CINXE.COM

Search results for: amphotericin B

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: amphotericin B</title> <meta name="description" content="Search results for: amphotericin B"> <meta name="keywords" content="amphotericin B"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="amphotericin B" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="amphotericin B"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 21</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: amphotericin B</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Layersomes for Oral Delivery of Amphotericin B</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Rana">A. C. Rana</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhinav%20Singh%20Rana"> Abhinav Singh Rana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Layer by layer coating of biocompatible polyelectrolytes converts the liposomes into stable version i.e 'layersomes'. This system was further used to deliver the Amphotericin B through the oral route. Extensive optimization of different process variables resulted in the formation of layersomes with the particle size of 238.4±5.1, PDI of 0.24±0.16, the zeta potential of 34.6±1.3, and entrapment efficiency of 71.3±1.2. TEM analysis further confirmed the formation of spherical particles. Trehalose (10% w/w) resulted in the formation of fluffy and easy to redisperse cake in freeze dried layersomes. Controlled release up to 50 % within 24 h was observed in the case of layersomes. The layersomes were found stable in simulated biological fluids and resulted in the 3.59 fold higher bioavailability in comparison to free Amp-B. Furthermore, the developed formulation was found to be safe in comparison to Fungizone as indicated by blood urea nitrogen (BUN) and creatinine level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amphotericin%20B" title="amphotericin B">amphotericin B</a>, <a href="https://publications.waset.org/abstracts/search?q=layersomes" title=" layersomes"> layersomes</a>, <a href="https://publications.waset.org/abstracts/search?q=liposomes" title=" liposomes"> liposomes</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/16358/layersomes-for-oral-delivery-of-amphotericin-b" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Refractory Visceral Leishmaniasis Responding to Second-Line Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preet%20Shah">Preet Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Om%20Shrivastav"> Om Shrivastav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction : In India, Leishmania donovani is the only parasite causing Leishmaniasis. The parasite infects the reticuloendothelial system and is found in the bone marrow, spleen and liver. Treatment of choice is amphotericin-B with sodium stibogluconate being an alternative. Miltefosine is useful in refractory cases. In our case, Leishmaniasis occurred in a person residing in western India (which is quite rare) and it failed to respond to two different drugs (again an uncommon feature) before it finally responded to a third one. Description: A 50 year old lady, a resident of western India, with no history of recent travel, presented with an ulcer on the left side of the nose since 8 months. She was apparently alright 8 months back, when she noticed a small ulcerated lesion on the left ala of the nose which was immediately biopsied. The biopsy revealed amastigotes of Leishmania for which she was administered intra-lesional sodium stibogluconate for 1 month (4 doses every 8 days).Despite this, there was no regression of the ulcer and hence she presented to us for further management. On examination, her vital parameters were normal. Barring an ulcer on the left side of the nose, rest of the examination findings were unremarkable. Complete blood count was normal. Ultrasound abdomen showed hepatomegaly. PET-CT scan showed increased metabolic activity in left ala of nose, hepatosplenomegaly and increased metabolic activity in spleen and bone marrow. Bone marrow biopsy was done which showed hypercellular marrow with erythroid preponderance. Considering a diagnosis of leishmaniasis which had so far been unresponsive to sodium stibogluconate, she was started on liposomal amphotericin-B. At the time of admission, her creatinine level was normal, but it started rising with the administration of liposomal amphotericin-B, hence the dose was reduced. Despite this, creatinine levels did not improve, and she started developing hypokalemia and hypomagnesemia as side effects of the drug, hence further reductions in the dosage were made. Despite a total of 3 weeks of liposomal amphotericin-B, there was no improvement in the ulcer. As had so far failed to respond to sodium stibogluconate and liposomal amphotericin-B, it was decided to start her on miltefosine. She received the miltefosine for a total of 12 weeks. At the end of this duration, there was a marked regression of the cutaneous lesion. Conclusion: Refractoriness to amphotericin-B in leishmaniasis may be seen in up to 5 % cases. Here, an alternative drug such as miltefosine is useful and hence we decided to use it, to which she responded adequately. Furthermore, although leishmaniasis is common in the eastern part of India, it is a relatively unknown entity in the western part of the country with the occurrence being very rare. Because of these 2 reasons, we consider our case to be a unique one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amphotericin-b" title="amphotericin-b">amphotericin-b</a>, <a href="https://publications.waset.org/abstracts/search?q=leishmaniasis" title=" leishmaniasis"> leishmaniasis</a>, <a href="https://publications.waset.org/abstracts/search?q=miltefosine" title=" miltefosine"> miltefosine</a>, <a href="https://publications.waset.org/abstracts/search?q=tropical%20diseases" title=" tropical diseases"> tropical diseases</a> </p> <a href="https://publications.waset.org/abstracts/96027/refractory-visceral-leishmaniasis-responding-to-second-line-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Mannosylated Oral Amphotericin B Nanocrystals for Macrophage Targeting: In vitro and Cell Uptake Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rudra%20Vaghela">Rudra Vaghela</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Kulkarni"> P. K. Kulkarni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present research was to develop oral Amphotericin B (AmB) nanocrystals (Nc) grafted with suitable ligand in order to enhance drug transport across the intestinal epithelial barrier and subsequently, active uptake by macrophages. AmB Nc were prepared by liquid anti-solvent precipitation technique (LAS). Poloxamer 188 was used to stabilize the prepared AmB Nc and grafted with mannose for actively targeting M cells in Peyer’s patches. To prevent shedding of the stabilizer and ligand, N,N’-Dicyclohexylcarbodiimide (DCC) was used as a cross-linker. The prepared AmB Nc were characterized for particle size, PDI, zeta potential, X-ray diffraction (XRD) and surface morphology using scanning electron microscope (SEM) and evaluated for drug content, in vitro drug release and cell uptake studies using caco-2 cells. The particle size of stabilized AmB Nc grafted with WGA was in the range of 287-417 nm with negative zeta potential between -18 to -25 mV. XRD studies revealed crystalline nature of AmB Nc. SEM studies revealed that ungrafted AmB Nc were irregular in shape with rough surface whereas, grafted AmB Nc were found to be rod-shaped with smooth surface. In vitro drug release of AmB Nc was found to be 86% at the end of one hour. Cellular studies revealed higher invasion and uptake of AmB Nc towards caco-2 cell membrane when compared to ungrafted AmB Nc. Our findings emphasize scope on developing oral delivery system for passively targeting M cells in Peyer’s patches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leishmaniasis" title="leishmaniasis">leishmaniasis</a>, <a href="https://publications.waset.org/abstracts/search?q=amphotericin%20b%20nanocrystals" title=" amphotericin b nanocrystals"> amphotericin b nanocrystals</a>, <a href="https://publications.waset.org/abstracts/search?q=macrophage%20targeting" title=" macrophage targeting"> macrophage targeting</a>, <a href="https://publications.waset.org/abstracts/search?q=LAS%20technique" title=" LAS technique"> LAS technique</a> </p> <a href="https://publications.waset.org/abstracts/43883/mannosylated-oral-amphotericin-b-nanocrystals-for-macrophage-targeting-in-vitro-and-cell-uptake-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> MIL-88b(Fe)-MOF Grafted Carbon Dot Nanocomposites as Effective Photocatalysts for Fenton-Like Photodegradation of Amphotericin B and Naproxen Under Visible Light Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Payam%20Hayati">Payam Hayati</a>, <a href="https://publications.waset.org/abstracts/search?q=Fateme%20Firoozbakht"> Fateme Firoozbakht</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholamhassan%20Azimi"> Gholamhassan Azimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahram%20Tangestaninejad"> Shahram Tangestaninejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synthesis of a photocatalytic adsorbent involved the integration of carbon dots (CD) into a metal-organic framework (MOF) of MIL-88B(Fe) using the solvothermal technique. Characterization of the resulting CD@MIL-88B(Fe) was conducted using various analytical methods, including X-ray-based microscopic and spectroscopic techniques, electrochemical impedance spectroscopy, UV–Vis, FT-IR, DRS, TGA, and photoluminescence (PL) analysis. The adsorbent demonstrated significant photocatalytic activity, achieving up to 92% and 90% removal of amphotericin B (AmB) and naproxen (Nap) from aqueous solutions under visible light, with an RSD value of around 5%. The study explored the factors influencing the degradation of pharmaceuticals and determined the optimal conditions for the process, including pH values of 3 and 4 for AmB and Nap, a photocatalyst concentration of 0.2 g L-1, and an H2O2 concentration ranging from 40 to 50 mM. Reactive oxidative species such as ⋅OH and ⋅O2 were identified through the examination of different scavengers. Additionally, the adsorption isotherm and kinetic studies revealed that the synthesized photocatalyst functions as an effective adsorbent, with maximum adsorption capacities of 42.5 and 121.5 mg g-1 for AmB and Nap, while also serving as a photocatalytic agent for removal purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fenton-like%20degradation" title="fenton-like degradation">fenton-like degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-organic%20frameworks" title=" metal-organic frameworks"> metal-organic frameworks</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogenous%20photocatalysts" title=" heterogenous photocatalysts"> heterogenous photocatalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=naproxen" title=" naproxen"> naproxen</a> </p> <a href="https://publications.waset.org/abstracts/178142/mil-88bfe-mof-grafted-carbon-dot-nanocomposites-as-effective-photocatalysts-for-fenton-like-photodegradation-of-amphotericin-b-and-naproxen-under-visible-light-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Mucoadhesive Chitosan-Coated Nanostructured Lipid Carriers for Oral Delivery of Amphotericin B</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20L.%20J.%20Tan">S. L. J. Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Billa"> N. Billa</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20J.%20Roberts"> C. J. Roberts</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oral delivery of amphotericin B (AmpB) potentially eliminates constraints and side effects associated with intravenous administration, but remains challenging due to the physicochemical properties of the drug such that it results in meagre bioavailability (0.3%). In an advanced formulation, 1) nanostructured lipid carriers (NLC) were formulated as they can accommodate higher levels of cargoes and restrict drug expulsion and 2) a mucoadhesion feature was incorporated so as to impart sluggish transit of the NLC along the gastrointestinal tract and hence, maximize uptake and improve bioavailability of AmpB. The AmpB-loaded NLC formulation was successfully formulated via high shear homogenisation and ultrasonication. A chitosan coating was adsorbed onto the formed NLC. Physical properties of the formulations; particle size, zeta potential, encapsulation efficiency (%EE), aggregation states and mucoadhesion as well as the effect of the variable pH on the integrity of the formulations were examined. The particle size of the freshly prepared AmpB-loaded NLC was 163.1 ± 0.7 nm, with a negative surface charge and remained essentially stable over 120 days. Adsorption of chitosan caused a significant increase in particle size to 348.0 ± 12 nm with the zeta potential change towards positivity. Interestingly, the chitosan-coated AmpB-loaded NLC (ChiAmpB NLC) showed significant decrease in particle size upon storage, suggesting 'anti-Ostwald' ripening effect. AmpB-loaded NLC formulation showed %EE of 94.3 ± 0.02 % and incorporation of chitosan increased the %EE significantly, to 99.3 ± 0.15 %. This suggests that the addition of chitosan renders stability to the NLC formulation, interacting with the anionic segment of the NLC and preventing the drug leakage. AmpB in both NLC and ChiAmpB NLC showed polyaggregation which is the non-toxic conformation. The mucoadhesiveness of the ChiAmpB NLC formulation was observed in both acidic pH (pH 5.8) and near-neutral pH (pH 6.8) conditions as opposed to AmpB-loaded NLC formulation. Hence, the incorporation of chitosan into the NLC formulation did not only impart mucoadhesive property but also protected against the expulsion of AmpB which makes it well-primed as a potential oral delivery system for AmpB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amphotericin%20B" title="Amphotericin B">Amphotericin B</a>, <a href="https://publications.waset.org/abstracts/search?q=mucoadhesion" title=" mucoadhesion"> mucoadhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructured%20lipid%20carriers" title=" nanostructured lipid carriers"> nanostructured lipid carriers</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20delivery" title=" oral delivery"> oral delivery</a> </p> <a href="https://publications.waset.org/abstracts/82060/mucoadhesive-chitosan-coated-nanostructured-lipid-carriers-for-oral-delivery-of-amphotericin-b" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Cytotoxicity and Androgenic Potential of Antifungal Drug Substances on MDA-KB2 Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benchouala%20Amira">Benchouala Amira</a>, <a href="https://publications.waset.org/abstracts/search?q=Bojic%20Clement"> Bojic Clement</a>, <a href="https://publications.waset.org/abstracts/search?q=Poupin%20Pascal"> Poupin Pascal</a>, <a href="https://publications.waset.org/abstracts/search?q=Cossu%20Leguille-carole"> Cossu Leguille-carole</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to evaluate in vitro the cytotoxic and androgenic potential of several antifungal molecules (amphotericin B, econazole, ketoconazole and miconazole) on MDA-Kb2 cell lines. This biological model is an effective tool for the detection of endocrine disruptors because it responds well to the main agonist of the androgen receptor (testosterone) and also to an antagonist: flutamide. The cytotoxicity of each chemical compound tested was measured using an MTT assay (tetrazolium salt, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) which measures the activity of the reductase function of mitochondrial succinate dehydrogenase enzymes of cultured cells. This complementary cytotoxicity test is essential to ensure that the effects of reduction in luminescence intensity observed during androgenic tests are only attributable to the anti-androgenic action of the compounds tested and not to their possible cytotoxic properties. Tests of the androgenic activity of antifungals show that these compounds do not have the capacity to induce transcription of the luciferase gene. These compounds do not exert an androgenic effect on MDA-Kb2 cells in culture for the environmental concentrations tested. The addition of flutamide for the same tested concentrations of antifungal molecules reduces the luminescence induced by amphotericin B, econazole and miconazole, which is explained by a strong interaction of these molecules with flutamide which may have a greater toxic effect than when tested alone. The cytotoxicity test shows that econazole and ketoconazole can cause cell death at certain concentrations tested. This cell mortality is perhaps induced by a direct or indirect action on deoxyribonucleic acid (DNA), ribonucleic acid (RNA) or proteins necessary for cell division. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title="cytotoxicity">cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=androgenic%20potential" title=" androgenic potential"> androgenic potential</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungals" title=" antifungals"> antifungals</a>, <a href="https://publications.waset.org/abstracts/search?q=MDA-Kb2" title=" MDA-Kb2"> MDA-Kb2</a> </p> <a href="https://publications.waset.org/abstracts/186088/cytotoxicity-and-androgenic-potential-of-antifungal-drug-substances-on-mda-kb2-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Pathogenic Candida Biofilms Producers Involved in Healthcare Associated Infections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouassila%20Bekkal%20Brikci%20Benhabib">Ouassila Bekkal Brikci Benhabib</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahia%20Boucherit%20Otmani"> Zahia Boucherit Otmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Kebir%20Boucherit"> Kebir Boucherit</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Seghir"> A. Seghir </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The establishment of intravenous catheters in hospitalized patient is an act common in many clinical situations. These therapeutic tools, from their insertion in the body, represent gateways including fungal germs prone. The latter can generate the growth of biofilms, which can be the cause of fungal infection. Faced with this problem, we conducted a study at the University Hospital of Tlemcen in the neurosurgery unit and aims to isolate and identify Candida yeasts from intravenous catheters. Then test their ability to form biofilms. Materials and methods: 256 patient hospitalized in surgery of the hospital in west Algeria were submitted to this study. All samples were taken from peripheral venous catheters implanted for 72 hours or more days. A total of 31 isolates of Candida species were isolated. MIC and SMIC are determined at 80% inhibition by the test XTT tetrazolium measured at 490 nm. The final concentrations of antifungal agent being between 0.03 and 16 mg / ml for amphotericin B and from 0.015 to 8 mg / mL caspofungin. Results: 31 Candida species isolates from catheters including 14 Candida albicans and 17 Candida non albicans . 21 strains of all the isolates were able to form biofilms. In their form of Planktonic cells, all isolates are 100% susceptible to antifungal agents tested. However, in their state of biofilms, more isolates have become tolerant to the tested antifungals. Conclusion: Candida yeasts isolated from intravascular catheters are considered an important virulence factor in the pathogenesis of infections. Their involvement in catheter-related infections can be disastrous for their potential to generate biofilms. They survive high concentrations of antifungal where treatment failure. Pending the development of a therapeutic approach antibiofilm related to catheters, their mastery is going through: -The risk of infection prevention based on the training and awareness of medical staff, -Strict hygiene and maximum asepsis, and -The choice of material limiting microbial colonization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=candida" title="candida">candida</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm" title=" biofilm"> biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=hospital" title=" hospital"> hospital</a>, <a href="https://publications.waset.org/abstracts/search?q=infection" title=" infection"> infection</a>, <a href="https://publications.waset.org/abstracts/search?q=amphotericin%20B" title=" amphotericin B"> amphotericin B</a>, <a href="https://publications.waset.org/abstracts/search?q=caspofungin" title=" caspofungin"> caspofungin</a> </p> <a href="https://publications.waset.org/abstracts/31771/pathogenic-candida-biofilms-producers-involved-in-healthcare-associated-infections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Fungal Profile and Antifungal Susceptibility Patterns among Symptomatic Pediatrics Patients Attending Aboozar Children’s Hospital, Ahvaz, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasrin%20Amirrajab">Nasrin Amirrajab</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasaman%20Razavi%20Ghahfarokhi"> Yasaman Razavi Ghahfarokhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Tootak"> Zahra Tootak</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Hadian"> Maryam Hadian</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Abooali%20Shamshiri"> Fatemeh Abooali Shamshiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urinary tract infections (UTIs) have been reported in children with nephrotic syndrome. However, the only causes for the infection reported to date are bacteria, but not many prior reported occurrences of fungi or yeast as causative organisms. Hence, the present study aimed to describe the epidemiology of urinary tract fungal infections in a tertiary care pediatric. A single-center cross-sectional study was conducted at the nephrology ward of Aboozar Pediatric Hospital between March 21, 2021, and April 28, 2022. Urine was collected aseptically from children, inoculated onto culture media, and incubated at 37 °C for 18–48 hours. Yeast was identified following standard procedures. Antifungal susceptibility testing was determined by the disk diffusion method according to the CLSI guideline. Descriptive statistics and logistical regressions were used to estimate the crude ratio with a 95% confidence interval. P-value < 0.05 was considered significant. Among 68 individuals referred to the mycology lab, the result of direct examination and culture of all patients approved for C.albicans. Of these, 38 individuals (55.8%) were male, and 30 (44.2%) were female. The patients' age ranges were between one month and an 18-year-old. In the study of infection intensity, the patients were classified into three levels such as few (73.5%), moderate (20.6%), and many (5.9%). In the present study, all the patients were sensitive to Posaconazole. Also, the eagle effect was found in Amphotericin B, Voriconazole, and Fluconazole with frequencies of 91.7%, 91.7%, and 83%, respectively. In addition, just 8.3% of isolates were resistant to Itraconazole. It has not shown resistance in other mentioned medicine. The patients showed an intermediate response to Itraconazole (91.7%), Fluconazole (17%), Voriconazole (8.3%), and Amphotericin B (8.3%). There is a high prevalence of yeast infections in children with suspected UTIs. Also, boys are more likely to get yeast infections, and the severity of the infection is higher than girls. The present study demonstrated the importance of diagnosing and selecting the appropriate drug for urinary tract fungal infections in hospitalized children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urinary%20tract%20infections" title="urinary tract infections">urinary tract infections</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a>, <a href="https://publications.waset.org/abstracts/search?q=fungal%20infections" title=" fungal infections"> fungal infections</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal%20susceptibility" title=" antifungal susceptibility"> antifungal susceptibility</a> </p> <a href="https://publications.waset.org/abstracts/159387/fungal-profile-and-antifungal-susceptibility-patterns-among-symptomatic-pediatrics-patients-attending-aboozar-childrens-hospital-ahvaz-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Bioactive Secondary Metabolites from Culturable Unusual Actinomycetes from Solomon Islands Marine Sediments: Isolation and Characterisation of Bioactive Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahilya%20Singh">Ahilya Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Brad%20Carte"> Brad Carte</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Subramani"> Ramesh Subramani</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Aalbersberg"> William Aalbersberg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A total of 37 actinomycete strains were purified from 25 Solomon Islands marine sediments using four different types of isolation media. Among them, 54% of the strains had obligate requirement of seawater for growth. The ethyl acetate extract of 100 ml fermentation product of each strain was screened for antimicrobial activity against multidrug resistant human pathogens and cytotoxic activity against brine shrimps. A total of 67% of the ethyl acetate extracts showed antimicrobial and/or cytotoxic activities. A strain F-1915 was selected for isolation and evaluation of bioactive compound(s) based on its bioactive properties and chemical profile analysis using the LC-MS. The strain F-1915 was identified to have 96% sequence similarity to Streptomyces violaceusniger on the basis of 16S rDNA sequences using BLAST analysis. The 16S rDNA revealed that the strain F-1915 is a new member of MAR4 clade of actinomycetes. The MAR4 clade is an interesting clade of actinomycetes known for the production of pharmaceutically important hybrid isoprenoid compounds. The ethyl acetate extract of the fermentation product of this strain was purified by silica gel column chromatography and afforded the isolation of one bioactive pure compound. Based on the 1D and 2D NMR spectral data of compound 1 it was identified as a new mono-brominated phenazinone, Marinophenazimycin A, a structure which has already been studied by external collaborators at Scripps Institution of Oceanography but is yet to be published. Compound 1 displayed significant antimicrobial activity against drug resistant human pathogens. The minimum inhibitory concentration (MIC) of compound 1 was against Methicillin Resistant Staphylococcus aureus (MRSA) was about 1.9 μg/ml and MIC recorded against Amphotericin Resistant Candida albicans (ARCA) was about 0.24 μg/ml. The bioactivity of compound 1 against ARCA was found to be better than the standard antifungal agent amphotericin B. Compound 1 however did not show any cytotoxic activity against brine shrimps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actinomycetes" title="actinomycetes">actinomycetes</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=brominated%20phenazine" title=" brominated phenazine"> brominated phenazine</a>, <a href="https://publications.waset.org/abstracts/search?q=MAR4%20clade" title=" MAR4 clade"> MAR4 clade</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20natural%20products" title=" marine natural products"> marine natural products</a>, <a href="https://publications.waset.org/abstracts/search?q=multidrug%20resistent" title=" multidrug resistent"> multidrug resistent</a>, <a href="https://publications.waset.org/abstracts/search?q=1D%20and%202D%20NMR" title=" 1D and 2D NMR"> 1D and 2D NMR</a> </p> <a href="https://publications.waset.org/abstracts/40032/bioactive-secondary-metabolites-from-culturable-unusual-actinomycetes-from-solomon-islands-marine-sediments-isolation-and-characterisation-of-bioactive-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> The Antagonistic/Synergistic Effect of Probiotic Yeast Saccharomyces boulardii on Candida glabrata Adhesion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zorica%20Tomi%C4%8Di%C4%87">Zorica Tomičić</a>, <a href="https://publications.waset.org/abstracts/search?q=Ru%C5%BEica%20Tomi%C4%8Di%C4%87"> Ružica Tomičić</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Raspor"> Peter Raspor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Growing resistance of pathogenic yeast Candida glabrata to many classes of antifungal drugs has stimulated efforts to discover new agents to combat a rising number of invasive C. glabrata infections, which deserves a great deal of concern due to the high mortality rate in immunocompromised populations. One promising strategy is the use of probiotic microorganisms, which, when administered in adequate amounts, confers a health benefit. A selected number of probiotic organisms, Saccharomyces boulardii among them, have been tested as potential biotherapeutic agents. The aim of this study was to investigate the effect of the probiotic yeast S. boulardii on the adhesion of clinical isolates of C. glabrata at different temperatures, pH values, and in the presence of three clinically important antifungal drugs, such as fluconazole, itraconazole and amphotericin B. The method used to assess adhesion was crystal violet staining. The selection of antimycotics concentrations used in the adhesion assay was based on minimum inhibitory concentrations (MICs) obtained by the preliminarily performed microdilution modification of the Reference method for broth dilution antifungal susceptibility testing of yeast (Clinical and Laboratory Standards Institute (CLSI), standard M27-A2). the results showed that despite the nonadhesiveness of S. boulardii cells, probiotic yeast significantly suppressed the adhesion of C. glabrata strains. Besides, at specific strain ratios, a slight stimulatory effect was observed in some C. glabrata strains, which highlights the importance of strain specificity and opens up further research interests. When environmental conditions are considered, temperature and pH significantly influenced co-culture adhesion of C. glabrata and S. boulardii. The adhesion of C. glabrata strains was relatively equally reduced over all tested temperature range (28°C, 37°C, 39°C and 42°C) in the presence of S. boulardii cells, while the adhesion of a few C. glabrata strains were significantly stimulated at 28°C and suppressed at 42°C. Further, the adhesion was highly dependent on pH, with the highest adherence at pH 4 and lowest at pH 8.5. It was observed that S. boulardii did not manage to suppress the adhesion of C. glabrata strains at high pH. Antimycotics on the other hand showed a greater impact, since S. boulardii failed to affect co-culture adhesion at higher antimycotics concentrations. As expected, exposure to various concentrations of amphotericin B significantly reduced the adherence ability of C.glabrata strains both in a single culture and co-culture with S. boulardii. Therefore, it can be speculated that S. boulardii could substitute the effect of antimycotics in a range concentrations and with specific type of strains. This would certainly change the view on the treatment of yeast infections in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesion" title="adhesion">adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=antimycotics" title=" antimycotics"> antimycotics</a>, <a href="https://publications.waset.org/abstracts/search?q=candida%20glabrata" title=" candida glabrata"> candida glabrata</a>, <a href="https://publications.waset.org/abstracts/search?q=saccharomyces%20boulardii" title=" saccharomyces boulardii"> saccharomyces boulardii</a> </p> <a href="https://publications.waset.org/abstracts/171716/the-antagonisticsynergistic-effect-of-probiotic-yeast-saccharomyces-boulardii-on-candida-glabrata-adhesion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Exploring Bio-Inspired Catecholamine Chemistry to Design Durable Anti-Fungal Wound Dressings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chetna%20Dhand">Chetna Dhand</a>, <a href="https://publications.waset.org/abstracts/search?q=Venkatesh%20Mayandi"> Venkatesh Mayandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Marrero%20Diaz"> Silvia Marrero Diaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Roger%20W.%20Beuerman"> Roger W. Beuerman</a>, <a href="https://publications.waset.org/abstracts/search?q=Seeram%20Ramakrishna"> Seeram Ramakrishna</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajamani%20Lakshminarayanan"> Rajamani Lakshminarayanan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sturdy Insect Cuticle Sclerotization, Incredible Substrate independent Mussel’s bioadhesion, Tanning of Leather are some of catechol(amine)s mediated natural processes. Chemical contemplation spots toward a mechanism instigated with the formation of the quinone moieties from the respective catechol(amine)s, via oxidation, followed by the nucleophilic addition of the amino acids/proteins/peptides to this quinone leads to the development of highly strong, cross-linked and water-resistant proteinacious structures. Inspired with this remarkable catechol(amine)s chemistry towards amino acids/proteins/peptides, we attempted to design highly stable and water-resistant antifungal wound dressing mats with exceptional durability using collagen (protein), dopamine (catecholamine) and antifungal drugs (Amphotericin B and Caspofungin) as the key materials. Electrospinning technique has been used to fabricate desired nanofibrous mat including Collagen (COLL), COLL/Dopamine (COLL/DP) and calcium incorporated COLL/DP (COLL-DP-Ca2+). The prepared protein-based scaffolds have been studied for their microscopic investigations (SEM, TEM, and AFM), structural analysis (FT-IR), mechanical properties, water wettability characteristics and aqueous stability. Biocompatibility of these scaffolds has been analyzed for dermal fibroblast cells using MTS assay, Cell TrackerTM Green CMFDA and confocal imaging. Being the winner sample, COLL-DP-Ca2+ scaffold has been selected for incorporating two antifungal drugs namely Caspofungin (Peptide based) and Amphotericin B (Non-Peptide based). Antifungal efficiency of the designed mats has been evaluated for eight diverse fungal strains employing different microbial assays including disc diffusion, cell-viability assay, time kill kinetics etc. To confirm the durability of these mats, in term of their antifungal activity, drug leaching studies has been performed and monitored using disc diffusion assay each day. Ex-vivo fungal infection model has also been developed and utilized to validate the antifungal efficacy of the designed wound dressings. Results clearly reveal dopamine mediated crosslinking within COLL-antifungal scaffolds that leads to the generation of highly stable, mechanical tough, biocompatible wound dressings having the zone of inhabitation of ≥ 2 cm for almost all the investigated fungal strains. Leaching studies and Ex-vivo model has confirmed the durability of these wound dressing for more than 3 weeks and certified their suitability for commercialization. A model has also been proposed to enlighten the chemical mechanism involved for the development of these antifungal wound dressings with exceptional robustness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catecholamine%20chemistry" title="catecholamine chemistry">catecholamine chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning%20technique" title=" electrospinning technique"> electrospinning technique</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungals" title=" antifungals"> antifungals</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20dressings" title=" wound dressings"> wound dressings</a>, <a href="https://publications.waset.org/abstracts/search?q=collagen" title=" collagen"> collagen</a> </p> <a href="https://publications.waset.org/abstracts/29505/exploring-bio-inspired-catecholamine-chemistry-to-design-durable-anti-fungal-wound-dressings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Coordination Behavior, Theoretical Studies, and Biological Activity of Some Transition Metal Complexes with Oxime Ligands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noura%20Kichou">Noura Kichou</a>, <a href="https://publications.waset.org/abstracts/search?q=Manel%20Tafergguenit"> Manel Tafergguenit</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabila%20Ghechtouli"> Nabila Ghechtouli</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakia%20Hank"> Zakia Hank</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to synthesize, characterize and evaluate the biological activity of two Ligands : glyoxime and dimethylglyoxime, and their metal Ni(II) chelates. The newly chelates were characterized by elemental analysis, IR, EPR, nuclear magnetic resonances (1H and 13C), and biological activity. The antibacterial and antifungal activities of the ligands and its metal complexes were screened against bacterial species (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli) and fungi (Candida albicans). Ampicillin and amphotericin were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with parent free ligand against bacterial and fungal species. A structural, energetic, and electronic theoretical study was carried out using the DFT method, with the functional B3LYP and the gaussian program 09. A complete optimization of geometries was made, followed by a calculation of the frequencies of the normal modes of vibration. The UV spectrum was also interpreted. The theoretical results were compared with the experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glyoxime" title="glyoxime">glyoxime</a>, <a href="https://publications.waset.org/abstracts/search?q=dimetylglyoxime" title=" dimetylglyoxime"> dimetylglyoxime</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a> </p> <a href="https://publications.waset.org/abstracts/157809/coordination-behavior-theoretical-studies-and-biological-activity-of-some-transition-metal-complexes-with-oxime-ligands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Coordination Behavior, Theoretical studies and Biological Activity of Some Transition Metal Complexes with Oxime Ligands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noura%20Kichou">Noura Kichou</a>, <a href="https://publications.waset.org/abstracts/search?q=Manel%20Tafergguenit"> Manel Tafergguenit</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabila%20Ghechtouli"> Nabila Ghechtouli</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakia%20Hank"> Zakia Hank</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to synthesize, characterize and evaluate the biological activity of two Ligands: glyoxime and dimethylglyoxime, and their metal Ni(II) chelates. The newly chelates were characterized by elemental analysis, IR, EPR, nuclear magnetic resonances (1H and 13C), and biological activity. The antibacterial and antifungal activities of the ligands and its metal complexes were screened against bacterial species (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli) and fungi (Candida albicans). Ampicillin and amphotericin were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with parent free ligand against bacterial and fungal species. A structural, energetic, and electronic theoretical study was carried out using the DFT method, with the functional B3LYP and the gaussian program 09. A complete optimization of geometries was made, followed by a calculation of the frequencies of the normal modes of vibration. The UV spectrum was also interpreted. The theoretical results were compared with the experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glyoxime" title="glyoxime">glyoxime</a>, <a href="https://publications.waset.org/abstracts/search?q=dimetylglyoxime" title=" dimetylglyoxime"> dimetylglyoxime</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a> </p> <a href="https://publications.waset.org/abstracts/157862/coordination-behavior-theoretical-studies-and-biological-activity-of-some-transition-metal-complexes-with-oxime-ligands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Synthesis and Pharmaco-Potential Evaluation of Quinoline Hybrids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Awolade">Paul Awolade</a>, <a href="https://publications.waset.org/abstracts/search?q=Parvesh%20Singh"> Parvesh Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The global threat of pathogenic resistance to available therapeutic agents has become a menace to clinical practice, public health and man’s existence inconsequential. This has therefore led to an exigency in the development of new molecular scaffolds with profound activity profiles. In this vein, a versatile synthetic tool for accessing new molecules by incorporating two or more pharmacophores into a single entity with the unique ability to be recognized by multiple receptors hence leading to an improved bioactivity, known as molecular hybridization, has been explored with tremendous success. Accordingly, aware of the similarity in pharmacological activity spectrum of quinoline and 1,2,3-triazole pharmacophores such as; anti-Alzheimer, anticancer, anti-HIV, antimalarial and antimicrobial to mention but a few, the present study sets out to synthesize hybrids of quinoline and 1,2,3-triazole. The hybrids were accessed via click chemistry using copper catalysed azide-alkyne 1,3-dipolar cycloaddition reaction. All synthesized compounds were evaluated for their pharmaco-potential in an antimicrobial assay out of which the 3-OH derivative emerged as the most active with MIC value of 4 μg/mL against Cryptococcus neoformans; a value superior to standard Fluconazole and comparable to Amphotericin B. Structures of synthesized hybrids were elucidated using appropriate spectroscopic techniques (1H, 13C and 2D NMR, FT-IR and HRMS). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioisostere" title="bioisostere">bioisostere</a>, <a href="https://publications.waset.org/abstracts/search?q=click%20chemistry" title=" click chemistry"> click chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20hybridization" title=" molecular hybridization"> molecular hybridization</a>, <a href="https://publications.waset.org/abstracts/search?q=quinoline" title=" quinoline"> quinoline</a>, <a href="https://publications.waset.org/abstracts/search?q=1" title=" 1"> 1</a>, <a href="https://publications.waset.org/abstracts/search?q=2" title="2">2</a>, <a href="https://publications.waset.org/abstracts/search?q=3-triazole" title="3-triazole">3-triazole</a> </p> <a href="https://publications.waset.org/abstracts/99723/synthesis-and-pharmaco-potential-evaluation-of-quinoline-hybrids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> 4(3H)-Quinazolinone Derivatives&#039; Synthesis and Evaluation as Antimalarial and Anti-Leishmanial Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alemu%20Tadesse%20Feroche">Alemu Tadesse Feroche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, some 2, 3 distributed quinazoline -4 (3H) - one derivative were synthesized using a three-step synthetic route. They were obtained in a good yield (59.5-85%) by applying different chemical reactions like cyclization and condensation reactions. The chemical structure of the final compounds was also verified by spectroscopic methods (IR, ¹HNMR) and elemental microanalysis. The in vivo antimalarial activity of these compounds on P. berghei infected mice was found to be moderate to high at an oral dose of 0.04846 mmol/kg /day. This is equal to 25 mg/kg of chloroquine phosphate, which causes 100% inhibition of the parasite. It is worth mentioning that most active compounds (E) -3 Phenyl -2- [2- (pyridine -4- yl) vinyl] -4 (3H) -quinazolinone IVa (64.02%, (E)-2-[2-(4 - Hydroxy-3 - methoxystyryl) - vinyl) -3 - phenyl -4 (3H ) - quinazolinone IVc (77.25%) and (E)-2 –[2 –(Pyridin -4-yl) –vinyl] -3 phenenylamine -4(3H) quinazolinone IVe (73.54%) showed a dose-dependent increase in present suppression in antimalarial activities. Furthermore, the synthesized compounds were screened for their in vitro antileishmanial activity against L. aethiopica isolate (CL/039/09). All tested compounds (IVa (0.03766 ug/ml), IVb (0.00538 ug/ml, IVc (0.00412 ug/ml, IVd (0.00110 ug/ml), IVe (0.03017 ug/ml) and IVf (0.03894 ug/ml)) showed excellent potency that is much better than amphotericin B (IC50 = 0,04359 ug/ml). The results of acute toxicity indicated that all test compounds (IVa –IVf) proved to be nontoxic and well tolerated by the experimental animals up to 300 mg/kg in oral and 140 mg/kg in parental studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=4%283H%29-quinazolinone" title="4(3H)-quinazolinone">4(3H)-quinazolinone</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vivo%20antimalarial%20activity" title=" in vivo antimalarial activity"> in vivo antimalarial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20antileishmanial%20activity" title=" in vitro antileishmanial activity"> in vitro antileishmanial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=acute%20toxicity" title=" acute toxicity"> acute toxicity</a> </p> <a href="https://publications.waset.org/abstracts/153719/43h-quinazolinone-derivatives-synthesis-and-evaluation-as-antimalarial-and-anti-leishmanial-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Antifungal Susceptibility of Yeasts Isolated from Clinical Samples from a Tertiary Hospital from State of Puebla</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Munguia-Perez">Ricardo Munguia-Perez</a>, <a href="https://publications.waset.org/abstracts/search?q=Nayeli%20Remigio-Alvarado"> Nayeli Remigio-Alvarado</a>, <a href="https://publications.waset.org/abstracts/search?q=M.Miriam%20Hernandez-Arroyo"> M.Miriam Hernandez-Arroyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Elsa%20Casta%C3%B1eda-Roldan"> Elsa Castañeda-Roldan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fungi have emerged as important pathogens causing morbidity and mortality mainly in immunosuppressed, malnourished and elderly patients. It has detected an increase in resistance to azoles primarily to fluconazol. The fungal infections have become a problem of public health for the resistance to antifungal agents, they have developed new antifungals with broad-spectrum. The aim of this study was determine the antifungal susceptibility of yeasts isolated from clinical samples (respiratory secretions, exudates, wounds, blood cultures, urine cultures) obtained from inpatients and outpatients of a tertiary hospital from State of Puebla. The antifungal susceptibility of the yeast from several clinical samples were determined by the CLS M44-A disk diffusion methods. 149 samples of yeast were analyzed. All species were 100% susceptible to nystatin and amphotericin B. Candida albicans showed resistance of 95.5 % to fluconazole, 50.7 % to 5-flurocytosine and 55.2 % intermediate susceptibility to ketoconazole. Candida glabrata 81.3 % was susceptibility to ketoconazole and 75 % to fluconazole, for the case of 5-flurocytosine the 56.3 % was susceptible. Candida krusei 100 % was susceptible to ketoconazole, 50 % to fluconazole and 37.5 % to 5-flurocytosine. The internal medicine have greater diversity of yeast, the samples have susceptibility of 64.7% to ketoconazole, 47.1 % to fluconazole and 27.5 % to 5-flurocytosine. Hospitalized patients are more resistant to fluconazole and nystatin, but in the case of outpatients presents resistance to ketoconazole. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antifungal" title="antifungal">antifungal</a>, <a href="https://publications.waset.org/abstracts/search?q=susceptibility" title=" susceptibility"> susceptibility</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a>, <a href="https://publications.waset.org/abstracts/search?q=clinical%20samples" title=" clinical samples"> clinical samples</a> </p> <a href="https://publications.waset.org/abstracts/59752/antifungal-susceptibility-of-yeasts-isolated-from-clinical-samples-from-a-tertiary-hospital-from-state-of-puebla" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> A contribution to Phytochemical and Biological Studies of Ailanthus Alitssima Swingle Cultivated in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Samy%20Elnoby">Ahmed Samy Elnoby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ailanthus altissima native to Asia which belongs to the family Simaroubaceae was subjected to phytochemical screening and biological investigations. Phytochemical screening revealed the presence of carbohydrates, tannins, sterols, flavonoids and traces of saponins. In addition, quantitative determination of phenolics and flavonoid content were performed. The antimicrobial activity of methanolic extract of the leaves was determined against gram-positive, gram-negative bacteria in addition to fungi using a modified Kirby-Bauer disc diffusion method that was compared with standard discs ampicillin which acts as an antibacterial agent and amphotericin B which acts as an antifungal agent. A high potency was observed against gram-positive bacteria mainly staphylococcus aureus, gram-negative bacteria mainly Escherichia coli and showed no potency against fungi mainly Aspergillus flavus and candida albicans. On the other hand, the antioxidant activity of the extract was determined by 1, 1-diphenyl-2- diphenyl-2-picryl-hydrazil (DPPH). A very low potency was shown by using DPPH for the antioxidant effect so IC50 = 0 ug/ml, IC90 =0 ug /ml and remark gave 47.2 % at 100 ug/ml which is very weak. Cytotoxic activity was determined by using MTT assay (3-4, 5-Dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium Bromide) against MCF7 (Human Caucasian breast adenocarcinoma) cell line. A moderate potency was shown by using MCF7 cell line for cytotoxic effect so LC50= 90.2 ug/ml, LC90=139.9 ug/ml and the remark gave 55.2% at 100 ug/ml which is of moderate activity so, Ailanthus altissima can be considered to be a promising antimicrobial agent from natural origin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ailanthus%20altissima" title="Ailanthus altissima">Ailanthus altissima</a>, <a href="https://publications.waset.org/abstracts/search?q=TLC" title="TLC">TLC</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title="HPLC">HPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-microbial%20activity" title="anti-microbial activity">anti-microbial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal%20activity" title="antifungal activity">antifungal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxic%20activity" title="cytotoxic activity">cytotoxic activity</a> </p> <a href="https://publications.waset.org/abstracts/140076/a-contribution-to-phytochemical-and-biological-studies-of-ailanthus-alitssima-swingle-cultivated-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Evaluation of Adequacy of Caspofungin Prescription in a Tunisian Hospital Cohort</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariem%20Meddeb%20Sidhom">Mariem Meddeb Sidhom</a>, <a href="https://publications.waset.org/abstracts/search?q=Souhayel%20Hedfi"> Souhayel Hedfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rjaibia%20Houda"> Rjaibia Houda</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Dridi"> Mehdi Dridi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ali%20Yousfi"> Mohamed Ali Yousfi</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%A2adia%20Gargouri"> Sâadia Gargouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considering the important increase in costs of caspofungin treatments and ahead the evolution of its indication, pharmacy department was prompted to realize a review of the adequacy of prescriptions in the medical intensive care units (ICU). A retrospective observational study was conducted in Tunis military hospital concerning ICU prescriptions of caspofungin from 2008 until 2013. A pharmacist had returned to the patient’s medical records to collect data and to the microbiology department for parasitological results. The adequacy of prescriptions was evaluated by a pharmacist and an infectiologist parasitologist, referring to predefined scale of criteria resuming the indications of the marketing authorization (MA) and grade AI-AII of the guidelines of the Infectious Diseases Society of America (IDSA). Sixty two ICU patients have been treated with caspofungin during the period of study; however, 8 files were lost. Thus, 54 patients were included in the study having received 55 prescriptions of caspofungin. Males were a majority with 64.8% of the population. Mean age was 51 years. Caspofungin was indicated in accordance with the IDSA recommendations in 43.6% of the cases. The most case of non respect to the guidelines was the indication of caspofungin as empirical treatment in non neutropenic patients. Caspofungin was utilized as a first line treatment in 9 cases where it was possible to give fluconazole first, as germs were fluconazole- sensitive. Caspofungin was indicated in 2 patients with good renal function and in which nor amphotericin B, liposomal ampho B neither itraconazole had been previously used, as indicates the MA. The posology of caspofungin was respected in all prescriptions with a loading dose of 70 mg in the first day and a maintenance dose of 50 mg daily. Seven patients had received a daily dose of 70 mg, the recommended dose for people weighing more than 80 Kg. Caspofungin prescriptions are far to be adequately done. There is a clear need of optimization in indicating this molecule and that must be done in collaboration between the pharmacy department, the ICUs and parasitology department. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=caspofungin" title="caspofungin">caspofungin</a>, <a href="https://publications.waset.org/abstracts/search?q=prescription" title=" prescription"> prescription</a>, <a href="https://publications.waset.org/abstracts/search?q=intensive%20care%20units" title=" intensive care units"> intensive care units</a>, <a href="https://publications.waset.org/abstracts/search?q=marketing%20authorization" title=" marketing authorization"> marketing authorization</a>, <a href="https://publications.waset.org/abstracts/search?q=Tunisian%20hospital%20cohort" title=" Tunisian hospital cohort"> Tunisian hospital cohort</a> </p> <a href="https://publications.waset.org/abstracts/20758/evaluation-of-adequacy-of-caspofungin-prescription-in-a-tunisian-hospital-cohort" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Brazilian Brown Propolis as a Natural Source against Leishmania amazonensis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20Pena%20Ribeiro">Victor Pena Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Caroline%20Arruda"> Caroline Arruda</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennyfer%20Andrea%20Aldana%20Mejia"> Jennyfer Andrea Aldana Mejia</a>, <a href="https://publications.waset.org/abstracts/search?q=Jairo%20Kenupp%20Bastos"> Jairo Kenupp Bastos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leishmaniasis is a serious health problem around the world. The treatment of infected individuals with pentavalent antimonial drugs is the main therapeutic strategy. However, they present high toxicity and persistence side effects. Therefore, the discovery of new and safe natural-derived therapeutic agents against leishmaniasis is important. Propolis is a resin of viscous consistency produced by Apis mellifera bees from parts of plants. The main types of Brazilian propolis are green, red, yellow and brown. Thus, the aim of this work was to investigate the chemical composition and leishmanicidal properties of a brown propolis (BP). For this purpose, the hydroalcoholic crude extract of BP was obtained and was fractionated by liquid-liquid chromatography. The chemical profile of the extract and its fractions were obtained by HPLC-UV-DAD. The fractions were submitted to preparative HPLC chromatography for isolation of the major compounds of each fraction. They were analyzed by NMR for structural determination. The volatile compounds were obtained by hydrodistillation and identified by GC/MS. Promastigote forms of Leishmania amazonensis were cultivated in M199 medium and then 2×106 parasites.mL-1 were incubated in 96-well microtiter plates with the samples. The BP was dissolved in dimethyl sulfoxide (DMSO) and diluted into the medium, to give final concentrations of 1.56, 3.12, 6.25, 12.5, 25 and 50 µg.mL⁻¹. The plates were incubated at 25ºC for 24 h, and the lysis percentage was determined by using a Neubauer chamber. The bioassays were performed in triplicate, using a medium with 0.5% DMSO as a negative control and amphotericin B as a positive control. The leishimnicidal effect against promastigote forms was also evaluated at the same concentrations. Cytotoxicity experiments also were performed in 96-well plates against normal (CHO-k1) and tumor cell lines (AGP01 and HeLa) using XTT colorimetric method. Phenolic compounds, flavonoids, and terpenoids were identified in brown propolis. The major compounds were identified as follows: p-coumaric acid (24.6%) for a methanolic fraction, Artepelin-C (29.2%) for ethyl acetate fraction and the compounds of hexane fraction are in the process of structural elucidation. The major volatile compounds identified were β-caryophyllene (10.9%), germacrene D (9.7%), nerolidol (10.8%) and spathulenol (8.5%). The propolis did not show cytotoxicity against normal cell lines (CHO) with IC₅₀ > 100 μg.mL⁻¹, whereas the IC₅₀ < 10 μg.mL⁻¹ showed a potential against the AGP01 cell line, propolis did not demonstrate cytotoxicity against HeLa cell lines IC₅₀ > 100 μg.mL⁻¹. In the determination of the leishmanicidal activity, the highest (50 μg.mL⁻¹) and lowest (1.56 μg.mL⁻¹) concentrations of the crude extract caused the lysis of 76% and 45% of promastigote forms of L. amazonensis, respectively. To the amastigote form, the highest (50 μg.mL⁻¹) and lowest (1.56 μg.mL⁻¹) concentrations caused the mortality of 89% and 75% of L. amazonensis, respectively. The IC₅₀ was 2.8 μg.mL⁻¹ to amastigote form and 3.9 μg.mL⁻¹ to promastigote form, showing a promising activity against Leishmania amazonensis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amastigote" title="amastigote">amastigote</a>, <a href="https://publications.waset.org/abstracts/search?q=brown%20propolis" title=" brown propolis"> brown propolis</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=promastigote" title=" promastigote"> promastigote</a> </p> <a href="https://publications.waset.org/abstracts/97355/brazilian-brown-propolis-as-a-natural-source-against-leishmania-amazonensis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Antimicrobial and Anti-Biofilm Activity of Non-Thermal Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jan%20Masak">Jan Masak</a>, <a href="https://publications.waset.org/abstracts/search?q=Eva%20Kvasnickova"> Eva Kvasnickova</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Scholtz"> Vladimir Scholtz</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Matatkova"> Olga Matatkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Marketa%20Valkova"> Marketa Valkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alena%20Cejkova"> Alena Cejkova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial colonization of medical instruments, catheters, implants, etc. is a serious problem in the spread of nosocomial infections. Biofilms exhibit enormous resistance to environment. The resistance of biofilm populations to antibiotic or biocides often increases by two to three orders of magnitude in comparison with suspension populations. Subjects of interests are substances or physical processes that primarily cause the destruction of biofilm, while the released cells can be killed by existing antibiotics. In addition, agents that do not have a strong lethal effect do not cause such a significant selection pressure to further enhance resistance. Non-thermal plasma (NTP) is defined as neutral, ionized gas composed of particles (photons, electrons, positive and negative ions, free radicals and excited or non-excited molecules) which are in permanent interaction. In this work, the effect of NTP generated by the cometary corona with a metallic grid on the formation and stability of biofilm and metabolic activity of cells in biofilm was studied. NTP was applied on biofilm populations of Staphylococcus epidermidis DBM 3179, Pseudomonas aeruginosa DBM 3081, DBM 3777, ATCC 15442 and ATCC 10145, Escherichia coli DBM 3125 and Candida albicans DBM 2164 grown on solid media on Petri dishes and on the titanium alloy (Ti6Al4V) surface used for the production joint replacements. Erythromycin (for S. epidermidis), polymyxin B (for E. coli and P. aeruginosa), amphotericin B (for C. albicans) and ceftazidime (for P. aeruginosa) were used to study the combined effect of NTP and antibiotics. Biofilms were quantified by crystal violet assay. Metabolic activity of the cells in biofilm was measured using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) colorimetric test based on the reduction of MTT into formazan by the dehydrogenase system of living cells. Fluorescence microscopy was applied to visualize the biofilm on the surface of the titanium alloy; SYTO 13 was used as a fluorescence probe to stain cells in the biofilm. It has been shown that biofilm populations of all studied microorganisms are very sensitive to the type of used NTP. The inhibition zone of biofilm recorded after 60 minutes exposure to NTP exceeded 20 cm², except P. aeruginosa DBM 3777 and ATCC 10145, where it was about 9 cm². Also metabolic activity of cells in biofilm differed for individual microbial strains. High sensitivity to NTP was observed in S. epidermidis, in which the metabolic activity of biofilm decreased after 30 minutes of NTP exposure to 15% and after 60 minutes to 1%. Conversely, the metabolic activity of cells of C. albicans decreased to 53% after 30 minutes of NTP exposure. Nevertheless, this result can be considered very good. Suitable combinations of exposure time of NTP and the concentration of antibiotic achieved in most cases a remarkable synergic effect on the reduction of the metabolic activity of the cells of the biofilm. For example, in the case of P. aeruginosa DBM 3777, a combination of 30 minutes of NTP with 1 mg/l of ceftazidime resulted in a decrease metabolic activity below 4%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-biofilm%20activity" title="anti-biofilm activity">anti-biofilm activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic" title=" antibiotic"> antibiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=non-thermal%20plasma" title=" non-thermal plasma"> non-thermal plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=opportunistic%20pathogens" title=" opportunistic pathogens"> opportunistic pathogens</a> </p> <a href="https://publications.waset.org/abstracts/76404/antimicrobial-and-anti-biofilm-activity-of-non-thermal-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Charged Amphiphilic Polypeptide Based Micelle Hydrogel Composite for Dual Drug Release</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monika%20Patel">Monika Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuaki%20Matsumura"> Kazuaki Matsumura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic hydrogels, with their unique properties such as porosity, strength, and swelling in aqueous environment, are being used in many fields from food additives to regenerative medicines, from diagnostic and pharmaceuticals to drug delivery systems (DDS). But, hydrogels also have some limitations in terms of homogeneity of drug distribution and quantity of loaded drugs. As an alternate, polymeric micelles are extensively used as DDS. With the ease of self-assembly, and distinct stability they remarkably improve the solubility of hydrophobic drugs. However, presently, combinational therapy is the need of time and so are systems which are capable of releasing more than one drug. And it is one of the major challenges towards DDS to control the release of each drug independently, which simple DDS cannot meet. In this work, we present an amphiphilic polypeptide based micelle hydrogel composite to study the dual drug release for wound healing purposes using Amphotericin B (AmpB) and Curcumin as model drugs. Firstly, two differently charged amphiphilic polypeptide chains were prepared namely, poly L-Lysine-b-poly phenyl alanine (PLL-PPA) and poly Glutamic acid-b-poly phenyl alanine (PGA-PPA) through ring opening polymerization of amino acid N-carboxyanhydride. These polymers readily self-assemble to form micelles with hydrophobic PPA block as core and hydrophilic PLL/PGA as shell with an average diameter of about 280nm. The thus formed micelles were loaded with the model drugs. The PLL-PPA micelle was loaded with curcumin and PGA-PPA was loaded with AmpB by dialysis method. Drug loaded micelles showed a slight increase in the mean diameter and were fairly stable in solution and lyophilized forms. For forming the micelles hydrogel composite, the drug loaded micelles were dissolved and were cross linked using genipin. Genipin uses the free –NH2 groups in the PLL-PPA micelles to form a hydrogel network with free PGA-PPA micelles trapped in between the 3D scaffold formed. Different composites were tested by changing the weight ratios of the both micelles and were seen to alter its resulting surface charge from positive to negative with increase in PGA-PPA ratio. The composites with high surface charge showed a burst release of drug in initial phase, were as the composites with relatively low net charge showed a sustained release. Thus the resultant surface charge of the composite can be tuned to tune its drug release profile. Also, while studying the degree of cross linking among the PLL-PPA particles for effect on dual drug release, it was seen that as the degree of crosslinking increases, an increase in the tendency to burst release the drug (AmpB) is seen in PGA-PPA particle, were as on the contrary the PLL-PPA particles showed a slower release of Curcumin with increasing the cross linking density. Thus, two different pharmacokinetic profile of drugs were seen by changing the cross linking degree. In conclusion, a unique charged amphiphilic polypeptide based micelle hydrogel composite for dual drug delivery. This composite can be finely tuned on the basis of need of drug release profiles by changing simple parameters such as composition, cross linking and pH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amphiphilic%20polypeptide" title="amphiphilic polypeptide">amphiphilic polypeptide</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20drug%20release" title=" dual drug release"> dual drug release</a>, <a href="https://publications.waset.org/abstracts/search?q=micelle%20hydrogel%20composite" title=" micelle hydrogel composite"> micelle hydrogel composite</a>, <a href="https://publications.waset.org/abstracts/search?q=tunable%20DDS" title=" tunable DDS"> tunable DDS</a> </p> <a href="https://publications.waset.org/abstracts/56879/charged-amphiphilic-polypeptide-based-micelle-hydrogel-composite-for-dual-drug-release" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10