CINXE.COM
Search results for: minimal reduct
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: minimal reduct</title> <meta name="description" content="Search results for: minimal reduct"> <meta name="keywords" content="minimal reduct"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="minimal reduct" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="minimal reduct"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 871</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: minimal reduct</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">871</span> Pruning Algorithm for the Minimum Rule Reduct Generation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahin%20Emrah%20Amrahov">Sahin Emrah Amrahov</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Aybar"> Fatih Aybar</a>, <a href="https://publications.waset.org/abstracts/search?q=Serhat%20Dogan"> Serhat Dogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we consider the rule reduct generation problem. Rule Reduct Generation (RG) and Modified Rule Generation (MRG) algorithms, that are used to solve this problem, are well-known. Alternative to these algorithms, we develop Pruning Rule Generation (PRG) algorithm. We compare the PRG algorithm with RG and MRG. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rough%20sets" title="rough sets">rough sets</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20rules" title=" decision rules"> decision rules</a>, <a href="https://publications.waset.org/abstracts/search?q=rule%20induction" title=" rule induction"> rule induction</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/17254/pruning-algorithm-for-the-minimum-rule-reduct-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">870</span> Hardware Implementation on Field Programmable Gate Array of Two-Stage Algorithm for Rough Set Reduct Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Grzes">Tomasz Grzes</a>, <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Kopczynski"> Maciej Kopczynski</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslaw%20Stepaniuk"> Jaroslaw Stepaniuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rough sets theory developed by Prof. Z. Pawlak is one of the tools that can be used in the intelligent systems for data analysis and processing. Banking, medicine, image recognition and security are among the possible fields of utilization. In all these fields, the amount of the collected data is increasing quickly, but with the increase of the data, the computation speed becomes the critical factor. Data reduction is one of the solutions to this problem. Removing the redundancy in the rough sets can be achieved with the reduct. A lot of algorithms of generating the reduct were developed, but most of them are only software implementations, therefore have many limitations. Microprocessor uses the fixed word length, consumes a lot of time for either fetching as well as processing of the instruction and data; consequently, the software based implementations are relatively slow. Hardware systems don’t have these limitations and can process the data faster than a software. Reduct is the subset of the decision attributes that provides the discernibility of the objects. For the given decision table there can be more than one reduct. Core is the set of all indispensable condition attributes. None of its elements can be removed without affecting the classification power of all condition attributes. Moreover, every reduct consists of all the attributes from the core. In this paper, the hardware implementation of the two-stage greedy algorithm to find the one reduct is presented. The decision table is used as an input. Output of the algorithm is the superreduct which is the reduct with some additional removable attributes. First stage of the algorithm is calculating the core using the discernibility matrix. Second stage is generating the superreduct by enriching the core with the most common attributes, i.e., attributes that are more frequent in the decision table. Described above algorithm has two disadvantages: i) generating the superreduct instead of reduct, ii) additional first stage may be unnecessary if the core is empty. But for the systems focused on the fast computation of the reduct the first disadvantage is not the key problem. The core calculation can be achieved with a combinational logic block, and thus add respectively little time to the whole process. Algorithm presented in this paper was implemented in Field Programmable Gate Array (FPGA) as a digital device consisting of blocks that process the data in a single step. Calculating the core is done by the comparators connected to the block called 'singleton detector', which detects if the input word contains only single 'one'. Calculating the number of occurrences of the attribute is performed in the combinational block made up of the cascade of the adders. The superreduct generation process is iterative and thus needs the sequential circuit for controlling the calculations. For the research purpose, the algorithm was also implemented in C language and run on a PC. The times of execution of the reduct calculation in a hardware and software were considered. Results show increase in the speed of data processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20reduction" title="data reduction">data reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20systems%20design" title=" digital systems design"> digital systems design</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20programmable%20gate%20array%20%28FPGA%29" title=" field programmable gate array (FPGA)"> field programmable gate array (FPGA)</a>, <a href="https://publications.waset.org/abstracts/search?q=reduct" title=" reduct"> reduct</a>, <a href="https://publications.waset.org/abstracts/search?q=rough%20set" title=" rough set"> rough set</a> </p> <a href="https://publications.waset.org/abstracts/81856/hardware-implementation-on-field-programmable-gate-array-of-two-stage-algorithm-for-rough-set-reduct-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">869</span> Soap Film Enneper Minimal Surface Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yee%20Hooi%20Min">Yee Hooi Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohdnasir%20Abdul%20Hadi"> Mohdnasir Abdul Hadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tensioned membrane structure in the form of Enneper minimal surface can be considered as a sustainable development for the green environment and technology, it also can be used to support the effectiveness used of energy and the structure. Soap film in the form of Enneper minimal surface model has been studied. The combination of shape and internal forces for the purpose of stiffness and strength is an important feature of membrane surface. For this purpose, form-finding using soap film model has been carried out for Enneper minimal surface models with variables u=v=0.6 and u=v=1.0. Enneper soap film models with variables u=v=0.6 and u=v=1.0 provides an alternative choice for structural engineers to consider the tensioned membrane structure in the form of Enneper minimal surface applied in the building industry. It is expected to become an alternative building material to be considered by the designer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enneper" title="Enneper">Enneper</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20surface" title=" minimal surface"> minimal surface</a>, <a href="https://publications.waset.org/abstracts/search?q=soap%20film" title=" soap film"> soap film</a>, <a href="https://publications.waset.org/abstracts/search?q=tensioned%20membrane%20structure" title=" tensioned membrane structure"> tensioned membrane structure</a> </p> <a href="https://publications.waset.org/abstracts/20780/soap-film-enneper-minimal-surface-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">868</span> An Improved Lower Bound for Minimal-Area Convex Cover for Closed Unit Curves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Som-Am">S. Som-Am</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Grechuk"> B. Grechuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Moser’s worm problem is the unsolved problem in geometry which asks for the minimal area of a convex region on the plane which can cover all curves of unit length, assuming that curves may be rotated and translated to fit inside the region. We study a version of this problem asking for a minimal convex cover for closed unit curves. By combining geometric methods with numerical box’s search algorithm, we show that any such cover should have an area at least 0.0975. This improves the best previous lower bound of 0.096694. In fact, we show that the minimal area of convex hull of circle, equilateral triangle, and rectangle of perimeter 1 is between 0.0975 and 0.09763. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moser%E2%80%99s%20worm%20problem" title="Moser’s worm problem">Moser’s worm problem</a>, <a href="https://publications.waset.org/abstracts/search?q=closed%20arcs" title=" closed arcs"> closed arcs</a>, <a href="https://publications.waset.org/abstracts/search?q=convex%20cover" title=" convex cover"> convex cover</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal-area%20cover" title=" minimal-area cover"> minimal-area cover</a> </p> <a href="https://publications.waset.org/abstracts/92526/an-improved-lower-bound-for-minimal-area-convex-cover-for-closed-unit-curves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">867</span> A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javad%20Rahimipour%20Anaraki">Javad Rahimipour Anaraki</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Samet"> Saeed Samet</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Eftekhari"> Mahdi Eftekhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Wook%20Ahn"> Chang Wook Ahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20shuffled%20frog%20leaping%20algorithm" title="binary shuffled frog leaping algorithm">binary shuffled frog leaping algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy-rough%20set" title=" fuzzy-rough set"> fuzzy-rough set</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20reduct" title=" minimal reduct"> minimal reduct</a> </p> <a href="https://publications.waset.org/abstracts/98820/a-fuzzy-rough-feature-selection-based-on-binary-shuffled-frog-leaping-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">866</span> Understanding Relationships between Listening to Music and Pronunciation Learning: An Investigation Based upon Japanese EFL Learners' Self-Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hirokatsu%20Kawashima">Hirokatsu Kawashima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an attempt to elucidate relationships between listening to music and pronunciation learning, a classroom-based investigation was conducted with Japanese EFL learners (n=45). The subjects were instructed to listen to English songs they liked on YouTube, especially paying attention to phonologically similar vowel and consonant minimal pair words (e.g., live and leave). This kind of activity, which included taking notes, was regularly carried out in the classroom, and the same kind of task was given to the subjects as homework in order to reinforce the in-class activity. The duration of these activities was eight weeks, after which the program was evaluated on a 9-point scale (1: the lowest and 9: the highest) by learners’ self-evaluation. The main questions for this evaluation included 1) how good the learners had been at pronouncing vowel and consonant minimal pair words originally, 2) how often they had listened to songs good for pronouncing vowel and consonant minimal pair words, 3) how frequently they had moved their mouths to vowel and consonant minimal pair words of English songs, and 4) how much they thought the program would support and enhance their pronunciation learning of phonologically similar vowel and consonant minimal pair words. It has been found, for example, A) that the evaluation of this program is by no means low (Mean: 6.51 and SD: 1.23), suggesting that listening to music may support and enhance pronunciation learning, and B) that listening to consonant minimal pair words in English songs and moving the mouth to them are more related to the program’s evaluation (r =.69, p=.00 and r =.55, p=.00, respectively) than listening to vowel minimal pair words in English songs and moving the mouth to them (r =.45, p=.00 and r =.39, p=.01, respectively). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=minimal%20pair" title="minimal pair">minimal pair</a>, <a href="https://publications.waset.org/abstracts/search?q=music" title=" music"> music</a>, <a href="https://publications.waset.org/abstracts/search?q=pronunciation" title=" pronunciation"> pronunciation</a>, <a href="https://publications.waset.org/abstracts/search?q=song" title=" song"> song</a> </p> <a href="https://publications.waset.org/abstracts/7949/understanding-relationships-between-listening-to-music-and-pronunciation-learning-an-investigation-based-upon-japanese-efl-learners-self-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">865</span> Effect of Phonological Complexity in Children with Specific Language Impairment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irfana%20M.">Irfana M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyandi%20Kabasi"> Priyandi Kabasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Children with specific language impairment (SLI) have difficulty acquiring and using language despite having all the requirements of cognitive skills to support language acquisition. These children have normal non-verbal intelligence, hearing, and oral-motor skills, with no history of social/emotional problems or significant neurological impairment. Nevertheless, their language acquisition lags behind their peers. Phonological complexity can be considered to be the major factor that causes the inaccurate production of speech in this population. However, the implementation of various ranges of complex phonological stimuli in the treatment session of SLI should be followed for a better prognosis of speech accuracy. Hence there is a need to study the levels of phonological complexity. The present study consisted of 7 individuals who were diagnosed with SLI and 10 developmentally normal children. All of them were Hindi speakers with both genders and their age ranged from 4 to 5 years. There were 4 sets of stimuli; among them were minimal contrast vs maximal contrast nonwords, minimal coarticulation vs maximal coarticulation nonwords, minimal contrast vs maximal contrast words and minimal coarticulation vs maximal coarticulation words. Each set contained 10 stimuli and participants were asked to repeat each stimulus. Results showed that production of maximal contrast was significantly accurate, followed by minimal coarticulation, minimal contrast and maximal coarticulation. A similar trend was shown for both word and non-word categories of stimuli. The phonological complexity effect was evident in the study for each participant group. Moreover, present study findings can be implemented for the management of SLI, specifically for the selection of stimuli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coarticulation" title="coarticulation">coarticulation</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20contrast" title=" minimal contrast"> minimal contrast</a>, <a href="https://publications.waset.org/abstracts/search?q=phonological%20complexity" title=" phonological complexity"> phonological complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20language%20impairment" title=" specific language impairment"> specific language impairment</a> </p> <a href="https://publications.waset.org/abstracts/146147/effect-of-phonological-complexity-in-children-with-specific-language-impairment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">864</span> Number of Necessary Parameters for Parametrization of Stabilizing Controllers for two times two RHinf Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazuyoshi%20Mori">Kazuyoshi Mori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider the number of parameters for the parametrization of stabilizing controllers for RHinf systems with size 2 × 2. Fortunately, any plant of this model can admit doubly coprime factorization. Thus we can use the Youla parameterization to parametrize the stabilizing contollers . However, Youla parameterization does not give itself the minimal number of parameters. This paper shows that the minimal number of parameters is four. As a result, we show that the Youla parametrization naturally gives the parameterization of stabilizing controllers with minimal numbers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RHinfo" title="RHinfo">RHinfo</a>, <a href="https://publications.waset.org/abstracts/search?q=parameterization" title=" parameterization"> parameterization</a>, <a href="https://publications.waset.org/abstracts/search?q=number%20of%20parameters" title=" number of parameters"> number of parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-input" title=" multi-input"> multi-input</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-output%20systems" title=" multi-output systems"> multi-output systems</a> </p> <a href="https://publications.waset.org/abstracts/33703/number-of-necessary-parameters-for-parametrization-of-stabilizing-controllers-for-two-times-two-rhinf-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">863</span> Restoring Sagging Neck with Minimal Scar Face Lifting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Marano">Alessandro Marano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The author describes the use of deep plane face lifting and platysmaplasty to treat sagging neck with minimal scars. Series of case study. The author uses a selective deep plane face lift with a minimal access scar that not extend behind the ear lobe, neck liposuction and platysmaplasty to restore the sagging neck; the scars are minimal and no require drainage post-op. The deep plane face lifting can achieve a good result restoring vertical vectors in aging and sagging face, neck district can be treated without cutting the skin behind the ear lobe combining the SMAS vertical suspension and platysmaplasty; surgery can be performed in local anesthesia with sedation in day surgery and fast recovery. Restoring neck sagging without extend scars behind ear lobe is possible in selected patients, procedure is fast, safe, no drainage required, patients are satisfied and healing time is fast and comfortable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=face%20lifting" title="face lifting">face lifting</a>, <a href="https://publications.waset.org/abstracts/search?q=aesthetic" title=" aesthetic"> aesthetic</a>, <a href="https://publications.waset.org/abstracts/search?q=face" title=" face"> face</a>, <a href="https://publications.waset.org/abstracts/search?q=neck" title=" neck"> neck</a>, <a href="https://publications.waset.org/abstracts/search?q=platysmaplasty" title=" platysmaplasty"> platysmaplasty</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20plane" title=" deep plane"> deep plane</a> </p> <a href="https://publications.waset.org/abstracts/149687/restoring-sagging-neck-with-minimal-scar-face-lifting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">862</span> Algorithmic Fault Location in Complex Gas Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soban%20Najam">Soban Najam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Jahanzeb"> S. M. Jahanzeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Sohail"> Ahmed Sohail</a>, <a href="https://publications.waset.org/abstracts/search?q=Faraz%20Idris%20Khan"> Faraz Idris Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the recent increase in reliance on Gas as the primary source of energy across the world, there has been a lot of research conducted on gas distribution networks. As the complexity and size of these networks grow, so does the leakage of gas in the distribution network. One of the most crucial factors in the production and distribution of gas is UFG or Unaccounted for Gas. The presence of UFG signifies that there is a difference between the amount of gas distributed, and the amount of gas billed. Our approach is to use information that we acquire from several specified points in the network. This information will be used to calculate the loss occurring in the network using the developed algorithm. The Algorithm can also identify the leakages at any point of the pipeline so we can easily detect faults and rectify them within minimal time, minimal efforts and minimal resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FLA" title="FLA">FLA</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20location%20analysis" title=" fault location analysis"> fault location analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=GDN" title=" GDN"> GDN</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20distribution%20network" title=" gas distribution network"> gas distribution network</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20system" title=" geographic information system"> geographic information system</a>, <a href="https://publications.waset.org/abstracts/search?q=NMS" title=" NMS"> NMS</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20Management%20system" title=" network Management system"> network Management system</a>, <a href="https://publications.waset.org/abstracts/search?q=OMS" title=" OMS"> OMS</a>, <a href="https://publications.waset.org/abstracts/search?q=outage%20management%20system" title=" outage management system"> outage management system</a>, <a href="https://publications.waset.org/abstracts/search?q=SSGC" title=" SSGC"> SSGC</a>, <a href="https://publications.waset.org/abstracts/search?q=Sui%20Southern%20gas%20company" title=" Sui Southern gas company"> Sui Southern gas company</a>, <a href="https://publications.waset.org/abstracts/search?q=UFG" title=" UFG"> UFG</a>, <a href="https://publications.waset.org/abstracts/search?q=unaccounted%20for%20gas" title=" unaccounted for gas"> unaccounted for gas</a> </p> <a href="https://publications.waset.org/abstracts/34657/algorithmic-fault-location-in-complex-gas-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">627</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">861</span> Minimal Invasive Esophagectomy for Esophageal Cancer: An Institutional Review From a Dedicated Centre of Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nighat%20Bakhtiar">Nighat Bakhtiar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Raza%20Khan"> Ali Raza Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahid%20Khan%20Khattak"> Shahid Khan Khattak</a>, <a href="https://publications.waset.org/abstracts/search?q=Aamir%20Ali%20Syed"> Aamir Ali Syed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Chemoradiation followed by resection has been the standard therapy for resectable (cT1-4aN0-3M0) esophageal carcinoma. The optimal surgical approach remains a matter of debate. Therefore, the purpose of this study was to share our experiences of minimal invasive esophagectomies concerning morbidity, mortality and oncological quality. This study aims to enlighten the world about the surgical outcomes after minimally invasive esophagectomy at Shaukat Khanum Hospital Lahore. Objective: The purpose of this study is to review an institutional experience of Surgical outcomes of Minimal Invasive esophagectomies for esophageal cancer. Methodology: This retrospective study was performed after ethical approval at Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC) Pakistan. Patients who underwent Minimal Invasive esophagectomies for esophageal cancer from March 2018 to March 2023 were selected. Data was collected through the human information system (HIS) electronic database of SKMCH&RC. Data was described using mean and median with minimum and maximum values for quantitative variables. For categorical variables, a number of observations and percentages were reported. Results: A total of 621 patients were included in the study, with the mean age of the patient was 39 years, ranging between 18-58 years. Mean Body Mass Index of patients was 21.2.1±4.1. Neo-adjuvant chemoradiotherapy was given to all patients. The mean operative time was 210.36 ± 64.51 minutes, and the mean blood loss was 121 milliliters. There was one mortality in 90 days, while the mean postoperative hospital stay was 6.58 days with a 4.64 standard deviation. The anastomotic leak rate was 4.2%. Chyle leak was observed in 12 patients. Conclusion: The minimal invasive technique is a safe approach for esophageal cancers, with minimal complications and fast recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=minimal%20invasive" title="minimal invasive">minimal invasive</a>, <a href="https://publications.waset.org/abstracts/search?q=esophagectomy" title=" esophagectomy"> esophagectomy</a>, <a href="https://publications.waset.org/abstracts/search?q=laparscopic" title=" laparscopic"> laparscopic</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a> </p> <a href="https://publications.waset.org/abstracts/174999/minimal-invasive-esophagectomy-for-esophageal-cancer-an-institutional-review-from-a-dedicated-centre-of-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">860</span> An Evaluation Model for Automatic Map Generalization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quynhan%20Tran">Quynhan Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Fan"> Hong Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Quockhanh%20Pham"> Quockhanh Pham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automatic map generalization is a well-known problem in cartography. The development of map generalization research accompanied the development of cartography. The traditional map is plotted manually by cartographic experts. The paper studies none-scale automation generalization of resident polygons and house marker symbol, proposes methodology to evaluate the result maps based on minimal spanning tree. In this paper, the minimal spanning tree before and after map generalization is compared to evaluate whether the generalization result maintain the geographical distribution of features. The minimal spanning tree in vector format is firstly converted into a raster format and the grid size is 2mm (distance on the map). The statistical number of matching grid before and after map generalization and the ratio of overlapping grid to the total grids is calculated. Evaluation experiments are conduct to verify the results. Experiments show that this methodology can give an objective evaluation for the feature distribution and give specialist an hand while they evaluate result maps of none-scale automation generalization with their eyes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20cartography%20generalization" title="automatic cartography generalization">automatic cartography generalization</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation%20model" title=" evaluation model"> evaluation model</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20feature%20distribution" title=" geographic feature distribution"> geographic feature distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20spanning%20tree" title=" minimal spanning tree"> minimal spanning tree</a> </p> <a href="https://publications.waset.org/abstracts/23148/an-evaluation-model-for-automatic-map-generalization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">637</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">859</span> Minimal Incision Cochlear Implantation in Congenital Abnormality: A Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Munish%20Saroch">Munish Saroch</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Saini"> Amit Saini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Many children with congenital malformation of inner ear have undergone cochlear implant (CI) surgery. The results for cochlear implant surgery in these children are very encouraging and provide a ray of hope for these patients. Objective: The main objective of this presentation is to prove that even in Mondini’s deformity Minimal incision cochlear implantation improves cosmesis, reduces post-operative infection and earliest switch on of device. Methods: We report a case of two-year-old child suffering from Mondini’s deformity who underwent CI with minimal incision cochlear implantation (MICI). MICI has been developed with the aims of reducing the impact of surgery on the patient without any preoperative shaving of hairs. Results: Patient after surgery with MICI showed better looking postauricular scar, low post-operative morbidity in comparison to conventional wider access approach and hence earliest switch on of device (1st post operative day). Conclusion: We are of opinion that MICI is safe and successful in Mondini’s deformity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CI" title="CI">CI</a>, <a href="https://publications.waset.org/abstracts/search?q=Cochlear%20Implant" title=" Cochlear Implant"> Cochlear Implant</a>, <a href="https://publications.waset.org/abstracts/search?q=MICI" title=" MICI"> MICI</a>, <a href="https://publications.waset.org/abstracts/search?q=Minimal%20Incision%20Cochlear%20Implantation" title=" Minimal Incision Cochlear Implantation"> Minimal Incision Cochlear Implantation</a>, <a href="https://publications.waset.org/abstracts/search?q=HL" title=" HL"> HL</a>, <a href="https://publications.waset.org/abstracts/search?q=Hearing%20Loss" title=" Hearing Loss"> Hearing Loss</a>, <a href="https://publications.waset.org/abstracts/search?q=HRCT" title=" HRCT"> HRCT</a>, <a href="https://publications.waset.org/abstracts/search?q=High%20Resolution%20Computer%20Tomography" title=" High Resolution Computer Tomography"> High Resolution Computer Tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=Magnetic%20resonance%20imaging" title=" Magnetic resonance imaging"> Magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=SCI" title=" SCI"> SCI</a>, <a href="https://publications.waset.org/abstracts/search?q=Standard%20cochlear%20implantation" title=" Standard cochlear implantation"> Standard cochlear implantation</a> </p> <a href="https://publications.waset.org/abstracts/46030/minimal-incision-cochlear-implantation-in-congenital-abnormality-a-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">858</span> The Use of Degradation Measures to Design Reliability Test Plans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephen%20V.%20Crowder">Stephen V. Crowder</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20W.%20Lane"> Jonathan W. Lane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With short production development times, there is an increased need to demonstrate product reliability relatively quickly with minimal testing. In such cases there may be few if any observed failures. Thus it may be difficult to assess reliability using the traditional reliability test plans that measure only time (or cycles) to failure. For many components, degradation measures will contain important information about performance and reliability. These measures can be used to design a minimal test plan, in terms of number of units placed on test and duration of the test, necessary to demonstrate a reliability goal. In this work we present a case study involving an electronic component subject to degradation. The data, consisting of 42 degradation paths of cycles to failure, are first used to estimate a reliability function. Bootstrapping techniques are then used to perform power studies and develop a minimal reliability test plan for future production of this component. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degradation%20measure" title="degradation measure">degradation measure</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20to%20failure%20distribution" title=" time to failure distribution"> time to failure distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=bootstrap" title=" bootstrap"> bootstrap</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20science" title=" computational science"> computational science</a> </p> <a href="https://publications.waset.org/abstracts/5420/the-use-of-degradation-measures-to-design-reliability-test-plans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">857</span> Optimal Replacement Period for a One-Unit System with Double Repair Cost Limits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min-Tsai%20Lai">Min-Tsai Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Taqwa%20Hariguna"> Taqwa Hariguna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a periodical replacement model for a system, considering the concept of single and cumulative repair cost limits simultaneously. The failures are divided into two types. Minor failure can be corrected by minimal repair and serious failure makes the system breakdown completely. When a minor failure occurs, if the repair cost is less than a single repair cost limit L1 and the accumulated repair cost is less than a cumulative repair cost limit L2, then minimal repair is executed, otherwise, the system is preventively replaced. The system is also replaced at time T or at serious failure. The optimal period T minimizing the long-run expected cost per unit time is verified to be finite and unique under some specific conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=repair-cost%20limit" title="repair-cost limit">repair-cost limit</a>, <a href="https://publications.waset.org/abstracts/search?q=cumulative%20repair-cost%20limit" title=" cumulative repair-cost limit"> cumulative repair-cost limit</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20repair" title=" minimal repair"> minimal repair</a>, <a href="https://publications.waset.org/abstracts/search?q=periodical%20replacement%20policy" title=" periodical replacement policy"> periodical replacement policy</a> </p> <a href="https://publications.waset.org/abstracts/28802/optimal-replacement-period-for-a-one-unit-system-with-double-repair-cost-limits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">856</span> Screening of Minimal Salt Media for Biosurfactant Production by Bacillus spp.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20Al-Wahaibi">Y. M. Al-Wahaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Al-Bahry"> S. N. Al-Bahry</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20E.%20Elshafie"> A. E. Elshafie</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Al-Bemani"> A. S. Al-Bemani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Joshi"> S. J. Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Al-Bahri"> A. K. Al-Bahri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crude oil is a major source of global energy. The major problem is its widespread use and demand resulted is in increasing environmental pollution. One associated pollution problem is ‘oil spills’. Oil spills can be remediated with the use of chemical dispersants, microbial biodegradation and microbial metabolites such as biosurfactants. Four different minimal salt media for biosurfactant production by Bacillus isolated from oil contaminated sites from Oman were screened. These minimal salt media were supplemented with either glucose or sucrose as a carbon source. Among the isolates, W16 and B30 produced the most active biosurfactants. Isolate W16 produced better biosurfactant than the rest, and reduced surface tension (ST) and interfacial tension (IFT) to 25.26mN/m and 2.29mN/m respectively within 48h which are characteristics for removal of oil in contaminated sites. Biosurfactant was produced in bulk and extracted using acid precipitation method. Thin Layer Chromatography (TLC) of acid precipitate biosurfactant revealed two concentrated bands. Further studies of W16 biosurfactant in bioremediation of oil spills are recommended. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20contamination" title="oil contamination">oil contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=remediation" title=" remediation"> remediation</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20spp" title=" Bacillus spp"> Bacillus spp</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20tension" title=" surface tension"> surface tension</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20tension" title=" interfacial tension"> interfacial tension</a> </p> <a href="https://publications.waset.org/abstracts/3731/screening-of-minimal-salt-media-for-biosurfactant-production-by-bacillus-spp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">855</span> Extremal Laplacian Energy of Threshold Graphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Ahmad%20Mojallal">Seyed Ahmad Mojallal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let G be a connected threshold graph of order n with m edges and trace T. In this talk we give a lower bound on Laplacian energy in terms of n, m, and T of G. From this we determine the threshold graphs with the first four minimal Laplacian energies. We also list the first 20 minimal Laplacian energies among threshold graphs. Let σ=σ(G) be the number of Laplacian eigenvalues greater than or equal to average degree of graph G. Using this concept, we obtain the threshold graphs with the largest and the second largest Laplacian energies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20eigenvalues" title="Laplacian eigenvalues">Laplacian eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20energy" title=" Laplacian energy"> Laplacian energy</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20graphs" title=" threshold graphs"> threshold graphs</a>, <a href="https://publications.waset.org/abstracts/search?q=extremal%20graphs" title=" extremal graphs"> extremal graphs</a> </p> <a href="https://publications.waset.org/abstracts/41332/extremal-laplacian-energy-of-threshold-graphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">854</span> Parameter Estimation for the Oral Minimal Model and Parameter Distinctions Between Obese and Non-obese Type 2 Diabetes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manoja%20Rajalakshmi%20Aravindakshana">Manoja Rajalakshmi Aravindakshana</a>, <a href="https://publications.waset.org/abstracts/search?q=Devleena%20Ghosha"> Devleena Ghosha</a>, <a href="https://publications.waset.org/abstracts/search?q=Chittaranjan%20Mandala"> Chittaranjan Mandala</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20V.%20Venkateshb"> K. V. Venkateshb</a>, <a href="https://publications.waset.org/abstracts/search?q=Jit%20Sarkarc"> Jit Sarkarc</a>, <a href="https://publications.waset.org/abstracts/search?q=Partha%20Chakrabartic"> Partha Chakrabartic</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujay%20K.%20Maity"> Sujay K. Maity</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oral Glucose Tolerance Test (OGTT) is the primary test used to diagnose type 2 diabetes mellitus (T2DM) in a clinical setting. Analysis of OGTT data using the Oral Minimal Model (OMM) along with the rate of appearance of ingested glucose (Ra) is performed to study differences in model parameters for control and T2DM groups. The differentiation of parameters of the model gives insight into the behaviour and physiology of T2DM. The model is also studied to find parameter differences among obese and non-obese T2DM subjects and the sensitive parameters were co-related to the known physiological findings. Sensitivity analysis is performed to understand changes in parameter values with model output and to support the findings, appropriate statistical tests are done. This seems to be the first preliminary application of the OMM with obesity as a distinguishing factor in understanding T2DM from estimated parameters of insulin-glucose model and relating the statistical differences in parameters to diabetes pathophysiology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oral%20minimal%20model" title="oral minimal model">oral minimal model</a>, <a href="https://publications.waset.org/abstracts/search?q=OGTT" title=" OGTT"> OGTT</a>, <a href="https://publications.waset.org/abstracts/search?q=obese%20and%20non-obese%20T2DM" title=" obese and non-obese T2DM"> obese and non-obese T2DM</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20estimation" title=" parameter estimation"> parameter estimation</a> </p> <a href="https://publications.waset.org/abstracts/158794/parameter-estimation-for-the-oral-minimal-model-and-parameter-distinctions-between-obese-and-non-obese-type-2-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">853</span> Existence of Minimal and Maximal Mild Solutions for Non-Local in Time Subdiffusion Equations of Neutral Type</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Gonzalez-Camus">Jorge Gonzalez-Camus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work is proved the existence of at least one minimal and maximal mild solutions to the Cauchy problem, for fractional evolution equation of neutral type, involving a general kernel. An operator A generating a resolvent family and integral resolvent family on a Banach space X and a kernel belonging to a large class appears in the equation, which covers many relevant cases from physics applications, in particular, the important case of time - fractional evolution equations of neutral type. The main tool used in this work was the Kuratowski measure of noncompactness and fixed point theorems, specifically Darbo-type, and an iterative method of lower and upper solutions, based in an order in X induced by a normal cone P. Initially, the equation is a Cauchy problem, involving a fractional derivate in Caputo sense. Then, is formulated the equivalent integral version, and defining a convenient functional, using the theory of resolvent families, and verifying the hypothesis of the fixed point theorem of Darbo type, give us the existence of mild solution for the initial problem. Furthermore, the existence of minimal and maximal mild solutions was proved through in an iterative method of lower and upper solutions, using the Azcoli-Arzela Theorem, and the Gronwall’s inequality. Finally, we recovered the case derivate in Caputo sense. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20evolution%20equations" title="fractional evolution equations">fractional evolution equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Volterra%20integral%20equations" title=" Volterra integral equations"> Volterra integral equations</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20and%20maximal%20mild%20solutions" title=" minimal and maximal mild solutions"> minimal and maximal mild solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=neutral%20type%20equations" title=" neutral type equations"> neutral type equations</a>, <a href="https://publications.waset.org/abstracts/search?q=non-local%20in%20time%20equations" title=" non-local in time equations"> non-local in time equations</a> </p> <a href="https://publications.waset.org/abstracts/105179/existence-of-minimal-and-maximal-mild-solutions-for-non-local-in-time-subdiffusion-equations-of-neutral-type" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">852</span> Thermodynamic Modeling of Three Pressure Level Reheat HRSG, Parametric Analysis and Optimization Using PSO</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Nadir">Mahmoud Nadir</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Ghenaiet"> Adel Ghenaiet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this study is the thermodynamic modeling, the parametric analysis, and the optimization of three pressure level reheat HRSG (Heat Recovery Steam Generator) using PSO method (Particle Swarm Optimization). In this paper, a parametric analysis followed by a thermodynamic optimization is presented. The chosen objective function is the specific work of the steam cycle that may be, in the case of combined cycle (CC), a good criterion of thermodynamic performance analysis, contrary to the conventional steam turbines in which the thermal efficiency could be also an important criterion. The technologic constraints such as maximal steam cycle temperature, minimal steam fraction at steam turbine outlet, maximal steam pressure, minimal stack temperature, minimal pinch point, and maximal superheater effectiveness are also considered. The parametric analyses permitted to understand the effect of design parameters and the constraints on steam cycle specific work variation. PSO algorithm was used successfully in HRSG optimization, knowing that the achieved results are in accordance with those of the previous studies in which genetic algorithms were used. Moreover, this method is easy to implement comparing with the other methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20cycle" title="combined cycle">combined cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=HRSG%20thermodynamic%20modeling" title=" HRSG thermodynamic modeling"> HRSG thermodynamic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=PSO" title=" PSO"> PSO</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20cycle%20specific%20work" title=" steam cycle specific work"> steam cycle specific work</a> </p> <a href="https://publications.waset.org/abstracts/38513/thermodynamic-modeling-of-three-pressure-level-reheat-hrsg-parametric-analysis-and-optimization-using-pso" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">851</span> Antibacterial Activity of Trans-Cinnamaldehyde and Geraniol and Their Potential as Ingredients of Biocidal Polymers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daria%20Olkiewicz">Daria Olkiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Walczak"> Maciej Walczak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the biocidal effects of trans-cinnamaldehyde (a main component of cinnamon oil) and geraniol (a constituent of Pelargonium graveolens essential oil) are presented. The activity of the combination of trans-cinnamaldehyde and geraniol was tested against 3 bacterial strains: Staphylococcus aureus ATCC6538 (Gramm+), Escherichia coli ATCC8739 (Gramm-, Lac+) and Pseudomonas aeruginosa KKP 991(Gramm-, Lac-). The biocidal activity of trans-cinnamaldehyde-geraniol mixture against bacteria mentioned above was evaluated by disk-diffusion method. The model strains were exposed on 1, 2.5, 5 and 10 mg of trans-cinnamaldehyde-geraniol mixture per disk, and all strains were susceptible to this combination of plant compounds. For all microorganisms, also Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) were estimated. For Staphylococcus aureus MIC was 0.0625 mg/ml of the trans-cinnamaldehyde and geraniol mixture, and MBC was 1.25 mg/ml; For Escherichia coli MIC=0.5 mg/ml, MBC=1 mg/ml, and finally Pseudomonas aeruginosa was inhibited in 0.5 mg/ml, and minimal biocidal concentration of tested mixture for it was 1.25 mg/ml. There are also reports about the synergistic working of trans-cinnamaldehyde and geraniol against microorganisms and the antimicrobial activity of polymers enriched with trans-cinnamaldehyde or geraniol, therefore the successful development and introduction to the today life of biocidal polymer enriched with trans-cinnamaldehyde and geraniol are possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=biocidal%20polymers" title=" biocidal polymers"> biocidal polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=geraniol" title=" geraniol"> geraniol</a>, <a href="https://publications.waset.org/abstracts/search?q=trans-cinnamaldehyde" title=" trans-cinnamaldehyde"> trans-cinnamaldehyde</a> </p> <a href="https://publications.waset.org/abstracts/128636/antibacterial-activity-of-trans-cinnamaldehyde-and-geraniol-and-their-potential-as-ingredients-of-biocidal-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">850</span> Some Results for F-Minimal Hypersurfaces in Manifolds with Density</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdelmalek">M. Abdelmalek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we study the hypersurfaces of constant weighted mean curvature embedded in weighted manifolds. We give a condition about these hypersurfaces to be minimal. This condition is given by the ellipticity of the weighted Newton transformations. We especially prove that two compact hypersurfaces of constant weighted mean curvature embedded in space forms and with the intersection in at least a point of the boundary must be transverse. The method is based on the calculus of the matrix of the second fundamental form in a boundary point and then the matrix associated with the Newton transformations. By equality, we find the weighted elementary symmetric function on the boundary of the hypersurface. We give in the end some examples and applications. Especially in Euclidean space, we use the above result to prove the Alexandrov spherical caps conjecture for the weighted case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=weighted%20mean%20curvature" title="weighted mean curvature">weighted mean curvature</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20manifolds" title=" weighted manifolds"> weighted manifolds</a>, <a href="https://publications.waset.org/abstracts/search?q=ellipticity" title=" ellipticity"> ellipticity</a>, <a href="https://publications.waset.org/abstracts/search?q=Newton%20transformations" title=" Newton transformations"> Newton transformations</a> </p> <a href="https://publications.waset.org/abstracts/160174/some-results-for-f-minimal-hypersurfaces-in-manifolds-with-density" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">849</span> Constructing Orthogonal De Bruijn and Kautz Sequences and Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yaw-Ling%20Lin">Yaw-Ling Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A de Bruijn graph of order k is a graph whose vertices representing all length-k sequences with edges joining pairs of vertices whose sequences have maximum possible overlap (length k−1). Every Hamiltonian cycle of this graph defines a distinct, minimum length de Bruijn sequence containing all k-mers exactly once. A Kautz sequence is the minimal generating sequence so as the sequence of minimal length that produces all possible length-k sequences with the restriction that every two consecutive alphabets in the sequences must be different. A collection of de Bruijn/Kautz sequences are orthogonal if any two sequences are of maximally differ in sequence composition; that is, the maximum length of their common substring is k. In this paper, we discuss how such a collection of (maximal) orthogonal de Bruijn/Kautz sequences can be made and use the algorithm to build up a web application service for the synthesized DNA and other related biomolecular sequences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomolecular%20sequence%20synthesis" title="biomolecular sequence synthesis">biomolecular sequence synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=de%20Bruijn%20sequences" title=" de Bruijn sequences"> de Bruijn sequences</a>, <a href="https://publications.waset.org/abstracts/search?q=Eulerian%20cycle" title=" Eulerian cycle"> Eulerian cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamiltonian%20cycle" title=" Hamiltonian cycle"> Hamiltonian cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=Kautz%20sequences" title=" Kautz sequences"> Kautz sequences</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20sequences" title=" orthogonal sequences"> orthogonal sequences</a> </p> <a href="https://publications.waset.org/abstracts/121912/constructing-orthogonal-de-bruijn-and-kautz-sequences-and-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">848</span> Replacement Time and Number of Preventive Maintenance Actions for Second-Hand Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen%20Liang%20Chang">Wen Liang Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the optimal replacement time and number of preventive maintenance (PM) actions were investigated for a second-hand device. Suppose that a user intends to use a second-hand device for manufacturing products, and that the device is replaced with a new one. Any device failure is rectified through minimal repair, thereby incurring a fixed repair cost to the user. If the new device fails within the FRW period, minimal repair is performed at no cost to the user. After the FRW expires, a failed device is repaired and the cost of repair is incurred by the user. In this study, two profit models were developed, and the optimal replacement time and number of PM actions were determined to maximize profits. Finally, the influence of the optimal replacement time and number of PM actions were elaborated on, using numerical examples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=second-hand%20device" title="second-hand device">second-hand device</a>, <a href="https://publications.waset.org/abstracts/search?q=preventive%20maintenance" title=" preventive maintenance"> preventive maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=replacement%20time" title=" replacement time"> replacement time</a>, <a href="https://publications.waset.org/abstracts/search?q=device%20failure" title=" device failure"> device failure</a> </p> <a href="https://publications.waset.org/abstracts/9223/replacement-time-and-number-of-preventive-maintenance-actions-for-second-hand-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">847</span> The Effectiveness of Probiotics in the Treatment of Minimal Hepatic Encephalopathy Among Patients with Cirrhosis: An Expanded Meta-Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erwin%20Geroleo">Erwin Geroleo</a>, <a href="https://publications.waset.org/abstracts/search?q=Higinio%20Mappala"> Higinio Mappala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction Overt Hepatic Encephalopathy (OHE) is the most dreaded outcome of liver cirrhosis. Aside from the triggering factors which are already known to precipitate OHE, there is growing evidence that an altered gut microbiota profile (dysbiosis) can also trigger OHE. MHE is the mildest form of hepatic encephalopathy(HE), affecting about one-third of patients with cirrhosis, and close 80% of patients with cirrhosis and manifests as abnormalities in central nervous system function. Since these symptoms are subclinical most patients are not being treated to prevent OHE. The gut microbiota have been evaluated by several studies as a therapeutic option for MHE, especially in decreasing the levels of ammonia, thus preventing progression to OHE Objectives This study aims to evaluate the efficacy of probiotics in terms of reduction of ammonia levels in patient with minimal hepatic encephalopathies and to determine if Probiotics has role in the prevention of progression to overt hepatic encephalopathy in adult patients with minimal hepatic encephalopathy (MHE) Methods and Analysis The literature search strategy was restricted to human studies in adults subjects from 2004 to 2022. The Jadad Score Calculation was utilized in the assessment of the final studies included in this study. Eight (8) studies were included. Cochrane’s Revman Web, the Fixed Effects model and the Ztest were all used in the overall analysis of the outcomes. A p value of less than 0.0005 was statistically significant. Results. These results show that Probiotics significantly lowers the level of Ammonia in Cirrhotic patients with OHE. It also shows that the use of Probiotics significantly prevents the progression of MHE to OHE. The overall risk of bias graph indicates low risk of publication bias among the studies included in the meta-analysis. Main findings This research found that plasma ammonia concentration was lower among participants treated with probiotics (p<0.00001).) Ammonia level of the probiotics group is lower by 13.96 μmol/ on the average. Overall risk of developing overt hepatic encephalopathy in the probiotics group is shown to be decreased by 15% as compared to the placebo group Conclusion The analysis showed that compared with placebo, probiotics can decrease serum ammonia, may improve MHE and may prevent OHE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=minimal%20hepatic%20encephalopathy" title="minimal hepatic encephalopathy">minimal hepatic encephalopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotics" title=" probiotics"> probiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20cirrhosis" title=" liver cirrhosis"> liver cirrhosis</a>, <a href="https://publications.waset.org/abstracts/search?q=overt%20hepatic%20encephalopathy" title=" overt hepatic encephalopathy"> overt hepatic encephalopathy</a> </p> <a href="https://publications.waset.org/abstracts/185292/the-effectiveness-of-probiotics-in-the-treatment-of-minimal-hepatic-encephalopathy-among-patients-with-cirrhosis-an-expanded-meta-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">846</span> Preventative Maintenance, Impact on the Optimal Replacement Strategy of Secondhand Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pin-Wei%20Chiang">Pin-Wei Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Liang%20Chang"> Wen-Liang Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruey-Huei%20Yeh"> Ruey-Huei Yeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates optimal replacement and preventative maintenance policies of secondhand products under a Finite Planning Horizon (FPH). Any consumer wishing to replace their product under FPH would have it undergo minimal repairs. The replacement provided would be required to undergo periodical preventive maintenance done to avoid product failure. Then, a mathematical formula for disbursement cost for products under FPH can be derived. Optimal policies are then obtained to minimize cost. In the first of two segments of the paper, a model for initial product purchase of either new or secondhand products is used. This model is built by analyzing product purchasing price, surplus value of product, as well as the minimal repair cost. The second segment uses a model for replacement products, which are also secondhand products with no limit on usage. This model analyzes the same components as the first as well as expected preventative maintenance cost. Using these two models, a formula for the expected final total cost can be developed. The formula requires four variables (optimal preventive maintenance level, preventive maintenance frequency, replacement timing, age of replacement product) to find minimal cost requirement. Based on analysis of the variables using the expected total final cost model, it was found that the purchasing price and length of ownership were directly related. Also, consumers should choose the secondhand product with the higher usage for replacement. Products with higher initial usage upon acquisition require an earlier replacement schedule. In this case, replacements should be made with a secondhand product with less usage. In addition, preventative maintenance also significantly reduces cost. Consumers that plan to use products for longer periods of time replace their products later. Hence these consumers should choose the secondhand product with lesser initial usage for replacement. Preventative maintenance also creates significant total cost savings in this case. This study provides consumers with a method of calculating both the ideal amount of usage of the products they should purchase as well as the frequency and level of preventative maintenance that should be conducted in order to minimize cost and maintain product function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20planning%20horizon" title="finite planning horizon">finite planning horizon</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20hand%20product" title=" second hand product"> second hand product</a>, <a href="https://publications.waset.org/abstracts/search?q=replacement" title=" replacement"> replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=preventive%20maintenance" title=" preventive maintenance"> preventive maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20repair" title=" minimal repair"> minimal repair</a> </p> <a href="https://publications.waset.org/abstracts/22433/preventative-maintenance-impact-on-the-optimal-replacement-strategy-of-secondhand-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">845</span> Composition and in Vitro Antimicrobial Activity of Three Eryngium L. Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Mickiene">R. Mickiene</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Friese"> A. Friese</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Rosler"> U. Rosler</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Maruska"> A. Maruska</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Ragazinskiene"> O. Ragazinskiene </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research focuses on phytochemistry and antimicrobial activities of compounds isolated and identified from three species of Eryngium. The antimicrobial activity of extracts from Eryngiumplanum L., Eryngium maritimum L., Eryngium campestre L. grown in Lithuania, were tested by the method of series dilutions, against different bacteria species: Escherichia coli, Proteus vulgaris and Staphylococcus aureus with and without antibiotic resistances, originating from livestock. The antimicrobial activity of extracts was described by determination of the minimal inhibitory concentration. Preliminary results show that the minimal inhibitory concentration range between 8.0 % and 17.0 % for the different Eryngium extracts and bacterial species.The total amounts ofphenolic compounds and total amounts of flavonoids were tested in the methanolic extracts of the plants. Identification and evaluation of the phenolic compounds were performed by liquid chromatography. The essential oils were analyzed by gas chromatography mass spectrometry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activities" title="antimicrobial activities">antimicrobial activities</a>, <a href="https://publications.waset.org/abstracts/search?q=Eryngium%20L.%20species" title=" Eryngium L. species"> Eryngium L. species</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%20mass%20spectrometry" title=" gas chromatography mass spectrometry"> gas chromatography mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/4219/composition-and-in-vitro-antimicrobial-activity-of-three-eryngium-l-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">844</span> A Mega-Analysis of the Predictive Power of Initial Contact within Minimal Social Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cathal%20Ffrench">Cathal Ffrench</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20Barrett"> Ryan Barrett</a>, <a href="https://publications.waset.org/abstracts/search?q=Mike%20Quayle"> Mike Quayle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is accepted in social psychology that categorization leads to ingroup favoritism, without further thought given to the processes that may co-occur or even precede categorization. These categorizations move away from the conceptualization of the self as a unique social being toward an increasingly collective identity. Subsequently, many individuals derive much of their self-evaluations from these collective identities. The seminal literature on this topic argues that it is primarily categorization that evokes instances of ingroup favoritism. Apropos to these theories, we argue that categorization acts to enhance and further intergroup processes rather than defining them. More accurately, we propose categorization aids initial ingroup contact and this first contact is predictive of subsequent favoritism on individual and collective levels. This analysis focuses on Virtual Interaction APPLication (VIAPPL) based studies, a software interface that builds on the flaws of the original minimal group studies. The VIAPPL allows the exchange of tokens in an intra and inter-group manner. This token exchange is how we classified the first contact. The study involves binary longitudinal analysis to better understand the subsequent exchanges of individuals based on who they first interacted with. Studies were selected on the criteria of evidence of explicit first interactions and two-group designs. Our findings paint a compelling picture in support of a motivated contact hypothesis, which suggests that an individual’s first motivated contact toward another has strong predictive capabilities for future behavior. This contact can lead to habit formation and specific favoritism towards individuals where contact has been established. This has important implications for understanding how group conflict occurs, and how intra-group individual bias can develop. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=categorization" title="categorization">categorization</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20dynamics" title=" group dynamics"> group dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20contact" title=" initial contact"> initial contact</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20social%20networks" title=" minimal social networks"> minimal social networks</a>, <a href="https://publications.waset.org/abstracts/search?q=momentary%20contact" title=" momentary contact"> momentary contact</a> </p> <a href="https://publications.waset.org/abstracts/98661/a-mega-analysis-of-the-predictive-power-of-initial-contact-within-minimal-social-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">843</span> Induced-Gravity Inflation in View of the Bicep2 Results</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Pallis">C. Pallis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Induced-Gravity inflation is a model of chaotic inflation where the inflaton is identified with a Higgs-like modulus whose the vacuum expectation value controls the gravitational strength. Thanks to a strong enough coupling between the inflaton and the Ricci scalar curvature, inflation is attained even for subplanckian values of the inflaton with the corresponding effective theory being valid up to the Planck scale. In its simplest realization, induced-gravity inflation is based on a quatric potential and a quadratic non-minimal coupling and the inflationary observables turn out to be in agreement with the Planck data. Its supersymmetrization can be formulated within no-scale Supergravity employing two gauge singlet chiral superfields and applying a continuous $R$ and a discrete Zn symmetry to the proposed superpotential and Kahler potential. Modifying slightly the non-minimal coupling to Gravity, the model can account for the recent results of BICEP2. These modifications can be also accommodated beyond the no-scale SUGRA considering the fourth order term of the Kahler potential which mixes the inflaton with the accompanying non-inflaton field and small deviations from the prefactor $-3$ encountered in the adopted Kahler potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cosmology" title="cosmology">cosmology</a>, <a href="https://publications.waset.org/abstracts/search?q=supersymmetric%20models" title=" supersymmetric models"> supersymmetric models</a>, <a href="https://publications.waset.org/abstracts/search?q=supergravity" title=" supergravity"> supergravity</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20gravity" title=" modified gravity"> modified gravity</a> </p> <a href="https://publications.waset.org/abstracts/13667/induced-gravity-inflation-in-view-of-the-bicep2-results" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">717</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">842</span> Isolated Contraction of Deep Lumbar Paraspinal Muscle with Magnetic Nerve Root Stimulation: A Pilot Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shi-Uk%20Lee">Shi-Uk Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chae%20Young%20Lim"> Chae Young Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The aim of this study was to evaluate the changes of lumbar deep muscle thickness and cross-sectional area using ultrasonography with magnetic stimulation. Methods: To evaluate the changes of lumbar deep muscle by using magnetic stimulation, 12 healthy volunteers (39.6±10.0 yrs) without low back pain during 3 months participated in this study. All the participants were checked with X-ray and electrophysiologic study to confirm that they had no problems with their back. Magnetic stimulation was done on the L5 and S1 root with figure-eight coil as previous study. To confirm the proper motor root stimulation, the surface electrode was put on the tibialis anterior (L5) and abductor hallucis muscles (S1) and the hot spots of magnetic stimulation were found with 50% of maximal magnetic stimulation and determined the stimulation threshold lowering the magnetic intensity by 5%. Ultrasonography was used to assess the changes of L5 and S1 lumbar multifidus (superficial and deep) cross-sectional area and thickness with maximal magnetic stimulation. Cross-sectional area (CSA) and thickness was evaluated with image acquisition program, ImageJ software (National Institute of Healthy, USA). Wilcoxon signed-rank was used to compare outcomes between before and after stimulations. Results: The mean minimal threshold was 29.6±3.8% of maximal stimulation intensity. With minimal magnetic stimulation, thickness of L5 and S1 deep multifidus (DM) were increased from 1.25±0.20, 1.42±0.23 cm to 1.40±0.27, 1.56±0.34 cm, respectively (P=0.005, P=0.003). CSA of L5 and S1 DM were also increased from 2.26±0.18, 1.40±0.26 cm2 to 2.37±0.18, 1.56±0.34 cm2, respectively (P=0.002, P=0.002). However, thickness of L5 and S1 superficial multifidus (SM) were not changed from 1.92±0.21, 2.04±0.20 cm to 1.91±0.33, 1.96±0.33 cm (P=0.211, P=0.199) and CSA of L5 and S1 were also not changed from 4.29±0.53, 5.48±0.32 cm2 to 4.42±0.42, 5.64±0.38 cm2. With maximal magnetic stimulation, thickness of L5, S1 of DM and SM were increased (L5 DM, 1.29±0.26, 1.46±0.27 cm, P=0.028; L5 SM, 2.01±0.42, 2.24±0.39 cm, P=0.005; S1 DM, 1.29±0.19, 1.67±0.29 P=0.002; S1 SM, 1.90±0.36, 2.30±0.36, P=0.002). CSA of L5, S1 of DM and SM were also increased (all P values were 0.002). Conclusions: Deep lumbar muscles could be stimulated with lumbar motor root magnetic stimulation. With minimal stimulation, thickness and CSA of lumbosacral deep multifidus were increased in this study. Further studies are needed to confirm whether the similar results in chronic low back pain patients are represented. Lumbar magnetic stimulation might have strengthening effect of deep lumbar muscles with no discomfort. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20stimulation" title="magnetic stimulation">magnetic stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=lumbar%20multifidus" title=" lumbar multifidus"> lumbar multifidus</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonography" title=" ultrasonography"> ultrasonography</a> </p> <a href="https://publications.waset.org/abstracts/37453/isolated-contraction-of-deep-lumbar-paraspinal-muscle-with-magnetic-nerve-root-stimulation-a-pilot-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=minimal%20reduct&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=minimal%20reduct&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=minimal%20reduct&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=minimal%20reduct&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=minimal%20reduct&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=minimal%20reduct&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=minimal%20reduct&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=minimal%20reduct&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=minimal%20reduct&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=minimal%20reduct&page=29">29</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=minimal%20reduct&page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=minimal%20reduct&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>