17014v2-abstract-short" style="display: inline;"> In a recent paper (see https://doi.org/10.1103/PhysRevD.108.095053), we have demonstrated that the 2023 PTA results, which hint at a stochastic gravitational wave (GW) background at nanohertz frequencies, point towards a promising model-building route for realizing $SO(10)$ Grand Unification with embedded inflation. The proposed supersymmetric scenario solves the doublet-triplet splitting without&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17014v2-abstract-full').style.display = 'inline'; document.getElementById('2406.17014v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17014v2-abstract-full" style="display: none;"> In a recent paper (see https://doi.org/10.1103/PhysRevD.108.095053), we have demonstrated that the 2023 PTA results, which hint at a stochastic gravitational wave (GW) background at nanohertz frequencies, point towards a promising model-building route for realizing $SO(10)$ Grand Unification with embedded inflation. The proposed supersymmetric scenario solves the doublet-triplet splitting without fine-tuning, accounts for charged fermion and neutrino masses, avoids conflicts with current proton decay bounds, and includes only representations no larger than the adjoint. It features multi-step breaking of $SO(10)$ to the Standard Model gauge symmetry, with inflation embedded such that metastable cosmic strings are produced at the end of inflation. This cosmic string network generates a stochastic GW background that can explain the PTA results. In this paper, we provide a detailed analysis of the singled out GUT model class, focusing on how the gauge coupling unification condition affects the scales of multi-step $SO(10)$ breaking and the preferred GW spectra. The lowest breaking scale, linked to inflation, the generation of right-handed neutrino masses for the seesaw mechanism, and metastable cosmic string production, coincides with the range suggested by the PTA results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17014v2-abstract-full').style.display = 'none'; document.getElementById('2406.17014v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages + references, 3 figures. Minor comments added. Version accepted in JCAP (to appear)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12521">arXiv:2406.12521</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.12521">pdf</a>, <a href="https://arxiv.org/format/2406.12521">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2024/10/095">10.1088/1475-7516/2024/10/095 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmic Strings from Tribrid Inflation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Trailovi%C4%87%2C+K">Katarina Trailovi膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12521v2-abstract-short" style="display: inline;"> Tribrid inflation is a class of supersymmetric inflation models where the scalar component of a matter superfield, or a $D$-flat direction of matter fields, drives inflation. Similar to Hybrid inflation, the end of inflation is reached when a &#34;waterfall field&#34;, which was stabilized during inflation at a field value where the scalar potential features a large vacuum energy, starts rapidly rolling t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12521v2-abstract-full').style.display = 'inline'; document.getElementById('2406.12521v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12521v2-abstract-full" style="display: none;"> Tribrid inflation is a class of supersymmetric inflation models where the scalar component of a matter superfield, or a $D$-flat direction of matter fields, drives inflation. Similar to Hybrid inflation, the end of inflation is reached when a &#34;waterfall field&#34;, which was stabilized during inflation at a field value where the scalar potential features a large vacuum energy, starts rapidly rolling towards its minimum where a symmetry group $G$ is spontaneously broken. In contrast to standard supersymmetric Hybrid inflation, where the inflaton is a gauge singlet, in Tribrid inflation it can be a gauge non-singlet, which, via its vacuum expectation value, already breaks the gauge symmetry. This raises the question whether topological defects can still form after inflation in this class of models, and if so, which types of defects are generated. We investigate this question systematically in realisations of Tribrid inflation where $G = U(1)$ and we analyse under which conditions cosmic strings form. We find that in the considered cases where domain walls form, these are only temporary and do not invalidate the model realisations. We also discuss how our results can be used to analyse models of Tribrid inflation associated with the final step of $SO(10)$ breaking, where cosmic strings can be metastable and provide a promising explanation of the recent PTA results hinting at a stochastic gravitational wave background at nanohertz frequencies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12521v2-abstract-full').style.display = 'none'; document.getElementById('2406.12521v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 1 figure, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 10 (2024) 095 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.03746">arXiv:2405.03746</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.03746">pdf</a>, <a href="https://arxiv.org/format/2405.03746">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Probing SUSY at Gravitational Wave Observatories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hinze%2C+K">Kevin Hinze</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Saad%2C+S">Shaikh Saad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Steiner%2C+J">Jonathan Steiner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.03746v1-abstract-short" style="display: inline;"> Under the assumption that the recent pulsar timing array evidence for a stochastic gravitational wave (GW) background at nanohertz frequencies is generated by metastable cosmic strings, we analyze the potential of present and future GW observatories for probing the change of particle degrees of freedom caused, e.g., by a supersymmetric (SUSY) extension of the Standard Model (SM). We find that sign&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03746v1-abstract-full').style.display = 'inline'; document.getElementById('2405.03746v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.03746v1-abstract-full" style="display: none;"> Under the assumption that the recent pulsar timing array evidence for a stochastic gravitational wave (GW) background at nanohertz frequencies is generated by metastable cosmic strings, we analyze the potential of present and future GW observatories for probing the change of particle degrees of freedom caused, e.g., by a supersymmetric (SUSY) extension of the Standard Model (SM). We find that signs of the characteristic doubling of degrees of freedom predicted by SUSY could be detected at Einstein Telescope and Cosmic Explorer even if the masses of the SUSY partner particles are as high as about $10^4$ TeV, far above the reach of any currently envisioned particle collider. We also discuss the detection prospects for the case that some entropy production, e.g. from a late decaying modulus field inducing a temporary matter domination phase in the evolution of the universe, somewhat dilutes the GW spectrum, delaying discovery of the stochastic GW background at LIGO-Virgo-KAGRA. In our analysis we focus on SUSY, but any theory beyond the SM predicting a significant increase of particle degrees of freedom could be probed this way. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03746v1-abstract-full').style.display = 'none'; document.getElementById('2405.03746v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages + appendix + references, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.09288">arXiv:2311.09288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.09288">pdf</a>, <a href="https://arxiv.org/format/2311.09288">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> U(2) is Right for Leptons and Left for Quarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Greljo%2C+A">Admir Greljo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Stefanek%2C+B+A">Ben A. Stefanek</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Thomsen%2C+A+E">Anders Eller Thomsen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.09288v2-abstract-short" style="display: inline;"> We posit that the distinct patterns observed in fermion masses and mixings are due to a minimally broken $\mathrm{U}(2)_{q+e}$ flavor symmetry acting on left-handed quarks and right-handed charged leptons, giving rise to an accidental $\mathrm{U}(2)^5$ symmetry at the renormalizable level without imposing selection rules on the Weinberg operator. We show that the symmetry can be consistently gauge&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09288v2-abstract-full').style.display = 'inline'; document.getElementById('2311.09288v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.09288v2-abstract-full" style="display: none;"> We posit that the distinct patterns observed in fermion masses and mixings are due to a minimally broken $\mathrm{U}(2)_{q+e}$ flavor symmetry acting on left-handed quarks and right-handed charged leptons, giving rise to an accidental $\mathrm{U}(2)^5$ symmetry at the renormalizable level without imposing selection rules on the Weinberg operator. We show that the symmetry can be consistently gauged by explicit examples and comment on realizations in $\mathrm{SU}(5)$ unification. Via a model-independent SMEFT analysis, we find that selection rules due to $\mathrm{U}(2)_{q+e}$ enhance the importance of charged lepton flavor violation as a probe, where significant experimental progress is expected in the near future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09288v2-abstract-full').style.display = 'none'; document.getElementById('2311.09288v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 1 figure. v2: updated discussion of the GUT symmetry</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.11705">arXiv:2308.11705</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.11705">pdf</a>, <a href="https://arxiv.org/format/2308.11705">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> A Generalised Missing Partner Mechanism for SU(5) GUT Inflation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hinze%2C+K">Kevin Hinze</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Saad%2C+S">Shaikh Saad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Steiner%2C+J">Jonathan Steiner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.11705v1-abstract-short" style="display: inline;"> We generalise the Missing Partner Mechanism to split the electron-like states from the coloured ones of vectorlike SU(5) 10-plets without fine-tuning. Together with the extra light weak doublets from the Double Missing Partner Mechanism (DMPM), this realises gauge coupling unification in the presence of a light weak triplet and colour octet, the characteristic light relics from the adjoint in SU(5&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11705v1-abstract-full').style.display = 'inline'; document.getElementById('2308.11705v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.11705v1-abstract-full" style="display: none;"> We generalise the Missing Partner Mechanism to split the electron-like states from the coloured ones of vectorlike SU(5) 10-plets without fine-tuning. Together with the extra light weak doublets from the Double Missing Partner Mechanism (DMPM), this realises gauge coupling unification in the presence of a light weak triplet and colour octet, the characteristic light relics from the adjoint in SU(5) GUT Inflation models. Additionally, we show how the vectorlike 10-plets may generate realistic fermion masses while the DMPM ensures that dimension five nucleon decay is suppressed. A discovery of the light relic states at future colliders would provide a &#34;smoking gun&#34; signal of the scenario. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11705v1-abstract-full').style.display = 'none'; document.getElementById('2308.11705v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.08585">arXiv:2308.08585</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.08585">pdf</a>, <a href="https://arxiv.org/format/2308.08585">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Minimal $SU(5)$ GUTs with vectorlike fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hinze%2C+K">Kevin Hinze</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Saad%2C+S">Shaikh Saad</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.08585v2-abstract-short" style="display: inline;"> In this work, we attempt to answer the question, &#34;What is the minimal viable renormalizable $SU(5)$ GUT with representations no higher than adjoints?&#34;. We find that an $SU(5)$ model with a pair of vectorlike fermions $5_F+\overline{5}_F$, as well as two copies of $15_H$ Higgs fields, is the minimal candidate that accommodates for correct charged fermion and neutrino masses and can also address the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.08585v2-abstract-full').style.display = 'inline'; document.getElementById('2308.08585v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.08585v2-abstract-full" style="display: none;"> In this work, we attempt to answer the question, &#34;What is the minimal viable renormalizable $SU(5)$ GUT with representations no higher than adjoints?&#34;. We find that an $SU(5)$ model with a pair of vectorlike fermions $5_F+\overline{5}_F$, as well as two copies of $15_H$ Higgs fields, is the minimal candidate that accommodates for correct charged fermion and neutrino masses and can also address the matter-antimatter asymmetry of the universe. Our results show that the presented model is highly predictive and will be fully tested by a combination of upcoming proton decay experiments, collider searches, and low-energy experiments in search of flavor violations. Moreover, we also entertain the possibility of adding a pair of vectorlike fermions $10_F+\overline{10}_F$ or $15_F+\overline{15}_F$ (instead of a $5_F+\overline{5}_F$). Our study reveals that the entire parameter space of these two models, even with minimal particle content, cannot be fully probed due to possible longer proton lifetime beyond the reach of Hyper-Kamiokande. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.08585v2-abstract-full').style.display = 'none'; document.getElementById('2308.08585v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages + references, 11 figures, matches version published in PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.07297">arXiv:2308.07297</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.07297">pdf</a>, <a href="https://arxiv.org/format/2308.07297">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Heavy neutrino-antineutrino oscillations at the FCC-ee </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hajer%2C+J">Jan Hajer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Oliveira%2C+B+M+S">Bruno M. S. Oliveira</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.07297v1-abstract-short" style="display: inline;"> We discuss the impact of heavy neutrino-antineutrino oscillations (NNOs) on heavy neutral lepton (HNL) searches at proposed electron-positron colliders such as the future circular $e^+e^-$ collider (FCC-ee). During the $Z$ pole run, HNLs can be produced alongside a light neutrino or antineutrino that escapes detection and can decay into a charged lepton or antilepton together with an off-shell&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07297v1-abstract-full').style.display = 'inline'; document.getElementById('2308.07297v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.07297v1-abstract-full" style="display: none;"> We discuss the impact of heavy neutrino-antineutrino oscillations (NNOs) on heavy neutral lepton (HNL) searches at proposed electron-positron colliders such as the future circular $e^+e^-$ collider (FCC-ee). During the $Z$ pole run, HNLs can be produced alongside a light neutrino or antineutrino that escapes detection and can decay into a charged lepton or antilepton together with an off-shell $W$ boson. In this case, signals of lepton number violation only show up in the final state distributions. We discuss how NNOs, a typical feature of collider-testable low-scale seesaw models where the heavy neutrinos form pseudo-Dirac pairs, modify such final state distributions. For example, the forward-backward asymmetry (FBA) of the reconstructed heavy (anti)neutrinos develops an oscillatory dependence on the HNL lifetime. We show that these oscillations can be resolvable for long-lived HNLs. We also discuss that when the NNOs are not resolvable, they can nevertheless significantly modify the theory predictions for FBAs and observables such as the ratio of the total number of HNL decays into $\ell^-$ over ones into $\ell^+$, in an interval of the angle~$胃$ between the HNL and the beam axis. Our results show that NNOs should be included in collider simulations of HNLs at the FCCee. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07297v1-abstract-full').style.display = 'none'; document.getElementById('2308.07297v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.06208">arXiv:2307.06208</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.06208">pdf</a>, <a href="https://arxiv.org/format/2307.06208">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Decoherence effects on lepton number violation from heavy neutrino-antineutrino oscillations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hajer%2C+J">Jan Hajer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Rosskopp%2C+J">Johannes Rosskopp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.06208v1-abstract-short" style="display: inline;"> We study decoherence effects and phase corrections in heavy neutrino-antineutrino oscillations (NNOs), based on quantum field theory with external wave packets. Decoherence damps the oscillation pattern, making it harder to resolve experimentally. Additionally, it enhances lepton number violation (LNV) for processes in symmetry-protected low-scale seesaw models by reducing the destructive interfer&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06208v1-abstract-full').style.display = 'inline'; document.getElementById('2307.06208v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.06208v1-abstract-full" style="display: none;"> We study decoherence effects and phase corrections in heavy neutrino-antineutrino oscillations (NNOs), based on quantum field theory with external wave packets. Decoherence damps the oscillation pattern, making it harder to resolve experimentally. Additionally, it enhances lepton number violation (LNV) for processes in symmetry-protected low-scale seesaw models by reducing the destructive interference between mass eigenstates. We discuss a novel time-independent shift in the phase and derive formulae for calculating decoherence effects and the phase shift in the relevant regimes, which are the no dispersion regime and transverse dispersion regime. We find that the phase shift can be neglected in the parameter region under consideration since it is small apart from parameter regions with large damping. In the oscillation formulae, decoherence can be included by an effective damping parameter. We discuss this parameter and present averaged results, which apply to simulations of NNOs in the dilepton-dijet channel at the HL-LHC. We show that including decoherence effects can dramatically change the theoretical prediction for the ratio of LNV over LNC events. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06208v1-abstract-full').style.display = 'none'; document.getElementById('2307.06208v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.04595">arXiv:2307.04595</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.04595">pdf</a>, <a href="https://arxiv.org/format/2307.04595">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Singling out SO(10) GUT models using recent PTA results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hinze%2C+K">Kevin Hinze</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Saad%2C+S">Shaikh Saad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Steiner%2C+J">Jonathan Steiner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.04595v2-abstract-short" style="display: inline;"> In this work, we construct promising model building routes towards SO(10) GUT inflation and examine their ability to explain the recent PTA results hinting at a stochastic gravitational wave (GW) background at nanohertz frequencies. We consider a supersymmetric framework within which the so-called doublet-triplet splitting problem is solved without introducing fine-tuning. Additionally, realistic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04595v2-abstract-full').style.display = 'inline'; document.getElementById('2307.04595v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.04595v2-abstract-full" style="display: none;"> In this work, we construct promising model building routes towards SO(10) GUT inflation and examine their ability to explain the recent PTA results hinting at a stochastic gravitational wave (GW) background at nanohertz frequencies. We consider a supersymmetric framework within which the so-called doublet-triplet splitting problem is solved without introducing fine-tuning. Additionally, realistic fermion masses and mixings, gauge coupling unification, and cosmic inflation are incorporated by utilizing superfields with representations no higher than the adjoint representation. Among the three possible scenarios, two of these cases require a single adjoint Higgs field, and do not lead to cosmic strings. In contrast, the third scenario featuring two adjoints, can lead to a network of metastable cosmic strings that generates a GW background contribution compatible with the recent PTA findings and testable by various ongoing and upcoming GW observatories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04595v2-abstract-full').style.display = 'none'; document.getElementById('2307.04595v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages+references, 1 figure. Minor changes; references are added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.03601">arXiv:2301.03601</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.03601">pdf</a>, <a href="https://arxiv.org/format/2301.03601">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2023.116195">10.1016/j.nuclphysb.2023.116195 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quark-lepton Yukawa ratios and nucleon decay in SU(5) GUTs with type-III seesaw </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hinze%2C+K">Kevin Hinze</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Saad%2C+S">Shaikh Saad</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.03601v1-abstract-short" style="display: inline;"> We consider an extension of the Georgi-Glashow SU(5) GUT model by a 45-dimensional scalar and a 24-dimensional fermionic representation, where the latter leads to the generation of the observed light neutrino masses via a combination of a type I and a type III seesaw mechanism. Within this scenario, we investigate the viability of predictions for the ratios between the charged lepton and down-type&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.03601v1-abstract-full').style.display = 'inline'; document.getElementById('2301.03601v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.03601v1-abstract-full" style="display: none;"> We consider an extension of the Georgi-Glashow SU(5) GUT model by a 45-dimensional scalar and a 24-dimensional fermionic representation, where the latter leads to the generation of the observed light neutrino masses via a combination of a type I and a type III seesaw mechanism. Within this scenario, we investigate the viability of predictions for the ratios between the charged lepton and down-type quark Yukawa couplings, focusing on the second and third family. Such predictions can emerge when the relevant entries of the Yukawa matrices are generated from single joint GUT operators (i.e. under the condition of single operator dominance). We show that three combinations are viable, (i) $y_蟿/y_b=3/2$, $y_渭/y_s=9/2$, (ii) $y_蟿/y_b=2$, $y_渭/y_s=9/2$, and (iii) $y_蟿/y_b=2$, $y_渭/y_s=6$. We extend these possibilities to three toy models, accounting also for the first family masses, and calculate their predictions for various nucleon decay rates. We also analyse how the requirement of gauge coupling unification constrains the masses of potentially light relic states testable at colliders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.03601v1-abstract-full').style.display = 'none'; document.getElementById('2301.03601v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages + 2 appendices + references, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.00809">arXiv:2301.00809</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.00809">pdf</a>, <a href="https://arxiv.org/format/2301.00809">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.015025">10.1103/PhysRevD.108.015025 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fully Testable Axion Dark Matter within a Minimal $SU(5)$ GUT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Dor%C5%A1ner%2C+I">Ilja Dor拧ner</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hinze%2C+K">Kevin Hinze</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Saad%2C+S">Shaikh Saad</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.00809v2-abstract-short" style="display: inline;"> We present a minimal Grand Unified Theory model, based on $SU(5)$ gauge symmetry and a global $U(1)$ Peccei-Quinn symmetry, that predicts the existence of an ultralight axion dark matter within a narrow mass range of $m_a\in[0.1,\,4.7]\,$neV. This mass window is determined through an interplay between gauge coupling unification constraints, partial proton decay lifetime limits, and the need to rep&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00809v2-abstract-full').style.display = 'inline'; document.getElementById('2301.00809v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.00809v2-abstract-full" style="display: none;"> We present a minimal Grand Unified Theory model, based on $SU(5)$ gauge symmetry and a global $U(1)$ Peccei-Quinn symmetry, that predicts the existence of an ultralight axion dark matter within a narrow mass range of $m_a\in[0.1,\,4.7]\,$neV. This mass window is determined through an interplay between gauge coupling unification constraints, partial proton decay lifetime limits, and the need to reproduce the experimentally observed fermion mass spectrum. The entire parameter space of the proposed model will be probed through a synergy between several low-energy experiments that look for proton decay (Hyper-Kamiokande), axion dark matter through axion-photon coupling (ABRACADABRA and DMRadio-GUT) and nucleon electric dipole moments (CASPEr Electric). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00809v2-abstract-full').style.display = 'none'; document.getElementById('2301.00809v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages + references, 9 figures, version accepted in PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.00562">arXiv:2212.00562</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.00562">pdf</a>, <a href="https://arxiv.org/format/2212.00562">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP09(2023)170">10.1007/JHEP09(2023)170 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Beyond lepton number violation at the HL-LHC: Resolving heavy neutrino-antineutrino oscillations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hajer%2C+J">Jan Hajer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Rosskopp%2C+J">Johannes Rosskopp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.00562v2-abstract-short" style="display: inline;"> Collider testable low-scale seesaw models predict pseudo-Dirac heavy neutrinos, that can produce an oscillating pattern of lepton number conserving and lepton number violating events. We explore if such heavy neutrino-antineutrino oscillations can be resolved at the HL-LHC. To that end, we employ the first ever full Monte Carlo simulation of the oscillations, for several example benchmark points,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.00562v2-abstract-full').style.display = 'inline'; document.getElementById('2212.00562v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.00562v2-abstract-full" style="display: none;"> Collider testable low-scale seesaw models predict pseudo-Dirac heavy neutrinos, that can produce an oscillating pattern of lepton number conserving and lepton number violating events. We explore if such heavy neutrino-antineutrino oscillations can be resolved at the HL-LHC. To that end, we employ the first ever full Monte Carlo simulation of the oscillations, for several example benchmark points, and show under which conditions the CMS experiment is able to discover them. The workflow builds on a FeynRules model file for the phenomenological symmetry protected seesaw scenario (pSPSS) and a patched version of MadGraph , able to simulate heavy neutrino-antineutrino oscillations. We use the fast detector simulation Delphes and present a statistical analysis capable of inferring the significance of oscillations in the simulated data. Our results demonstrate that, for heavy neutrino mass splittings smaller than about 100 $渭$eV, the discovery prospects for heavy neutrino-antineutrino oscillations at the HL-LHC are promising. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.00562v2-abstract-full').style.display = 'none'; document.getElementById('2212.00562v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version, 24 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.10738">arXiv:2210.10738</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.10738">pdf</a>, <a href="https://arxiv.org/format/2210.10738">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP03(2023)110">10.1007/JHEP03(2023)110 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulating lepton number violation induced by heavy neutrino-antineutrino oscillations at colliders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hajer%2C+J">Jan Hajer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Rosskopp%2C+J">Johannes Rosskopp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.10738v2-abstract-short" style="display: inline;"> We study pseudo-Dirac pairs of two almost mass-degenerate sterile Majorana neutrinos which generate light neutrino masses via a low-scale seesaw mechanism. These pseudo-Dirac heavy neutral leptons can oscillate between interaction eigenstates that couple to leptons and antileptons and thus generate oscillations between lepton number conserving and lepton number violating processes. With the phenom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10738v2-abstract-full').style.display = 'inline'; document.getElementById('2210.10738v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.10738v2-abstract-full" style="display: none;"> We study pseudo-Dirac pairs of two almost mass-degenerate sterile Majorana neutrinos which generate light neutrino masses via a low-scale seesaw mechanism. These pseudo-Dirac heavy neutral leptons can oscillate between interaction eigenstates that couple to leptons and antileptons and thus generate oscillations between lepton number conserving and lepton number violating processes. With the phenomenological symmetry protected seesaw scenario (pSPSS), we introduce a minimal framework capable of describing the dominant features of low-scale seesaws at colliders and present a FeynRules implementation usable in Monte Carlo generators. Additionally, we extend MadGraph to simulate heavy neutrino-antineutrino oscillations and present results from such simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.10738v2-abstract-full').style.display = 'none'; document.getElementById('2210.10738v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version, 39 pages, 18 figures, FeynRules model file and MadGraph patch available at https://feynrules.irmp.ucl.ac.be/wiki/pSPSS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.06319">arXiv:2206.06319</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.06319">pdf</a>, <a href="https://arxiv.org/format/2206.06319">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2023/02/019">10.1088/1475-7516/2023/02/019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterizing the post-inflationary reheating history, Part II: Multiple interacting daughter fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Marschall%2C+K">Kenneth Marschall</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Torrenti%2C+F">Francisco Torrenti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.06319v2-abstract-short" style="display: inline;"> We characterize the post-inflationary dynamics of an inflaton $蠁$ coupled to multiple interacting daughter fields $X_n$ ($n=1,\dots N_d$) through quadratic-quadratic interactions $g_n^ 2蠁^2 X_n^2$. We assume a monomial inflaton potential $V(蠁) \propto |蠁|^p$ ($p \geq 2$) around the minimum. By simulating the system in 2+1-dimensional lattices, we study the post-inflationary evolution of the energy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06319v2-abstract-full').style.display = 'inline'; document.getElementById('2206.06319v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.06319v2-abstract-full" style="display: none;"> We characterize the post-inflationary dynamics of an inflaton $蠁$ coupled to multiple interacting daughter fields $X_n$ ($n=1,\dots N_d$) through quadratic-quadratic interactions $g_n^ 2蠁^2 X_n^2$. We assume a monomial inflaton potential $V(蠁) \propto |蠁|^p$ ($p \geq 2$) around the minimum. By simulating the system in 2+1-dimensional lattices, we study the post-inflationary evolution of the energy distribution and equation of state, from the end of inflation until a stationary regime is achieved. We show that in this scenario, the energy transferred to the daughter field sector can be larger than $50\%$, surpassing this way the upper bound found previously for single daughter field models. In particular, for $p \geq 4$ the energy at very late times is equally distributed between all fields, and only $100/(N_d + 1) \%$ of the energy remains in the inflaton. We also consider scenarios in which the daughter fields have scale-free interactions $位_{nm} X_n^2 X_m^2$, including the case of quartic daughter field self-interactions (for $n=m$). We show that these interactions trigger a resonance process during the non-linear regime, which in the single daughter field case already allows to deplete more than $50\%$ of the energy from the inflaton for $p\geq 4$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06319v2-abstract-full').style.display = 'none'; document.getElementById('2206.06319v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages + appendix, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 02 (2023) 019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.11531">arXiv:2205.11531</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.11531">pdf</a>, <a href="https://arxiv.org/format/2205.11531">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP08(2022)045">10.1007/JHEP08(2022)045 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Implications of the Zero 1-3 Flavour Mixing Hypothesis: Predictions for $胃_{23}^\mathrm{PMNS}$ and $未^\mathrm{PMNS}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hinze%2C+K">Kevin Hinze</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Saad%2C+S">Shaikh Saad</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.11531v1-abstract-short" style="display: inline;"> We revisit mixing sum rule relations in the lepton and quark sectors under the assumption that the 1-3 elements of the flavour mixing matrices ($V^u_L,V^d_L,V^e_L,V^谓_L$) are zero in the flavour basis. We consider the exact relations resulting from the validity of this &#34;zero 1-3 flavour mixing hypothesis&#34; and analyse their implications based on the current experimental data, including effects from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.11531v1-abstract-full').style.display = 'inline'; document.getElementById('2205.11531v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.11531v1-abstract-full" style="display: none;"> We revisit mixing sum rule relations in the lepton and quark sectors under the assumption that the 1-3 elements of the flavour mixing matrices ($V^u_L,V^d_L,V^e_L,V^谓_L$) are zero in the flavour basis. We consider the exact relations resulting from the validity of this &#34;zero 1-3 flavour mixing hypothesis&#34; and analyse their implications based on the current experimental data, including effects from RG running. In particular, we analyse how the existing precise measurement of $胃_{13}^\mathrm{PMNS}$ allows to derive predictions for $胃_{23}^\mathrm{PMNS}$ in models with constrained $胃_{12}^\mathrm{e}$. As examples, we calculate the predictions for $胃_{23}^\mathrm{PMNS}$ which arise in classes of Pati-Salam models and SU(5) GUTs that relate $胃_{12}^\mathrm{e}$ to $胃_{12}^\mathrm{d}$. We also derive a novel &#34;lepton phase sum rule&#34;, valid under the additional assumption of small charged lepton mixing contributions. We furthermore point out that, in the context of GUT flavour models, the quark and lepton CP violating phases $未^\mathrm{CKM}$ and $未^\mathrm{PMNS}$ can both be predicted from a single imaginary element in the mass matrices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.11531v1-abstract-full').style.display = 'none'; document.getElementById('2205.11531v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages + references, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.01120">arXiv:2205.01120</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.01120">pdf</a>, <a href="https://arxiv.org/format/2205.01120">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2022.116049">10.1016/j.nuclphysb.2022.116049 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Viable quark-lepton Yukawa ratios and nucleon decay predictions in $SU(5)$ GUTs with type-II seesaw </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hinze%2C+K">Kevin Hinze</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Saad%2C+S">Shaikh Saad</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.01120v1-abstract-short" style="display: inline;"> We investigate the viability of predictive schemes for quark-lepton Yukawa ratios and nucleon decay in non-supersymmetric SU(5) Grand Unified Theories (GUTs) where neutrino masses are generated by a type II seesaw mechanism. The scalar sector of the considered scenario contains 5-, 24- and 45-dimensional representations plus a 15-dimensional representation for realising the type II seesaw. Predict&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01120v1-abstract-full').style.display = 'inline'; document.getElementById('2205.01120v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.01120v1-abstract-full" style="display: none;"> We investigate the viability of predictive schemes for quark-lepton Yukawa ratios and nucleon decay in non-supersymmetric SU(5) Grand Unified Theories (GUTs) where neutrino masses are generated by a type II seesaw mechanism. The scalar sector of the considered scenario contains 5-, 24- and 45-dimensional representations plus a 15-dimensional representation for realising the type II seesaw. Predictions for the ratios of the quark and lepton Yukawa couplings emerge when the relevant entries of the Yukawa matrices are generated from single joint GUT operators (i.e. under the condition of &#34;single operator dominance&#34;). Focusing on the 2nd and 3rd family and hierarchical Yukawa matrices, we show that only two sets of predictions, $\frac{y_蟿}{y_b}=\frac{3}{2}$, $\frac{y_渭}{y_s}=\frac{9}{2}$ and $\frac{y_蟿}{y_b}=2$, $\frac{y_渭}{y_s}=6$ are viable. To further investigate both options, we extend the minimal scenarios to two &#34;toy models&#34;, including the 1st family of charged fermions, and calculate the models&#39; predictions, e.g. for the nucleon decay rates and for the masses of the light relics that are potentially within reach of colliders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01120v1-abstract-full').style.display = 'none'; document.getElementById('2205.01120v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages + references, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.08771">arXiv:2203.08771</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.08771">pdf</a>, <a href="https://arxiv.org/format/2203.08771">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Searches for Baryon Number Violation in Neutrino Experiments: A White Paper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Dev%2C+P+S+B">P. S. B. Dev</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Koerner%2C+L+W">L. W. Koerner</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Saad%2C+S">S. Saad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">S. Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Askins%2C+M">M. Askins</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Babu%2C+K+S">K. S. Babu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Barrow%2C+J+L">J. L. Barrow</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chakrabortty%2C+J">J. Chakrabortty</a>, <a href="/search/hep-ph?searchtype=author&amp;query=de+Gouv%C3%AAa%2C+A">A. de Gouv锚a</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Djurcic%2C+Z">Z. Djurcic</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Girmohanta%2C+S">S. Girmohanta</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gogoladze%2C+I">I. Gogoladze</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Goodman%2C+M+C">M. C. Goodman</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Higuera%2C+A">A. Higuera</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kalra%2C+D">D. Kalra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Karagiorgi%2C+G">G. Karagiorgi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kearns%2C+E">E. Kearns</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kudryavtsev%2C+V+A">V. A. Kudryavtsev</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kutter%2C+T">T. Kutter</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ochoa-Ricoux%2C+J+P">J. P. Ochoa-Ricoux</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Malinsk%C3%BD%2C+M">M. Malinsk媒</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Caicedo%2C+D+A+M">D. A. Martinez Caicedo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohapatra%2C+R+N">R. N. Mohapatra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nath%2C+P">P. Nath</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nussinov%2C+S">S. Nussinov</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.08771v3-abstract-short" style="display: inline;"> Baryon number conservation is not guaranteed by any fundamental symmetry within the Standard Model, and therefore has been a subject of experimental and theoretical scrutiny for decades. So far, no evidence for baryon number violation has been observed. Large underground detectors have long been used for both neutrino detection and searches for baryon number violating processes. The next generatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08771v3-abstract-full').style.display = 'inline'; document.getElementById('2203.08771v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.08771v3-abstract-full" style="display: none;"> Baryon number conservation is not guaranteed by any fundamental symmetry within the Standard Model, and therefore has been a subject of experimental and theoretical scrutiny for decades. So far, no evidence for baryon number violation has been observed. Large underground detectors have long been used for both neutrino detection and searches for baryon number violating processes. The next generation of large neutrino detectors will seek to improve upon the limits set by past and current experiments and will cover a range of lifetimes predicted by several Grand Unified Theories. In this White Paper, we summarize theoretical motivations and experimental aspects of searches for baryon number violation in neutrino experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.08771v3-abstract-full').style.display = 'none'; document.getElementById('2203.08771v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">73 pages, 19 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.11280">arXiv:2112.11280</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.11280">pdf</a>, <a href="https://arxiv.org/format/2112.11280">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.043532">10.1103/PhysRevD.105.043532 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterizing the post-inflationary reheating history, Part I: single daughter field with quadratic-quadratic interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Figueroa%2C+D+G">Daniel G. Figueroa</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Marschall%2C+K">Kenneth Marschall</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Torrenti%2C+F">Francisco Torrenti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.11280v2-abstract-short" style="display: inline;"> We study the evolution of the energy distribution and equation of state of the Universe from the end of inflation until the onset of either radiation domination (RD) or a transient period of matter domination (MD). We use both analytical techniques and lattice simulations. We consider two-field models where the inflaton $桅$ has a monomial potential after inflation $V(桅) \propto |桅- v|^p$ (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11280v2-abstract-full').style.display = 'inline'; document.getElementById('2112.11280v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.11280v2-abstract-full" style="display: none;"> We study the evolution of the energy distribution and equation of state of the Universe from the end of inflation until the onset of either radiation domination (RD) or a transient period of matter domination (MD). We use both analytical techniques and lattice simulations. We consider two-field models where the inflaton $桅$ has a monomial potential after inflation $V(桅) \propto |桅- v|^p$ ($p\geq2$), and is coupled to a daughter field $X$ through a quadratic-quadratic interaction $g^2桅^2 X^2$. We consider two situations, depending on whether the potential has a minimum at $i)$ $v = 0$, or $ii)$ $v &gt; 0$. In the scenario $i)$, the final energy transferred to $X$ is independent of $g^2$ and entirely determined by $p$: it is negligible for $p &lt; 4$, and of order $\sim 50\%$ for $p \geq 4$. The system goes to MD at late times for $p = 2$, while it goes to RD for $p &gt; 2$. In the later case, we can calculate exactly the number of e-folds until RD as a function of $g^2$, and hence predict accurately inflationary observables like the scalar tilt $n_s$ and the tensor-to-scalar ratio $r$. In the scenario $ii)$, the energy is always transferred completely to $X$ for $p&gt;2$, as long as its effective mass $m_X^2 = g^2(桅-v)^2$ is not negligible. For $p=2$, the final ratio between the energy densities of $X$ and $桅$ depends strongly on $g^2$. For all $p \ge 2$, the system always goes to MD at late times. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.11280v2-abstract-full').style.display = 'none'; document.getElementById('2112.11280v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">References added. Minor changes to match published version. 29 pages + appendices, 23 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 105 (2022) 4, 043532 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.00921">arXiv:2112.00921</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.00921">pdf</a>, <a href="https://arxiv.org/format/2112.00921">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP08(2022)224">10.1007/JHEP08(2022)224 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Explaining excesses in four-leptons at the LHC with a double peak from a CP violating Two Higgs Doublet Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fischer%2C+O">Oliver Fischer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hammad%2C+A">A. Hammad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Scherb%2C+C">Christiane Scherb</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.00921v1-abstract-short" style="display: inline;"> Extended scalar sectors with additional degrees of freedom appear in many scenarios beyond the Standard Model. Heavy scalar resonances that interact with the neutral current could be discovered via broad resonances in the tails of the four-lepton invariant mass spectrum, where the Standard Model background is small and well understood. In this article we consider a recent ATLAS measurement of four&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00921v1-abstract-full').style.display = 'inline'; document.getElementById('2112.00921v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.00921v1-abstract-full" style="display: none;"> Extended scalar sectors with additional degrees of freedom appear in many scenarios beyond the Standard Model. Heavy scalar resonances that interact with the neutral current could be discovered via broad resonances in the tails of the four-lepton invariant mass spectrum, where the Standard Model background is small and well understood. In this article we consider a recent ATLAS measurement of four-lepton final states, where the data is in excess over the background for invariant masses above 500 GeV. We discuss the possibility that this excess could be interpreted as a &#34;double peak&#34; from the two extra heavy neutral scalars of a CP violating Two Higgs Doublet Model, both coupling to the $Z$ boson. We apply an iterative fitting procedure to find viable model parameters that can match the excess, resulting in a benchmark point where the observed four-lepton invariant mass spectrum can be explained by two scalar particles $H_2$ and $H_3$, with masses of 540 GeV and 631 GeV, respectively, being admixtures of the CP eigenstates. Our explanation predicts additional production processes for $t\bar t$, $W^+W^-$, $4b$ and $纬纬$, some of which have cross sections close to the current experimental limits. Our results further imply that the electric dipole moment of the electron should be close to the present bounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.00921v1-abstract-full').style.display = 'none'; document.getElementById('2112.00921v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.06065">arXiv:2109.06065</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.06065">pdf</a>, <a href="https://arxiv.org/format/2109.06065">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-10541-4">10.1140/epjc/s10052-022-10541-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unveiling Hidden Physics at the LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Fischer%2C+O">Oliver Fischer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mellado%2C+B">Bruce Mellado</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bagnaschi%2C+E">Emanuele Bagnaschi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Banerjee%2C+S">Shankha Banerjee</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Beck%2C+G">Geoff Beck</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Belfatto%2C+B">Benedetta Belfatto</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bellis%2C+M">Matthew Bellis</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berezhiani%2C+Z">Zurab Berezhiani</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Blanke%2C+M">Monika Blanke</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Capdevila%2C+B">Bernat Capdevila</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cheung%2C+K">Kingman Cheung</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Crivellin%2C+A">Andreas Crivellin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Desai%2C+N">Nishita Desai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Dev%2C+B">Bhupal Dev</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Godbole%2C+R">Rohini Godbole</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Han%2C+T">Tao Han</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Harris%2C+P">Philip Harris</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hoferichter%2C+M">Martin Hoferichter</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kirk%2C+M">Matthew Kirk</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kulkarni%2C+S">Suchita Kulkarni</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lange%2C+C">Clemens Lange</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lassila-Perini%2C+K">Kati Lassila-Perini</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Liu%2C+Z">Zhen Liu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mahmoudi%2C+F">Farvah Mahmoudi</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.06065v1-abstract-short" style="display: inline;"> The field of particle physics is at the crossroads. The discovery of a Higgs-like boson completed the Standard Model (SM), but the lacking observation of convincing resonances Beyond the SM (BSM) offers no guidance for the future of particle physics. On the other hand, the motivation for New Physics has not diminished and is, in fact, reinforced by several striking anomalous results in many experi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06065v1-abstract-full').style.display = 'inline'; document.getElementById('2109.06065v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.06065v1-abstract-full" style="display: none;"> The field of particle physics is at the crossroads. The discovery of a Higgs-like boson completed the Standard Model (SM), but the lacking observation of convincing resonances Beyond the SM (BSM) offers no guidance for the future of particle physics. On the other hand, the motivation for New Physics has not diminished and is, in fact, reinforced by several striking anomalous results in many experiments. Here we summarise the status of the most significant anomalies, including the most recent results for the flavour anomalies, the multi-lepton anomalies at the LHC, the Higgs-like excess at around 96 GeV, and anomalies in neutrino physics, astrophysics, cosmology, and cosmic rays. While the LHC promises up to 4/ab of integrated luminosity and far-reaching physics programmes to unveil BSM physics, we consider the possibility that the latter could be tested with present data, but that systemic shortcomings of the experiments and their search strategies may preclude their discovery for several reasons, including: final states consisting in soft particles only, associated production processes, QCD-like final states, close-by SM resonances, and SUSY scenarios where no missing energy is produced. New search strategies could help to unveil the hidden BSM signatures, devised by making use of the CERN open data as a new testing ground. We discuss the CERN open data with its policies, challenges, and potential usefulness for the community. We showcase the example of the CMS collaboration, which is the only collaboration regularly releasing some of its data. We find it important to stress that individuals using public data for their own research does not imply competition with experimental efforts, but rather provides unique opportunities to give guidance for further BSM searches by the collaborations. Wide access to open data is paramount to fully exploit the LHCs potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.06065v1-abstract-full').style.display = 'none'; document.getElementById('2109.06065v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Whitepaper including input from the workshop &#34;Unveiling Hidden Physics Beyond the Standard Model at the LHC&#34; (1-3 March 2021, online), 70 pages plus references, 17 figures, 7 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.08080">arXiv:2108.08080</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.08080">pdf</a>, <a href="https://arxiv.org/format/2108.08080">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2022.115719">10.1016/j.nuclphysb.2022.115719 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nucleon decay in a minimal non-SUSY GUT with predicted quark-lepton Yukawa ratios </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hinze%2C+K">Kevin Hinze</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.08080v1-abstract-short" style="display: inline;"> We investigate the predictions for various nucleon decay rates and their ratios in non-supersymmetric SU(5) Grand Unified Theories (GUTs) where the masses of the third and second family down-type quarks and charged leptons each stem dominantly from single GUT operators. Extending the Georgi-Glashow SU(5) model by a 45-dimensional GUT-Higgs representation, the gauge couplings can meet at the high s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.08080v1-abstract-full').style.display = 'inline'; document.getElementById('2108.08080v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.08080v1-abstract-full" style="display: none;"> We investigate the predictions for various nucleon decay rates and their ratios in non-supersymmetric SU(5) Grand Unified Theories (GUTs) where the masses of the third and second family down-type quarks and charged leptons each stem dominantly from single GUT operators. Extending the Georgi-Glashow SU(5) model by a 45-dimensional GUT-Higgs representation, the gauge couplings can meet at the high scale $M_\mathrm{GUT}$ and the GUT scale predictions $y_蟿/y_b = 3/2$ and $y_渭/y_s = 9/2$ can emerge within single operator dominance. Explaining the observed neutrino masses via the type I seesaw mechanism by adding SU(5) singlet fermion representations and taking their renormalization group effects into account, we show that these predictions can lead to viable low scale second and third family down-type quark and charged lepton masses. To investigate nucleon decay predictions, we extend the minimal scenario to two &#34;toy models&#34; towards explaining quark and lepton masses and mixings with different flavor structure, and perform Markov Chain Monte Carlo (MCMC) analyses confronting the models with the available experimental data. We show that if several nucleon decay channels are observed, the ratios between their partial decay rates can serve as &#34;fingerprints&#34;, allowing to separate between GUT models with different flavor structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.08080v1-abstract-full').style.display = 'none'; document.getElementById('2108.08080v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 10 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.09109">arXiv:2107.09109</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.09109">pdf</a>, <a href="https://arxiv.org/format/2107.09109">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2021/10/065">10.1088/1475-7516/2021/10/065 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Searching for solar KDAR with DUNE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ali-Mohammadzadeh%2C+B">B. Ali-Mohammadzadeh</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Allison%2C+K">K. Allison</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Alton%2C+A">A. Alton</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Amedo%2C+P">P. Amedo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Andreotti%2C+M">M. Andreotti</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Andrews%2C+M+P">M. P. Andrews</a> , et al. (1157 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.09109v2-abstract-short" style="display: inline;"> The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR) originating in the core of the Sun would provide a unique signature of dark matter annihilation. Since excellent angle and energy reconstruction are necessary to detect this monoenergetic, directional neutrino flux, DUNE with its vast volume and reconstruction capabilities, is a promising candidate for a KDAR neutrino search.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.09109v2-abstract-full').style.display = 'inline'; document.getElementById('2107.09109v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.09109v2-abstract-full" style="display: none;"> The observation of 236 MeV muon neutrinos from kaon-decay-at-rest (KDAR) originating in the core of the Sun would provide a unique signature of dark matter annihilation. Since excellent angle and energy reconstruction are necessary to detect this monoenergetic, directional neutrino flux, DUNE with its vast volume and reconstruction capabilities, is a promising candidate for a KDAR neutrino search. In this work, we evaluate the proposed KDAR neutrino search strategies by realistically modeling both neutrino-nucleus interactions and the response of DUNE. We find that, although reconstruction of the neutrino energy and direction is difficult with current techniques in the relevant energy range, the superb energy resolution, angular resolution, and particle identification offered by DUNE can still permit great signal/background discrimination. Moreover, there are non-standard scenarios in which searches at DUNE for KDAR in the Sun can probe dark matter interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.09109v2-abstract-full').style.display = 'none'; document.getElementById('2107.09109v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-21-322-LBNF-ND </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP10(2021)065 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.04797">arXiv:2103.04797</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.04797">pdf</a>, <a href="https://arxiv.org/format/2103.04797">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Experiment Simulation Configurations Approximating DUNE TDR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Andrews%2C+M+P">M. P. Andrews</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Andrianala%2C+F">F. Andrianala</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ankowski%2C+A">A. Ankowski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">S. Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aranda-Fernandez%2C+A">A. Aranda-Fernandez</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ariga%2C+A">A. Ariga</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Arnold%2C+L+O">L. O. Arnold</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Arroyave%2C+M+A">M. A. Arroyave</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a> , et al. (949 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.04797v2-abstract-short" style="display: inline;"> The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment consisting of a high-power, broadband neutrino beam, a highly capable near detector located on site at Fermilab, in Batavia, Illinois, and a massive liquid argon time projection chamber (LArTPC) far detector located at the 4850L of Sanford Underground Research Facility in Lead, South&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.04797v2-abstract-full').style.display = 'inline'; document.getElementById('2103.04797v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.04797v2-abstract-full" style="display: none;"> The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment consisting of a high-power, broadband neutrino beam, a highly capable near detector located on site at Fermilab, in Batavia, Illinois, and a massive liquid argon time projection chamber (LArTPC) far detector located at the 4850L of Sanford Underground Research Facility in Lead, South Dakota. The long-baseline physics sensitivity calculations presented in the DUNE Physics TDR, and in a related physics paper, rely upon simulation of the neutrino beam line, simulation of neutrino interactions in the near and far detectors, fully automated event reconstruction and neutrino classification, and detailed implementation of systematic uncertainties. The purpose of this posting is to provide a simplified summary of the simulations that went into this analysis to the community, in order to facilitate phenomenological studies of long-baseline oscillation at DUNE. Simulated neutrino flux files and a GLoBES configuration describing the far detector reconstruction and selection performance are included as ancillary files to this posting. A simple analysis using these configurations in GLoBES produces sensitivity that is similar, but not identical, to the official DUNE sensitivity. DUNE welcomes those interested in performing phenomenological work as members of the collaboration, but also recognizes the benefit of making these configurations readily available to the wider community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.04797v2-abstract-full').style.display = 'none'; document.getElementById('2103.04797v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures, configurations in ancillary files, v2 corrects a typo</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-FN-1125-ND </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.05763">arXiv:2012.05763</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.05763">pdf</a>, <a href="https://arxiv.org/format/2012.05763">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP03(2021)170">10.1007/JHEP03(2021)170 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Heavy Neutrino-Antineutrino Oscillations in Quantum Field Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Rosskopp%2C+J">Johannes Rosskopp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.05763v3-abstract-short" style="display: inline;"> It has been proposed that the coherent propagation of long-lived heavy neutrino mass eigenstates can lead to an oscillating rate of lepton number conserving (LNC) and violating (LNV) events, as a function of the distance between the production and displaced decay vertices. We discuss this phenomenon, which we refer to as heavy neutrino-antineutrino oscillations, in the framework of quantum field t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05763v3-abstract-full').style.display = 'inline'; document.getElementById('2012.05763v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.05763v3-abstract-full" style="display: none;"> It has been proposed that the coherent propagation of long-lived heavy neutrino mass eigenstates can lead to an oscillating rate of lepton number conserving (LNC) and violating (LNV) events, as a function of the distance between the production and displaced decay vertices. We discuss this phenomenon, which we refer to as heavy neutrino-antineutrino oscillations, in the framework of quantum field theory (QFT), using the formalism of external wave packets. General formulae for the oscillation probabilities and the number of expected events are derived and the coherence and localisation conditions that have to be satisfied in order for neutrino-antineutrino oscillations to be observable are discussed. The formulae are then applied to a low scale seesaw scenario, which features two nearly mass degenerate heavy neutrinos that can be sufficiently long lived to produce a displaced vertex when their masses are below the $W$ boson mass. The leading and next-to-leading order oscillation formulae for this scenario are derived. For an example parameter point used in previous studies, the kinematics of the considered LNC/LNV processes are simulated, to check that the coherence and localisation conditions are satisfied. Our results show that the phenomenon of heavy neutrino-antineutrino oscillations can indeed occur in low scale seesaw scenarios and that the previously used leading order formulae, derived with a plane wave approach, provide a good approximation for the considered example parameter point. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05763v3-abstract-full').style.display = 'none'; document.getElementById('2012.05763v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages plus appendix, 3 figures, matches journal version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.15026">arXiv:2011.15026</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.15026">pdf</a>, <a href="https://arxiv.org/format/2011.15026">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP06(2021)022">10.1007/JHEP06(2021)022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Employing nucleon decay as a fingerprint of SUSY GUT models using \texttt{SusyTCProton} </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hohl%2C+C">Christian Hohl</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Susi%C4%8D%2C+V">Vasja Susi膷</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.15026v1-abstract-short" style="display: inline;"> While the observation of nucleon decay would be a smoking gun of Grand Unified Theories (GUTs) in general, the ratios between the decay rates of the various channels carry rich information about the specific GUT model realization. To investigate this fingerprint of GUT models in the context of supersymmetric (SUSY) GUTs, we present the software tool \texttt{SusyTCProton}, which is an extension of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.15026v1-abstract-full').style.display = 'inline'; document.getElementById('2011.15026v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.15026v1-abstract-full" style="display: none;"> While the observation of nucleon decay would be a smoking gun of Grand Unified Theories (GUTs) in general, the ratios between the decay rates of the various channels carry rich information about the specific GUT model realization. To investigate this fingerprint of GUT models in the context of supersymmetric (SUSY) GUTs, we present the software tool \texttt{SusyTCProton}, which is an extension of the module \texttt{SusyTC} to be used with the \texttt{REAP} package. It allows to calculate nucleon decay rates from the relevant dimension five GUT operators specified at the GUT scale, including the full loop-dressing at the SUSY scale. As an application, we investigate the fingerprints of two example GUT toy models with different flavor structures, performing an MCMC analysis to include the experimental uncertainties for the charged fermion masses and CKM mixing parameters. While both toy models provide equally good fits to the low energy data, we show how they could be distinguished via their predictions of ratios for nucleon decay rates. Together with \texttt{SusyTCProton} we also make the additional module \texttt{ProtonDecay} public. It can be used independently from \texttt{REAP} and allows to calculate nucleon decay rates from given $D=5$ and $D=6$ operator coefficients (accepting the required SUSY input for the $D=5$ case in SLHA format). The $D=6$ functionality can also be used to calculate nucleon decay in non-SUSY GUTs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.15026v1-abstract-full').style.display = 'none'; document.getElementById('2011.15026v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Note: 34 pages, 6 figures, 5 tables. The packages ProtonDecay and SusyTCProton can be downloaded from http://particlesandcosmology.unibas.ch/downloads/protondecay.html</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.10388">arXiv:2011.10388</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.10388">pdf</a>, <a href="https://arxiv.org/format/2011.10388">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP03(2021)200">10.1007/JHEP03(2021)200 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Testing CP Properties of Extra Higgs States at the HL-LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fischer%2C+O">Oliver Fischer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hammad%2C+A">A. Hammad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Scherb%2C+C">Christiane Scherb</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.10388v4-abstract-short" style="display: inline;"> Extra Higgs states appear in various scenarios beyond the current Standard Model of elementary particles. If discovered at the LHC or future colliders, the question will arise whether CP is violated or conserved in the extended scalar sector. An unambiguous probe of (indirect) CP violation would be the observation that one of the extra Higgs particles is an admixture of a CP-even and a CP-odd stat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.10388v4-abstract-full').style.display = 'inline'; document.getElementById('2011.10388v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.10388v4-abstract-full" style="display: none;"> Extra Higgs states appear in various scenarios beyond the current Standard Model of elementary particles. If discovered at the LHC or future colliders, the question will arise whether CP is violated or conserved in the extended scalar sector. An unambiguous probe of (indirect) CP violation would be the observation that one of the extra Higgs particles is an admixture of a CP-even and a CP-odd state. We discuss the possibility to discover scalar CP violation in this way at the high-luminosity (HL) phase of the LHC. We focus on the Two-Higgs Doublet Model of type I, where we investigate its currently allowed parameter region. Considering a benchmark point that is compatible with the current constraints but within reach of the HL-LHC, we study the prospects of determining the CP property of an extra neutral Higgs state $H$ via the angular distribution of final states in the decay $H \to 蟿\bar蟿$. The analysis is performed at the reconstructed level, making use of a Boosted Decision Tree for efficient signal-background separation and a shape analysis for rejecting a purely CP-even or odd nature of $H$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.10388v4-abstract-full').style.display = 'none'; document.getElementById('2011.10388v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version to appear in JHEP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.08907">arXiv:2010.08907</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.08907">pdf</a>, <a href="https://arxiv.org/format/2010.08907">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP03(2021)230">10.1007/JHEP03(2021)230 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Searching for charged lepton flavor violation at $ep$ colliders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hammad%2C+A">A. Hammad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Rashed%2C+A">Ahmed Rashed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.08907v3-abstract-short" style="display: inline;"> We investigate the sensitivity of electron-proton ($ep$) colliders for charged lepton flavor violation (cLFV) in an effective theory approach, considering a general effective Lagrangian for the conversion of an electron into a muon or a tau via the effective coupling to a neutral gauge boson or a neutral scalar field. For the photon, the $Z$ boson and the Higgs particle of the Standard Model, we p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08907v3-abstract-full').style.display = 'inline'; document.getElementById('2010.08907v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.08907v3-abstract-full" style="display: none;"> We investigate the sensitivity of electron-proton ($ep$) colliders for charged lepton flavor violation (cLFV) in an effective theory approach, considering a general effective Lagrangian for the conversion of an electron into a muon or a tau via the effective coupling to a neutral gauge boson or a neutral scalar field. For the photon, the $Z$ boson and the Higgs particle of the Standard Model, we present the sensitivities of the LHeC for the coefficients of the effective operators, calculated from an analysis at the reconstructed level. As an example model where such flavor changing neutral current (FCNC) operators are generated at loop level, we consider the extension of the Standard Model by sterile neutrinos. We show that the LHeC could already probe the LFV conversion of an electron into a muon beyond the current experimental bounds, and could reach more than an order of magnitude higher sensitivity than the present limits for LFV conversion of an electron into a tau. We discuss that the high sensitivities are possible because the converted charged lepton is dominantly emitted in the backward direction, enabling an efficient separation of the signal from the background. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08907v3-abstract-full').style.display = 'none'; document.getElementById('2010.08907v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 12 figures; matches version published in JHEP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JHEP 03(2021)230 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.12769">arXiv:2008.12769</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.12769">pdf</a>, <a href="https://arxiv.org/format/2008.12769">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09007-w">10.1140/epjc/s10052-021-09007-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Prospects for Beyond the Standard Model Physics Searches at the Deep Underground Neutrino Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Andrews%2C+M+P">M. P. Andrews</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Andrianala%2C+F">F. Andrianala</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ankowski%2C+A">A. Ankowski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">S. Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aranda-Fernandez%2C+A">A. Aranda-Fernandez</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ariga%2C+A">A. Ariga</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Arnold%2C+L+O">L. O. Arnold</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Arroyave%2C+M+A">M. A. Arroyave</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a> , et al. (953 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.12769v2-abstract-short" style="display: inline;"> The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.12769v2-abstract-full').style.display = 'inline'; document.getElementById('2008.12769v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.12769v2-abstract-full" style="display: none;"> The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE&#39;s sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.12769v2-abstract-full').style.display = 'none'; document.getElementById('2008.12769v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">54 pages, 40 figures, paper based on the DUNE Technical Design Report (arXiv:2002.03005)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-20-459-LBNF-ND </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> European Physical Journal C 81 (2021) 322 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.14491">arXiv:2007.14491</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.14491">pdf</a>, <a href="https://arxiv.org/format/2007.14491">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6471/abf3ba">10.1088/1361-6471/abf3ba <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Large Hadron-Electron Collider at the HL-LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Agostini%2C+P">P. Agostini</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aksakal%2C+H">H. Aksakal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Alekhin%2C+S">S. Alekhin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Allport%2C+P+P">P. P. Allport</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Andari%2C+N">N. Andari</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Andre%2C+K+D+J">K. D. J. Andre</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Angal-Kalinin%2C+D">D. Angal-Kalinin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">S. Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bella%2C+L+A">L. Aperio Bella</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Apolinario%2C+L">L. Apolinario</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Apsimon%2C+R">R. Apsimon</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Apyan%2C+A">A. Apyan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Arduini%2C+G">G. Arduini</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ari%2C+V">V. Ari</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Armbruster%2C+A">A. Armbruster</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Armesto%2C+N">N. Armesto</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Auchmann%2C+B">B. Auchmann</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aulenbacher%2C+K">K. Aulenbacher</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Azuelos%2C+G">G. Azuelos</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Backovic%2C+S">S. Backovic</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bailey%2C+I">I. Bailey</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bailey%2C+S">S. Bailey</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Balli%2C+F">F. Balli</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Behera%2C+S">S. Behera</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Behnke%2C+O">O. Behnke</a> , et al. (312 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.14491v2-abstract-short" style="display: inline;"> The Large Hadron electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High Luminosity--Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent el&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14491v2-abstract-full').style.display = 'inline'; document.getElementById('2007.14491v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.14491v2-abstract-full" style="display: none;"> The Large Hadron electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High Luminosity--Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron-proton and proton-proton operation. This report represents an update of the Conceptual Design Report (CDR) of the LHeC, published in 2012. It comprises new results on parton structure of the proton and heavier nuclei, QCD dynamics, electroweak and top-quark physics. It is shown how the LHeC will open a new chapter of nuclear particle physics in extending the accessible kinematic range in lepton-nucleus scattering by several orders of magnitude. Due to enhanced luminosity, large energy and the cleanliness of the hadronic final states, the LHeC has a strong Higgs physics programme and its own discovery potential for new physics. Building on the 2012 CDR, the report represents a detailed updated design of the energy recovery electron linac (ERL) including new lattice, magnet, superconducting radio frequency technology and further components. Challenges of energy recovery are described and the lower energy, high current, 3-turn ERL facility, PERLE at Orsay, is presented which uses the LHeC characteristics serving as a development facility for the design and operation of the LHeC. An updated detector design is presented corresponding to the acceptance, resolution and calibration goals which arise from the Higgs and parton density function physics programmes. The paper also presents novel results on the Future Circular Collider in electron-hadron mode, FCC-eh, which utilises the same ERL technology to further extend the reach of DIS to even higher centre-of-mass energies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14491v2-abstract-full').style.display = 'none'; document.getElementById('2007.14491v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">373 pages, many figures, to be published by J. Phys. G</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-ACC-Note-2020-0002 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J.Phys.G 48 (2021) 11, 110501 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.16043">arXiv:2006.16043</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.16043">pdf</a>, <a href="https://arxiv.org/format/2006.16043">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-08456-z">10.1140/epjc/s10052-020-08456-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-baseline neutrino oscillation physics potential of the DUNE experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Abi%2C+B">B. Abi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adamov%2C+G">G. Adamov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adams%2C+D">D. Adams</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ahmad%2C+Z">Z. Ahmad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ahmed%2C+J">J. Ahmed</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Alion%2C+T">T. Alion</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Alt%2C+C">C. Alt</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Anderson%2C+J">J. Anderson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Andreopoulos%2C+C">C. Andreopoulos</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Andrews%2C+M+P">M. P. Andrews</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Andrianala%2C+F">F. Andrianala</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Andringa%2C+S">S. Andringa</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ankowski%2C+A">A. Ankowski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Antonova%2C+M">M. Antonova</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">S. Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aranda-Fernandez%2C+A">A. Aranda-Fernandez</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ariga%2C+A">A. Ariga</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Arnold%2C+L+O">L. O. Arnold</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Arroyave%2C+M+A">M. A. Arroyave</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Asaadi%2C+J">J. Asaadi</a> , et al. (949 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.16043v2-abstract-short" style="display: inline;"> The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.16043v2-abstract-full').style.display = 'inline'; document.getElementById('2006.16043v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.16043v2-abstract-full" style="display: none;"> The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5$蟽$, for all $未_{\mathrm{CP}}$ values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3$蟽$ (5$蟽$) after an exposure of 5 (10) years, for 50\% of all $未_{\mathrm{CP}}$ values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to $\sin^{2} 2胃_{13}$ to current reactor experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.16043v2-abstract-full').style.display = 'none'; document.getElementById('2006.16043v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:2002.03005; Updated after referee comments</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PUB-20-251-E-LBNF-ND-PIP2-SCD </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 80, 978 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.07563">arXiv:2005.07563</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.07563">pdf</a>, <a href="https://arxiv.org/format/2005.07563">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2020.135888">10.1016/j.physletb.2020.135888 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy distribution and equation of state of the early Universe: matching the end of inflation and the onset of radiation domination </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Figueroa%2C+D+G">Daniel G. Figueroa</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Marschall%2C+K">Kenneth Marschall</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Torrenti%2C+F">Francisco Torrenti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.07563v2-abstract-short" style="display: inline;"> We study the energy distribution and equation of state of the universe between the end of inflation and the onset of radiation domination (RD), considering observationally consistent single-field inflationary scenarios, with a potential &#39;flattening&#39; at large field values, and a monomial shape $V(蠁) \propto |蠁|^p$ around the origin. As a proxy for (p)reheating, we include a quadratic interaction&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.07563v2-abstract-full').style.display = 'inline'; document.getElementById('2005.07563v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.07563v2-abstract-full" style="display: none;"> We study the energy distribution and equation of state of the universe between the end of inflation and the onset of radiation domination (RD), considering observationally consistent single-field inflationary scenarios, with a potential &#39;flattening&#39; at large field values, and a monomial shape $V(蠁) \propto |蠁|^p$ around the origin. As a proxy for (p)reheating, we include a quadratic interaction $g^2蠁^2X^2$ between the inflaton $蠁$ and a light scalar &#39;daughter&#39; field $X$, with $g^2&gt;0$. We capture the non-perturbative and non-linear nature of the system dynamics with lattice simulations, obtaining that: $i)$ the final energy transferred to $X$ depends only on $p$, not on $g^2$, ; $ii)$ the final transfer of energy is always negligible for $2 \leq p &lt; 4$, and of order $\sim 50\%$ for $p \geq 4$; $iii)$ the system goes at late times to matter-domination for $p = 2$, and always to RD for $p &gt; 2$. In the latter case we calculate the number of e-folds until RD, significantly reducing the uncertainty in the inflationary observables $n_s$ and $r$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.07563v2-abstract-full').style.display = 'none'; document.getElementById('2005.07563v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages + references, 5 figures. It matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Lett.B 811 (2020) 135888 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.11091">arXiv:2003.11091</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.11091">pdf</a>, <a href="https://arxiv.org/format/2003.11091">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2020.135796">10.1016/j.physletb.2020.135796 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing $Z^\prime$ Mediated Charged Lepton Flavor Violation with Taus at the LHeC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hammad%2C+A">A. Hammad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Rashed%2C+A">Ahmed Rashed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.11091v1-abstract-short" style="display: inline;"> While charged lepton flavor violation (cLFV) with taus is often expected to be largest in many extensions of the Standard Model (SM), it is currently much less constrained than cLFV with electrons and muons. We study the sensitivity of the LHeC to $e$-$蟿$ (and $e$-$渭$) conversion processes $p e^- \to 蟿^- + j$ (and $p e^- \to 渭^- + j$) mediated by a $Z&#39;$ with flavor-violating couplings to charged l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.11091v1-abstract-full').style.display = 'inline'; document.getElementById('2003.11091v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.11091v1-abstract-full" style="display: none;"> While charged lepton flavor violation (cLFV) with taus is often expected to be largest in many extensions of the Standard Model (SM), it is currently much less constrained than cLFV with electrons and muons. We study the sensitivity of the LHeC to $e$-$蟿$ (and $e$-$渭$) conversion processes $p e^- \to 蟿^- + j$ (and $p e^- \to 渭^- + j$) mediated by a $Z&#39;$ with flavor-violating couplings to charged leptons in the $t$-channel. Compared to current tests at the LHC, where cLFV decays of the $Z&#39;$ (produced in the s-channel) are searched for, the LHeC has sensitivity to much higher $Z&#39;$ masses, up to O(10) TeV. For cLFV with taus, we find that the LHeC sensitivity from the process $p e^- \to 蟿^- + j$ can exceed the current limits from collider and non-collider experiments in the whole considered $Z&#39;$ mass range (above $500$ GeV) by more than two orders of magnitude. In particular for extensions of the SM with a heavy $Z&#39;$, where direct production at colliders is kinematically suppressed, $e-蟿$ conversion at LHeC provides an exciting new discovery channel for this type of new physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.11091v1-abstract-full').style.display = 'none'; document.getElementById('2003.11091v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.12807">arXiv:1911.12807</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.12807">pdf</a>, <a href="https://arxiv.org/format/1911.12807">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP02(2020)086">10.1007/JHEP02(2020)086 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Yukawa ratio predictions in non-renormalizable $\mathrm{SO}(10)$ GUT models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hohl%2C+C">Christian Hohl</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Susi%C4%8D%2C+V">Vasja Susi膷</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.12807v1-abstract-short" style="display: inline;"> Since $\mathrm{SO}(10)$ GUTs unify all fermions of the Standard Model plus a right-chiral neutrino in a representation $\mathbf{16}$ per family, they have the potential to be maximally predictive regarding the ratios between the masses (or Yukawa couplings) of different fermion types, i.e.~the up-type quarks, down-type quarks, charged leptons and neutrinos. We analyze the predictivity of classes o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.12807v1-abstract-full').style.display = 'inline'; document.getElementById('1911.12807v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.12807v1-abstract-full" style="display: none;"> Since $\mathrm{SO}(10)$ GUTs unify all fermions of the Standard Model plus a right-chiral neutrino in a representation $\mathbf{16}$ per family, they have the potential to be maximally predictive regarding the ratios between the masses (or Yukawa couplings) of different fermion types, i.e.~the up-type quarks, down-type quarks, charged leptons and neutrinos. We analyze the predictivity of classes of $\mathrm{SO}(10)$ (SUSY) GUT models for the fermion mass ratios, where the Yukawa couplings for each family are dominated by a single effective GUT operator of the schematic form $\mathbf{16}^2\cdot\mathbf{45}^n\cdot\mathbf{210}^{m}\cdot\mathbf{H}$, for $\mathbf{H}\in\{\mathbf{10},\mathbf{120},\mathbf{\overline{126}}\}$. This extends previous works to general vacuum expectation value directions for GUT-scale VEVs and to larger Higgs representations. In addition, we show that the location of the MSSM Higgses in the space of all doublets is a crucial aspect to consider. We discuss highly predictive cases and illustrate the predictive power in toy models consisting of masses for the 3rd and 2nd fermion family. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.12807v1-abstract-full').style.display = 'none'; document.getElementById('1911.12807v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, 12 figures, 12 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.05191">arXiv:1910.05191</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.05191">pdf</a>, <a href="https://arxiv.org/format/1910.05191">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP06(2020)014">10.1007/JHEP06(2020)014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Comparatively Light Extra Higgs States as Signature of SUSY $\mathrm{SO}(10)$ GUTs with 3rd Family Yukawa Unification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hohl%2C+C">Christian Hohl</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Susic%2C+V">Vasja Susic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.05191v1-abstract-short" style="display: inline;"> We study $3$rd family Yukawa unification in the context of supersymmetric (SUSY) $\mathrm{SO}(10)$ GUTs and $\mathrm{SO}(10)$-motivated boundary conditions for the SUSY-breaking soft terms. We consider $渭&lt;0$ such that the SUSY loop-threshold effects enable a good fit to all third family masses of the charged Standard Model (SM) fermions. We find that fitting the third family masses together with t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.05191v1-abstract-full').style.display = 'inline'; document.getElementById('1910.05191v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.05191v1-abstract-full" style="display: none;"> We study $3$rd family Yukawa unification in the context of supersymmetric (SUSY) $\mathrm{SO}(10)$ GUTs and $\mathrm{SO}(10)$-motivated boundary conditions for the SUSY-breaking soft terms. We consider $渭&lt;0$ such that the SUSY loop-threshold effects enable a good fit to all third family masses of the charged Standard Model (SM) fermions. We find that fitting the third family masses together with the mass of the SM-like Higgs particle, the scenario predicts the masses of the superpartner particles and of the extra Higgs states of the MSSM: while the sparticles are predicted to be comparatively heavy (above the present LHC bound but within reach of future colliders), the spectrum has the characteristic feature that the lightest new particles are the extra MSSM Higgses. We show that this effect is rather robust with respect to many deformations of the GUT boundary conditions, but turns out to be sensitive to the exactness of top-bottom Yukawa unification. Nevertheless, with moderate deviations of a few percent from exact top-bottom Yukawa unification (stemming e.g.\ from GUT-threshold corrections or higher-dimensional operators), the scenario still predicts extra MSSM Higgs particles with masses not much above $1.5\,\mathrm{TeV}$, which could be tested e.g.\ by future LHC searches for ditau decays $H^0/A^{0}\to蟿蟿$. Finding the extra MSSM Higges before the other new MSSM particles could thus be a smoking gun for a Yukawa unified $\mathrm{SO}(10)$ GUT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.05191v1-abstract-full').style.display = 'none'; document.getElementById('1910.05191v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 13 figures, 1 table, 2 appendices</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.02852">arXiv:1908.02852</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.02852">pdf</a>, <a href="https://arxiv.org/format/1908.02852">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP03(2020)110">10.1007/JHEP03(2020)110 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lepton-Trijet and Displaced Vertex Searches for Heavy Neutrinos at Future Electron-Proton Colliders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fischer%2C+O">Oliver Fischer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hammad%2C+A">A. Hammad</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.02852v1-abstract-short" style="display: inline;"> Electron proton (ep) colliders could provide particle collisions at TeV energies with large data rates while maintaining the clean and pile~up-free environment of lepton colliders, which makes them very attractive for heavy neutrino searches. Heavy (mainly sterile) neutrinos with masses around the electroweak scale are proposed in low scale seesaw models for neutrino mass generation. In this paper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.02852v1-abstract-full').style.display = 'inline'; document.getElementById('1908.02852v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.02852v1-abstract-full" style="display: none;"> Electron proton (ep) colliders could provide particle collisions at TeV energies with large data rates while maintaining the clean and pile~up-free environment of lepton colliders, which makes them very attractive for heavy neutrino searches. Heavy (mainly sterile) neutrinos with masses around the electroweak scale are proposed in low scale seesaw models for neutrino mass generation. In this paper, we analyse two of the most promising signatures of heavy neutrinos at ep colliders, the lepton-flavour violating (LFV) lepton-trijet signature and the displaced vertex signature. In the considered benchmark model, we find that for heavy neutrino masses around a few hundred GeV, the LFV lepton-trijet signature at ep colliders yields the best sensitivity of all currently discussed heavy neutrino signatures (analysed at the reconstructed level) up to now. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.02852v1-abstract-full').style.display = 'none'; document.getElementById('1908.02852v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.00611">arXiv:1907.00611</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.00611">pdf</a>, <a href="https://arxiv.org/format/1907.00611">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2019/10/002">10.1088/1475-7516/2019/10/002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Properties of oscillons in hilltop potentials: energies, shapes, and lifetimes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cefala%2C+F">Francesco Cefala</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Torrenti%2C+F">Francisco Torrenti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.00611v2-abstract-short" style="display: inline;"> Oscillons are spatially localised strong fluctuations of a scalar field. They can e.g. form after inflation when the scalar field potential is shallower than quadratic away from the minimum. Although oscillons are not protected by topology, they can be remarkably stable and have a significant impact on the (p)reheating phase. In this work we investigate the properties of oscillons in hilltop-shape&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.00611v2-abstract-full').style.display = 'inline'; document.getElementById('1907.00611v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.00611v2-abstract-full" style="display: none;"> Oscillons are spatially localised strong fluctuations of a scalar field. They can e.g. form after inflation when the scalar field potential is shallower than quadratic away from the minimum. Although oscillons are not protected by topology, they can be remarkably stable and have a significant impact on the (p)reheating phase. In this work we investigate the properties of oscillons in hilltop-shaped potentials, in particular the typical energies, shapes and lifetimes. In the first part of the paper, we simulate oscillon creation and stabilization with (3+1)-dimensional classical lattice simulations, and extract the typical energies, radii and amplitudes of the oscillons. In the second part we approximate the oscillons as spherically symmetric, and simulate single oscillons until their decay. We find that typical oscillons live up to about 4-5 e-folds, with the individual lifetime of the oscillons depending mainly on the initial shape of the oscillon and the power-law coefficient characterising the particular hilltop model. We also observe a breathing mode in the oscillon radii and amplitudes, and find that stronger breathing implies shorter lifetimes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.00611v2-abstract-full').style.display = 'none'; document.getElementById('1907.00611v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 11 figures. Minor changes to match version published in JCAP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 1910 (2019) no.10, 002 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.03476">arXiv:1811.03476</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.03476">pdf</a>, <a href="https://arxiv.org/format/1811.03476">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP02(2019)157">10.1007/JHEP02(2019)157 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low scale type II seesaw: Present constraints and prospects for displaced vertex searches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fischer%2C+O">Oliver Fischer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hammad%2C+A">A. Hammad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Scherb%2C+C">Christiane Scherb</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.03476v1-abstract-short" style="display: inline;"> The type II seesaw mechanism is an attractive way to generate the observed light neutrino masses. It postulates a SU(2)$_\mathrm{L}$-triplet scalar field, which develops an induced vacuum expectation value after electroweak symmetry breaking, giving masses to the neutrinos via its couplings to the lepton SU(2)$_\mathrm{L}$-doublets. When the components of the triplet field have masses around the e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.03476v1-abstract-full').style.display = 'inline'; document.getElementById('1811.03476v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.03476v1-abstract-full" style="display: none;"> The type II seesaw mechanism is an attractive way to generate the observed light neutrino masses. It postulates a SU(2)$_\mathrm{L}$-triplet scalar field, which develops an induced vacuum expectation value after electroweak symmetry breaking, giving masses to the neutrinos via its couplings to the lepton SU(2)$_\mathrm{L}$-doublets. When the components of the triplet field have masses around the electroweak scale, the model features a rich phenomenology. We discuss the current allowed parameter space of the minimal low scale type II seesaw model, taking into account all relevant constraints, including charged lepton flavour violation as well as collider searches. We point out that the symmetry protected low scale type II seesaw scenario, where an approximate &#34;lepton number&#34;-like symmetry suppresses the Yukawa couplings of the triplet to the lepton doublets, is still largely untested by the current LHC results. In part of this parameter space the triplet components can be long-lived, potentially leading to a characteristic displaced vertex signature where the doubly-charged component decays into same-sign charged leptons. By performing a detailed analysis at the reconstructed level we find that already at the current run of the LHC a discovery would be possible for the considered parameter point, via dedicated searches for displaced vertex signatures. The discovery prospects are further improved at the HL-LHC and the FCC-hh/SppC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.03476v1-abstract-full').style.display = 'none'; document.getElementById('1811.03476v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 10 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.09364">arXiv:1808.09364</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1808.09364">pdf</a>, <a href="https://arxiv.org/format/1808.09364">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP12(2018)025">10.1007/JHEP12(2018)025 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Predicting $未^\text{PMNS}$, $胃_{23}^\text{PMNS}$ and fermion mass ratios from flavour GUTs with CSD2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hohl%2C+C">Christian Hohl</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Khosa%2C+C+K">Charanjit K. Khosa</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Susic%2C+V">Vasja Susic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.09364v1-abstract-short" style="display: inline;"> Constrained Sequential neutrino Dominance of type 2 (referred to as CSD2) is an attractive building block for flavour Grand Unified Theories (GUTs) because it predicts a non-zero leptonic mixing angle $胃_{13}^\text{PMNS}$, a deviation of $胃_{23}^\text{PMNS}$ from $蟺/4$, as well as a leptonic Dirac CP phase $未^\text{PMNS}$ which is directly linked to the CP violation relevant for generating the bar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.09364v1-abstract-full').style.display = 'inline'; document.getElementById('1808.09364v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.09364v1-abstract-full" style="display: none;"> Constrained Sequential neutrino Dominance of type 2 (referred to as CSD2) is an attractive building block for flavour Grand Unified Theories (GUTs) because it predicts a non-zero leptonic mixing angle $胃_{13}^\text{PMNS}$, a deviation of $胃_{23}^\text{PMNS}$ from $蟺/4$, as well as a leptonic Dirac CP phase $未^\text{PMNS}$ which is directly linked to the CP violation relevant for generating the baryon asymmetry via the leptogenesis mechanism. When embedded into GUT flavour models, these predictions are modified in a specific way, depending on which GUT operators are responsible for generating the entries of fermion Yukawa matrices. In this paper, we systematically investigate and classify the resulting predictions from supersymmetric $\mathrm{SU}(5)$ based flavour models by fitting the known fermion mass and mixing data, in order to provide a roadmap for future model building. Interestingly, the promising models predict the lepton Dirac CP phase $未^\mathrm{PMNS}$ between $230^\circ$ and $290^\circ$, and the quark CP phase $未^\mathrm{CKM}$ in accordance with a right-angled unitarity triangle ($伪_\mathrm{UT}=90^\circ$). Also, our model setup predicts the quantities $胃_{23}^\mathrm{PMNS}$ and $m_d/m_s$ with less uncertainty than current experimental precision, and allowing with future sensitivity to discriminate between them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.09364v1-abstract-full').style.display = 'none'; document.getElementById('1808.09364v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pages, 6 figures, 3 tables; we provide neutrino RGE data tables at https://particlesandcosmology.unibas.ch/fileadmin/user_upload/particlesandcosmology-unibas-ch/files/RGrunning.zip</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.07396">arXiv:1806.07396</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.07396">pdf</a>, <a href="https://arxiv.org/format/1806.07396">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6633/ab28d6">10.1088/1361-6633/ab28d6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-Lived Particles at the Energy Frontier: The MATHUSLA Physics Case </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Curtin%2C+D">David Curtin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Drewes%2C+M">Marco Drewes</a>, <a href="/search/hep-ph?searchtype=author&amp;query=McCullough%2C+M">Matthew McCullough</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Meade%2C+P">Patrick Meade</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mohapatra%2C+R+N">Rabindra N. Mohapatra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shelton%2C+J">Jessie Shelton</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shuve%2C+B">Brian Shuve</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Accomando%2C+E">Elena Accomando</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Alpigiani%2C+C">Cristiano Alpigiani</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Arteaga-Vel%C3%A1zquez%2C+J+C">Juan Carlos Arteaga-Vel谩zquez</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Batell%2C+B">Brian Batell</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bauer%2C+M">Martin Bauer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Blinov%2C+N">Nikita Blinov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Caballero-Mora%2C+K+S">Karen Salom茅 Caballero-Mora</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chang%2C+J+H">Jae Hyeok Chang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chun%2C+E+J">Eung Jin Chun</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Co%2C+R+T">Raymond T. Co</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cohen%2C+T">Timothy Cohen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cox%2C+P">Peter Cox</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Craig%2C+N">Nathaniel Craig</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cs%C3%A1ki%2C+C">Csaba Cs谩ki</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cui%2C+Y">Yanou Cui</a>, <a href="/search/hep-ph?searchtype=author&amp;query=D%27Eramo%2C+F">Francesco D&#39;Eramo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Rose%2C+L+D">Luigi Delle Rose</a> , et al. (63 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.07396v2-abstract-short" style="display: inline;"> We examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of Standard Model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). I&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.07396v2-abstract-full').style.display = 'inline'; document.getElementById('1806.07396v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.07396v2-abstract-full" style="display: none;"> We examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of Standard Model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). In most cases the LLP lifetime can be treated as a free parameter from the $渭$m scale up to the Big Bang Nucleosynthesis limit of $\sim 10^7$m. Neutral LLPs with lifetimes above $\sim$ 100m are particularly difficult to probe, as the sensitivity of the LHC main detectors is limited by challenging backgrounds, triggers, and small acceptances. MATHUSLA is a proposal for a minimally instrumented, large-volume surface detector near ATLAS or CMS. It would search for neutral LLPs produced in HL-LHC collisions by reconstructing displaced vertices (DVs) in a low-background environment, extending the sensitivity of the main detectors by orders of magnitude in the long-lifetime regime. In this white paper we study the LLP physics opportunities afforded by a MATHUSLA-like detector at the HL-LHC. We develop a model-independent approach to describe the sensitivity of MATHUSLA to BSM LLP signals, and compare it to DV and missing energy searches at ATLAS or CMS. We then explore the BSM motivations for LLPs in considerable detail, presenting a large number of new sensitivity studies. While our discussion is especially oriented towards the long-lifetime regime at MATHUSLA, this survey underlines the importance of a varied LLP search program at the LHC in general. By synthesizing these results into a general discussion of the top-down and bottom-up motivations for LLP searches, it is our aim to demonstrate the exceptional strength and breadth of the physics case for the construction of the MATHUSLA detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.07396v2-abstract-full').style.display = 'none'; document.getElementById('1806.07396v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">213 pages, 73 figures. Extended Section 2 to add more detailed discussion of LLP reconstruction and analysis, and background rejection. Updated comparison of MATHUSLA RH neutrino sensitivity to other experiments. Updated analysis of long-lived ALPs produced in weak-scale processes and decaying to jets. Various clarifications, fixed typos, and added references. Results and conclusions unchanged</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.11400">arXiv:1805.11400</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.11400">pdf</a>, <a href="https://arxiv.org/format/1805.11400">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP10(2018)067">10.1007/JHEP10(2018)067 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lepton Flavor Violating Dilepton Dijet Signatures from Sterile Neutrinos at Proton Colliders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cazzato%2C+E">Eros Cazzato</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fischer%2C+O">Oliver Fischer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hammad%2C+A">A. Hammad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wang%2C+K">Kechen Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.11400v1-abstract-short" style="display: inline;"> In this article we investigate the prospects of searching for sterile neutrinos in lowscale seesaw scenarios via the lepton flavour violating (but lepton number conserving) dilepton dijet signature. In our study, we focus on the final state $e^\pm 渭^\mp jj$ at the HL-LHC and the FCC-hh (or the SppC). We perform a multivariate analysis at the detector level including the dominant SM backgrounds fro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.11400v1-abstract-full').style.display = 'inline'; document.getElementById('1805.11400v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.11400v1-abstract-full" style="display: none;"> In this article we investigate the prospects of searching for sterile neutrinos in lowscale seesaw scenarios via the lepton flavour violating (but lepton number conserving) dilepton dijet signature. In our study, we focus on the final state $e^\pm 渭^\mp jj$ at the HL-LHC and the FCC-hh (or the SppC). We perform a multivariate analysis at the detector level including the dominant SM backgrounds from di-top, di-boson, and tri-boson. Under the assumption of the active-sterile neutrino mixings $|V_{ l N}|^2=|胃_e|^2=|胃_渭|^2$ and $|V_{ 蟿N}|^2 = |胃_蟿|^2=0$, the sensitivities on the signal production cross section times branching ratio $蟽(p p \to l^\pm N)\times {\rm BR} (N \to l^{ \mp} jj)$ and on $|V_{ l N}|^2$ for sterile neutrino mass $M_N$ between 200 and 1000 GeV are derived. For the benchmark $M_N=500$ GeV, when ignoring systematic uncertainties at the HL-LHC (FCC-hh/SppC) with 3 (20) ${\rm ab}^{-1}$ luminosity, the resulting 2-$蟽$ limits on $|V_{ l N}|^2$ are $4.9\times 10^{-3}$ ($7.0\times 10^{-5}$), while the 2 -$蟽$ limit on $蟽\times {\rm BR}$ are $4.4\times10^{-2}$ ($1.6\times10^{-2}$) fb, respectively. The effect of the systematic uncertainty is also studied and found to be important for sterile neutrinos with smaller masses. We also comment on searches with $蟿^\pm 渭^\mp jj$ and $蟿^\pm e^\mp jj$ final states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.11400v1-abstract-full').style.display = 'none'; document.getElementById('1805.11400v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 17-151 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.05647">arXiv:1802.05647</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.05647">pdf</a>, <a href="https://arxiv.org/format/1802.05647">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2018/05/015">10.1088/1475-7516/2018/05/015 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-thermal Leptogenesis after Majoron Hilltop Inflation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Marschall%2C+K">Kenneth Marschall</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.05647v2-abstract-short" style="display: inline;"> We analyse non-thermal leptogenesis after models of Majoron hilltop inflation, where the scalar field that provides masses for the right-handed neutrinos and sneutrinos via its vacuum expectation value acts as the inflaton. We discuss different realisations of Majoron inflation models with different hilltop shapes and couplings to the right-handed (s)neutrinos. To study the non-thermally produced&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.05647v2-abstract-full').style.display = 'inline'; document.getElementById('1802.05647v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.05647v2-abstract-full" style="display: none;"> We analyse non-thermal leptogenesis after models of Majoron hilltop inflation, where the scalar field that provides masses for the right-handed neutrinos and sneutrinos via its vacuum expectation value acts as the inflaton. We discuss different realisations of Majoron inflation models with different hilltop shapes and couplings to the right-handed (s)neutrinos. To study the non-thermally produced baryon asymmetry in these models, we numerically solve the relevant Boltzmann equations. In contrast to previous studies, we include the effects from resonant sneutrino particle production during preheating. We find that these effects can result in an enhancement of the produced baryon asymmetry by more than an order of magnitude. This can significantly change the favoured parameter regions of these models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.05647v2-abstract-full').style.display = 'none'; document.getElementById('1802.05647v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages + Appendix, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.06534">arXiv:1801.06534</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.06534">pdf</a>, <a href="https://arxiv.org/format/1801.06534">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Probing the Seesaw Mechanism and Leptogenesis with the International Linear Collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cazzato%2C+E">Eros Cazzato</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Drewes%2C+M">Marco Drewes</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fischer%2C+O">Oliver Fischer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Garbrecht%2C+B">Bjorn Garbrecht</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gueter%2C+D">Dario Gueter</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Klaric%2C+J">Juraj Klaric</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.06534v1-abstract-short" style="display: inline;"> We investigate the potential of the International Linear Collider (ILC) to probe the mechanisms of neutrino mass generation and leptogenesis within the minimal seesaw model. Our results can also be used as an estimate for the potential of a Compact Linear Collider (CLIC). We find that heavy sterile neutrinos that simultaneously explain both, the observed light neutrino oscillations and the baryon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.06534v1-abstract-full').style.display = 'inline'; document.getElementById('1801.06534v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.06534v1-abstract-full" style="display: none;"> We investigate the potential of the International Linear Collider (ILC) to probe the mechanisms of neutrino mass generation and leptogenesis within the minimal seesaw model. Our results can also be used as an estimate for the potential of a Compact Linear Collider (CLIC). We find that heavy sterile neutrinos that simultaneously explain both, the observed light neutrino oscillations and the baryon asymmetry of the universe, can be found in displaced vertex searches at ILC. We further study the precision at which the flavour-dependent active-sterile mixing angles can be measured. The measurement of the ratios of these mixing angles, and potentially also of the heavy neutrino mass splitting, can test whether minimal type I seesaw models are the origin of the light neutrino masses, and it can be a first step towards probing leptogenesis as the mechanism of baryogenesis. Our results show that the ILC can be used as a discovery machine for New Physics in feebly coupled sectors that can address fundamental questions in particle physics and cosmology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.06534v1-abstract-full').style.display = 'none'; document.getElementById('1801.06534v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Talk presented at the International Workshop on Future Linear Colliders (LCWS2017), Strasbourg, France, 23-27 October 2017. C17-10-23.2. 11 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.05366">arXiv:1712.05366</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.05366">pdf</a>, <a href="https://arxiv.org/format/1712.05366">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysb.2018.07.022">10.1016/j.nuclphysb.2018.07.022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-universal Z&#39; from SO(10) GUTs with vector-like family and the origin of neutrino masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hohl%2C+C">Christian Hohl</a>, <a href="/search/hep-ph?searchtype=author&amp;query=King%2C+S+F">Steve F. King</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Susic%2C+V">Vasja Susic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.05366v2-abstract-short" style="display: inline;"> A $Z&#39;$ gauge boson with mass around the (few) TeV scale is a popular example of physics beyond the Standard Model (SM) and can be a fascinating remnant of a Grand Unified Theory (GUT). Recently, $Z&#39;$ models with non-universal couplings to the SM fermions due to extra vector-like states have received attention as potential explanations of the present $R_K$, $R_{K^{\ast}}$ anomalies; this includes G&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.05366v2-abstract-full').style.display = 'inline'; document.getElementById('1712.05366v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.05366v2-abstract-full" style="display: none;"> A $Z&#39;$ gauge boson with mass around the (few) TeV scale is a popular example of physics beyond the Standard Model (SM) and can be a fascinating remnant of a Grand Unified Theory (GUT). Recently, $Z&#39;$ models with non-universal couplings to the SM fermions due to extra vector-like states have received attention as potential explanations of the present $R_K$, $R_{K^{\ast}}$ anomalies; this includes GUT model proposals based on the $\mathrm{SO}(10)$ group. In this paper we further develop GUT models with a flavour non-universal low scale $Z&#39;$ and clarify several outstanding issues within them. First, we successfully incorporate a realistic neutrino sector (with linear and/or inverse low scale seesaw mechanism), which was so far a missing ingredient. Second, we investigate in detail their compatibility with the $R_K$, $R_{K^{\ast}}$ anomalies; we find that the anomalies do not have a consistent explanation within such models. Third, we demonstrate that these models have other compelling phenomenological features; we study the correlations between the flavour violating processes of $渭\to 3e$ and $渭$-$e$ conversion in a muonic atom, showing how a GUT imprint could manifest itself in experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.05366v2-abstract-full').style.display = 'none'; document.getElementById('1712.05366v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised version, published in NPB. New material, general conclusions unchanged. 30 pages, 4 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.03231">arXiv:1712.03231</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.03231">pdf</a>, <a href="https://arxiv.org/format/1712.03231">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2018/03/032">10.1088/1475-7516/2018/03/032 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> What can we learn from the stochastic gravitational wave background produced by oscillons? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cefala%2C+F">Francesco Cefala</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Orani%2C+S">Stefano Orani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.03231v1-abstract-short" style="display: inline;"> The stochastic gravitational wave (GW) background provides a fascinating window to the physics of the very early universe. Beyond the nearly scale-invariant primordial GW spectrum produced during inflation, a spectrum with a much richer structure is typically generated during the preheating phase after inflation (or after some other phase transition at lower energies). This raises the question of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.03231v1-abstract-full').style.display = 'inline'; document.getElementById('1712.03231v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.03231v1-abstract-full" style="display: none;"> The stochastic gravitational wave (GW) background provides a fascinating window to the physics of the very early universe. Beyond the nearly scale-invariant primordial GW spectrum produced during inflation, a spectrum with a much richer structure is typically generated during the preheating phase after inflation (or after some other phase transition at lower energies). This raises the question of what one can learn from a future observation of the stochastic gravitational wave background spectrum about the underlying physics during preheating. Recently, it has been shown that during preheating non-perturbative quasi-stable objects like oscillons can act as strong sources for GW, leading to characteristic features such as distinct peaks in the spectrum. In this paper, we study the GW production from oscillons using semi-analytical techniques. In particular, we discuss how the GW spectrum is affected by the parameters that characterise a given oscillon system, e.g. by the background cosmology, the asymmetry of the oscillons and the evolution of the number density of the oscillons. We compare our semi-analytic results with numerical lattice simulations for a hilltop inflation model and a KKLT scenario, which differ strongly in some of these characteristics, and find very good agreement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.03231v1-abstract-full').style.display = 'none'; document.getElementById('1712.03231v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages + Appendix, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.03744">arXiv:1710.03744</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.03744">pdf</a>, <a href="https://arxiv.org/format/1710.03744">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP09(2018)124">10.1007/JHEP09(2018)124 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing Leptogenesis at Future Colliders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cazzato%2C+E">Eros Cazzato</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Drewes%2C+M">Marco Drewes</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fischer%2C+O">Oliver Fischer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Garbrecht%2C+B">Bjorn Garbrecht</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gueter%2C+D">Dario Gueter</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Klaric%2C+J">Juraj Klaric</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.03744v3-abstract-short" style="display: inline;"> We investigate the question whether leptogenesis, as a mechanism for explaining the baryon asymmetry of the universe, can be tested at future colliders. Focusing on the minimal scenario of two right-handed neutrinos, we identify the allowed parameter space for successful leptogenesis in the heavy neutrino mass range between $5$ and $50$ GeV. Our calculation includes the lepton flavour violating co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.03744v3-abstract-full').style.display = 'inline'; document.getElementById('1710.03744v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.03744v3-abstract-full" style="display: none;"> We investigate the question whether leptogenesis, as a mechanism for explaining the baryon asymmetry of the universe, can be tested at future colliders. Focusing on the minimal scenario of two right-handed neutrinos, we identify the allowed parameter space for successful leptogenesis in the heavy neutrino mass range between $5$ and $50$ GeV. Our calculation includes the lepton flavour violating contribution from heavy neutrino oscillations as well as the lepton number violating contribution from Higgs decays to the baryon asymmetry of the universe. We confront this parameter space region with the discovery potential for heavy neutrinos at future lepton colliders, which can be very sensitive in this mass range via displaced vertex searches. Beyond the discovery of heavy neutrinos, we study the precision at which the flavour-dependent active-sterile mixing angles can be measured. The measurement of these mixing angles at future colliders can test whether a minimal type I seesaw mechanism is the origin of the light neutrino masses, and it can be a first step towards probing leptogenesis as the mechanism of baryogenesis. We discuss how a stronger test could be achieved with an additional measurement of the heavy neutrino mass difference. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.03744v3-abstract-full').style.display = 'none'; document.getElementById('1710.03744v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages plus appendix, 13 figures, references added, discussion extended, two figures added, matches journal version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> TUM-1160/18, CP3-17-48 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.03797">arXiv:1709.03797</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.03797">pdf</a>, <a href="https://arxiv.org/format/1709.03797">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Resolvable heavy neutrino-antineutrino oscillations at colliders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cazzato%2C+E">Eros Cazzato</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fischer%2C+O">Oliver Fischer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.03797v2-abstract-short" style="display: inline;"> Heavy neutrino-antineutrino oscillations can naturally appear in mechanisms of low scale neutrino mass generation, where pairs of heavy neutrinos have almost degenerate masses. We discuss the case where the heavy neutrinos are sufficiently long-lived to decay displaced from the primary vertex, such that the oscillations of the heavy neutrinos into antineutrinos can potentially be observed at the (&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.03797v2-abstract-full').style.display = 'inline'; document.getElementById('1709.03797v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.03797v2-abstract-full" style="display: none;"> Heavy neutrino-antineutrino oscillations can naturally appear in mechanisms of low scale neutrino mass generation, where pairs of heavy neutrinos have almost degenerate masses. We discuss the case where the heavy neutrinos are sufficiently long-lived to decay displaced from the primary vertex, such that the oscillations of the heavy neutrinos into antineutrinos can potentially be observed at the (high-luminosity) LHC and at currently planned future collider experiments. The observation of these oscillations would have far-reaching consequences: it would, for instance, prove the existence of lepton number violation and the Majorana nature of neutrino masses, and it would allow a deep insight into the nature of the neutrino mass generation mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.03797v2-abstract-full').style.display = 'none'; document.getElementById('1709.03797v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages + references, 3 figures, matches published version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.00880">arXiv:1709.00880</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.00880">pdf</a>, <a href="https://arxiv.org/format/1709.00880">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Searches for Sterile Neutrinos at Future Electron-Proton Colliders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fischer%2C+O">Oliver Fischer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.00880v1-abstract-short" style="display: inline;"> Sterile neutrinos are an attractive extension of the Standard Model of elementary particles towards including a mechanism for generating the observed light neutrino masses. We discuss that when an approximate protective &#34;lepton number&#34;-like symmetry is present, the sterile neutrinos can have masses around the electroweak scale and potentially large neutrino Yukawa couplings, which makes them well&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00880v1-abstract-full').style.display = 'inline'; document.getElementById('1709.00880v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.00880v1-abstract-full" style="display: none;"> Sterile neutrinos are an attractive extension of the Standard Model of elementary particles towards including a mechanism for generating the observed light neutrino masses. We discuss that when an approximate protective &#34;lepton number&#34;-like symmetry is present, the sterile neutrinos can have masses around the electroweak scale and potentially large neutrino Yukawa couplings, which makes them well testable at planned future particle colliders. We systematically discuss the production and decay channels for sterile neutrinos at electron-proton colliders and give a complete list of the leading order signatures for sterile neutrino searches. We highlight several novel search channels and present a first look at the possible sensitivities for the active-sterile mixing parameters and the heavy neutrino masses. We also compare the performance of electron-proton colliders with the ones of proton-proton and electron-positron colliders, and discuss the complementarity of the different collider types. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.00880v1-abstract-full').style.display = 'none'; document.getElementById('1709.00880v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Conference proceedings for the DIS 2017 in Birmingham, 13 pages, 8 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.08922">arXiv:1708.08922</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.08922">pdf</a>, <a href="https://arxiv.org/format/1708.08922">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP01(2018)083">10.1007/JHEP01(2018)083 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Oscillons from String Moduli </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cefala%2C+F">Francesco Cefala</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Krippendorf%2C+S">Sven Krippendorf</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Muia%2C+F">Francesco Muia</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Orani%2C+S">Stefano Orani</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Quevedo%2C+F">Fernando Quevedo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.08922v1-abstract-short" style="display: inline;"> A generic feature of string compactifications is the presence of many scalar fields, called moduli. Moduli are usually displaced from their post-inflationary minimum during inflation. Their relaxation to the minimum could lead to the production of oscillons: localised, long-lived, non-linear excitations of the scalar fields. Here we discuss under which conditions oscillons can be produced in strin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.08922v1-abstract-full').style.display = 'inline'; document.getElementById('1708.08922v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.08922v1-abstract-full" style="display: none;"> A generic feature of string compactifications is the presence of many scalar fields, called moduli. Moduli are usually displaced from their post-inflationary minimum during inflation. Their relaxation to the minimum could lead to the production of oscillons: localised, long-lived, non-linear excitations of the scalar fields. Here we discuss under which conditions oscillons can be produced in string cosmology and illustrate their production and potential phenomenology with two explicit examples: the case of an initially displaced volume modulus in the KKLT scenario and the case of a displaced blow-up Kaehler modulus in the Large Volume Scenario (LVS). One, in principle, observable consequence of oscillon dynamics is the production of gravitational waves which, contrary to those produced from preheating after high scale inflation, could have lower frequencies, closer to the currently observable range. We also show that, for the considered parameter ranges, oscillating fibre and volume moduli do not develop any significant non-perturbative dynamics. Furthermore, we find that the vacua in the LVS and the KKLT scenario are stable against local overshootings of the field into the decompatification region, which provides an additional check on the longevity of these metastable configurations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.08922v1-abstract-full').style.display = 'none'; document.getElementById('1708.08922v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages + appendix, 23 figures, for videos of the simulations see https://particlesandcosmology.unibas.ch/downloads/oscillons-from-string-moduli-movies.html</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.05990">arXiv:1706.05990</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1706.05990">pdf</a>, <a href="https://arxiv.org/format/1706.05990">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2017.09.057">10.1016/j.physletb.2017.09.057 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sterile neutrino searches via displaced vertices at LHCb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Antusch%2C+S">Stefan Antusch</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cazzato%2C+E">Eros Cazzato</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fischer%2C+O">Oliver Fischer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.05990v2-abstract-short" style="display: inline;"> We explore the sensitivity of displaced vertex searches at LHCb for testing sterile neutrino extensions of the Standard Model towards explaining the observed neutrino masses. We derive estimates for the constraints on sterile neutrino parameters from a recently published displaced vertex search at LHCb based on run 1 data. They yield the currently most stringent limit on active-sterile neutrino mi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.05990v2-abstract-full').style.display = 'inline'; document.getElementById('1706.05990v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.05990v2-abstract-full" style="display: none;"> We explore the sensitivity of displaced vertex searches at LHCb for testing sterile neutrino extensions of the Standard Model towards explaining the observed neutrino masses. We derive estimates for the constraints on sterile neutrino parameters from a recently published displaced vertex search at LHCb based on run 1 data. They yield the currently most stringent limit on active-sterile neutrino mixing in the sterile neutrino mass range between 4.5 GeV and 10 GeV. Furthermore, we present forecasts for the sensitivities that could be obtained from the run 2 data and also for the high-luminosity phase of the LHC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.05990v2-abstract-full').style.display = 'none'; document.getElementById('1706.05990v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 Figures, 1 Table, version to appear in PLB</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Antusch%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Antusch%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Antusch%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Antusch%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Antusch%2C+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10