CINXE.COM
Search results for: docker containers
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: docker containers</title> <meta name="description" content="Search results for: docker containers"> <meta name="keywords" content="docker containers"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="docker containers" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="docker containers"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 152</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: docker containers</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">152</span> Bypassing Docker Transport Layer Security Using Remote Code Execution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20J.%20Hahn">Michael J. Hahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Docker is a powerful tool used by many companies such as PayPal, MetLife, Expedia, Visa, and many others. Docker works by bundling multiple applications, binaries, and libraries together on top of an operating system image called a container. The container runs on a Docker engine that in turn runs on top of a standard operating system. This centralization saves a lot of system resources. In this paper, we will be demonstrating how to bypass Transport Layer Security and execute remote code within Docker containers built on a base image of Alpine Linux version 3.7.0 through the use of .apk files due to flaws in the Alpine Linux package management program. This exploit renders any applications built using Docker with a base image of Alpine Linux vulnerable to unwanted outside forces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud" title="cloud">cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptography" title=" cryptography"> cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=Docker" title=" Docker"> Docker</a>, <a href="https://publications.waset.org/abstracts/search?q=Linux" title=" Linux"> Linux</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a> </p> <a href="https://publications.waset.org/abstracts/103868/bypassing-docker-transport-layer-security-using-remote-code-execution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">151</span> NanoSat MO Framework: Simulating a Constellation of Satellites with Docker Containers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C%C3%A9sar%20Coelho">César Coelho</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolai%20Wiegand"> Nikolai Wiegand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advancement of nanosatellite technology has opened new avenues for cost-effective and faster space missions. The NanoSat MO Framework (NMF) from the European Space Agency (ESA) provides a modular and simpler approach to the development of flight software and operations of small satellites. This paper presents a methodology using the NMF together with Docker for simulating constellations of satellites. By leveraging Docker containers, the software environment of individual satellites can be easily replicated within a simulated constellation. This containerized approach allows for rapid deployment, isolation, and management of satellite instances, facilitating comprehensive testing and development in a controlled setting. By integrating the NMF lightweight simulator in the container, a comprehensive simulation environment was achieved. A significant advantage of using Docker containers is their inherent scalability, enabling the simulation of hundreds or even thousands of satellites with minimal overhead. Docker's lightweight nature ensures efficient resource utilization, allowing for deployment on a single host or across a cluster of hosts. This capability is crucial for large-scale simulations, such as in the case of mega-constellations, where multiple traditional virtual machines would be impractical due to their higher resource demands. This ability for easy horizontal scaling based on the number of simulated satellites provides tremendous flexibility to different mission scenarios. Our results demonstrate that leveraging Docker containers with the NanoSat MO Framework provides a highly efficient and scalable solution for simulating satellite constellations, offering not only significant benefits in terms of resource utilization and operational flexibility but also enabling testing and validation of ground software for constellations. The findings underscore the importance of taking advantage of already existing technologies in computer science to create new solutions for future satellite constellations in space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=containerization" title="containerization">containerization</a>, <a href="https://publications.waset.org/abstracts/search?q=docker%20containers" title=" docker containers"> docker containers</a>, <a href="https://publications.waset.org/abstracts/search?q=NanoSat%20MO%20framework" title=" NanoSat MO framework"> NanoSat MO framework</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20constellation%20simulation" title=" satellite constellation simulation"> satellite constellation simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=scalability" title=" scalability"> scalability</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20satellites" title=" small satellites"> small satellites</a> </p> <a href="https://publications.waset.org/abstracts/186837/nanosat-mo-framework-simulating-a-constellation-of-satellites-with-docker-containers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">150</span> Impact of Network Workload between Virtualization Solutions on a Testbed Environment for Cybersecurity Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Fernagut">Kevin Fernagut</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Flauzac"> Olivier Flauzac</a>, <a href="https://publications.waset.org/abstracts/search?q=Erick%20M.%20G.%20Robledo"> Erick M. G. Robledo</a>, <a href="https://publications.waset.org/abstracts/search?q=Florent%20Nolot"> Florent Nolot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adoption of modern lightweight virtualization often comes with new threats and network vulnerabilities. This paper seeks to assess this with a different approach studying the behavior of a testbed built with tools such as Kernel-Based Virtual Machine (KVM), Linux Containers (LXC) and Docker, by performing stress tests within a platform where students experiment simultaneously with cyber-attacks, and thus observe the impact on the campus network and also find the best solution for cyber-security learning. Interesting outcomes can be found in the literature comparing these technologies. It is, however, difficult to find results of the effects on the global network where experiments are carried out. Our work shows that other physical hosts and the faculty network were impacted while performing these trials. The problems found are discussed, as well as security solutions and the adoption of new network policies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=containerization" title="containerization">containerization</a>, <a href="https://publications.waset.org/abstracts/search?q=containers" title=" containers"> containers</a>, <a href="https://publications.waset.org/abstracts/search?q=cybersecurity" title=" cybersecurity"> cybersecurity</a>, <a href="https://publications.waset.org/abstracts/search?q=cyberattacks" title=" cyberattacks"> cyberattacks</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation" title=" isolation"> isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=virtualization" title=" virtualization"> virtualization</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20machines" title=" virtual machines"> virtual machines</a> </p> <a href="https://publications.waset.org/abstracts/127012/impact-of-network-workload-between-virtualization-solutions-on-a-testbed-environment-for-cybersecurity-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">149</span> The Virtual Container Yard: Identifying the Persuasive Factors in Container Interchange</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Edirisinghe">L. Edirisinghe</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhihong%20Jin"> Zhihong Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20W.%20Wijeratne"> A. W. Wijeratne</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Mudunkotuwa"> R. Mudunkotuwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The virtual container yard is an effective solution to the container inventory imbalance problem which is a global issue. It causes substantial cost to carriers, which inadvertently adds to the prices of consumer goods. The virtual container yard is rooted in the fundamentals of container interchange between carriers. If carriers opt to interchange their excess containers with those who are deficit, a substantial part of the empty reposition cost could be eliminated. Unlike in other types of ships, cargo cannot be directly loaded to a container ship. Slots and containers are supplementary components; thus, without containers, a carrier cannot ship cargo if the containers are not available and vice versa. Few decades ago, carriers recognized slot (the unit of space in a container ship) interchange as a viable solution for the imbalance of shipping space. Carriers interchange slots among them and it also increases the advantage of scale of economies in container shipping. Some of these service agreements between mega carriers have provisions to interchange containers too. However, the interchange mechanism is still not popular among carriers for containers. This is the paradox that prevails in the liner shipping industry. At present, carriers reposition their excess empty containers to areas where they are in demand. This research applied factor analysis statistical method. The paper reveals that five major components may influence the virtual container yard namely organisation, practice and culture, legal and environment, international nature, and marketing. There are 12 variables that may impact the virtual container yard, and these are explained in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virtual%20container%20yard" title="virtual container yard">virtual container yard</a>, <a href="https://publications.waset.org/abstracts/search?q=shipping" title=" shipping"> shipping</a>, <a href="https://publications.waset.org/abstracts/search?q=imbalance" title=" imbalance"> imbalance</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory" title=" inventory"> inventory</a> </p> <a href="https://publications.waset.org/abstracts/97126/the-virtual-container-yard-identifying-the-persuasive-factors-in-container-interchange" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">148</span> A Simulation Study on the Applicability of Overbooking Strategies in Inland Container Transport</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Fazi">S. Fazi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Behdani"> B. Behdani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inland transportation of maritime containers entails the use of different modalities whose capacity is typically booked in advance. Containers may miss their scheduled departure time at a terminal for several reasons, such as delays, change of transport modes, multiple bookings pending. In those cases, it may be difficult for transport service providers to find last minute containers to fill the vacant capacity. Similarly to other industries, overbooking could potentially limit these drawbacks at the cost of a lower service level in case of actual excess of capacity in overbooked rides. However, the presence of multiple modalities may provide the required flexibility in rescheduling and limit the dissatisfaction of the shippers in case of containers in overbooking. This flexibility is known with the term 'synchromodality'. In this paper, we evaluate via discrete event simulation the application of overbooking. Results show that in certain conditions overbooking can significantly increase profit and utilization of high-capacity means of transport, such as barges and trains. On the other hand, in case of high penalty costs and limited no-show, overbooking may lead to an excessive use of expensive trucks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation" title="discrete event simulation">discrete event simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=flexibility" title=" flexibility"> flexibility</a>, <a href="https://publications.waset.org/abstracts/search?q=inland%20shipping" title=" inland shipping"> inland shipping</a>, <a href="https://publications.waset.org/abstracts/search?q=multimodality" title=" multimodality"> multimodality</a>, <a href="https://publications.waset.org/abstracts/search?q=overbooking" title=" overbooking"> overbooking</a> </p> <a href="https://publications.waset.org/abstracts/117344/a-simulation-study-on-the-applicability-of-overbooking-strategies-in-inland-container-transport" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">147</span> Management of Empty Containers by Consignees in the Hinterland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Legros">Benjamin Legros</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Fransoo"> Jan Fransoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Oualid%20Jouini"> Oualid Jouini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to evaluate street-turn strategies for empty container repositioning in the hinterland. Containers arrive over time at the (importer) consignee, while the demand for containers arises from the (exporter) shipper. A match can be operated between an empty container from the consignee and the load from the shipper. Therefore, we model the system as a double-ended queue with non-zero matching time and a limited number of resources in order to optimize the reposition- ing decisions. We determine the performance measures when the consignee operates using a fixed withholding threshold policy. We show that the matching time mainly plays a role in the matching proportion, while under a certain duration, it only marginally impacts the consignee’s inventory policy and cost per container. Also, the withholding level is mainly determined by the shipper’s production rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=container" title="container">container</a>, <a href="https://publications.waset.org/abstracts/search?q=double-ended%20queue" title=" double-ended queue"> double-ended queue</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory" title=" inventory"> inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20decision%20process" title=" Markov decision process"> Markov decision process</a>, <a href="https://publications.waset.org/abstracts/search?q=non-zero%20matching%20time" title=" non-zero matching time"> non-zero matching time</a>, <a href="https://publications.waset.org/abstracts/search?q=street-turn" title=" street-turn"> street-turn</a> </p> <a href="https://publications.waset.org/abstracts/159800/management-of-empty-containers-by-consignees-in-the-hinterland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">146</span> Workers’ Prevention from Occupational Chemical Exposures during Container Handling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bal%C3%A1zs%20%C3%81d%C3%A1m">Balázs Ádám</a>, <a href="https://publications.waset.org/abstracts/search?q=Randi%20N%C3%B8rgaard%20Fl%C3%B8e%20Pedersen"> Randi Nørgaard Fløe Pedersen</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B8rgen%20Riis%20Jepsen"> Jørgen Riis Jepsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Volatile chemicals that accumulate and release from freight containers constitute significant health risks. Fumigation to prevent spread of pests and off-gassing of freight are sources of hazardous chemicals. The aim of our study was to investigate the regulation and practice of container handling with focus on preventive measures applied against chemical exposures in Denmark. A comprehensive systematic search of scientific literature and organizational domains of international and Danish regulatory bodies was performed to explore regulations related to safe work with transport containers. The practice of container work was investigated in a series of semi-structured interviews with managers and health and safety representatives of organizations that handle transport containers. Although there are several international and national regulations and local safety instructions that relate to container handling, the provided information is not specific or up-to-date enough to conduct safe practice in many aspects. The interviewees estimate high frequency of containers with chemical exposure and deem that they can potentially damage health, although recognizable health effects are rare. Knowledge is limited about the chemicals and most of them cannot be measured by available devices. Typical preventive measures are passive ventilation and personal protective equipment but their use is not consistent and may not provide adequate protection. Hazardous chemicals are frequently present in transport containers; however, managers, workers and even occupational health professionals have limited knowledge about the problem. Detailed risk assessment and specific instructions on risk management are needed to provide safe conditions for work with containers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20exposure" title="chemical exposure">chemical exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=fumigation" title=" fumigation"> fumigation</a>, <a href="https://publications.waset.org/abstracts/search?q=occupational%20health%20and%20safety%20regulation" title=" occupational health and safety regulation"> occupational health and safety regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20container" title=" transport container"> transport container</a> </p> <a href="https://publications.waset.org/abstracts/17882/workers-prevention-from-occupational-chemical-exposures-during-container-handling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">145</span> Basic Examination of Easily Distinguishable Tactile Symbols Attached to Containers and Packaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Nishimura">T. Nishimura</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Doi"> K. Doi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Fujimoto"> H. Fujimoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Hoshikawa"> Y. Hoshikawa</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Wada"> T. Wada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Japan, it is expected that reasonable accommodation for persons with disabilities will progress further. In particular, there is an urgent need to enhance information support for visually impaired persons who have difficulty accessing information. Recently, tactile symbols have been attached to various surfaces, such as the content labels of containers and packaging of various everyday products. The advantage of tactile symbols is that they are useful for visually impaired persons who cannot read Braille. The method of displaying tactile symbols is prescribed by the International Organization for Standardization (ISO). However, the quantitative data on the shapes and dimensions of tactile symbols is insufficient. In this study, through an evaluation experiments, we examine the easy-to-distinguish shapes and dimensions of tactile symbols used for various applications, including the content labels on containers and packaging. Visually impaired persons participated in the experiments. They used tactile symbols on a daily basis. The details and processes of the experiments were orally explained to the participants prior to the experiments, and the informed consent of the participants was obtained. They were instructed to touch the test pieces of tactile symbols freely with both hands. These tactile symbols were selected because they were likely to be easily distinguishable symbols on the content labels of top surfaces of containers and packaging based on a hearing survey that involved employees of an organization of visually impaired and a social welfare corporation, as well as academic experts of support technology for visually impaired. The participants then answered questions related to ease of distinguishing of tactile symbols on a scale of 5 (where 1 corresponded to ‘difficult to distinguish’ and 5 corresponded to ‘easy to distinguish’). Hearing surveys were also performed in an oral free answer manner with the participants after the experiments. This study revealed the shapes and dimensions regarding easily distinguishable tactile symbols attached to containers and packaging. We expect that this knowledge contributes to improvement of the quality of life of visually impaired persons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=visual%20impairment" title="visual impairment">visual impairment</a>, <a href="https://publications.waset.org/abstracts/search?q=accessible%20design" title=" accessible design"> accessible design</a>, <a href="https://publications.waset.org/abstracts/search?q=tactile%20symbol" title=" tactile symbol"> tactile symbol</a>, <a href="https://publications.waset.org/abstracts/search?q=containers%20and%20packaging" title=" containers and packaging"> containers and packaging</a> </p> <a href="https://publications.waset.org/abstracts/74619/basic-examination-of-easily-distinguishable-tactile-symbols-attached-to-containers-and-packaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">144</span> Low-Cost Wireless Power Transfer System for Smart Recycling Containers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20Luis%20Leal">Juan Luis Leal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafael%20Maestre"> Rafael Maestre</a>, <a href="https://publications.waset.org/abstracts/search?q=Ovidio%20L%C3%B3pez"> Ovidio López</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As innovation progresses, more possibilities are made available to increase the efficiency and reach of solutions for Smart Cities, most of which require the data provided by the Internet of Things (IoT) devices and may even have higher power requirements such as motors or actuators. A reliable power supply with the lowest maintenance is a requirement for the success of these solutions in the long term. Energy harvesting, mainly solar, becomes the solution of choice in most cases, but only if there is enough power to be harvested, which may depend on the device location (e.g., outdoors vs. indoor). This is the case of Smart Waste Containers with compaction systems, which have moderately high-power requirements, and may be installed in places with little sunlight for solar generation. It should be noted that waste is unloaded from the containers with cranes, so sudden and irregular movements may happen, making wired power unviable. In these cases, a wireless power supply may be a great alternative. This paper proposes a cost-effective two coil resonant wireless power transfer (WPT) system and describes its implementation, which has been carried out within an R&D project and validated in real settings with smart containers. Experimental results prove that the developed system achieves wireless power transmission up to 35W in the range of 5 cm to 1 m with a peak efficiency of 78%. The circuit is operated at relatively low resonant frequencies, which combined with enough wire-to-wire separation between the coil windings, reduce the losses caused by the proximity effect and, therefore, allow the use of common stranded wire instead of Litz wire, this without reducing the efficiency significantly. All these design considerations led to a final system that achieves a high efficiency for the desired charging range, simplifying the energy supply for Smart Containers as well as other devices that may benefit from a cost-effective wireless charging system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20coupling" title="electromagnetic coupling">electromagnetic coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20wireless%20charging" title=" resonant wireless charging"> resonant wireless charging</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20recycling%20containers" title=" smart recycling containers"> smart recycling containers</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20power%20transfer" title=" wireless power transfer"> wireless power transfer</a> </p> <a href="https://publications.waset.org/abstracts/151613/low-cost-wireless-power-transfer-system-for-smart-recycling-containers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">143</span> i2kit: A Tool for Immutable Infrastructure Deployments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Chico%20De%20Guzman">Pablo Chico De Guzman</a>, <a href="https://publications.waset.org/abstracts/search?q=Cesar%20Sanchez"> Cesar Sanchez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microservice architectures are increasingly in distributed cloud applications due to the advantages on the software composition, development speed, release cycle frequency and the business logic time to market. On the other hand, these architectures also introduce some challenges on the testing and release phases of applications. Container technology solves some of these issues by providing reproducible environments, easy of software distribution and isolation of processes. However, there are other issues that remain unsolved in current container technology when dealing with multiple machines, such as networking for multi-host communication, service discovery, load balancing or data persistency (even though some of these challenges are already solved by traditional cloud vendors in a very mature and widespread manner). Container cluster management tools, such as Kubernetes, Mesos or Docker Swarm, attempt to solve these problems by introducing a new control layer where the unit of deployment is the container (or the pod — a set of strongly related containers that must be deployed on the same machine). These tools are complex to configure and manage and they do not follow a pure immutable infrastructure approach since servers are reused between deployments. Indeed, these tools introduce dependencies at execution time for solving networking or service discovery problems. If an error on the control layer occurs, which would affect running applications, specific expertise is required to perform ad-hoc troubleshooting. As a consequence, it is not surprising that container cluster support is becoming a source of revenue for consulting services. This paper presents i2kit, a deployment tool based on the immutable infrastructure pattern, where the virtual machine is the unit of deployment. The input for i2kit is a declarative definition of a set of microservices, where each microservice is defined as a pod of containers. Microservices are built into machine images using linuxkit —- a tool for creating minimal linux distributions specialized in running containers. These machine images are then deployed to one or more virtual machines, which are exposed through a cloud vendor load balancer. Finally, the load balancer endpoint is set into other microservices using an environment variable, providing service discovery. The toolkit i2kit reuses the best ideas from container technology to solve problems like reproducible environments, process isolation, and software distribution, and at the same time relies on mature, proven cloud vendor technology for networking, load balancing and persistency. The result is a more robust system with no learning curve for troubleshooting running applications. We have implemented an open source prototype that transforms i2kit definitions into AWS cloud formation templates, where each microservice AMI (Amazon Machine Image) is created on the fly using linuxkit. Even though container cluster management tools have more flexibility for resource allocation optimization, we defend that adding a new control layer implies more important disadvantages. Resource allocation is greatly improved by using linuxkit, which introduces a very small footprint (around 35MB). Also, the system is more secure since linuxkit installs the minimum set of dependencies to run containers. The toolkit i2kit is currently under development at the IMDEA Software Institute. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=container" title="container">container</a>, <a href="https://publications.waset.org/abstracts/search?q=deployment" title=" deployment"> deployment</a>, <a href="https://publications.waset.org/abstracts/search?q=immutable%20infrastructure" title=" immutable infrastructure"> immutable infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=microservice" title=" microservice"> microservice</a> </p> <a href="https://publications.waset.org/abstracts/78219/i2kit-a-tool-for-immutable-infrastructure-deployments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">142</span> An Optimization Algorithm for Reducing the Liquid Oscillation in the Moving Containers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Babajanivalashedi">Reza Babajanivalashedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefania%20Lo%20Feudo"> Stefania Lo Feudo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Luc%20Dion"> Jean-Luc Dion</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquid sloshing is a crucial problem for the dynamic of moving containers in the packaging industries. Sloshing issues have been so far mainly modeled within the framework of fluid dynamics or by using equivalent mechanical models with different kinds of movements and shapes of containers. Nevertheless, these approaches do not allow to determinate the shape of the free surface of the liquid in case of the irregular shape of the moving containers, so that experimental measurements may be required. If there is too much slosh in the moving tank, the liquid can be splashed out on the packages. So, the free surface oscillation must be controlled/reduced to eliminate the splashing. The purpose of this research is to propose an optimization algorithm for finding an optimum command law to reduce surface elevation. In the first step, the free surface of the liquid is simulated based on the separation variable and weak formulation models. Then Genetic and Gradient algorithms are developed for finding the optimum command law. The optimum command law is compared with existing command laws, and the results show that there is a significant difference in surface oscillation between optimum and existing command laws. This algorithm is applicable for different varieties of bottles in case of using the camera for detecting the liquid elevation, and it can produce new command laws for different kinds of tanks to reduce the surface oscillation and remove the splashing phenomenon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sloshing%20phenomenon" title="sloshing phenomenon">sloshing phenomenon</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20variables" title=" separation variables"> separation variables</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20formulation" title=" weak formulation"> weak formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20algorithm" title=" optimization algorithm"> optimization algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=command%20law" title=" command law"> command law</a> </p> <a href="https://publications.waset.org/abstracts/124624/an-optimization-algorithm-for-reducing-the-liquid-oscillation-in-the-moving-containers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">141</span> Kauffman Model on a Network of Containers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johannes%20J.%20Schneider">Johannes J. Schneider</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathias%20S.%20Weyland"> Mathias S. Weyland</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Eggenberger%20Hotz"> Peter Eggenberger Hotz</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20D.%20Jamieson"> William D. Jamieson</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20Castell"> Oliver Castell</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessia%20Faggian"> Alessia Faggian</a>, <a href="https://publications.waset.org/abstracts/search?q=Rudolf%20M.%20F%C3%BCchslin"> Rudolf M. Füchslin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the description of the origin of life, there are still some open gaps, e.g., the formation of macromolecules cannot be fully explained so far. The Kauffman model proposes the existence of autocatalytic sets of macromolecules which mutually catalyze reactions leading to each other’s formation. Usually, this model is simulated in one well-stirred pot only, with a continuous inflow of small building blocks, from which larger molecules are created by a set of catalyzed ligation and cleavage reactions. This approach represents the picture of the primordial soup. However, the conditions on the early Earth must have differed geographically, leading to spatially different outcomes whether a specific reaction could be performed or not. Guided by this picture, the Kauffman model is simulated in a large number of containers in parallel, with neighboring containers being connected by diffusion. In each container, only a subset of the overall reaction set can be performed. Under specific conditions, this approach leads to a larger probability for the existence of an autocatalytic metabolism than in the original Kauffman model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agglomeration" title="agglomeration">agglomeration</a>, <a href="https://publications.waset.org/abstracts/search?q=autocatalytic%20set" title=" autocatalytic set"> autocatalytic set</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20equation" title=" differential equation"> differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Kauffman%20model" title=" Kauffman model"> Kauffman model</a> </p> <a href="https://publications.waset.org/abstracts/182310/kauffman-model-on-a-network-of-containers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">140</span> A Mixed Integer Linear Programming Model for Container Collection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Van%20Engeland">J. Van Engeland</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Lavigne"> C. Lavigne</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20De%20Jaeger"> S. De Jaeger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the light of the transition towards a more circular economy, recovery of products, parts or materials will gain in importance. Additionally, the EU proximity principle related to waste management and emissions generated by transporting large amounts of end-of-life products, shift attention to local recovery networks. The Flemish inter-communal cooperation for municipal solid waste management Meetjesland (IVM) is currently investigating the set-up of such a network. More specifically, the network encompasses the recycling of polyvinyl chloride (PVC), which is collected in separate containers. When these containers are full, a truck should transport them to the processor which can recycle the PVC into new products. This paper proposes a model to optimize the container collection. The containers are located at different Civic Amenity sites (CA sites) in a certain region. Since people can drop off their waste at these CA sites, the containers will gradually fill up during a planning horizon. If a certain container is full, it has to be collected and replaced by an empty container. The collected waste is then transported to a single processor. To perform this collection and transportation of containers, the responsible firm has a set of vehicles stationed at a single depot and different personnel crews. A vehicle can load exactly one container. If a trailer is attached to the vehicle, it can load an additional container. Each day of the planning horizon, the different crews and vehicles leave the depot to collect containers at the different sites. After loading one or two containers, the crew has to drive to the processor for unloading the waste and to pick up empty containers. Afterwards, the crew can again visit sites or it can return to the depot to end its collection work for that day. All along the collection process, the crew has to respect the opening hours of the sites. In order to allow for some flexibility, a crew is allowed to wait a certain amount of time at the gate of a site until it opens. The problem described can be modelled as a variant to the PVRP-TW (Periodic Vehicle Routing Problem with Time Windows). However, a vehicle can at maximum load two containers, hence only two subsequent site visits are possible. For that reason, we will refer to the model as a model for building tactical waste collection schemes. The goal is to a find a schedule describing which crew should visit which CA site on which day to minimize the number of trucks and the routing costs. The model was coded in IBM CPLEX Optimization studio and applied to a number of test instances. Good results were obtained, and specific suggestions concerning route and truck costs could be made. For a large range of input parameters, collection schemes using two trucks are obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=container%20collection" title="container collection">container collection</a>, <a href="https://publications.waset.org/abstracts/search?q=crew%20scheduling" title=" crew scheduling"> crew scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20integer%20linear%20programming" title=" mixed integer linear programming"> mixed integer linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/97057/a-mixed-integer-linear-programming-model-for-container-collection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">139</span> Performance Improvement of Solar Thermal Cooling Systems Integrated with Encapsulated PCM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lana%20Migla">Lana Migla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phase change materials (PCMs) have an important role in improving the efficiency of thermal heat storage. As these materials are characterized by low thermal conductivity, it is necessary to develop heat transfer techniques to improve their thermophysical properties. This scientific article focuses on the geometrical configurations of encapsulated PCM containers and the impact of designs to improve the performance of the solar thermal cooling system. The literature review showed that in-depth research is being conducted on different methods of improving the efficiency of PCM heat transfer, which is the main design task for the containers. Techniques such as microencapsulated PCMs, adding fins and different combinations of fins and nanoparticles are used. The use of graphite, metal foam and doping of high photothermal materials is also being studied. To determine most efficient container configuration, the article looks at different designs of PCM containers with fins for the storage tank. This paper experimentally investigates the effect of the encapsulation design on the performance of a lab-scale thermal energy storage tank. The development of optimized energy storage with integrated phase change material containers reduces auxiliary heater energy consumption, increases the COP of the solar cooling system, and reduces the environmental impact of the cooling system. The review shows that in the cylindrical construction, the ratio between the radius of shell and tube is significant, which means this ratio is the main issue to enhance transfer efficiency and to increase the value of stored heat. Therefore, three cylindrical tube containers with different radiuses 20mm, 35mm, 50mm filled with commercial phase change material were tested. The results show that using a smaller radius achieved a higher power, leading to a reduction in the charging and discharging time. The three fins were added to the selected cylindrical tube to determine their effects on heat exchanging efficiency. The observed optimized performance given by the fin’s arrangement achieved a 40% reduction of PCM's melting time compared to the heat exchanging without fins. The exact dimensions of the PCM containers and fins placements will be presented on-site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20performance" title="energy performance">energy performance</a>, <a href="https://publications.waset.org/abstracts/search?q=PCM%20containers" title=" PCM containers"> PCM containers</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20thermal%20cooling" title=" solar thermal cooling"> solar thermal cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20tank" title=" storage tank"> storage tank</a> </p> <a href="https://publications.waset.org/abstracts/146483/performance-improvement-of-solar-thermal-cooling-systems-integrated-with-encapsulated-pcm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> A Study on Accident Result Contribution of Individual Major Variables Using Multi-Body System of Accident Reconstruction Program</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Donghun%20Jeong">Donghun Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Somyoung%20Shin"> Somyoung Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeoil%20Yun"> Yeoil Yun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A large-scale traffic accident refers to an accident in which more than three people die or more than thirty people are dead or injured. In order to prevent a large-scale traffic accident from causing a big loss of lives or establish effective improvement measures, it is important to analyze accident situations in-depth and understand the effects of major accident variables on an accident. This study aims to analyze the contribution of individual accident variables to accident results, based on the accurate reconstruction of traffic accidents using PC-Crash’s Multi-Body, which is an accident reconstruction program, and simulation of each scenario. Multi-Body system of PC-Crash accident reconstruction program is used for multi-body accident reconstruction that shows motions in diverse directions that were not approached previously. MB System is to design and reproduce a form of body, which shows realistic motions, using several bodies. Targeting the 'freight truck cargo drop accident around the Changwon Tunnel' that happened in November 2017, this study conducted a simulation of the freight truck cargo drop accident and analyzed the contribution of individual accident majors. Then on the basis of the driving speed, cargo load, and stacking method, six scenarios were devised. The simulation analysis result displayed that the freight car was driven at a speed of 118km/h(speed limit: 70km/h) right before the accident, carried 196 oil containers with a weight of 7,880kg (maximum load: 4,600kg) and was not fully equipped with anchoring equipment that could prevent a drop of cargo. The vehicle speed, cargo load, and cargo anchoring equipment were major accident variables, and the accident contribution analysis results of individual variables are as follows. When the freight car only obeyed the speed limit, the scattering distance of oil containers decreased by 15%, and the number of dropped oil containers decreased by 39%. When the freight car only obeyed the cargo load, the scattering distance of oil containers decreased by 5%, and the number of dropped oil containers decreased by 34%. When the freight car obeyed both the speed limit and cargo load, the scattering distance of oil containers fell by 38%, and the number of dropped oil containers fell by 64%. The analysis result of each scenario revealed that the overspeed and excessive cargo load of the freight car contributed to the dispersion of accident damage; in the case of a truck, which did not allow a fall of cargo, there was a different type of accident when driven too fast and carrying excessive cargo load, and when the freight car obeyed the speed limit and cargo load, there was the lowest possibility of causing an accident. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accident%20reconstruction" title="accident reconstruction">accident reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=large-scale%20traffic%20accident" title=" large-scale traffic accident"> large-scale traffic accident</a>, <a href="https://publications.waset.org/abstracts/search?q=PC-Crash" title=" PC-Crash"> PC-Crash</a>, <a href="https://publications.waset.org/abstracts/search?q=MB%20system" title=" MB system"> MB system</a> </p> <a href="https://publications.waset.org/abstracts/139043/a-study-on-accident-result-contribution-of-individual-major-variables-using-multi-body-system-of-accident-reconstruction-program" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> Simulation and Thermal Evaluation of Containers Using PCM in Different Weather Conditions of Chile: Energy Savings in Lightweight Constructions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paula%20Mar%C3%ADn">Paula Marín</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saffari"> Mohammad Saffari</a>, <a href="https://publications.waset.org/abstracts/search?q=Alvaro%20de%20Gracia"> Alvaro de Gracia</a>, <a href="https://publications.waset.org/abstracts/search?q=Luisa%20F.%20Cabeza"> Luisa F. Cabeza</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Ushak"> Svetlana Ushak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate control represents an important issue when referring to energy consumption of buildings and associated expenses, both in installation or operation periods. The climate control of a building relies on several factors. Among them, localization, orientation, architectural elements, sources of energy used, are considered. In order to study the thermal behaviour of a building set up, the present study proposes the use of energy simulation program Energy Plus. In recent years, energy simulation programs have become important tools for evaluation of thermal/energy performance of buildings and facilities. Besides, the need to find new forms of passive conditioning in buildings for energy saving is a critical component. The use of phase change materials (PCMs) for heat storage applications has grown in importance due to its high efficiency. Therefore, the climatic conditions of Northern Chile: high solar radiation and extreme temperature fluctuations ranging from -10°C to 30°C (Calama city), low index of cloudy days during the year are appropriate to take advantage of solar energy and use passive systems in buildings. Also, the extensive mining activities in northern Chile encourage the use of large numbers of containers to harbour workers during shifts. These containers are constructed with lightweight construction systems, requiring heating during night and cooling during day, increasing the HVAC electricity consumption. The use of PCM can improve thermal comfort and reduce the energy consumption. The objective of this study was to evaluate the thermal and energy performance of containers of 2.5×2.5×2.5 m3, located in four cities of Chile: Antofagasta, Calama, Santiago, and Concepción. Lightweight envelopes, typically used in these building prototypes, were evaluated considering a container without PCM inclusion as the reference building and another container with PCM-enhanced envelopes as a test case, both of which have a door and a window in the same wall, orientated in two directions: North and South. To see the thermal response of these containers in different seasons, the simulations were performed considering a period of one year. The results show that higher energy savings for the four cities studied are obtained when the distribution of door and window in the container is in the north direction because of higher solar radiation incidence. The comparison of HVAC consumption and energy savings in % for north direction of door and window are summarised. Simulation results show that in the city of Antofagasta 47% of heating energy could be saved and in the cities of Calama and Concepción the biggest savings in terms of cooling could be achieved since PCM reduces almost all the cooling demand. Currently, based on simulation results, four containers have been constructed and sized with the same structural characteristics carried out in simulations, that are, containers with/without PCM, with door and window in one wall. Two of these containers will be placed in Antofagasta and two containers in a copper mine near to Calama, all of them will be monitored for a period of one year. The simulation results will be validated with experimental measurements and will be reported in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title="energy saving">energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20construction" title=" lightweight construction"> lightweight construction</a>, <a href="https://publications.waset.org/abstracts/search?q=PCM" title=" PCM"> PCM</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/46843/simulation-and-thermal-evaluation-of-containers-using-pcm-in-different-weather-conditions-of-chile-energy-savings-in-lightweight-constructions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">136</span> Scalable CI/CD and Scalable Automation: Assisting in Optimizing Productivity and Fostering Delivery Expansion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Solanki%20Ravirajsinh">Solanki Ravirajsinh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kudo%20Kuniaki"> Kudo Kuniaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharma%20Ankit"> Sharma Ankit</a>, <a href="https://publications.waset.org/abstracts/search?q=Devi%20Sherine"> Devi Sherine</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuboshima%20Misaki"> Kuboshima Misaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Tachi%20Shuntaro"> Tachi Shuntaro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In software development life cycles, the absence of scalable CI/CD significantly impacts organizations, leading to increased overall maintenance costs, prolonged release delivery times, heightened manual efforts, and difficulties in meeting tight deadlines. Implementing CI/CD with standard serverless technologies using cloud services overcomes all the above-mentioned issues and helps organizations improve efficiency and faster delivery without the need to manage server maintenance and capacity. By integrating scalable CI/CD with scalable automation testing, productivity, quality, and agility are enhanced while reducing the need for repetitive work and manual efforts. Implementing scalable CI/CD for development using cloud services like ECS (Container Management Service), AWS Fargate, ECR (to store Docker images with all dependencies), Serverless Computing (serverless virtual machines), Cloud Log (for monitoring errors and logs), Security Groups (for inside/outside access to the application), Docker Containerization (Docker-based images and container techniques), Jenkins (CI/CD build management tool), and code management tools (GitHub, Bitbucket, AWS CodeCommit) can efficiently handle the demands of diverse development environments and are capable of accommodating dynamic workloads, increasing efficiency for faster delivery with good quality. CI/CD pipelines encourage collaboration among development, operations, and quality assurance teams by providing a centralized platform for automated testing, deployment, and monitoring. Scalable CI/CD streamlines the development process by automatically fetching the latest code from the repository every time the process starts, building the application based on the branches, testing the application using a scalable automation testing framework, and deploying the builds. Developers can focus more on writing code and less on managing infrastructure as it scales based on the need. Serverless CI/CD eliminates the need to manage and maintain traditional CI/CD infrastructure, such as servers and build agents, reducing operational overhead and allowing teams to allocate resources more efficiently. Scalable CI/CD adjusts the application's scale according to usage, thereby alleviating concerns about scalability, maintenance costs, and resource needs. Creating scalable automation testing using cloud services (ECR, ECS Fargate, Docker, EFS, Serverless Computing) helps organizations run more than 500 test cases in parallel, aiding in the detection of race conditions, performance issues, and reducing execution time. Scalable CI/CD offers flexibility, dynamically adjusting to varying workloads and demands, allowing teams to scale resources up or down as needed. It optimizes costs by only paying for the resources as they are used and increases reliability. Scalable CI/CD pipelines employ automated testing and validation processes to detect and prevent errors early in the development cycle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=achieve%20parallel%20execution" title="achieve parallel execution">achieve parallel execution</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20services" title=" cloud services"> cloud services</a>, <a href="https://publications.waset.org/abstracts/search?q=scalable%20automation%20testing" title=" scalable automation testing"> scalable automation testing</a>, <a href="https://publications.waset.org/abstracts/search?q=scalable%20continuous%20integration%20and%20deployment" title=" scalable continuous integration and deployment"> scalable continuous integration and deployment</a> </p> <a href="https://publications.waset.org/abstracts/185775/scalable-cicd-and-scalable-automation-assisting-in-optimizing-productivity-and-fostering-delivery-expansion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">135</span> Investigation on Polymer Based Nano-Silver as Food Packaging Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Metak">A. M. Metak</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20T.%20Ajaal"> T. T. Ajaal</a>, <a href="https://publications.waset.org/abstracts/search?q=Amal%20Metak"> Amal Metak</a>, <a href="https://publications.waset.org/abstracts/search?q=Tawfik%20Ajaal"> Tawfik Ajaal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Commercial nanocomposite food packaging type nano-silver containers were characterised using scanning electron microscopy (SEM) and energy-dispersive X-Ray spectroscopy (EDX). The presence of nanoparticles consistent with the incorporation of 1% nano-silver (Ag) and 0.1% titanium dioxide (TiO2) nanoparticle into polymeric materials formed into food containers was confirmed. Both nanomaterials used in this type of packaging appear to be embedded in a layered configuration within the bulk polymer. The dimensions of the incorporated nanoparticles were investigated using X-Ray diffraction (XRD) and determined by calculation using the Scherrer Formula; these were consistent with Ag and TiO2 nanoparticles in the size range 20-70nm both were spherical shape nanoparticles. Antimicrobial assessment of the nanocomposite container has also been performed and the results confirm the antimicrobial activity of Ag and TiO2 nanoparticles in food packaging containers. Migration assessments were performed in a wide range of food matrices to determine the migration of nanoparticles from the packages. The analysis was based on the relevant European safety directives and involved the application of inductively coupled plasma mass spectrometry (ICP-MS) to identify the range of migration risk. The data pertain to insignificance levels of migration of Ag and TiO2 nanoparticles into the selected food matrices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-silver" title="nano-silver">nano-silver</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20food%20packaging" title=" antimicrobial food packaging"> antimicrobial food packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=migration" title=" migration"> migration</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title=" titanium dioxide "> titanium dioxide </a> </p> <a href="https://publications.waset.org/abstracts/1795/investigation-on-polymer-based-nano-silver-as-food-packaging-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> Container Chaos: The Impact of a Casual Game on Learning and Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lori%20L.%20Scarlatos">Lori L. Scarlatos</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20Courtney"> Ryan Courtney</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores the impact that playing a casual game can have on a player's learning and subsequent behavior. A casual mobile game, Container Chaos, was created to teach undergraduate students about the carbon footprint of various disposable beverage containers. Learning was tested with a short quiz, and behavior was tested by observing which beverage containers players choose when offered a drink and a snack. The game was tested multiple times, under a variety of different circumstances. Findings of these tests indicate that, with extended play over time, players can learn new information and sometimes even change their behavior as a result. This has implications for how other casual games can be used to teach concepts and possibly modify behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behavior" title="behavior">behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20footprint" title=" carbon footprint"> carbon footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=casual%20games" title=" casual games"> casual games</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20sciences" title=" material sciences"> material sciences</a> </p> <a href="https://publications.waset.org/abstracts/117765/container-chaos-the-impact-of-a-casual-game-on-learning-and-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> Conceptual Design of a Telecommunications Equipment Container for Humanitarian Logistics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Parisi">S. Parisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ch.%20Achillas"> Ch. Achillas</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Aidonis"> D. Aidonis</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Folinas"> D. Folinas</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Moussiopoulos"> N. Moussiopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Preparedness addresses the strategy in disaster management that allows the implementation of successful operational response immediately after a disaster. With speed as the main driver, product design for humanitarian aid purposes is a key factor of success in situations of high uncertainty and urgency. Within this context, a telecommunications container (TC) has been designed that belongs to a group of containers that serve the purpose of immediate response to global disasters. The TC includes all the necessary equipment to establish a telecommunication center in the destroyed area within the first 72 hours of humanitarian operations. The design focuses on defining the topology of the various parts of equipment by taking into consideration factors of serviceability, functionality, human-product interaction, universal design language, energy consumption, sustainability and the interrelationship with the other containers. The concept parametric design has been implemented with SolidWorks® CAD system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=telecommunications%20container" title="telecommunications container">telecommunications container</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20study" title=" case study"> case study</a>, <a href="https://publications.waset.org/abstracts/search?q=humanitarian%20logistics" title=" humanitarian logistics"> humanitarian logistics</a> </p> <a href="https://publications.waset.org/abstracts/14677/conceptual-design-of-a-telecommunications-equipment-container-for-humanitarian-logistics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Use of Shipping Containers as Office Buildings in Brazil: Thermal and Energy Performance for Different Constructive Options and Climate Zones </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucas%20Caldas">Lucas Caldas</a>, <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Paulse"> Pablo Paulse</a>, <a href="https://publications.waset.org/abstracts/search?q=Karla%20Hora"> Karla Hora </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shipping containers are present in different Brazilian cities, firstly used for transportation purposes, but which become waste materials and an environmental burden in their end-of-life cycle. In the last decade, in Brazil, some buildings made partly or totally from shipping containers started to appear, most of them for commercial and office uses. Although the use of a reused container for buildings seems a sustainable solution, it is very important to measure the thermal and energy aspects when they are used as such. In this context, this study aims to evaluate the thermal and energy performance of an office building totally made from a 12-meter-long, High Cube 40’ shipping container in different Brazilian Bioclimatic Zones. Four different constructive solutions, mostly used in Brazil were chosen: (1) container without any covering; (2) with internally insulated drywall; (3) with external fiber cement boards; (4) with both drywall and fiber cement boards. For this, the DesignBuilder with EnergyPlus was used for the computational simulation in 8760 hours. The EnergyPlus Weather File (EPW) data of six Brazilian capital cities were considered: Curitiba, Sao Paulo, Brasilia, Campo Grande, Teresina and Rio de Janeiro. Air conditioning appliance (split) was adopted for the conditioned area and the cooling setpoint was fixed at 25°C. The coefficient of performance (CoP) of air conditioning equipment was set as 3.3. Three kinds of solar absorptances were verified: 0.3, 0.6 and 0.9 of exterior layer. The building in Teresina presented the highest level of energy consumption, while the one in Curitiba presented the lowest, with a wide range of differences in results. The constructive option of external fiber cement and drywall presented the best results, although the differences were not significant compared to the solution using just drywall. The choice of absorptance showed a great impact in energy consumption, mainly compared to the case of containers without any covering and for use in the hottest cities: Teresina, Rio de Janeiro, and Campo Grande. This study brings as the main contribution the discussion of constructive aspects for design guidelines for more energy-efficient container buildings, considering local climate differences, and helps the dissemination of this cleaner constructive practice in the Brazilian building sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioclimatic%20zones" title="bioclimatic zones">bioclimatic zones</a>, <a href="https://publications.waset.org/abstracts/search?q=Brazil" title=" Brazil"> Brazil</a>, <a href="https://publications.waset.org/abstracts/search?q=shipping%20containers" title=" shipping containers"> shipping containers</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20and%20energy%20performance" title=" thermal and energy performance"> thermal and energy performance</a> </p> <a href="https://publications.waset.org/abstracts/96244/use-of-shipping-containers-as-office-buildings-in-brazil-thermal-and-energy-performance-for-different-constructive-options-and-climate-zones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">131</span> Development and Validation of a Carbon Dioxide TDLAS Sensor for Studies on Fermented Dairy Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lorenzo%20Cocola">Lorenzo Cocola</a>, <a href="https://publications.waset.org/abstracts/search?q=Massimo%20Fedel"> Massimo Fedel</a>, <a href="https://publications.waset.org/abstracts/search?q=Dragi%C5%A1a%20Savi%C4%87"> Dragiša Savić</a>, <a href="https://publications.waset.org/abstracts/search?q=Bojana%20Danilovi%C4%87"> Bojana Danilović</a>, <a href="https://publications.waset.org/abstracts/search?q=Luca%20Poletto"> Luca Poletto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An instrument for the detection and evaluation of gaseous carbon dioxide in the headspace of closed containers has been developed in the context of Packsensor Italian-Serbian joint project. The device is based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) with a Wavelength Modulation Spectroscopy (WMS) technique in order to accomplish a non-invasive measurement inside closed containers of fermented dairy products (yogurts and fermented cheese in cups and bottles). The purpose of this instrument is the continuous monitoring of carbon dioxide concentration during incubation and storage of products over a time span of the whole shelf life of the product, in the presence of different microorganisms. The instrument’s optical front end has been designed to be integrated in a thermally stabilized incubator. An embedded computer provides processing of spectral artifacts and storage of an arbitrary set of calibration data allowing a properly calibrated measurement on many samples (cups and bottles) of different shapes and sizes commonly found in the retail distribution. A calibration protocol has been developed in order to be able to calibrate the instrument on the field also on containers which are notoriously difficult to seal properly. This calibration protocol is described and evaluated against reference measurements obtained through an industry standard (sampling) carbon dioxide metering technique. Some sets of validation test measurements on different containers are reported. Two test recordings of carbon dioxide concentration evolution are shown as an example of instrument operation. The first demonstrates the ability to monitor a rapid yeast growth in a contaminated sample through the increase of headspace carbon dioxide. Another experiment shows the dissolution transient with a non-saturated liquid medium in presence of a carbon dioxide rich headspace atmosphere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TDLAS" title="TDLAS">TDLAS</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=cups" title=" cups"> cups</a>, <a href="https://publications.waset.org/abstracts/search?q=headspace" title=" headspace"> headspace</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement" title=" measurement"> measurement</a> </p> <a href="https://publications.waset.org/abstracts/41645/development-and-validation-of-a-carbon-dioxide-tdlas-sensor-for-studies-on-fermented-dairy-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">130</span> An Experimental Testbed Using Virtual Containers for Distributed Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parth%20Patel">Parth Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Zhu"> Ying Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Distributed systems have become ubiquitous, and they continue their growth through a range of services. With advances in resource virtualization technology such as Virtual Machines (VM) and software containers, developers no longer require high-end servers to test and develop distributed software. Even in commercial production, virtualization has streamlined the process of rapid deployment and service management. This paper introduces a distributed systems testbed that utilizes virtualization to enable distributed systems development on commodity computers. The testbed can be used to develop new services, implement theoretical distributed systems concepts for understanding, and experiment with virtual network topologies. We show its versatility through two case studies that utilize the testbed for implementing a theoretical algorithm and developing our own methodology to find high-risk edges. The results of using the testbed for these use cases have proven the effectiveness and versatility of this testbed across a range of scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20systems" title="distributed systems">distributed systems</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20testbed" title=" experimental testbed"> experimental testbed</a>, <a href="https://publications.waset.org/abstracts/search?q=peer-to-peer%20networks" title=" peer-to-peer networks"> peer-to-peer networks</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20container%20technology" title=" virtual container technology"> virtual container technology</a> </p> <a href="https://publications.waset.org/abstracts/133579/an-experimental-testbed-using-virtual-containers-for-distributed-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> Research on Container Housing: A New Form of Informal Housing on Urban Temporary Land</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lufei%20Mao">Lufei Mao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongwei%20Chen"> Hongwei Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Zijiao%20Chai"> Zijiao Chai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Informal housing is a widespread phenomenon in developing countries. In many newly-emerging cities in China, rapid urbanization leads to an influx of population as well as a shortage of housing. Under this background, container housing, a new form of informal housing, gradually appears on a small scale on urban temporary land in recent years. Container housing, just as its name implies, transforms containers into small houses that allow migrant workers group to live in it. Scholars in other countries have established sound theoretical frameworks for informal housing study, but the research fruits seem rather limited on this small scale housing form. Unlike the cases in developed countries, these houses, which are outside urban planning, bring about various environmental, economic, social and governance issues. Aiming to figure out this new-born housing form, a survey mainly on two container housing settlements in Hangzhou, China was carried out to gather the information of them. Based on this thorough survey, the paper concludes the features and problems of infrastructure, environment and social communication of container housing settlements. The result shows that these containers were lacking of basic facilities and were restricted in a small mess temporary land. Moreover, because of the deficiency in management, the rental rights of these containers might not be guaranteed. Then the paper analyzes the factors affecting the formation and evolution of container housing settlements. It turns out that institutional and policy factors, market factors and social factors were the main three factors that affect the formation. At last, the paper proposes some suggestions for the governance of container housing and the utility pattern of urban temporary land. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=container%20housing" title="container housing">container housing</a>, <a href="https://publications.waset.org/abstracts/search?q=informal%20housing" title=" informal housing"> informal housing</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20temporary%20land" title=" urban temporary land"> urban temporary land</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20governance" title=" urban governance"> urban governance</a> </p> <a href="https://publications.waset.org/abstracts/71245/research-on-container-housing-a-new-form-of-informal-housing-on-urban-temporary-land" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> Selecting the Best Risk Exposure to Assess Collision Risks in Container Terminals </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ali%20Hasanzadeh">Mohammad Ali Hasanzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Thierry%20Van%20Elslander"> Thierry Van Elslander</a>, <a href="https://publications.waset.org/abstracts/search?q=Eddy%20Van%20De%20Voorde"> Eddy Van De Voorde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> About 90 percent of world merchandise trade by volume being carried by sea. Maritime transport remains as back bone behind the international trade and globalization meanwhile all seaborne goods need using at least two ports as origin and destination. Amid seaborne traded cargos, container traffic is a prosperous market with about 16% in terms of volume. Albeit containerized cargos are less in terms of tonnage but, containers carry the highest value cargos amongst all. That is why efficient handling of containers in ports is very important. Accidents are the foremost causes that lead to port inefficiency and a surge in total transport cost. Having different port safety management systems (PSMS) in place, statistics on port accidents show that numerous accidents occur in ports. Some of them claim peoples’ life; others damage goods, vessels, port equipment and/or the environment. Several accident investigation illustrate that the most common accidents take place throughout transport operation, it sometimes accounts for 68.6% of all events, therefore providing a safer workplace depends on reducing collision risk. In order to quantify risks at the port area different variables can be used as exposure measurement. One of the main motives for defining and using exposure in studies related to infrastructure is to account for the differences in intensity of use, so as to make comparisons meaningful. In various researches related to handling containers in ports and intermodal terminals, different risk exposures and also the likelihood of each event have been selected. Vehicle collision within the port area (10-7 per kilometer of vehicle distance travelled) and dropping containers from cranes, forklift trucks, or rail mounted gantries (1 x 10-5 per lift) are some examples. According to the objective of the current research, three categories of accidents selected for collision risk assessment; fall of container during ship to shore operation, dropping container during transfer operation and collision between vehicles and objects within terminal area. Later on various consequences, exposure and probability identified for each accident. Hence, reducing collision risks profoundly rely on picking the right risk exposures and probability of selected accidents, to prevent collision accidents in container terminals and in the framework of risk calculations, such risk exposures and probabilities can be useful in assessing the effectiveness of safety programs in ports. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=container%20terminal" title="container terminal">container terminal</a>, <a href="https://publications.waset.org/abstracts/search?q=collision" title=" collision"> collision</a>, <a href="https://publications.waset.org/abstracts/search?q=seaborne%20trade" title=" seaborne trade"> seaborne trade</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20exposure" title=" risk exposure"> risk exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20probability" title=" risk probability"> risk probability</a> </p> <a href="https://publications.waset.org/abstracts/31012/selecting-the-best-risk-exposure-to-assess-collision-risks-in-container-terminals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">127</span> Uses and Manufacturing of Beech Corrugated Plywood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prochazka%20Jiri">Prochazka Jiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Beranek%20Tomas"> Beranek Tomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Podlena%20Milan"> Podlena Milan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeidler%20Ales"> Zeidler Ales</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The poster deals with the issue of ISO shipping containers’ sheathing made of corrugated plywood instead of traditional corrugated metal sheets. It was found that the corrugated plywood is a suitable material for the sheathing due to its great flexural strength perpendicular to the course of the wave, sufficient impact resistance, surface compressive strength and low weight. Three sample sets of different thicknesses 5, 8 and 10 mm were tested in the experiments. The tests have shown that the 5 cm corrugated plywood is the most suitable thickness for sheathing. Experiments showed that to increase bending strength at needed value, it was necessary to increase the weight of the timber only by 1.6%. Flat cash test showed that 5 mm corrugated plywood is sufficient material for sheathing from a mechanical point of view. Angle of corrugation was found as a very important factor which massively affects the mechanical properties. The impact strength test has shown that plywood is relatively tough material in direction of corrugation. It was calculated that the use of corrugated plywood sheathing for the containers can reduce the weight of the walls up to 75%. Corrugated plywood is also suitable material for web of I-joists and wide interior design applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated%20plywood" title="corrugated plywood">corrugated plywood</a>, <a href="https://publications.waset.org/abstracts/search?q=veneer" title=" veneer"> veneer</a>, <a href="https://publications.waset.org/abstracts/search?q=beech%20plywood" title=" beech plywood"> beech plywood</a>, <a href="https://publications.waset.org/abstracts/search?q=ISO%20shipping%20container" title=" ISO shipping container"> ISO shipping container</a>, <a href="https://publications.waset.org/abstracts/search?q=I-joist" title=" I-joist"> I-joist</a> </p> <a href="https://publications.waset.org/abstracts/47801/uses-and-manufacturing-of-beech-corrugated-plywood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> Studies on the Existing Status of MSW Management in Agartala City and Recommendation for Improvement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subhro%20Sarkar">Subhro Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Umesh%20Mishra"> Umesh Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agartala Municipal Council (AMC) is the municipal body which regulates and governs the Agartala city. MSW management may be proclaimed as a tool which rests on the principles of public health, economy, engineering and other aesthetic or environmental factors by dealing with the controlled generation, collection, transport, processing and disposal of MSW. Around 220-250 MT of solid waste per day is collected by AMC out of which 12-14 MT is plastic and is disposed of in Devendra Chandra Nagar dumping ground (33 acres), nearly 12-15 km from the city. A survey was performed to list down the prevailing operations conducted by the AMC which includes road sweeping, garbage lifting, carcass removal, biomedical waste collection, dumping, and incineration. Different types of vehicles are engaged to carry out these operations. Door to door collection of garbage is done from the houses with the help of 220 tricycles issued by 53 NGOs. The location of the dustbin containers were earmarked which consisted of 4.5 cum, 0.6 cum containers and 0.1 cum containers, placed at various locations within the city. The total household waste was categorized as organic, recyclable and other wastes. It was found that East Pratapgarh ward produced 99.3% organic waste out of the total MSW generated in that ward which is maximum among all the wards. A comparison of the waste generation versus the family size has been made. A questionnaire for the survey of MSW from household and market place was prepared. The average waste generated (in kg) per person per day was found out for each of the wards. It has been noted that East Jogendranagar ward had a maximum per person per day waste generation of 0.493 kg/day.In view of the studies made, it has been found that AMC has failed to implement MSWM in an effective way because of the unavailability of suitable facilities for treatment and disposal of the large amount of MSW. It has also been noted that AMC is not following the standard procedures of handling MSW. Transportation system has also been found less effective leading to waste of time, money and manpower. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MSW" title="MSW">MSW</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20generation" title=" waste generation"> waste generation</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste%20disposal" title=" solid waste disposal"> solid waste disposal</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a> </p> <a href="https://publications.waset.org/abstracts/18761/studies-on-the-existing-status-of-msw-management-in-agartala-city-and-recommendation-for-improvement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> The Exploitation of the MOSES Project Outcomes on Supply Chain Optimisation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Karimpour">Reza Karimpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ports play a decisive role in the EU's external and internal trade, as about 74% of imports and exports and 37% of exchanges go through ports. Although ports, especially Deep Sea Shipping (DSS) ports, are integral nodes within multimodal logistic flows, Short Sea Shipping (SSS) and inland waterways are not so well integrated. The automated vessels and supply chain optimisations for sustainable shortsea shipping (MOSES) project aims to enhance the short sea shipping component of the European supply chain by addressing the vulnerabilities and strains related to the operation of large containerships. The MOSES concept can be shortly described as a large containership (mother-vessel) approaching a DSS port (or a large container terminal). Upon her arrival, a combined intelligent mega-system consisting of the MOSES Autonomous tugboat swarm for manoeuvring and the MOSES adapted AutoMoor system. Then, container handling processes are ready to start moving containers to their destination via hinterland connections (trucks and/or rail) or to be shipped to destinations near small ports (on the mainland or island). For the first case, containers are stored in a dedicated port area (Storage area), waiting to be moved via trucks and/or rail. For the second case, containers are stacked by existing port equipment near-dedicated berths of the DSS port. They then are loaded on the MOSES Innovative Feeder Vessel, equipped with the MOSES Robotic Container-Handling System that provides (semi-) autonomous (un) feeding of the feeder. The Robotic Container-Handling System is remotely monitored through a Shore Control Centre. When the MOSES innovative Feeder vessel approaches the small port, where her docking is achieved without tugboats, she automatically unloads the containers using the Robotic Container-Handling System on the quay or directly on trucks. As a result, ports with minimal or no available infrastructure may be effectively integrated with the container supply chain. Then, the MOSES innovative feeder vessel continues her voyage to the next small port, or she returns to the DSS port. MOSES exploitation activity mainly aims to exploit research outcomes beyond the project, facilitate utilisation of the pilot results by others, and continue the pilot service after the project ends. By the mid-lifetime of the project, the exploitation plan introduces the reader to the MOSES project and its key exploitable results. It provides a plan for delivering the MOSES innovations to the market as part of the overall exploitation plan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20vessels" title="automated vessels">automated vessels</a>, <a href="https://publications.waset.org/abstracts/search?q=exploitation" title=" exploitation"> exploitation</a>, <a href="https://publications.waset.org/abstracts/search?q=shortsea%20shipping" title=" shortsea shipping"> shortsea shipping</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a> </p> <a href="https://publications.waset.org/abstracts/151033/the-exploitation-of-the-moses-project-outcomes-on-supply-chain-optimisation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">124</span> Smart-Textile Containers for Urban Mobility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ren%C3%A9%20Vieroth">René Vieroth</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Dils"> Christian Dils</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Krshiwoblozki"> M. V. Krshiwoblozki</a>, <a href="https://publications.waset.org/abstracts/search?q=Christine%20Kallmayer"> Christine Kallmayer</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Schneider-Ramelow"> Martin Schneider-Ramelow</a>, <a href="https://publications.waset.org/abstracts/search?q=Klaus-Dieter%20Lang"> Klaus-Dieter Lang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green urban mobility in commercial and private contexts is one of the great challenges for the continuously growing cities all over the world. Bicycle based solutions are already and since a long time the key to success. Modern developments like e-bikes and high-end cargo-bikes complement the portfolio. Weight, aerodynamic drag, and security for the transported goods are the key factors for working solutions. Recent achievements in the field of smart-textiles allowed the creation of a totally new generation of intelligent textile cargo containers, which fulfill those demands. The fusion of technical textiles, design and electrical engineering made it possible to create an ecological solution which is very near to become a product. This paper shows all the details of this solution that includes an especially developed sensor textile for cut detection, a protective textile layer for intrusion prevention, an universal-charging-unit for energy harvesting from diverse sources and a low-energy alarm system with GSM/GPRS connection, GPS location and RFID interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cargo-bike" title="cargo-bike">cargo-bike</a>, <a href="https://publications.waset.org/abstracts/search?q=cut-detection" title=" cut-detection"> cut-detection</a>, <a href="https://publications.waset.org/abstracts/search?q=e-bike" title=" e-bike"> e-bike</a>, <a href="https://publications.waset.org/abstracts/search?q=energy-harvesting" title=" energy-harvesting"> energy-harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20urban%20mobility" title=" green urban mobility"> green urban mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=logistics" title=" logistics"> logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=smart-textiles" title=" smart-textiles"> smart-textiles</a>, <a href="https://publications.waset.org/abstracts/search?q=textile-integrity%20sensor" title=" textile-integrity sensor"> textile-integrity sensor</a> </p> <a href="https://publications.waset.org/abstracts/77783/smart-textile-containers-for-urban-mobility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">123</span> Simulation-Based Unmanned Surface Vehicle Design Using PX4 and Robot Operating System With Kubernetes and Cloud-Native Tooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norbert%20Szulc">Norbert Szulc</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Wilk"> Jakub Wilk</a>, <a href="https://publications.waset.org/abstracts/search?q=Franciszek%20G%C3%B3rski"> Franciszek Górski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an approach for simulating and testing robotic systems based on PX4, using a local Kubernetes cluster. The approach leverages modern cloud-native tools and runs on single-board computers. Additionally, this solution enables the creation of datasets for computer vision and the evaluation of control system algorithms in an end-to-end manner. This paper compares this approach to method commonly used Docker based approach. This approach was used to develop simulation environment for an unmanned surface vehicle (USV) for RoboBoat 2023 by running a containerized configuration of the PX4 Open-source Autopilot connected to ROS and the Gazebo simulation environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title="cloud computing">cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=Kubernetes" title=" Kubernetes"> Kubernetes</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20board%20computers" title=" single board computers"> single board computers</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS" title=" ROS"> ROS</a> </p> <a href="https://publications.waset.org/abstracts/163529/simulation-based-unmanned-surface-vehicle-design-using-px4-and-robot-operating-system-with-kubernetes-and-cloud-native-tooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=docker%20containers&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=docker%20containers&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=docker%20containers&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=docker%20containers&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=docker%20containers&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=docker%20containers&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>