CINXE.COM
Michael Affenzeller | Upper Austria University of Applied Sciences - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Michael Affenzeller | Upper Austria University of Applied Sciences - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="kOpravKvmvMkK7Q3SISJREXPQjMIS8avbVn6Tuj694HQUsskuytqtHY4FZu-IMV_Yj0M8LUsOSl5ov7MMbtccA" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-bfbac2a470372e2f3a6661a65fa7ff0a0fbf7aa32534d9a831d683d2a6f9e01b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="author" content="michael affenzeller" /> <meta name="description" content="MICHAEL AFFENZELLER has published several papers, journal articles and books dealing with theoretical and practical aspects of evolutionary computation,…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '6126ad0e98c738cb7565ca303973296e3a0c1d18'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":14023,"monthly_visitors":"31 million","monthly_visitor_count":31300000,"monthly_visitor_count_in_millions":31,"user_count":283383834,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1740164652000); window.Aedu.timeDifference = new Date().getTime() - 1740164652000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-1eb081e01ca8bc0c1b1d866df79d9eb4dd2c484e4beecf76e79a7806c72fee08.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-b42d48e01e9cb3bf5ae55ea154ab7133fe47240c1d7c59b0249065c67d6f65ab.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f3fdf92d2e211a3fd7a717a75adb7bf4af30f5d7651964d9f223129f218112cd.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://fh-ooe.academia.edu/MichaelAffenzeller" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-fd736d66704990dee9f52cdbd5e7b1c7d1b031c0bb5a20dd676d1a6b7d5fea79.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller","photo":"https://0.academia-photos.com/33734165/9946188/72681330/s65_michael.affenzeller.jpg","has_photo":true,"department":{"id":1614642,"name":"Software Engineering","url":"https://fh-ooe.academia.edu/Departments/Software_Engineering/Documents","university":{"id":2330,"name":"Upper Austria University of Applied Sciences","url":"https://fh-ooe.academia.edu/"}},"position":"Head of Master degree programme Software Engineering","position_id":4,"is_analytics_public":false,"interests":[{"id":139055,"name":"Meta-Heuristics (Tabu Search, Genetic Algorithms, Simulated Annealing, Ant-Colony, Particle Swarm Optimization)","url":"https://www.academia.edu/Documents/in/Meta-Heuristics_Tabu_Search_Genetic_Algorithms_Simulated_Annealing_Ant-Colony_Particle_Swarm_Op"},{"id":5026,"name":"Genetic Algorithms","url":"https://www.academia.edu/Documents/in/Genetic_Algorithms"},{"id":5025,"name":"Genetic Programming","url":"https://www.academia.edu/Documents/in/Genetic_Programming"},{"id":21490,"name":"Simulation Based Optimization","url":"https://www.academia.edu/Documents/in/Simulation_Based_Optimization"},{"id":110934,"name":"Virtual Sensors","url":"https://www.academia.edu/Documents/in/Virtual_Sensors"},{"id":1367345,"name":"Virtual Sensor Network","url":"https://www.academia.edu/Documents/in/Virtual_Sensor_Network"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://fh-ooe.academia.edu/MichaelAffenzeller","location":"/MichaelAffenzeller","scheme":"https","host":"fh-ooe.academia.edu","port":null,"pathname":"/MichaelAffenzeller","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-c15af791-fb7a-4326-8aa9-9570cbc5b113"></div> <div id="ProfileCheckPaperUpdate-react-component-c15af791-fb7a-4326-8aa9-9570cbc5b113"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Michael Affenzeller" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/33734165/9946188/72681330/s200_michael.affenzeller.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Michael Affenzeller</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://fh-ooe.academia.edu/">Upper Austria University of Applied Sciences</a>, <a class="u-tcGrayDarker" href="https://fh-ooe.academia.edu/Departments/Software_Engineering/Documents">Software Engineering</a>, <span class="u-tcGrayDarker">Head of Master degree programme Software Engineering</span></div><div><a class="u-tcGrayDarker" href="https://fh-steyr.academia.edu/">University of Applied Sciences Upper Austria</a>, <a class="u-tcGrayDarker" href="https://fh-steyr.academia.edu/Departments/Heuristic_and_Evolutionary_Algorithms_Laboratory_HEAL_/Documents">Heuristic and Evolutionary Algorithms Laboratory (HEAL)</a>, <span class="u-tcGrayDarker">Head</span></div><div><a class="u-tcGrayDarker" href="https://jku.academia.edu/">Johannes Kepler University Linz</a>, <a class="u-tcGrayDarker" href="https://jku.academia.edu/Departments/Institute_for_Formal_Modelis_annd_Verification/Documents">Institute for Formal Modelis annd Verification</a>, <span class="u-tcGrayDarker">Alumnus</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Michael" data-follow-user-id="33734165" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="33734165"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">96</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">20</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">20</p></div></a><div class="js-mentions-count-container" style="display: none;"><a href="/MichaelAffenzeller/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data"></p></div></a></div><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">MICHAEL AFFENZELLER has published several papers, journal articles and books dealing with theoretical and practical aspects of evolutionary computation, genetic algorithms, and meta-heuristics in general. In 2001 he received his PhD in engineering sciences and in 2004 he received his habilitation in applied systems engineering, both from the Johannes Kepler University of Linz, Austria. Michael Affenzeller is professor at the Upper Austria University of Applied Sciences, Campus Hagenberg, and head of the research group HEAL. From October 2014 to September 2022 he has served as the head of studies for the Master degree program Software Engineering and as vice dean for R<br /><b>Address: </b>Softwarepark 11 <br />A-4232 Hagenberg <br />Austria<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="suggested-academics-container"><div class="suggested-academics--header"><p class="ds2-5-body-md-bold">Related Authors</p></div><ul class="suggested-user-card-list"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/EnriqueNaredoGarc%C3%ADa"><img class="profile-avatar u-positionAbsolute" alt="Enrique Naredo García" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/251608695/105015664/94210613/s200_enrique.naredo_garc_a.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/EnriqueNaredoGarc%C3%ADa">Enrique Naredo García</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/MAffenzeller"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/MAffenzeller">Michael Affenzeller</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://unisantos.academia.edu/AntoniLaws"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://unisantos.academia.edu/AntoniLaws">Lord Laws</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universidade Unisantos</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://fh-steyr.academia.edu/MAffenzeller"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://fh-steyr.academia.edu/MAffenzeller">M. Affenzeller</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Applied Sciences Upper Austria</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/AleksandarK7"><img class="profile-avatar u-positionAbsolute" alt="Aleksandar Kartelj" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" src="https://gravatar.com/avatar/ea34ccfa7a255c631a8f296794118faa?s=200" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/AleksandarK7">Aleksandar Kartelj</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/AlexisQuesadaArencibia"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/AlexisQuesadaArencibia">Alexis Quesada-Arencibia</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://inesc-id.academia.edu/LeonelSousa"><img class="profile-avatar u-positionAbsolute" alt="Leonel Sousa" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/3516491/10503538/11720272/s200_leonel.sousa.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://inesc-id.academia.edu/LeonelSousa">Leonel Sousa</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">INESC-ID, IST, Universidade de Lisboa</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://flm.academia.edu/IGasmi"><img class="profile-avatar u-positionAbsolute" alt="Ines Gasmi" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/111316013/28824356/26911177/s200_ines.gasmi.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://flm.academia.edu/IGasmi">Ines Gasmi</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Manouba, Tunisia</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://independent.academia.edu/MSchoenauer"><img class="profile-avatar u-positionAbsolute" alt="Marc Schoenauer" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" src="https://gravatar.com/avatar/7e198e328b48d6d06420bc331d962f80?s=200" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://independent.academia.edu/MSchoenauer">Marc Schoenauer</a></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://unmsm.academia.edu/YULISSALADINOBARRIENTOS"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://unmsm.academia.edu/YULISSALADINOBARRIENTOS">YULISSA LADINO BARRIENTOS</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universidad Nacional Mayor de San Marcos</p></div></div></ul></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="33734165">View All (6)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33734165" href="https://www.academia.edu/Documents/in/Meta-Heuristics_Tabu_Search_Genetic_Algorithms_Simulated_Annealing_Ant-Colony_Particle_Swarm_Op"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://fh-ooe.academia.edu/MichaelAffenzeller","location":"/MichaelAffenzeller","scheme":"https","host":"fh-ooe.academia.edu","port":null,"pathname":"/MichaelAffenzeller","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Meta-Heuristics (Tabu Search, Genetic Algorithms, Simulated An..."]}" data-trace="false" data-dom-id="Pill-react-component-0f1047f2-00f7-4e61-810e-578558af8c95"></div> <div id="Pill-react-component-0f1047f2-00f7-4e61-810e-578558af8c95"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33734165" href="https://www.academia.edu/Documents/in/Genetic_Algorithms"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Genetic Algorithms"]}" data-trace="false" data-dom-id="Pill-react-component-f31529bb-39e7-4a8e-a659-9d781fc03ee1"></div> <div id="Pill-react-component-f31529bb-39e7-4a8e-a659-9d781fc03ee1"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33734165" href="https://www.academia.edu/Documents/in/Genetic_Programming"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Genetic Programming"]}" data-trace="false" data-dom-id="Pill-react-component-3165f11d-ed7a-41e3-982c-c837c8fb8c56"></div> <div id="Pill-react-component-3165f11d-ed7a-41e3-982c-c837c8fb8c56"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33734165" href="https://www.academia.edu/Documents/in/Simulation_Based_Optimization"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Simulation Based Optimization"]}" data-trace="false" data-dom-id="Pill-react-component-78c1ed55-11e7-429f-a890-8cf3ce303346"></div> <div id="Pill-react-component-78c1ed55-11e7-429f-a890-8cf3ce303346"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="33734165" href="https://www.academia.edu/Documents/in/Virtual_Sensors"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Virtual Sensors"]}" data-trace="false" data-dom-id="Pill-react-component-ee1ba657-ec83-4af6-b193-0fc9271b91df"></div> <div id="Pill-react-component-ee1ba657-ec83-4af6-b193-0fc9271b91df"></div> </a></div></div><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="nav-container backbone-profile-documents-nav hidden-xs"><ul class="nav-tablist" role="tablist"><li class="nav-chip active" role="presentation"><a data-section-name="" data-toggle="tab" href="#all" role="tab">all</a></li><li class="nav-chip" role="presentation"><a class="js-profile-docs-nav-section u-textTruncate" data-click-track="profile-works-tab" data-section-name="Papers" data-toggle="tab" href="#papers" role="tab" title="Papers"><span>257</span> <span class="ds2-5-body-sm-bold">Papers</span></a></li><li class="nav-chip" role="presentation"><a class="js-profile-docs-nav-section u-textTruncate" data-click-track="profile-works-tab" data-section-name="Multi-Agent-Systems" data-toggle="tab" href="#multiagentsystems" role="tab" title="Multi Agent Systems"><span>1</span> <span class="ds2-5-body-sm-bold">Multi Agent Systems</span></a></li></ul></div><div class="divider ds-divider-16" style="margin: 0px;"></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Michael Affenzeller</h3></div><div class="js-work-strip profile--work_container" data-work-id="104525041"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525041/Parsimony_measures_in_multi_objective_genetic_programming_for_symbolic_regression"><img alt="Research paper thumbnail of Parsimony measures in multi-objective genetic programming for symbolic regression" class="work-thumbnail" src="https://attachments.academia-assets.com/104230775/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525041/Parsimony_measures_in_multi_objective_genetic_programming_for_symbolic_regression">Parsimony measures in multi-objective genetic programming for symbolic regression</a></div><div class="wp-workCard_item"><span>Proceedings of the Genetic and Evolutionary Computation Conference Companion</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We investigate in this paper the suitability of multi-objective algorithms for Symbolic Regressio...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We investigate in this paper the suitability of multi-objective algorithms for Symbolic Regression (SR), where desired properties of parsimony and diversity are explicitly stated as optimization goals. We evaluate different secondary objectives such as length, complexity and diversity on a selection of symbolic regression benchmark problems. Our experiments comparing two multi-objective evolutionary algorithms against standard GP show that multi-objective configurations combining diversity and parsimony objectives provide the best balance of numerical accuracy and model parsimony, allowing practitioners to select suitable models from a diverse set of solutions on the Pareto front. CCS CONCEPTS • Computing methodologies → Search methodologies; • Theory of computation → Random search heuristics; Theory of randomized search heuristics; • Applied computing → Computeraided design;</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3e15a59aae1ea6183384cd8914456a91" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230775,"asset_id":104525041,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230775/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525041"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525041"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525041; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525041]").text(description); $(".js-view-count[data-work-id=104525041]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525041; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525041']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3e15a59aae1ea6183384cd8914456a91" } } $('.js-work-strip[data-work-id=104525041]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525041,"title":"Parsimony measures in multi-objective genetic programming for symbolic regression","internal_url":"https://www.academia.edu/104525041/Parsimony_measures_in_multi_objective_genetic_programming_for_symbolic_regression","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230775,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230775/thumbnails/1.jpg","file_name":"gecco_burlacu_poster.pdf","download_url":"https://www.academia.edu/attachments/104230775/download_file","bulk_download_file_name":"Parsimony_measures_in_multi_objective_ge.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230775/gecco_burlacu_poster-libre.pdf?1689239779=\u0026response-content-disposition=attachment%3B+filename%3DParsimony_measures_in_multi_objective_ge.pdf\u0026Expires=1740168251\u0026Signature=IYD2zWDeJT4sPHwrvc4EOUc~I8HG6BNGHHM7ctUr5bsyn8MUwzLJj3db71Dsf8EzTsgx6EJ-J3pPQUIklvpAko2rXoupERfHoTJfuQGL05VGhMmX6X-JUeZWUIxRduAvHD1lnGIV-18HTI3GXX-6hQtwUcSlKgz~T-azqCAtE7u55MYft4U0XnvAOJjPq2JY8oAcggU39Rx94wkGc8X7Oe6JIVkR6O85Nd-j2Cbd8wh6~wpavbEKYpVn-ycYYV9LA-uWiAMVGPINahRxON3u-vc-GmHgsfTVurpOWoKh-KJpT0cljQJN6NORrGlmEGXnJ5ROOewkgTk3aLrkm3PkyA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525040"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525040/Simulation_based_set_up_time_optimization_using_Sim_and_Heuristiclab"><img alt="Research paper thumbnail of Simulation-based set-up time optimization using Sim# and Heuristiclab" class="work-thumbnail" src="https://attachments.academia-assets.com/104230761/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525040/Simulation_based_set_up_time_optimization_using_Sim_and_Heuristiclab">Simulation-based set-up time optimization using Sim# and Heuristiclab</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Model building is a fundamental task in simulation-based optimization. In this paper we demonstra...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Model building is a fundamental task in simulation-based optimization. In this paper we demonstrate the application of Sim# in combination with HeuristicLab to optimize set-up times of arbitrary machinery. On top of Sim#, custom simulation extensions have been implemented and are used to create a simulation model of real world machinery. These extensions enable the design of simulation components that can be reused within different simulation models. This allows to easily create multiple model implementations that reflect different designs of a machine by using a combination of already existing and adapted components. The resulting model is used as evaluation function for the optimization inside HeuristicLab.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="78a17820fb287d57c5018b46d77d1c2e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230761,"asset_id":104525040,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230761/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525040"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525040"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525040; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525040]").text(description); $(".js-view-count[data-work-id=104525040]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525040; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525040']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "78a17820fb287d57c5018b46d77d1c2e" } } $('.js-work-strip[data-work-id=104525040]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525040,"title":"Simulation-based set-up time optimization using Sim# and Heuristiclab","internal_url":"https://www.academia.edu/104525040/Simulation_based_set_up_time_optimization_using_Sim_and_Heuristiclab","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230761,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230761/thumbnails/1.jpg","file_name":"EMSS2015_289.pdf","download_url":"https://www.academia.edu/attachments/104230761/download_file","bulk_download_file_name":"Simulation_based_set_up_time_optimizatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230761/EMSS2015_289-libre.pdf?1689239786=\u0026response-content-disposition=attachment%3B+filename%3DSimulation_based_set_up_time_optimizatio.pdf\u0026Expires=1740168252\u0026Signature=BpfVvbpB6IDwWE5Y7GmEjHS7iCyvXDTI83mzdlmVP5yZ5Ub1C4KOyggOwWsSpqG~6bw-h7phi0pYXaUAlzpbIMvkeTQelnWFB5npQVfL8WH8ihvPQI5L8mcwzMIWOYhM3awdqAeHbvPESMjfDkWPzXNm5uWuP-jlqVxTtraCYelgffXOLRAbg5P~8bMdE6AGTfwYgTRswfV6Sg71YUgn1CRgJNAMW33vb~ldzat9nwRG0V9euA-qM7p04P8XxLrol-9KIB5ZZciEXvK1GrqN-mcWSfGdlOa3YcX8HkthLIRc1Ei8M1biioXY~TN-pJ9quaBi3tJcyjXV2FiuXgktHw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":104230760,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230760/thumbnails/1.jpg","file_name":"EMSS2015_289.pdf","download_url":"https://www.academia.edu/attachments/104230760/download_file","bulk_download_file_name":"Simulation_based_set_up_time_optimizatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230760/EMSS2015_289-libre.pdf?1689239784=\u0026response-content-disposition=attachment%3B+filename%3DSimulation_based_set_up_time_optimizatio.pdf\u0026Expires=1740168252\u0026Signature=WrARQpuiq8cMzSnRAf8x0fBkdSlicH-CHnhp7FSYc203vWZerxsvFOxGYL~nvyXDAQmXIPmbIFCYuEhf5s~ThOc2keeKMA26ysKqD4H-C6cm6YhsDJsRX0ISBkq8K~IYFoI39lgrj5jsExa70KNx9iroT9Nav6432Wuas~9STmCKI5E7OAW0OVGMTi94txfGA5RinUiCPVJkD49uuUtki3M-jlWY7muxDs3RYM2W6~zdI0gMRlkYg0sIJEZUVxUOsPx4u0P35uwhAGvlmOu5fJi80CAEBkw3JApbCXXCmdLvUlaNUIhIdRmstSyUNW24jR67dNGTAPRpfLWr8U8P5g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525039"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525039/A_new_solution_encoding_for_simulation_based_multi_objective_workforce_qualification_optimization"><img alt="Research paper thumbnail of A new solution encoding for simulation-based multi-objective workforce qualification optimization" class="work-thumbnail" src="https://attachments.academia-assets.com/104230772/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525039/A_new_solution_encoding_for_simulation_based_multi_objective_workforce_qualification_optimization">A new solution encoding for simulation-based multi-objective workforce qualification optimization</a></div><div class="wp-workCard_item"><span>THE EUROPEAN MODELING AND SIMULATION SYMPOSIUM</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Solutions for combinatorial problems can be represented by simple encodings, e.g. vectors of bina...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Solutions for combinatorial problems can be represented by simple encodings, e.g. vectors of binary or integer values or permutations. For such encodings, various specialized operators have been proposed and implemented. In workforce qualification optimization, qualification matrices can for example be encoded in the form of binary vectors. Though simple, this encoding is rather general and existing operators might not work too well considering the genotype is a binary vector, whereas the phenotype is a qualification matrix. Therefore, a new solution encoding that assigns a number of workers to qualification groups is implemented. By conducting experiments with NSGA-II and the newly developed encoding, we show that having an appropriate mapping between genotype and phenotype, as well as more specialized genetic operators, helps the overall multiobjective search process. Solutions found using the specialized encoding mostly dominate the ones found using a binary vector encoding.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="784fcf678e31597ac119e519e1b7b336" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230772,"asset_id":104525039,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230772/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525039"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525039"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525039; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525039]").text(description); $(".js-view-count[data-work-id=104525039]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525039; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525039']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "784fcf678e31597ac119e519e1b7b336" } } $('.js-work-strip[data-work-id=104525039]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525039,"title":"A new solution encoding for simulation-based multi-objective workforce qualification optimization","internal_url":"https://www.academia.edu/104525039/A_new_solution_encoding_for_simulation_based_multi_objective_workforce_qualification_optimization","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230772,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230772/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/104230772/download_file","bulk_download_file_name":"A_new_solution_encoding_for_simulation_b.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230772/pdf-libre.pdf?1689239798=\u0026response-content-disposition=attachment%3B+filename%3DA_new_solution_encoding_for_simulation_b.pdf\u0026Expires=1740168252\u0026Signature=JBvdFL3a3ISP~OTiOGGDXh7UUarZ3sLY~A2a0n-Snxz0VELiA0i5IgmJMyCXF~yRtJ4SDBigf9lMCdCe-LqTB9VVn9L3NCfV0bdQNfbJ14rg-F7t9pMmdQ~zGr-JRrA6bUw0lie0QoEf6~w0nTlAx6~MmLT8pEl0vH8K7LRLjSX9H0wpaPrvAYx5cH6ROFM7Hzaa-jGsTQ9SBmpD0sM~mSBf8tv59WAuBJSP4TJnTJXAyVTO9oxKeLcqWpjLWEa5f-4U-FHaPpV5mhlrNSCpgMvpd5CT6b8EZQhBbsCgJ7RyXmOmQvT0FkHMIy1Cxt3pLlYWsUzyCMdB5nbHEltI2A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525038"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525038/Modelling_a_clustered_generalized_quadratic_assignment_problem"><img alt="Research paper thumbnail of Modelling a clustered generalized quadratic assignment problem" class="work-thumbnail" src="https://attachments.academia-assets.com/104230759/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525038/Modelling_a_clustered_generalized_quadratic_assignment_problem">Modelling a clustered generalized quadratic assignment problem</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper is about the modelling of an assignment problem motivated by a real world problem inst...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper is about the modelling of an assignment problem motivated by a real world problem instance. We consider multiple pieces of equipment which need to be assigned to several locations taking into account capacities as well as relations between equipment and distances between locations. Additionally, a clustering of locations is taken into account that groups locations into areas or fields. It is forbidden to assign the same equipment to locations in different fields. The problem arises in many real world applications such as facility layout or location problems. We discuss the complexity of the problem and prove its NP-hardness. Further two linearization approaches are presented as well as computational studies of the original and the linearized models are conducted. Experimental tests are carried out using CPLEX.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="81baafca27fdf04da57ef249674bcc68" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230759,"asset_id":104525038,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230759/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525038"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525038"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525038; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525038]").text(description); $(".js-view-count[data-work-id=104525038]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525038; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525038']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "81baafca27fdf04da57ef249674bcc68" } } $('.js-work-strip[data-work-id=104525038]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525038,"title":"Modelling a clustered generalized quadratic assignment problem","internal_url":"https://www.academia.edu/104525038/Modelling_a_clustered_generalized_quadratic_assignment_problem","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230759,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230759/thumbnails/1.jpg","file_name":"EMSS2015_307.pdf","download_url":"https://www.academia.edu/attachments/104230759/download_file","bulk_download_file_name":"Modelling_a_clustered_generalized_quadra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230759/EMSS2015_307-libre.pdf?1689239789=\u0026response-content-disposition=attachment%3B+filename%3DModelling_a_clustered_generalized_quadra.pdf\u0026Expires=1740168252\u0026Signature=JxLUw8j9tX8PvwxKpDRXvISs4DErMH8~6ZtoLWH5LCb29jGAkERSH59BcUcnX04Rmbyn8mP2CxearBBDM2TUDjVagqsUACilbaqcQYrcXsLUeJI~yvuRzea-t9ocGJvQGnlVPQ-Pk-cQT2Hr~2g2YS8fLhGaVP-w7I8Fdq-f0d9WlvlIsfyChjh~C77qjUZlWI4CSVb6GxLULABrUv4ZARL7ePykT0FkI0R65SnYm6DKbOqlYkVxhLEcXM~0yaaCTmvuIRj2UYy6vs8EuJ4su1AaYBZJT8IU8b0DhgWkvDDTyfZ4sxBYNb7LVqzHk0B5LiQk5e4kEN0bxnKUw9Vuzg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525037"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525037/Online_Diversity_Control_in_Symbolic_Regression_via_a_Fast_Hash_based_Tree_Similarity_Measure"><img alt="Research paper thumbnail of Online Diversity Control in Symbolic Regression via a Fast Hash-based Tree Similarity Measure" class="work-thumbnail" src="https://attachments.academia-assets.com/104230771/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525037/Online_Diversity_Control_in_Symbolic_Regression_via_a_Fast_Hash_based_Tree_Similarity_Measure">Online Diversity Control in Symbolic Regression via a Fast Hash-based Tree Similarity Measure</a></div><div class="wp-workCard_item"><span>2019 IEEE Congress on Evolutionary Computation (CEC)</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Diversity represents an important aspect of genetic programming, being directly correlated with s...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Diversity represents an important aspect of genetic programming, being directly correlated with search performance. When considered at the genotype level, diversity often requires expensive tree distance measures which have a negative impact on the algorithm's runtime performance. In this work we introduce a fast, hash-based tree distance measure to massively speed-up the calculation of population diversity during the algorithmic run. We combine this measure with the standard GA and the NSGA-II genetic algorithms to steer the search towards higher diversity. We validate the approach on a collection of benchmark problems for symbolic regression where our method consistently outperforms the standard GA as well as NSGA-II configurations with different secondary objectives.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bb672f7e911c6da4e908a7d02f9bc531" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230771,"asset_id":104525037,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230771/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525037"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525037"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525037; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525037]").text(description); $(".js-view-count[data-work-id=104525037]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525037; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525037']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bb672f7e911c6da4e908a7d02f9bc531" } } $('.js-work-strip[data-work-id=104525037]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525037,"title":"Online Diversity Control in Symbolic Regression via a Fast Hash-based Tree Similarity Measure","internal_url":"https://www.academia.edu/104525037/Online_Diversity_Control_in_Symbolic_Regression_via_a_Fast_Hash_based_Tree_Similarity_Measure","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230771,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230771/thumbnails/1.jpg","file_name":"1902.pdf","download_url":"https://www.academia.edu/attachments/104230771/download_file","bulk_download_file_name":"Online_Diversity_Control_in_Symbolic_Reg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230771/1902-libre.pdf?1689239784=\u0026response-content-disposition=attachment%3B+filename%3DOnline_Diversity_Control_in_Symbolic_Reg.pdf\u0026Expires=1740168252\u0026Signature=QybHUlZjHs12aYD7DLuayOn4r~8dI1Pv2D212d1AHc7y-OM24MPbnCOpd5IiWzfIdZnV3yVncJJ8K7OoVLLfvGUSX5lp9CvpP33VtNHyFUZZFLO~XDnzaxBVEdHBl2RokrMw7oVMfKdGqe~tXXG3ptvCbxX2jPdurUU4OajTvjutT7HvJV52qvUk36OOfNeXgph4ZKP6SFDbZ-b-QMBfpvnPhMXTqHz8Xg-ihXA06vXDqCBza4eNdyzo9woriQupFJwU6SbJlAi-JDpbrq82oQ45qtgqczZU-5CqXY28y0A1BOnZzeR0Tk9X1zWNrx0XOGUziUWXINIc0toeoJc3Lg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525036"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525036/Data_based_identification_of_estimation_models_for_tumor_markers_using_evolutionary_computation"><img alt="Research paper thumbnail of Data based identification of estimation models for tumor markers using evolutionary computation" class="work-thumbnail" src="https://attachments.academia-assets.com/104230770/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525036/Data_based_identification_of_estimation_models_for_tumor_markers_using_evolutionary_computation">Data based identification of estimation models for tumor markers using evolutionary computation</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f111e3ef1493f75a436f1a9ae8db0e7d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230770,"asset_id":104525036,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230770/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525036"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525036"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525036; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525036]").text(description); $(".js-view-count[data-work-id=104525036]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525036; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525036']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f111e3ef1493f75a436f1a9ae8db0e7d" } } $('.js-work-strip[data-work-id=104525036]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525036,"title":"Data based identification of estimation models for tumor markers using evolutionary computation","internal_url":"https://www.academia.edu/104525036/Data_based_identification_of_estimation_models_for_tumor_markers_using_evolutionary_computation","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230770,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230770/thumbnails/1.jpg","file_name":"2033.pdf","download_url":"https://www.academia.edu/attachments/104230770/download_file","bulk_download_file_name":"Data_based_identification_of_estimation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230770/2033-libre.pdf?1689239777=\u0026response-content-disposition=attachment%3B+filename%3DData_based_identification_of_estimation.pdf\u0026Expires=1740168252\u0026Signature=MIymZoBWGHOjwnSKkMr2oPOZGe1q7489mp1D3t-aR1mWwFdbAMVeI5HOWl1lhWYaazdr-1vsGuFQSdCLE9-qpElWqV3VYjpBmPpdcUdARTY6CB0JGGy-EHnYZuKWtgsifE9HpcvktgwejV8n9Ghl-kyfGb2k-wTlb-RyMdD0cG5sa1FnFGEtSLawAqKGJ-vGSxBd~ZljneXpL1RHqByvDvr1UqPfKiTHt2Nn37B52Fd5zdoUC37BuC5rdZFzR1RYmXKsBe0jr6KhhkOJuQOHadJ4jnCgLDwgAeIwojy3vAAxTt83s80yLsQJ2HxGqub5U~WMykbwxPBH2O8btiSE~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525035"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525035/Generation_of_dispatching_rules_for_job_sequencing_in_single_machine_environments"><img alt="Research paper thumbnail of Generation of dispatching rules for job sequencing in single-machine environments" class="work-thumbnail" src="https://attachments.academia-assets.com/104230757/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525035/Generation_of_dispatching_rules_for_job_sequencing_in_single_machine_environments">Generation of dispatching rules for job sequencing in single-machine environments</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A typical way to schedule a set of jobs is to evaluate and optimize different job sequences and t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A typical way to schedule a set of jobs is to evaluate and optimize different job sequences and then process them in the best found order. This global optimization approach can be applied for any set of jobs. Unfortunately, optimizing a subset of these jobs requires a new optimization run for this particular subsequence. In this paper we show the generation of dispatching rules that aid job sequencing in single machine environments using genetic programming and delta features. The rules are applied to sets of jobs and yield priorities depending on certain characteristics. These priorities are then used to create job orders dynamically depending on the last executed job. Once generated for specific scenarios, the rules provide on-the-fly sequence generation capability for queued subsets of jobs. Finally, we compare the performance and robustness of the generated rules against the scheduling approach.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b838e8a6bf41f8c21252ca317ff9fe9e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230757,"asset_id":104525035,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230757/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525035"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525035"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525035; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525035]").text(description); $(".js-view-count[data-work-id=104525035]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525035; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525035']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b838e8a6bf41f8c21252ca317ff9fe9e" } } $('.js-work-strip[data-work-id=104525035]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525035,"title":"Generation of dispatching rules for job sequencing in single-machine environments","internal_url":"https://www.academia.edu/104525035/Generation_of_dispatching_rules_for_job_sequencing_in_single_machine_environments","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230757,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230757/thumbnails/1.jpg","file_name":"EMSS2016_117.pdf","download_url":"https://www.academia.edu/attachments/104230757/download_file","bulk_download_file_name":"Generation_of_dispatching_rules_for_job.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230757/EMSS2016_117-libre.pdf?1689239784=\u0026response-content-disposition=attachment%3B+filename%3DGeneration_of_dispatching_rules_for_job.pdf\u0026Expires=1740168252\u0026Signature=MYIc3Q1Jq7-kF2XWptUgjWu8~CE1SLhX5iAVuwxiwBelyZ915bjcOv73rwVjYcPrOJhi5VT2g7ukJgKK7khgzNgnfDt-DQxh3~Rmnpm91vx1YkMkDE~ITHkOniDy1JmzZFeUBXoSexqjPvxdxpEcD7nXk4Jf7Re27u-HqOyD~AZnakVbU-kTvc9abFtIVaPGwc~N3MuLCxjwPNqJW5fkG4nVzUsoiQbgYKThPnPbHXgWk5wwe7MRdFgcaWs8r1imfreEPyI36~JvPfu7~1QnwYAFnqDpMUhWcxruzFy~p0Ad~rjQxkxV1g7sRntdlR-z-xkbYnF01hbD2aAbZdb1IA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":104230758,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230758/thumbnails/1.jpg","file_name":"EMSS2016_117.pdf","download_url":"https://www.academia.edu/attachments/104230758/download_file","bulk_download_file_name":"Generation_of_dispatching_rules_for_job.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230758/EMSS2016_117-libre.pdf?1689239788=\u0026response-content-disposition=attachment%3B+filename%3DGeneration_of_dispatching_rules_for_job.pdf\u0026Expires=1740168252\u0026Signature=Pufe26Jta6FP40uet86KkB~jLUkzjtx6rtemLw5P-4rZGcyiJzp6P3wOoKQiMtRep8Jx24hFqJnRQEdIGL4tHnvz9zbmNHxOcPXoYA05pYvLm7oLRBNtuDYO-CDdVA9a6cX6jhtCCk8KE17~tg6uT3-WTmvJuvyY8IF14gkfK6lEdS-qYVwKG7GN-mLfCDKVfrgaxw9xwr0G0dZ4ES8W87nJS6rkMvBLctwvqIp3ad4vH~ycWVJzuUu3e1Jbol4WoNWgUnzntmIbi1iV9~kf1ZNOWe5cLS-LLDDtvXiRtpXmo3xLiLdQBDLMtAKXS8P-CRFpxP6w6K4gM2aVbKvcWQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525034"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525034/Enhanced_confidence_interpretations_of_GP_based_ensemble_modeling_results"><img alt="Research paper thumbnail of Enhanced confidence interpretations of GP based ensemble modeling results" class="work-thumbnail" src="https://attachments.academia-assets.com/104230755/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525034/Enhanced_confidence_interpretations_of_GP_based_ensemble_modeling_results">Enhanced confidence interpretations of GP based ensemble modeling results</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we describe the integration of ensemble modeling into genetic programming based cla...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we describe the integration of ensemble modeling into genetic programming based classification and discuss concepts how to use genetic programming specific features for achieving new confidence indicators that estimate the trustworthiness of predictions. These new concepts are tested on a real world dataset from the field of medical diagnosis for cancer prediction where the trustworthiness of modeling results is of highest importance.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="65182506db3688e6620a6c7fba00f6fb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230755,"asset_id":104525034,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230755/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525034"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525034"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525034; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525034]").text(description); $(".js-view-count[data-work-id=104525034]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525034; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525034']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "65182506db3688e6620a6c7fba00f6fb" } } $('.js-work-strip[data-work-id=104525034]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525034,"title":"Enhanced confidence interpretations of GP based ensemble modeling results","internal_url":"https://www.academia.edu/104525034/Enhanced_confidence_interpretations_of_GP_based_ensemble_modeling_results","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230755,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230755/thumbnails/1.jpg","file_name":"EMSS2012_340.pdf","download_url":"https://www.academia.edu/attachments/104230755/download_file","bulk_download_file_name":"Enhanced_confidence_interpretations_of_G.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230755/EMSS2012_340-libre.pdf?1689239783=\u0026response-content-disposition=attachment%3B+filename%3DEnhanced_confidence_interpretations_of_G.pdf\u0026Expires=1740168252\u0026Signature=VVt3kE0dwyaV0a~A~4RiNeGpO8-OnG2JlqG2jB-2zc6eAZkt2nX71-DY1gMbF6mXuUa8Sk8Crv8kSiD1sgs5oaXMQkIYst5CCaPOK8PJMHWaVZI2VcL7XTTgGlYanRYodDvaLslx7R5dUYBRKeQtRn4znu0FaLBwXQwy5q2MTXIZDQjCJpBXZhTYBTbAb9Y0zx4jsVMDyzfwN~IJVVYsytcsLZ8y-bYFpXvhfegSvNp5m2aopWcFIsAusFvf0WGMGAnC1qc5gIPyJ1tZZI9NzR-KBV4AFwRsBPzE8zUQE4nB1V9M29oFlAvRevT00gUvlJqY6dpA3dsbwqepeGTkZw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":104230756,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230756/thumbnails/1.jpg","file_name":"EMSS2012_340.pdf","download_url":"https://www.academia.edu/attachments/104230756/download_file","bulk_download_file_name":"Enhanced_confidence_interpretations_of_G.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230756/EMSS2012_340-libre.pdf?1689239784=\u0026response-content-disposition=attachment%3B+filename%3DEnhanced_confidence_interpretations_of_G.pdf\u0026Expires=1740168252\u0026Signature=QBBqqUeTCtyu44NaZzY8m-2f7-bhSeoyIqihcelh58pvwghhpap9TfoLsvLT5A379i08IBu5xss-9VYISKxIs3Ad9rdmmF8iU~zRz0A8fOce~2Sljrr4Jbzq0GncbPMayWEWtSE-vBHUxIqSPbmyJqApXZFGe5TxHoVH-4LYdnXqeTv7Y5loxhxq5z2RnCKWuwHgBDRF5oL6hFpZr5hOdHVG47yD-xyTnKt5pVx5ANXDbQ8ZuY9ZdKZvgc57R-4kiAv1WnHS6PZ~MmvvqZXRyiBiHVwvQc~G5e7lAQtnujrQspGPbLmRVowPQQfGOtfLi~0kGzOESu7Ce0WEP4wDfA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525033"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525033/On_the_analysis_classification_and_prediction_of_metaheuristic_algorithm_behavior_for_combinatorial_optimization_problems"><img alt="Research paper thumbnail of On the analysis, classification and prediction of metaheuristic algorithm behavior for combinatorial optimization problems" class="work-thumbnail" src="https://attachments.academia-assets.com/104230754/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525033/On_the_analysis_classification_and_prediction_of_metaheuristic_algorithm_behavior_for_combinatorial_optimization_problems">On the analysis, classification and prediction of metaheuristic algorithm behavior for combinatorial optimization problems</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Metaheuristics are successfully applied in many different application domains as they provide a r...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Metaheuristics are successfully applied in many different application domains as they provide a reasonable tradeoff between computation time and achievable solution quality. However, choosing an appropriate algorithm for a certain problem is not trivial, as problem characteristics can change remarkably for different instances and the performance of a metaheuristic may vary considerably for different parameter settings. Therefore it always takes qualified algorithm experts to select and tune a metaheuristic algorithm for a specific application. This process of algorithm selection and parameter tuning is frequently done manually and intuitively and requires a large number of empirical tests. In this contribution the authors propose several measurement values to characterize the search behavior of different metaheuristics for solving combinatorial optimization problems. Based on these measurements algorithms can be classified and models can be learnt to predict the algorithms behavior ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0a9e4d50bf77797fee24398791ff798f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230754,"asset_id":104525033,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230754/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525033"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525033"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525033; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525033]").text(description); $(".js-view-count[data-work-id=104525033]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525033; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525033']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0a9e4d50bf77797fee24398791ff798f" } } $('.js-work-strip[data-work-id=104525033]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525033,"title":"On the analysis, classification and prediction of metaheuristic algorithm behavior for combinatorial optimization problems","internal_url":"https://www.academia.edu/104525033/On_the_analysis_classification_and_prediction_of_metaheuristic_algorithm_behavior_for_combinatorial_optimization_problems","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230754,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230754/thumbnails/1.jpg","file_name":"EMSS2012_368.pdf","download_url":"https://www.academia.edu/attachments/104230754/download_file","bulk_download_file_name":"On_the_analysis_classification_and_predi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230754/EMSS2012_368-libre.pdf?1689239786=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_analysis_classification_and_predi.pdf\u0026Expires=1740168252\u0026Signature=Z0Fm~AKLncnI22S4V6OAtnoglPUmgbggisJCkwJejny3gEHXHZU12kOxBXm55Uh2PPffElTEbNRVkST7inqfA8qy6ie9ZhCVVExUN6NwyhlYnqeEpzHMYVoKoeDBvIujAmV7QffiuX~FrOAQIjpWs~xblkcZ1ygVizNdGUJ53Ededem0BN4riXngJBWmR1A0~ovRrHlbibJpY4Lbv-dX2kdvONLss88FanzJEghXoMvRceU6gGNFniNnMt6jeyMb2tWRicCmV57mX36FwfV3hrq07Z-gCiS3YTodUrTEJTZF~EJ89IBUApnWzjgiwk2Lxqgaq1pWjjSEdL6CcUbhUg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525032"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525032/Modeling_rich_and_dynamic_vehicle_routing_problems_in_Heuristiclab"><img alt="Research paper thumbnail of Modeling rich and dynamic vehicle routing problems in Heuristiclab" class="work-thumbnail" src="https://attachments.academia-assets.com/104230753/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525032/Modeling_rich_and_dynamic_vehicle_routing_problems_in_Heuristiclab">Modeling rich and dynamic vehicle routing problems in Heuristiclab</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Transport is one of the largest emission driving forces and has many economic and social impacts....</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Transport is one of the largest emission driving forces and has many economic and social impacts. Thus it is crucial to model and optimize practical transportation problems. In this paper we present a flexible modeling and optimization framework integrated in the open source environment HeuristicLab. We show, how rich and dynamic vehicle routing problem variants can be integrated in our framework. Using this model, we perform an algorithmic study where we compare several heuristic and metaheuristic algorithms for the dynamic pickup and delivery problem with time windows.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0e49d13bb1d0bdb9603a5b775bf2a00e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230753,"asset_id":104525032,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230753/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525032"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525032"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525032; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525032]").text(description); $(".js-view-count[data-work-id=104525032]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525032; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525032']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0e49d13bb1d0bdb9603a5b775bf2a00e" } } $('.js-work-strip[data-work-id=104525032]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525032,"title":"Modeling rich and dynamic vehicle routing problems in Heuristiclab","internal_url":"https://www.academia.edu/104525032/Modeling_rich_and_dynamic_vehicle_routing_problems_in_Heuristiclab","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230753,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230753/thumbnails/1.jpg","file_name":"HMS2012_96.pdf","download_url":"https://www.academia.edu/attachments/104230753/download_file","bulk_download_file_name":"Modeling_rich_and_dynamic_vehicle_routin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230753/HMS2012_96-libre.pdf?1689239787=\u0026response-content-disposition=attachment%3B+filename%3DModeling_rich_and_dynamic_vehicle_routin.pdf\u0026Expires=1740168252\u0026Signature=VoPCQmlE5IkudqR9DQY-3u4wgQAxxarVL0M4Zw0sZ7dM60k7rhNFnMKp2VcSiXLY1cALsahZxarr7a5-flKXwO-A9iFU0Okdy4Gxk1PkxVhZlCqqxMMGlt6iAfQZOByfkWPzlVou~tLKbF1Heft2jcxZVvn8U-1R-fF-KY87rXRs9o3P2rEd~sBUAQK2Qkjgju5NApkbk8umCY7V1b5WF9mvBVWPl1G1Iz~Zqj5escc9yPDAMkbbpBeGhaNbwu8uoQFfediQcAfxjvyXzKHYVk-hYH~~j6bq9bWSk~hdOdRwrvC6f0OdRNdwaM-nQOb4usUc1ocDl-PQgXTGtC8kxQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":104230752,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230752/thumbnails/1.jpg","file_name":"HMS2012_96.pdf","download_url":"https://www.academia.edu/attachments/104230752/download_file","bulk_download_file_name":"Modeling_rich_and_dynamic_vehicle_routin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230752/HMS2012_96-libre.pdf?1689239789=\u0026response-content-disposition=attachment%3B+filename%3DModeling_rich_and_dynamic_vehicle_routin.pdf\u0026Expires=1740168252\u0026Signature=YcrC3lgWiXxKIURAf683e8Ade-L0BrVLl6axg1cbc0Dy9sQ0edPIMKJbTJK7ReI1n5U9vWo3gzD4VG2aHPx-KD7H6V3VYKDJ3pyMXFLzXh4fDI4lKW25UAmUpP6TYUw7m4EYf7LWhHWtWvm-6zk7nTfQn0b4jsiHn~9xlPDR~D2eZ1peEvPnRqDhRrsyDlWhhEykGF3e5Bfi~BkxuzrdeXVtkO45YdFfjKZDo0sadaqCgXNGOdUb~6DwwRhjZvTOdnuV9UenQhOpgOT6-2f17IsIN4DUflst0oopa7algIVRkK8xFlQcbZEh1PWkbcAFiWTxgcpQ6Viefp2lfZFArg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525031"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525031/Incorporating_physical_knowledge_about_the_formation_of_nitric_oxides_into_evolutionary_system_identification"><img alt="Research paper thumbnail of Incorporating physical knowledge about the formation of nitric oxides into evolutionary system identification" class="work-thumbnail" src="https://attachments.academia-assets.com/104230751/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525031/Incorporating_physical_knowledge_about_the_formation_of_nitric_oxides_into_evolutionary_system_identification">Incorporating physical knowledge about the formation of nitric oxides into evolutionary system identification</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Genetic programming (GP) is an evolutionary optimization method that has already been used succes...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Genetic programming (GP) is an evolutionary optimization method that has already been used successfully for solving data mining problems in the context of several scientific domains. For example, the identification of models describing the nitric oxides (NOx) emissions of diesel engines has been investigated intensively, very promising results were obtained using GP. In the standard GP process, all model structures (as well as parameter settings) of models are created during an evolutionary process; populations of models are evolved using the genetic operators crossover, mutation and selection. In this paper we discuss several possibilities how a priori knowledge can be integrated into the GP process; we have used physical knowledge about the formation of NOx emissions in a BMW diesel engine, test results are given in the empirical tests section.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="921735fab8ff90cb535f95cd81319d30" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230751,"asset_id":104525031,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230751/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525031"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525031"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525031; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525031]").text(description); $(".js-view-count[data-work-id=104525031]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525031; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525031']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "921735fab8ff90cb535f95cd81319d30" } } $('.js-work-strip[data-work-id=104525031]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525031,"title":"Incorporating physical knowledge about the formation of nitric oxides into evolutionary system identification","internal_url":"https://www.academia.edu/104525031/Incorporating_physical_knowledge_about_the_formation_of_nitric_oxides_into_evolutionary_system_identification","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230751,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230751/thumbnails/1.jpg","file_name":"EMSS2008_69.pdf","download_url":"https://www.academia.edu/attachments/104230751/download_file","bulk_download_file_name":"Incorporating_physical_knowledge_about_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230751/EMSS2008_69-libre.pdf?1689239792=\u0026response-content-disposition=attachment%3B+filename%3DIncorporating_physical_knowledge_about_t.pdf\u0026Expires=1740168252\u0026Signature=NWhBsaF~~~9MDI1ri1LoMwMROeYI6euF37PgvG8z0bOqgFOc5j8z2X5lDB9W5GiVy9XK-eQexV1yo~gQ8QSYHuraF4ImXGxPQJoLziMz8IBRiid0YoDT6u9FPE27JPUCU8OuXIpPzx3cUX6JGkkXT4TgJWkNJp9yTLrl85t2FODaZI2eUCpaDnBvp77fXqo24G-96UvwQ9Q-U92xpcSPV2ksguDUrrUyY5AWjgDP7DIxuv9-PGUDUK-WPHFw0tSJ1e4Rq-6Qd4mivGYJBpwq8R3at7YGqsBr7YgRG89O1gesaNOK55~inXfY06i6yK24iNC5EprHttneq5fudXNNKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":104230750,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230750/thumbnails/1.jpg","file_name":"EMSS2008_69.pdf","download_url":"https://www.academia.edu/attachments/104230750/download_file","bulk_download_file_name":"Incorporating_physical_knowledge_about_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230750/EMSS2008_69-libre.pdf?1689239784=\u0026response-content-disposition=attachment%3B+filename%3DIncorporating_physical_knowledge_about_t.pdf\u0026Expires=1740168252\u0026Signature=QPoJ8MCXZrFZ4UrAJYKoMTPtCyjJIkjnfz03hbJt9676AFmguXsnaTc-bKmQI80zuoL76CekNF0PnelT3cUuPakatL-emAQ0wy60Ybl4kQfzhmj1vogKr-Ko1UbOkeldlzayYX135vmmdPQtCj0sACWcppbRq8CwZcAiqD5YYN-ovdhStRn5N1bOdDxnyX~WAbv7oEvfQ3OTqpoTL2AvTTJvFL4VHV4llwu3jXFVbH3n0-TRhYH2rFLfpRSQuTbXpotNjhFE5M6NF3pRMArTJxJ-Jr4BkzBCW7dJXz13tRU7UZFakGYPYjjj~D6HEeG8QIDrdKVZTiAubSl~0uNiQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525030"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525030/Chapter_I_Hot_Topics_in_Symbolic_Computation"><img alt="Research paper thumbnail of Chapter I Hot Topics in Symbolic Computation" class="work-thumbnail" src="https://attachments.academia-assets.com/104230749/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525030/Chapter_I_Hot_Topics_in_Symbolic_Computation">Chapter I Hot Topics in Symbolic Computation</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c63adca962e08acf029c29ca04bc2fb1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230749,"asset_id":104525030,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230749/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525030"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525030"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525030; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525030]").text(description); $(".js-view-count[data-work-id=104525030]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525030; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525030']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c63adca962e08acf029c29ca04bc2fb1" } } $('.js-work-strip[data-work-id=104525030]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525030,"title":"Chapter I Hot Topics in Symbolic Computation","internal_url":"https://www.academia.edu/104525030/Chapter_I_Hot_Topics_in_Symbolic_Computation","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230749,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230749/thumbnails/1.jpg","file_name":"chapter1.pdf","download_url":"https://www.academia.edu/attachments/104230749/download_file","bulk_download_file_name":"Chapter_I_Hot_Topics_in_Symbolic_Computa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230749/chapter1-libre.pdf?1689240117=\u0026response-content-disposition=attachment%3B+filename%3DChapter_I_Hot_Topics_in_Symbolic_Computa.pdf\u0026Expires=1740168252\u0026Signature=UwtBaojTIJg~qLF6fmNUWp5eueyiMY2bt3XIaJvHm39JmfpRzHhaz-zFepFT667D~SE9uKs0haxLEkjtvbh80NmRFLXghybMvgNG3EbqrjLjPm4ehzH3-PBMcYjP-b9U8GrJ33yzeJTgiIXRGSDWFheprU8ylGNYnZhG~gHRsrKfhcy7zZ3IoKvHatugCsJY7qhNJLiN3BBmeSIQA-pEUi9owt-OUWZFXzVuOXsrIz0t5sM3--4j45MbGLySqXaBAZyOSsgktgpdLDhfWMSbQPKF5ARTfpQ8qSwWPaqlRT4-UiixsjWwB-xfupedUNpZIYjA2EPFUdOSXkvNfJ87Wg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525029"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/104525029/Heuristiclab_Grid_A_Flexible_And_Extensible_Environment_For_Parallel_Heuristic_Optimization"><img alt="Research paper thumbnail of Heuristiclab Grid - A Flexible And Extensible Environment For Parallel Heuristic Optimization" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/104525029/Heuristiclab_Grid_A_Flexible_And_Extensible_Environment_For_Parallel_Heuristic_Optimization">Heuristiclab Grid - A Flexible And Extensible Environment For Parallel Heuristic Optimization</a></div><div class="wp-workCard_item"><span>Systems Science</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525029"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525029"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525029; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525029]").text(description); $(".js-view-count[data-work-id=104525029]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525029; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525029']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=104525029]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525029,"title":"Heuristiclab Grid - A Flexible And Extensible Environment For Parallel Heuristic Optimization","internal_url":"https://www.academia.edu/104525029/Heuristiclab_Grid_A_Flexible_And_Extensible_Environment_For_Parallel_Heuristic_Optimization","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525028"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/104525028/Verteilte_Online_Optimierung_f%C3%BCr_hochdimensionale_Tourenpl%C3%A4ne"><img alt="Research paper thumbnail of Verteilte Online Optimierung für hochdimensionale Tourenpläne" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/104525028/Verteilte_Online_Optimierung_f%C3%BCr_hochdimensionale_Tourenpl%C3%A4ne">Verteilte Online Optimierung für hochdimensionale Tourenpläne</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525028"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525028"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525028; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525028]").text(description); $(".js-view-count[data-work-id=104525028]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525028; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525028']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=104525028]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525028,"title":"Verteilte Online Optimierung für hochdimensionale Tourenpläne","internal_url":"https://www.academia.edu/104525028/Verteilte_Online_Optimierung_f%C3%BCr_hochdimensionale_Tourenpl%C3%A4ne","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525027"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/104525027/On_Line_Modeling_Based_on_Genetic_Programming"><img alt="Research paper thumbnail of On-Line Modeling Based on Genetic Programming" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/104525027/On_Line_Modeling_Based_on_Genetic_Programming">On-Line Modeling Based on Genetic Programming</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525027"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525027"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525027; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525027]").text(description); $(".js-view-count[data-work-id=104525027]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525027; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525027']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=104525027]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525027,"title":"On-Line Modeling Based on Genetic Programming","internal_url":"https://www.academia.edu/104525027/On_Line_Modeling_Based_on_Genetic_Programming","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525026"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/104525026/Selection_Pressure_Driven_Sliding_Window_Genetic_Programming"><img alt="Research paper thumbnail of Selection Pressure Driven Sliding Window Genetic Programming" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/104525026/Selection_Pressure_Driven_Sliding_Window_Genetic_Programming">Selection Pressure Driven Sliding Window Genetic Programming</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525026"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525026"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525026; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525026]").text(description); $(".js-view-count[data-work-id=104525026]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525026; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525026']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=104525026]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525026,"title":"Selection Pressure Driven Sliding Window Genetic Programming","internal_url":"https://www.academia.edu/104525026/Selection_Pressure_Driven_Sliding_Window_Genetic_Programming","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525025"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/104525025/Evolutionary_System_Identification_New_Algorithmic_Concepts_and_Applications"><img alt="Research paper thumbnail of Evolutionary System Identification: New Algorithmic Concepts and Applications" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/104525025/Evolutionary_System_Identification_New_Algorithmic_Concepts_and_Applications">Evolutionary System Identification: New Algorithmic Concepts and Applications</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525025"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525025"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525025; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525025]").text(description); $(".js-view-count[data-work-id=104525025]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525025; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525025']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=104525025]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525025,"title":"Evolutionary System Identification: New Algorithmic Concepts and Applications","internal_url":"https://www.academia.edu/104525025/Evolutionary_System_Identification_New_Algorithmic_Concepts_and_Applications","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525024"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/104525024/Zeitreihenanalyse_von_Finanzdaten_unter_Verwendung_von_erweiterten_Methoden_der_Genetischen_Programmierung"><img alt="Research paper thumbnail of Zeitreihenanalyse von Finanzdaten unter Verwendung von erweiterten Methoden der Genetischen Programmierung" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/104525024/Zeitreihenanalyse_von_Finanzdaten_unter_Verwendung_von_erweiterten_Methoden_der_Genetischen_Programmierung">Zeitreihenanalyse von Finanzdaten unter Verwendung von erweiterten Methoden der Genetischen Programmierung</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525024"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525024"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525024; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525024]").text(description); $(".js-view-count[data-work-id=104525024]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525024; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525024']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=104525024]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525024,"title":"Zeitreihenanalyse von Finanzdaten unter Verwendung von erweiterten Methoden der Genetischen Programmierung","internal_url":"https://www.academia.edu/104525024/Zeitreihenanalyse_von_Finanzdaten_unter_Verwendung_von_erweiterten_Methoden_der_Genetischen_Programmierung","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525023"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/104525023/The_Use_of_Genetic_Programming_in_Mechatronics"><img alt="Research paper thumbnail of The Use of Genetic Programming in Mechatronics" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/104525023/The_Use_of_Genetic_Programming_in_Mechatronics">The Use of Genetic Programming in Mechatronics</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525023"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525023"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525023; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525023]").text(description); $(".js-view-count[data-work-id=104525023]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525023; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525023']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=104525023]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525023,"title":"The Use of Genetic Programming in Mechatronics","internal_url":"https://www.academia.edu/104525023/The_Use_of_Genetic_Programming_in_Mechatronics","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525022"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525022/On_the_Benefits_of_a_Domain_Specific_Language_for_Modeling_Metaheuristic_Optimization_Algorithms"><img alt="Research paper thumbnail of On the Benefits of a Domain-Specific Language for Modeling Metaheuristic Optimization Algorithms" class="work-thumbnail" src="https://attachments.academia-assets.com/104230769/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525022/On_the_Benefits_of_a_Domain_Specific_Language_for_Modeling_Metaheuristic_Optimization_Algorithms">On the Benefits of a Domain-Specific Language for Modeling Metaheuristic Optimization Algorithms</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This work provides a case-study of how metaheuristic optimization algorithms can be developed usi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This work provides a case-study of how metaheuristic optimization algorithms can be developed using a domain-specific language as a separate modeling layer. A separation of the modeling process from the implementation of the algorithmic concepts improves the communication and collaboration of practitioners, optimization experts and programmers. This is achieved by providing a higher level of abstraction compared to a general-purpose programming language. A generic and extensible modeling concept is presented and several example algorithm models are illustrated.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d49b1219cbc207aba65635fdf1a91119" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230769,"asset_id":104525022,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230769/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525022"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525022"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525022; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525022]").text(description); $(".js-view-count[data-work-id=104525022]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525022; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525022']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d49b1219cbc207aba65635fdf1a91119" } } $('.js-work-strip[data-work-id=104525022]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525022,"title":"On the Benefits of a Domain-Specific Language for Modeling Metaheuristic Optimization Algorithms","internal_url":"https://www.academia.edu/104525022/On_the_Benefits_of_a_Domain_Specific_Language_for_Modeling_Metaheuristic_Optimization_Algorithms","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230769,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230769/thumbnails/1.jpg","file_name":"EMSS2010_59.pdf","download_url":"https://www.academia.edu/attachments/104230769/download_file","bulk_download_file_name":"On_the_Benefits_of_a_Domain_Specific_Lan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230769/EMSS2010_59-libre.pdf?1689239783=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Benefits_of_a_Domain_Specific_Lan.pdf\u0026Expires=1740168252\u0026Signature=A5v5c448qLGR~IK2dNgmZKdUuq4uG12wcPWR1nkNH1Q9boe4XLrHXfLX4eHTl82H2foJPGGJ~c-EO-WIv-EDwjP0ajJf1PUitrdS8YuaVrV7N-7AlkvQxspsGECjtUYsRZPMp6HxGVpSEbQIpoVNJL5k5F5dIcyIhxEH61WW0vNnVW1szoqftiCGux~nTQIi0QxZ8KXZE0Ga5UeEBTnoFOtyH6tDIG8NxTtgS9vQMyixjaLHs6-MJ-1m2ABPC1u1tb7jR~x342MyHFwon3gI7z9mg8yOqbavGyn21UvNgigFriaVGY7c3w91j4KWECe3A6Q2LCga6G7wrMKk5T951Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3353306" id="papers"><div class="js-work-strip profile--work_container" data-work-id="104525041"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525041/Parsimony_measures_in_multi_objective_genetic_programming_for_symbolic_regression"><img alt="Research paper thumbnail of Parsimony measures in multi-objective genetic programming for symbolic regression" class="work-thumbnail" src="https://attachments.academia-assets.com/104230775/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525041/Parsimony_measures_in_multi_objective_genetic_programming_for_symbolic_regression">Parsimony measures in multi-objective genetic programming for symbolic regression</a></div><div class="wp-workCard_item"><span>Proceedings of the Genetic and Evolutionary Computation Conference Companion</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We investigate in this paper the suitability of multi-objective algorithms for Symbolic Regressio...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We investigate in this paper the suitability of multi-objective algorithms for Symbolic Regression (SR), where desired properties of parsimony and diversity are explicitly stated as optimization goals. We evaluate different secondary objectives such as length, complexity and diversity on a selection of symbolic regression benchmark problems. Our experiments comparing two multi-objective evolutionary algorithms against standard GP show that multi-objective configurations combining diversity and parsimony objectives provide the best balance of numerical accuracy and model parsimony, allowing practitioners to select suitable models from a diverse set of solutions on the Pareto front. CCS CONCEPTS • Computing methodologies → Search methodologies; • Theory of computation → Random search heuristics; Theory of randomized search heuristics; • Applied computing → Computeraided design;</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3e15a59aae1ea6183384cd8914456a91" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230775,"asset_id":104525041,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230775/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525041"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525041"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525041; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525041]").text(description); $(".js-view-count[data-work-id=104525041]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525041; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525041']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3e15a59aae1ea6183384cd8914456a91" } } $('.js-work-strip[data-work-id=104525041]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525041,"title":"Parsimony measures in multi-objective genetic programming for symbolic regression","internal_url":"https://www.academia.edu/104525041/Parsimony_measures_in_multi_objective_genetic_programming_for_symbolic_regression","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230775,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230775/thumbnails/1.jpg","file_name":"gecco_burlacu_poster.pdf","download_url":"https://www.academia.edu/attachments/104230775/download_file","bulk_download_file_name":"Parsimony_measures_in_multi_objective_ge.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230775/gecco_burlacu_poster-libre.pdf?1689239779=\u0026response-content-disposition=attachment%3B+filename%3DParsimony_measures_in_multi_objective_ge.pdf\u0026Expires=1740168251\u0026Signature=IYD2zWDeJT4sPHwrvc4EOUc~I8HG6BNGHHM7ctUr5bsyn8MUwzLJj3db71Dsf8EzTsgx6EJ-J3pPQUIklvpAko2rXoupERfHoTJfuQGL05VGhMmX6X-JUeZWUIxRduAvHD1lnGIV-18HTI3GXX-6hQtwUcSlKgz~T-azqCAtE7u55MYft4U0XnvAOJjPq2JY8oAcggU39Rx94wkGc8X7Oe6JIVkR6O85Nd-j2Cbd8wh6~wpavbEKYpVn-ycYYV9LA-uWiAMVGPINahRxON3u-vc-GmHgsfTVurpOWoKh-KJpT0cljQJN6NORrGlmEGXnJ5ROOewkgTk3aLrkm3PkyA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525040"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525040/Simulation_based_set_up_time_optimization_using_Sim_and_Heuristiclab"><img alt="Research paper thumbnail of Simulation-based set-up time optimization using Sim# and Heuristiclab" class="work-thumbnail" src="https://attachments.academia-assets.com/104230761/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525040/Simulation_based_set_up_time_optimization_using_Sim_and_Heuristiclab">Simulation-based set-up time optimization using Sim# and Heuristiclab</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Model building is a fundamental task in simulation-based optimization. In this paper we demonstra...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Model building is a fundamental task in simulation-based optimization. In this paper we demonstrate the application of Sim# in combination with HeuristicLab to optimize set-up times of arbitrary machinery. On top of Sim#, custom simulation extensions have been implemented and are used to create a simulation model of real world machinery. These extensions enable the design of simulation components that can be reused within different simulation models. This allows to easily create multiple model implementations that reflect different designs of a machine by using a combination of already existing and adapted components. The resulting model is used as evaluation function for the optimization inside HeuristicLab.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="78a17820fb287d57c5018b46d77d1c2e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230761,"asset_id":104525040,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230761/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525040"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525040"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525040; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525040]").text(description); $(".js-view-count[data-work-id=104525040]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525040; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525040']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "78a17820fb287d57c5018b46d77d1c2e" } } $('.js-work-strip[data-work-id=104525040]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525040,"title":"Simulation-based set-up time optimization using Sim# and Heuristiclab","internal_url":"https://www.academia.edu/104525040/Simulation_based_set_up_time_optimization_using_Sim_and_Heuristiclab","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230761,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230761/thumbnails/1.jpg","file_name":"EMSS2015_289.pdf","download_url":"https://www.academia.edu/attachments/104230761/download_file","bulk_download_file_name":"Simulation_based_set_up_time_optimizatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230761/EMSS2015_289-libre.pdf?1689239786=\u0026response-content-disposition=attachment%3B+filename%3DSimulation_based_set_up_time_optimizatio.pdf\u0026Expires=1740168252\u0026Signature=BpfVvbpB6IDwWE5Y7GmEjHS7iCyvXDTI83mzdlmVP5yZ5Ub1C4KOyggOwWsSpqG~6bw-h7phi0pYXaUAlzpbIMvkeTQelnWFB5npQVfL8WH8ihvPQI5L8mcwzMIWOYhM3awdqAeHbvPESMjfDkWPzXNm5uWuP-jlqVxTtraCYelgffXOLRAbg5P~8bMdE6AGTfwYgTRswfV6Sg71YUgn1CRgJNAMW33vb~ldzat9nwRG0V9euA-qM7p04P8XxLrol-9KIB5ZZciEXvK1GrqN-mcWSfGdlOa3YcX8HkthLIRc1Ei8M1biioXY~TN-pJ9quaBi3tJcyjXV2FiuXgktHw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":104230760,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230760/thumbnails/1.jpg","file_name":"EMSS2015_289.pdf","download_url":"https://www.academia.edu/attachments/104230760/download_file","bulk_download_file_name":"Simulation_based_set_up_time_optimizatio.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230760/EMSS2015_289-libre.pdf?1689239784=\u0026response-content-disposition=attachment%3B+filename%3DSimulation_based_set_up_time_optimizatio.pdf\u0026Expires=1740168252\u0026Signature=WrARQpuiq8cMzSnRAf8x0fBkdSlicH-CHnhp7FSYc203vWZerxsvFOxGYL~nvyXDAQmXIPmbIFCYuEhf5s~ThOc2keeKMA26ysKqD4H-C6cm6YhsDJsRX0ISBkq8K~IYFoI39lgrj5jsExa70KNx9iroT9Nav6432Wuas~9STmCKI5E7OAW0OVGMTi94txfGA5RinUiCPVJkD49uuUtki3M-jlWY7muxDs3RYM2W6~zdI0gMRlkYg0sIJEZUVxUOsPx4u0P35uwhAGvlmOu5fJi80CAEBkw3JApbCXXCmdLvUlaNUIhIdRmstSyUNW24jR67dNGTAPRpfLWr8U8P5g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525039"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525039/A_new_solution_encoding_for_simulation_based_multi_objective_workforce_qualification_optimization"><img alt="Research paper thumbnail of A new solution encoding for simulation-based multi-objective workforce qualification optimization" class="work-thumbnail" src="https://attachments.academia-assets.com/104230772/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525039/A_new_solution_encoding_for_simulation_based_multi_objective_workforce_qualification_optimization">A new solution encoding for simulation-based multi-objective workforce qualification optimization</a></div><div class="wp-workCard_item"><span>THE EUROPEAN MODELING AND SIMULATION SYMPOSIUM</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Solutions for combinatorial problems can be represented by simple encodings, e.g. vectors of bina...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Solutions for combinatorial problems can be represented by simple encodings, e.g. vectors of binary or integer values or permutations. For such encodings, various specialized operators have been proposed and implemented. In workforce qualification optimization, qualification matrices can for example be encoded in the form of binary vectors. Though simple, this encoding is rather general and existing operators might not work too well considering the genotype is a binary vector, whereas the phenotype is a qualification matrix. Therefore, a new solution encoding that assigns a number of workers to qualification groups is implemented. By conducting experiments with NSGA-II and the newly developed encoding, we show that having an appropriate mapping between genotype and phenotype, as well as more specialized genetic operators, helps the overall multiobjective search process. Solutions found using the specialized encoding mostly dominate the ones found using a binary vector encoding.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="784fcf678e31597ac119e519e1b7b336" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230772,"asset_id":104525039,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230772/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525039"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525039"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525039; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525039]").text(description); $(".js-view-count[data-work-id=104525039]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525039; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525039']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "784fcf678e31597ac119e519e1b7b336" } } $('.js-work-strip[data-work-id=104525039]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525039,"title":"A new solution encoding for simulation-based multi-objective workforce qualification optimization","internal_url":"https://www.academia.edu/104525039/A_new_solution_encoding_for_simulation_based_multi_objective_workforce_qualification_optimization","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230772,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230772/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/104230772/download_file","bulk_download_file_name":"A_new_solution_encoding_for_simulation_b.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230772/pdf-libre.pdf?1689239798=\u0026response-content-disposition=attachment%3B+filename%3DA_new_solution_encoding_for_simulation_b.pdf\u0026Expires=1740168252\u0026Signature=JBvdFL3a3ISP~OTiOGGDXh7UUarZ3sLY~A2a0n-Snxz0VELiA0i5IgmJMyCXF~yRtJ4SDBigf9lMCdCe-LqTB9VVn9L3NCfV0bdQNfbJ14rg-F7t9pMmdQ~zGr-JRrA6bUw0lie0QoEf6~w0nTlAx6~MmLT8pEl0vH8K7LRLjSX9H0wpaPrvAYx5cH6ROFM7Hzaa-jGsTQ9SBmpD0sM~mSBf8tv59WAuBJSP4TJnTJXAyVTO9oxKeLcqWpjLWEa5f-4U-FHaPpV5mhlrNSCpgMvpd5CT6b8EZQhBbsCgJ7RyXmOmQvT0FkHMIy1Cxt3pLlYWsUzyCMdB5nbHEltI2A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525038"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525038/Modelling_a_clustered_generalized_quadratic_assignment_problem"><img alt="Research paper thumbnail of Modelling a clustered generalized quadratic assignment problem" class="work-thumbnail" src="https://attachments.academia-assets.com/104230759/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525038/Modelling_a_clustered_generalized_quadratic_assignment_problem">Modelling a clustered generalized quadratic assignment problem</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper is about the modelling of an assignment problem motivated by a real world problem inst...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper is about the modelling of an assignment problem motivated by a real world problem instance. We consider multiple pieces of equipment which need to be assigned to several locations taking into account capacities as well as relations between equipment and distances between locations. Additionally, a clustering of locations is taken into account that groups locations into areas or fields. It is forbidden to assign the same equipment to locations in different fields. The problem arises in many real world applications such as facility layout or location problems. We discuss the complexity of the problem and prove its NP-hardness. Further two linearization approaches are presented as well as computational studies of the original and the linearized models are conducted. Experimental tests are carried out using CPLEX.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="81baafca27fdf04da57ef249674bcc68" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230759,"asset_id":104525038,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230759/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525038"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525038"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525038; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525038]").text(description); $(".js-view-count[data-work-id=104525038]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525038; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525038']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "81baafca27fdf04da57ef249674bcc68" } } $('.js-work-strip[data-work-id=104525038]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525038,"title":"Modelling a clustered generalized quadratic assignment problem","internal_url":"https://www.academia.edu/104525038/Modelling_a_clustered_generalized_quadratic_assignment_problem","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230759,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230759/thumbnails/1.jpg","file_name":"EMSS2015_307.pdf","download_url":"https://www.academia.edu/attachments/104230759/download_file","bulk_download_file_name":"Modelling_a_clustered_generalized_quadra.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230759/EMSS2015_307-libre.pdf?1689239789=\u0026response-content-disposition=attachment%3B+filename%3DModelling_a_clustered_generalized_quadra.pdf\u0026Expires=1740168252\u0026Signature=JxLUw8j9tX8PvwxKpDRXvISs4DErMH8~6ZtoLWH5LCb29jGAkERSH59BcUcnX04Rmbyn8mP2CxearBBDM2TUDjVagqsUACilbaqcQYrcXsLUeJI~yvuRzea-t9ocGJvQGnlVPQ-Pk-cQT2Hr~2g2YS8fLhGaVP-w7I8Fdq-f0d9WlvlIsfyChjh~C77qjUZlWI4CSVb6GxLULABrUv4ZARL7ePykT0FkI0R65SnYm6DKbOqlYkVxhLEcXM~0yaaCTmvuIRj2UYy6vs8EuJ4su1AaYBZJT8IU8b0DhgWkvDDTyfZ4sxBYNb7LVqzHk0B5LiQk5e4kEN0bxnKUw9Vuzg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525037"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525037/Online_Diversity_Control_in_Symbolic_Regression_via_a_Fast_Hash_based_Tree_Similarity_Measure"><img alt="Research paper thumbnail of Online Diversity Control in Symbolic Regression via a Fast Hash-based Tree Similarity Measure" class="work-thumbnail" src="https://attachments.academia-assets.com/104230771/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525037/Online_Diversity_Control_in_Symbolic_Regression_via_a_Fast_Hash_based_Tree_Similarity_Measure">Online Diversity Control in Symbolic Regression via a Fast Hash-based Tree Similarity Measure</a></div><div class="wp-workCard_item"><span>2019 IEEE Congress on Evolutionary Computation (CEC)</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Diversity represents an important aspect of genetic programming, being directly correlated with s...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Diversity represents an important aspect of genetic programming, being directly correlated with search performance. When considered at the genotype level, diversity often requires expensive tree distance measures which have a negative impact on the algorithm's runtime performance. In this work we introduce a fast, hash-based tree distance measure to massively speed-up the calculation of population diversity during the algorithmic run. We combine this measure with the standard GA and the NSGA-II genetic algorithms to steer the search towards higher diversity. We validate the approach on a collection of benchmark problems for symbolic regression where our method consistently outperforms the standard GA as well as NSGA-II configurations with different secondary objectives.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bb672f7e911c6da4e908a7d02f9bc531" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230771,"asset_id":104525037,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230771/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525037"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525037"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525037; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525037]").text(description); $(".js-view-count[data-work-id=104525037]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525037; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525037']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bb672f7e911c6da4e908a7d02f9bc531" } } $('.js-work-strip[data-work-id=104525037]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525037,"title":"Online Diversity Control in Symbolic Regression via a Fast Hash-based Tree Similarity Measure","internal_url":"https://www.academia.edu/104525037/Online_Diversity_Control_in_Symbolic_Regression_via_a_Fast_Hash_based_Tree_Similarity_Measure","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230771,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230771/thumbnails/1.jpg","file_name":"1902.pdf","download_url":"https://www.academia.edu/attachments/104230771/download_file","bulk_download_file_name":"Online_Diversity_Control_in_Symbolic_Reg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230771/1902-libre.pdf?1689239784=\u0026response-content-disposition=attachment%3B+filename%3DOnline_Diversity_Control_in_Symbolic_Reg.pdf\u0026Expires=1740168252\u0026Signature=QybHUlZjHs12aYD7DLuayOn4r~8dI1Pv2D212d1AHc7y-OM24MPbnCOpd5IiWzfIdZnV3yVncJJ8K7OoVLLfvGUSX5lp9CvpP33VtNHyFUZZFLO~XDnzaxBVEdHBl2RokrMw7oVMfKdGqe~tXXG3ptvCbxX2jPdurUU4OajTvjutT7HvJV52qvUk36OOfNeXgph4ZKP6SFDbZ-b-QMBfpvnPhMXTqHz8Xg-ihXA06vXDqCBza4eNdyzo9woriQupFJwU6SbJlAi-JDpbrq82oQ45qtgqczZU-5CqXY28y0A1BOnZzeR0Tk9X1zWNrx0XOGUziUWXINIc0toeoJc3Lg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525036"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525036/Data_based_identification_of_estimation_models_for_tumor_markers_using_evolutionary_computation"><img alt="Research paper thumbnail of Data based identification of estimation models for tumor markers using evolutionary computation" class="work-thumbnail" src="https://attachments.academia-assets.com/104230770/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525036/Data_based_identification_of_estimation_models_for_tumor_markers_using_evolutionary_computation">Data based identification of estimation models for tumor markers using evolutionary computation</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f111e3ef1493f75a436f1a9ae8db0e7d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230770,"asset_id":104525036,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230770/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525036"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525036"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525036; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525036]").text(description); $(".js-view-count[data-work-id=104525036]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525036; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525036']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f111e3ef1493f75a436f1a9ae8db0e7d" } } $('.js-work-strip[data-work-id=104525036]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525036,"title":"Data based identification of estimation models for tumor markers using evolutionary computation","internal_url":"https://www.academia.edu/104525036/Data_based_identification_of_estimation_models_for_tumor_markers_using_evolutionary_computation","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230770,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230770/thumbnails/1.jpg","file_name":"2033.pdf","download_url":"https://www.academia.edu/attachments/104230770/download_file","bulk_download_file_name":"Data_based_identification_of_estimation.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230770/2033-libre.pdf?1689239777=\u0026response-content-disposition=attachment%3B+filename%3DData_based_identification_of_estimation.pdf\u0026Expires=1740168252\u0026Signature=MIymZoBWGHOjwnSKkMr2oPOZGe1q7489mp1D3t-aR1mWwFdbAMVeI5HOWl1lhWYaazdr-1vsGuFQSdCLE9-qpElWqV3VYjpBmPpdcUdARTY6CB0JGGy-EHnYZuKWtgsifE9HpcvktgwejV8n9Ghl-kyfGb2k-wTlb-RyMdD0cG5sa1FnFGEtSLawAqKGJ-vGSxBd~ZljneXpL1RHqByvDvr1UqPfKiTHt2Nn37B52Fd5zdoUC37BuC5rdZFzR1RYmXKsBe0jr6KhhkOJuQOHadJ4jnCgLDwgAeIwojy3vAAxTt83s80yLsQJ2HxGqub5U~WMykbwxPBH2O8btiSE~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525035"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525035/Generation_of_dispatching_rules_for_job_sequencing_in_single_machine_environments"><img alt="Research paper thumbnail of Generation of dispatching rules for job sequencing in single-machine environments" class="work-thumbnail" src="https://attachments.academia-assets.com/104230757/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525035/Generation_of_dispatching_rules_for_job_sequencing_in_single_machine_environments">Generation of dispatching rules for job sequencing in single-machine environments</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A typical way to schedule a set of jobs is to evaluate and optimize different job sequences and t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A typical way to schedule a set of jobs is to evaluate and optimize different job sequences and then process them in the best found order. This global optimization approach can be applied for any set of jobs. Unfortunately, optimizing a subset of these jobs requires a new optimization run for this particular subsequence. In this paper we show the generation of dispatching rules that aid job sequencing in single machine environments using genetic programming and delta features. The rules are applied to sets of jobs and yield priorities depending on certain characteristics. These priorities are then used to create job orders dynamically depending on the last executed job. Once generated for specific scenarios, the rules provide on-the-fly sequence generation capability for queued subsets of jobs. Finally, we compare the performance and robustness of the generated rules against the scheduling approach.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b838e8a6bf41f8c21252ca317ff9fe9e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230757,"asset_id":104525035,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230757/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525035"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525035"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525035; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525035]").text(description); $(".js-view-count[data-work-id=104525035]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525035; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525035']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b838e8a6bf41f8c21252ca317ff9fe9e" } } $('.js-work-strip[data-work-id=104525035]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525035,"title":"Generation of dispatching rules for job sequencing in single-machine environments","internal_url":"https://www.academia.edu/104525035/Generation_of_dispatching_rules_for_job_sequencing_in_single_machine_environments","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230757,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230757/thumbnails/1.jpg","file_name":"EMSS2016_117.pdf","download_url":"https://www.academia.edu/attachments/104230757/download_file","bulk_download_file_name":"Generation_of_dispatching_rules_for_job.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230757/EMSS2016_117-libre.pdf?1689239784=\u0026response-content-disposition=attachment%3B+filename%3DGeneration_of_dispatching_rules_for_job.pdf\u0026Expires=1740168252\u0026Signature=MYIc3Q1Jq7-kF2XWptUgjWu8~CE1SLhX5iAVuwxiwBelyZ915bjcOv73rwVjYcPrOJhi5VT2g7ukJgKK7khgzNgnfDt-DQxh3~Rmnpm91vx1YkMkDE~ITHkOniDy1JmzZFeUBXoSexqjPvxdxpEcD7nXk4Jf7Re27u-HqOyD~AZnakVbU-kTvc9abFtIVaPGwc~N3MuLCxjwPNqJW5fkG4nVzUsoiQbgYKThPnPbHXgWk5wwe7MRdFgcaWs8r1imfreEPyI36~JvPfu7~1QnwYAFnqDpMUhWcxruzFy~p0Ad~rjQxkxV1g7sRntdlR-z-xkbYnF01hbD2aAbZdb1IA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":104230758,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230758/thumbnails/1.jpg","file_name":"EMSS2016_117.pdf","download_url":"https://www.academia.edu/attachments/104230758/download_file","bulk_download_file_name":"Generation_of_dispatching_rules_for_job.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230758/EMSS2016_117-libre.pdf?1689239788=\u0026response-content-disposition=attachment%3B+filename%3DGeneration_of_dispatching_rules_for_job.pdf\u0026Expires=1740168252\u0026Signature=Pufe26Jta6FP40uet86KkB~jLUkzjtx6rtemLw5P-4rZGcyiJzp6P3wOoKQiMtRep8Jx24hFqJnRQEdIGL4tHnvz9zbmNHxOcPXoYA05pYvLm7oLRBNtuDYO-CDdVA9a6cX6jhtCCk8KE17~tg6uT3-WTmvJuvyY8IF14gkfK6lEdS-qYVwKG7GN-mLfCDKVfrgaxw9xwr0G0dZ4ES8W87nJS6rkMvBLctwvqIp3ad4vH~ycWVJzuUu3e1Jbol4WoNWgUnzntmIbi1iV9~kf1ZNOWe5cLS-LLDDtvXiRtpXmo3xLiLdQBDLMtAKXS8P-CRFpxP6w6K4gM2aVbKvcWQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525034"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525034/Enhanced_confidence_interpretations_of_GP_based_ensemble_modeling_results"><img alt="Research paper thumbnail of Enhanced confidence interpretations of GP based ensemble modeling results" class="work-thumbnail" src="https://attachments.academia-assets.com/104230755/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525034/Enhanced_confidence_interpretations_of_GP_based_ensemble_modeling_results">Enhanced confidence interpretations of GP based ensemble modeling results</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this paper we describe the integration of ensemble modeling into genetic programming based cla...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this paper we describe the integration of ensemble modeling into genetic programming based classification and discuss concepts how to use genetic programming specific features for achieving new confidence indicators that estimate the trustworthiness of predictions. These new concepts are tested on a real world dataset from the field of medical diagnosis for cancer prediction where the trustworthiness of modeling results is of highest importance.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="65182506db3688e6620a6c7fba00f6fb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230755,"asset_id":104525034,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230755/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525034"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525034"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525034; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525034]").text(description); $(".js-view-count[data-work-id=104525034]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525034; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525034']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "65182506db3688e6620a6c7fba00f6fb" } } $('.js-work-strip[data-work-id=104525034]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525034,"title":"Enhanced confidence interpretations of GP based ensemble modeling results","internal_url":"https://www.academia.edu/104525034/Enhanced_confidence_interpretations_of_GP_based_ensemble_modeling_results","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230755,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230755/thumbnails/1.jpg","file_name":"EMSS2012_340.pdf","download_url":"https://www.academia.edu/attachments/104230755/download_file","bulk_download_file_name":"Enhanced_confidence_interpretations_of_G.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230755/EMSS2012_340-libre.pdf?1689239783=\u0026response-content-disposition=attachment%3B+filename%3DEnhanced_confidence_interpretations_of_G.pdf\u0026Expires=1740168252\u0026Signature=VVt3kE0dwyaV0a~A~4RiNeGpO8-OnG2JlqG2jB-2zc6eAZkt2nX71-DY1gMbF6mXuUa8Sk8Crv8kSiD1sgs5oaXMQkIYst5CCaPOK8PJMHWaVZI2VcL7XTTgGlYanRYodDvaLslx7R5dUYBRKeQtRn4znu0FaLBwXQwy5q2MTXIZDQjCJpBXZhTYBTbAb9Y0zx4jsVMDyzfwN~IJVVYsytcsLZ8y-bYFpXvhfegSvNp5m2aopWcFIsAusFvf0WGMGAnC1qc5gIPyJ1tZZI9NzR-KBV4AFwRsBPzE8zUQE4nB1V9M29oFlAvRevT00gUvlJqY6dpA3dsbwqepeGTkZw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":104230756,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230756/thumbnails/1.jpg","file_name":"EMSS2012_340.pdf","download_url":"https://www.academia.edu/attachments/104230756/download_file","bulk_download_file_name":"Enhanced_confidence_interpretations_of_G.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230756/EMSS2012_340-libre.pdf?1689239784=\u0026response-content-disposition=attachment%3B+filename%3DEnhanced_confidence_interpretations_of_G.pdf\u0026Expires=1740168252\u0026Signature=QBBqqUeTCtyu44NaZzY8m-2f7-bhSeoyIqihcelh58pvwghhpap9TfoLsvLT5A379i08IBu5xss-9VYISKxIs3Ad9rdmmF8iU~zRz0A8fOce~2Sljrr4Jbzq0GncbPMayWEWtSE-vBHUxIqSPbmyJqApXZFGe5TxHoVH-4LYdnXqeTv7Y5loxhxq5z2RnCKWuwHgBDRF5oL6hFpZr5hOdHVG47yD-xyTnKt5pVx5ANXDbQ8ZuY9ZdKZvgc57R-4kiAv1WnHS6PZ~MmvvqZXRyiBiHVwvQc~G5e7lAQtnujrQspGPbLmRVowPQQfGOtfLi~0kGzOESu7Ce0WEP4wDfA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525033"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525033/On_the_analysis_classification_and_prediction_of_metaheuristic_algorithm_behavior_for_combinatorial_optimization_problems"><img alt="Research paper thumbnail of On the analysis, classification and prediction of metaheuristic algorithm behavior for combinatorial optimization problems" class="work-thumbnail" src="https://attachments.academia-assets.com/104230754/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525033/On_the_analysis_classification_and_prediction_of_metaheuristic_algorithm_behavior_for_combinatorial_optimization_problems">On the analysis, classification and prediction of metaheuristic algorithm behavior for combinatorial optimization problems</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Metaheuristics are successfully applied in many different application domains as they provide a r...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Metaheuristics are successfully applied in many different application domains as they provide a reasonable tradeoff between computation time and achievable solution quality. However, choosing an appropriate algorithm for a certain problem is not trivial, as problem characteristics can change remarkably for different instances and the performance of a metaheuristic may vary considerably for different parameter settings. Therefore it always takes qualified algorithm experts to select and tune a metaheuristic algorithm for a specific application. This process of algorithm selection and parameter tuning is frequently done manually and intuitively and requires a large number of empirical tests. In this contribution the authors propose several measurement values to characterize the search behavior of different metaheuristics for solving combinatorial optimization problems. Based on these measurements algorithms can be classified and models can be learnt to predict the algorithms behavior ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0a9e4d50bf77797fee24398791ff798f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230754,"asset_id":104525033,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230754/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525033"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525033"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525033; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525033]").text(description); $(".js-view-count[data-work-id=104525033]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525033; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525033']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0a9e4d50bf77797fee24398791ff798f" } } $('.js-work-strip[data-work-id=104525033]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525033,"title":"On the analysis, classification and prediction of metaheuristic algorithm behavior for combinatorial optimization problems","internal_url":"https://www.academia.edu/104525033/On_the_analysis_classification_and_prediction_of_metaheuristic_algorithm_behavior_for_combinatorial_optimization_problems","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230754,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230754/thumbnails/1.jpg","file_name":"EMSS2012_368.pdf","download_url":"https://www.academia.edu/attachments/104230754/download_file","bulk_download_file_name":"On_the_analysis_classification_and_predi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230754/EMSS2012_368-libre.pdf?1689239786=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_analysis_classification_and_predi.pdf\u0026Expires=1740168252\u0026Signature=Z0Fm~AKLncnI22S4V6OAtnoglPUmgbggisJCkwJejny3gEHXHZU12kOxBXm55Uh2PPffElTEbNRVkST7inqfA8qy6ie9ZhCVVExUN6NwyhlYnqeEpzHMYVoKoeDBvIujAmV7QffiuX~FrOAQIjpWs~xblkcZ1ygVizNdGUJ53Ededem0BN4riXngJBWmR1A0~ovRrHlbibJpY4Lbv-dX2kdvONLss88FanzJEghXoMvRceU6gGNFniNnMt6jeyMb2tWRicCmV57mX36FwfV3hrq07Z-gCiS3YTodUrTEJTZF~EJ89IBUApnWzjgiwk2Lxqgaq1pWjjSEdL6CcUbhUg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525032"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525032/Modeling_rich_and_dynamic_vehicle_routing_problems_in_Heuristiclab"><img alt="Research paper thumbnail of Modeling rich and dynamic vehicle routing problems in Heuristiclab" class="work-thumbnail" src="https://attachments.academia-assets.com/104230753/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525032/Modeling_rich_and_dynamic_vehicle_routing_problems_in_Heuristiclab">Modeling rich and dynamic vehicle routing problems in Heuristiclab</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Transport is one of the largest emission driving forces and has many economic and social impacts....</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Transport is one of the largest emission driving forces and has many economic and social impacts. Thus it is crucial to model and optimize practical transportation problems. In this paper we present a flexible modeling and optimization framework integrated in the open source environment HeuristicLab. We show, how rich and dynamic vehicle routing problem variants can be integrated in our framework. Using this model, we perform an algorithmic study where we compare several heuristic and metaheuristic algorithms for the dynamic pickup and delivery problem with time windows.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0e49d13bb1d0bdb9603a5b775bf2a00e" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230753,"asset_id":104525032,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230753/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525032"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525032"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525032; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525032]").text(description); $(".js-view-count[data-work-id=104525032]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525032; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525032']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0e49d13bb1d0bdb9603a5b775bf2a00e" } } $('.js-work-strip[data-work-id=104525032]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525032,"title":"Modeling rich and dynamic vehicle routing problems in Heuristiclab","internal_url":"https://www.academia.edu/104525032/Modeling_rich_and_dynamic_vehicle_routing_problems_in_Heuristiclab","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230753,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230753/thumbnails/1.jpg","file_name":"HMS2012_96.pdf","download_url":"https://www.academia.edu/attachments/104230753/download_file","bulk_download_file_name":"Modeling_rich_and_dynamic_vehicle_routin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230753/HMS2012_96-libre.pdf?1689239787=\u0026response-content-disposition=attachment%3B+filename%3DModeling_rich_and_dynamic_vehicle_routin.pdf\u0026Expires=1740168252\u0026Signature=VoPCQmlE5IkudqR9DQY-3u4wgQAxxarVL0M4Zw0sZ7dM60k7rhNFnMKp2VcSiXLY1cALsahZxarr7a5-flKXwO-A9iFU0Okdy4Gxk1PkxVhZlCqqxMMGlt6iAfQZOByfkWPzlVou~tLKbF1Heft2jcxZVvn8U-1R-fF-KY87rXRs9o3P2rEd~sBUAQK2Qkjgju5NApkbk8umCY7V1b5WF9mvBVWPl1G1Iz~Zqj5escc9yPDAMkbbpBeGhaNbwu8uoQFfediQcAfxjvyXzKHYVk-hYH~~j6bq9bWSk~hdOdRwrvC6f0OdRNdwaM-nQOb4usUc1ocDl-PQgXTGtC8kxQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":104230752,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230752/thumbnails/1.jpg","file_name":"HMS2012_96.pdf","download_url":"https://www.academia.edu/attachments/104230752/download_file","bulk_download_file_name":"Modeling_rich_and_dynamic_vehicle_routin.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230752/HMS2012_96-libre.pdf?1689239789=\u0026response-content-disposition=attachment%3B+filename%3DModeling_rich_and_dynamic_vehicle_routin.pdf\u0026Expires=1740168252\u0026Signature=YcrC3lgWiXxKIURAf683e8Ade-L0BrVLl6axg1cbc0Dy9sQ0edPIMKJbTJK7ReI1n5U9vWo3gzD4VG2aHPx-KD7H6V3VYKDJ3pyMXFLzXh4fDI4lKW25UAmUpP6TYUw7m4EYf7LWhHWtWvm-6zk7nTfQn0b4jsiHn~9xlPDR~D2eZ1peEvPnRqDhRrsyDlWhhEykGF3e5Bfi~BkxuzrdeXVtkO45YdFfjKZDo0sadaqCgXNGOdUb~6DwwRhjZvTOdnuV9UenQhOpgOT6-2f17IsIN4DUflst0oopa7algIVRkK8xFlQcbZEh1PWkbcAFiWTxgcpQ6Viefp2lfZFArg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525031"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525031/Incorporating_physical_knowledge_about_the_formation_of_nitric_oxides_into_evolutionary_system_identification"><img alt="Research paper thumbnail of Incorporating physical knowledge about the formation of nitric oxides into evolutionary system identification" class="work-thumbnail" src="https://attachments.academia-assets.com/104230751/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525031/Incorporating_physical_knowledge_about_the_formation_of_nitric_oxides_into_evolutionary_system_identification">Incorporating physical knowledge about the formation of nitric oxides into evolutionary system identification</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Genetic programming (GP) is an evolutionary optimization method that has already been used succes...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Genetic programming (GP) is an evolutionary optimization method that has already been used successfully for solving data mining problems in the context of several scientific domains. For example, the identification of models describing the nitric oxides (NOx) emissions of diesel engines has been investigated intensively, very promising results were obtained using GP. In the standard GP process, all model structures (as well as parameter settings) of models are created during an evolutionary process; populations of models are evolved using the genetic operators crossover, mutation and selection. In this paper we discuss several possibilities how a priori knowledge can be integrated into the GP process; we have used physical knowledge about the formation of NOx emissions in a BMW diesel engine, test results are given in the empirical tests section.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="921735fab8ff90cb535f95cd81319d30" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230751,"asset_id":104525031,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230751/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525031"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525031"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525031; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525031]").text(description); $(".js-view-count[data-work-id=104525031]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525031; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525031']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "921735fab8ff90cb535f95cd81319d30" } } $('.js-work-strip[data-work-id=104525031]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525031,"title":"Incorporating physical knowledge about the formation of nitric oxides into evolutionary system identification","internal_url":"https://www.academia.edu/104525031/Incorporating_physical_knowledge_about_the_formation_of_nitric_oxides_into_evolutionary_system_identification","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230751,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230751/thumbnails/1.jpg","file_name":"EMSS2008_69.pdf","download_url":"https://www.academia.edu/attachments/104230751/download_file","bulk_download_file_name":"Incorporating_physical_knowledge_about_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230751/EMSS2008_69-libre.pdf?1689239792=\u0026response-content-disposition=attachment%3B+filename%3DIncorporating_physical_knowledge_about_t.pdf\u0026Expires=1740168252\u0026Signature=NWhBsaF~~~9MDI1ri1LoMwMROeYI6euF37PgvG8z0bOqgFOc5j8z2X5lDB9W5GiVy9XK-eQexV1yo~gQ8QSYHuraF4ImXGxPQJoLziMz8IBRiid0YoDT6u9FPE27JPUCU8OuXIpPzx3cUX6JGkkXT4TgJWkNJp9yTLrl85t2FODaZI2eUCpaDnBvp77fXqo24G-96UvwQ9Q-U92xpcSPV2ksguDUrrUyY5AWjgDP7DIxuv9-PGUDUK-WPHFw0tSJ1e4Rq-6Qd4mivGYJBpwq8R3at7YGqsBr7YgRG89O1gesaNOK55~inXfY06i6yK24iNC5EprHttneq5fudXNNKQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":104230750,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230750/thumbnails/1.jpg","file_name":"EMSS2008_69.pdf","download_url":"https://www.academia.edu/attachments/104230750/download_file","bulk_download_file_name":"Incorporating_physical_knowledge_about_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230750/EMSS2008_69-libre.pdf?1689239784=\u0026response-content-disposition=attachment%3B+filename%3DIncorporating_physical_knowledge_about_t.pdf\u0026Expires=1740168252\u0026Signature=QPoJ8MCXZrFZ4UrAJYKoMTPtCyjJIkjnfz03hbJt9676AFmguXsnaTc-bKmQI80zuoL76CekNF0PnelT3cUuPakatL-emAQ0wy60Ybl4kQfzhmj1vogKr-Ko1UbOkeldlzayYX135vmmdPQtCj0sACWcppbRq8CwZcAiqD5YYN-ovdhStRn5N1bOdDxnyX~WAbv7oEvfQ3OTqpoTL2AvTTJvFL4VHV4llwu3jXFVbH3n0-TRhYH2rFLfpRSQuTbXpotNjhFE5M6NF3pRMArTJxJ-Jr4BkzBCW7dJXz13tRU7UZFakGYPYjjj~D6HEeG8QIDrdKVZTiAubSl~0uNiQQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525030"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525030/Chapter_I_Hot_Topics_in_Symbolic_Computation"><img alt="Research paper thumbnail of Chapter I Hot Topics in Symbolic Computation" class="work-thumbnail" src="https://attachments.academia-assets.com/104230749/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525030/Chapter_I_Hot_Topics_in_Symbolic_Computation">Chapter I Hot Topics in Symbolic Computation</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c63adca962e08acf029c29ca04bc2fb1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230749,"asset_id":104525030,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230749/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525030"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525030"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525030; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525030]").text(description); $(".js-view-count[data-work-id=104525030]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525030; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525030']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c63adca962e08acf029c29ca04bc2fb1" } } $('.js-work-strip[data-work-id=104525030]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525030,"title":"Chapter I Hot Topics in Symbolic Computation","internal_url":"https://www.academia.edu/104525030/Chapter_I_Hot_Topics_in_Symbolic_Computation","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230749,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230749/thumbnails/1.jpg","file_name":"chapter1.pdf","download_url":"https://www.academia.edu/attachments/104230749/download_file","bulk_download_file_name":"Chapter_I_Hot_Topics_in_Symbolic_Computa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230749/chapter1-libre.pdf?1689240117=\u0026response-content-disposition=attachment%3B+filename%3DChapter_I_Hot_Topics_in_Symbolic_Computa.pdf\u0026Expires=1740168252\u0026Signature=UwtBaojTIJg~qLF6fmNUWp5eueyiMY2bt3XIaJvHm39JmfpRzHhaz-zFepFT667D~SE9uKs0haxLEkjtvbh80NmRFLXghybMvgNG3EbqrjLjPm4ehzH3-PBMcYjP-b9U8GrJ33yzeJTgiIXRGSDWFheprU8ylGNYnZhG~gHRsrKfhcy7zZ3IoKvHatugCsJY7qhNJLiN3BBmeSIQA-pEUi9owt-OUWZFXzVuOXsrIz0t5sM3--4j45MbGLySqXaBAZyOSsgktgpdLDhfWMSbQPKF5ARTfpQ8qSwWPaqlRT4-UiixsjWwB-xfupedUNpZIYjA2EPFUdOSXkvNfJ87Wg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525029"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/104525029/Heuristiclab_Grid_A_Flexible_And_Extensible_Environment_For_Parallel_Heuristic_Optimization"><img alt="Research paper thumbnail of Heuristiclab Grid - A Flexible And Extensible Environment For Parallel Heuristic Optimization" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/104525029/Heuristiclab_Grid_A_Flexible_And_Extensible_Environment_For_Parallel_Heuristic_Optimization">Heuristiclab Grid - A Flexible And Extensible Environment For Parallel Heuristic Optimization</a></div><div class="wp-workCard_item"><span>Systems Science</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525029"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525029"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525029; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525029]").text(description); $(".js-view-count[data-work-id=104525029]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525029; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525029']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=104525029]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525029,"title":"Heuristiclab Grid - A Flexible And Extensible Environment For Parallel Heuristic Optimization","internal_url":"https://www.academia.edu/104525029/Heuristiclab_Grid_A_Flexible_And_Extensible_Environment_For_Parallel_Heuristic_Optimization","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525028"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/104525028/Verteilte_Online_Optimierung_f%C3%BCr_hochdimensionale_Tourenpl%C3%A4ne"><img alt="Research paper thumbnail of Verteilte Online Optimierung für hochdimensionale Tourenpläne" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/104525028/Verteilte_Online_Optimierung_f%C3%BCr_hochdimensionale_Tourenpl%C3%A4ne">Verteilte Online Optimierung für hochdimensionale Tourenpläne</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525028"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525028"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525028; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525028]").text(description); $(".js-view-count[data-work-id=104525028]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525028; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525028']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=104525028]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525028,"title":"Verteilte Online Optimierung für hochdimensionale Tourenpläne","internal_url":"https://www.academia.edu/104525028/Verteilte_Online_Optimierung_f%C3%BCr_hochdimensionale_Tourenpl%C3%A4ne","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525027"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/104525027/On_Line_Modeling_Based_on_Genetic_Programming"><img alt="Research paper thumbnail of On-Line Modeling Based on Genetic Programming" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/104525027/On_Line_Modeling_Based_on_Genetic_Programming">On-Line Modeling Based on Genetic Programming</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525027"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525027"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525027; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525027]").text(description); $(".js-view-count[data-work-id=104525027]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525027; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525027']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=104525027]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525027,"title":"On-Line Modeling Based on Genetic Programming","internal_url":"https://www.academia.edu/104525027/On_Line_Modeling_Based_on_Genetic_Programming","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525026"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/104525026/Selection_Pressure_Driven_Sliding_Window_Genetic_Programming"><img alt="Research paper thumbnail of Selection Pressure Driven Sliding Window Genetic Programming" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/104525026/Selection_Pressure_Driven_Sliding_Window_Genetic_Programming">Selection Pressure Driven Sliding Window Genetic Programming</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525026"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525026"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525026; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525026]").text(description); $(".js-view-count[data-work-id=104525026]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525026; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525026']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=104525026]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525026,"title":"Selection Pressure Driven Sliding Window Genetic Programming","internal_url":"https://www.academia.edu/104525026/Selection_Pressure_Driven_Sliding_Window_Genetic_Programming","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525025"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/104525025/Evolutionary_System_Identification_New_Algorithmic_Concepts_and_Applications"><img alt="Research paper thumbnail of Evolutionary System Identification: New Algorithmic Concepts and Applications" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/104525025/Evolutionary_System_Identification_New_Algorithmic_Concepts_and_Applications">Evolutionary System Identification: New Algorithmic Concepts and Applications</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525025"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525025"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525025; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525025]").text(description); $(".js-view-count[data-work-id=104525025]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525025; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525025']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=104525025]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525025,"title":"Evolutionary System Identification: New Algorithmic Concepts and Applications","internal_url":"https://www.academia.edu/104525025/Evolutionary_System_Identification_New_Algorithmic_Concepts_and_Applications","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525024"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/104525024/Zeitreihenanalyse_von_Finanzdaten_unter_Verwendung_von_erweiterten_Methoden_der_Genetischen_Programmierung"><img alt="Research paper thumbnail of Zeitreihenanalyse von Finanzdaten unter Verwendung von erweiterten Methoden der Genetischen Programmierung" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/104525024/Zeitreihenanalyse_von_Finanzdaten_unter_Verwendung_von_erweiterten_Methoden_der_Genetischen_Programmierung">Zeitreihenanalyse von Finanzdaten unter Verwendung von erweiterten Methoden der Genetischen Programmierung</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525024"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525024"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525024; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525024]").text(description); $(".js-view-count[data-work-id=104525024]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525024; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525024']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=104525024]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525024,"title":"Zeitreihenanalyse von Finanzdaten unter Verwendung von erweiterten Methoden der Genetischen Programmierung","internal_url":"https://www.academia.edu/104525024/Zeitreihenanalyse_von_Finanzdaten_unter_Verwendung_von_erweiterten_Methoden_der_Genetischen_Programmierung","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525023"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/104525023/The_Use_of_Genetic_Programming_in_Mechatronics"><img alt="Research paper thumbnail of The Use of Genetic Programming in Mechatronics" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/104525023/The_Use_of_Genetic_Programming_in_Mechatronics">The Use of Genetic Programming in Mechatronics</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525023"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525023"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525023; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525023]").text(description); $(".js-view-count[data-work-id=104525023]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525023; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525023']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=104525023]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525023,"title":"The Use of Genetic Programming in Mechatronics","internal_url":"https://www.academia.edu/104525023/The_Use_of_Genetic_Programming_in_Mechatronics","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="104525022"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/104525022/On_the_Benefits_of_a_Domain_Specific_Language_for_Modeling_Metaheuristic_Optimization_Algorithms"><img alt="Research paper thumbnail of On the Benefits of a Domain-Specific Language for Modeling Metaheuristic Optimization Algorithms" class="work-thumbnail" src="https://attachments.academia-assets.com/104230769/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/104525022/On_the_Benefits_of_a_Domain_Specific_Language_for_Modeling_Metaheuristic_Optimization_Algorithms">On the Benefits of a Domain-Specific Language for Modeling Metaheuristic Optimization Algorithms</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This work provides a case-study of how metaheuristic optimization algorithms can be developed usi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This work provides a case-study of how metaheuristic optimization algorithms can be developed using a domain-specific language as a separate modeling layer. A separation of the modeling process from the implementation of the algorithmic concepts improves the communication and collaboration of practitioners, optimization experts and programmers. This is achieved by providing a higher level of abstraction compared to a general-purpose programming language. A generic and extensible modeling concept is presented and several example algorithm models are illustrated.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d49b1219cbc207aba65635fdf1a91119" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":104230769,"asset_id":104525022,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/104230769/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="104525022"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="104525022"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 104525022; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=104525022]").text(description); $(".js-view-count[data-work-id=104525022]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 104525022; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='104525022']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d49b1219cbc207aba65635fdf1a91119" } } $('.js-work-strip[data-work-id=104525022]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":104525022,"title":"On the Benefits of a Domain-Specific Language for Modeling Metaheuristic Optimization Algorithms","internal_url":"https://www.academia.edu/104525022/On_the_Benefits_of_a_Domain_Specific_Language_for_Modeling_Metaheuristic_Optimization_Algorithms","owner_id":33734165,"coauthors_can_edit":true,"owner":{"id":33734165,"first_name":"Michael","middle_initials":"","last_name":"Affenzeller","page_name":"MichaelAffenzeller","domain_name":"fh-ooe","created_at":"2015-08-08T14:45:48.110-07:00","display_name":"Michael Affenzeller","url":"https://fh-ooe.academia.edu/MichaelAffenzeller"},"attachments":[{"id":104230769,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/104230769/thumbnails/1.jpg","file_name":"EMSS2010_59.pdf","download_url":"https://www.academia.edu/attachments/104230769/download_file","bulk_download_file_name":"On_the_Benefits_of_a_Domain_Specific_Lan.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/104230769/EMSS2010_59-libre.pdf?1689239783=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Benefits_of_a_Domain_Specific_Lan.pdf\u0026Expires=1740168252\u0026Signature=A5v5c448qLGR~IK2dNgmZKdUuq4uG12wcPWR1nkNH1Q9boe4XLrHXfLX4eHTl82H2foJPGGJ~c-EO-WIv-EDwjP0ajJf1PUitrdS8YuaVrV7N-7AlkvQxspsGECjtUYsRZPMp6HxGVpSEbQIpoVNJL5k5F5dIcyIhxEH61WW0vNnVW1szoqftiCGux~nTQIi0QxZ8KXZE0Ga5UeEBTnoFOtyH6tDIG8NxTtgS9vQMyixjaLHs6-MJ-1m2ABPC1u1tb7jR~x342MyHFwon3gI7z9mg8yOqbavGyn21UvNgigFriaVGY7c3w91j4KWECe3A6Q2LCga6G7wrMKk5T951Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3353334" id="multiagentsystems"><div class="js-work-strip profile--work_container" data-work-id="14042212"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/14042212/Modelling_of_an_agent_based_schedule_optimisation_system"><img alt="Research paper thumbnail of Modelling of an agent-based schedule optimisation system" class="work-thumbnail" src="https://attachments.academia-assets.com/44672334/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/14042212/Modelling_of_an_agent_based_schedule_optimisation_system">Modelling of an agent-based schedule optimisation system</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://profactor.academia.edu/GeorgWeichhart">Georg Weichhart</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://fh-ooe.academia.edu/MichaelAffenzeller">Michael Affenzeller</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper introduces a modelling concept which aims at creating an environment which allows the ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper introduces a modelling concept which aims at creating an environment which allows the application of global optimisation techniques like Genetic Algorithms in dynamic and complex environments. Such environments are often modelled using multi agent systems. The self-evident drawback of multi agent approaches is that global optimisation techniques are not applicable naturally. The model proposed in this paper divides the overall optimization task into many hierarchically organised small optimization problems and understands the main optimisation objective in the localisation of a 'good' combination of suboptimal solutions of the optimisation tasks in the lower layers of the hierarchy.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5143661a5d53aa7d5b7d9fccaa63e16f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":44672334,"asset_id":14042212,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/44672334/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="14042212"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="14042212"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 14042212; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=14042212]").text(description); $(".js-view-count[data-work-id=14042212]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 14042212; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='14042212']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5143661a5d53aa7d5b7d9fccaa63e16f" } } $('.js-work-strip[data-work-id=14042212]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":14042212,"title":"Modelling of an agent-based schedule optimisation system","internal_url":"https://www.academia.edu/14042212/Modelling_of_an_agent_based_schedule_optimisation_system","owner_id":33065325,"coauthors_can_edit":true,"owner":{"id":33065325,"first_name":"Georg","middle_initials":null,"last_name":"Weichhart","page_name":"GeorgWeichhart","domain_name":"profactor","created_at":"2015-07-14T10:22:17.040-07:00","display_name":"Georg Weichhart","url":"https://profactor.academia.edu/GeorgWeichhart"},"attachments":[{"id":44672334,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44672334/thumbnails/1.jpg","file_name":"Modelling_Of_An_Agent-Based_Schedule_Opt20160412-5370-19z46gt.pdf","download_url":"https://www.academia.edu/attachments/44672334/download_file","bulk_download_file_name":"Modelling_of_an_agent_based_schedule_opt.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44672334/Modelling_Of_An_Agent-Based_Schedule_Opt20160412-5370-19z46gt.pdf?1738309001=\u0026response-content-disposition=attachment%3B+filename%3DModelling_of_an_agent_based_schedule_opt.pdf\u0026Expires=1740164308\u0026Signature=W~aLEYKJbiItSQ-quugW4f0wR0ueQ5QkKsMO8cnr-AgCA1Uk6GLZQv39xbS4sibJaRq7b9uiK3yS9FKdkuKg5W6W~6k3DdDcvNfuhbY-TpcQTQUWaupEIndvdAubzueqOA69XfbUwUwBgZMTBOdk3LRIzS-cOtty7gAoqWrkGy5gmBvObWGggu5lMJfb~XOuwFHUTdwThUXfxmCYqKbEHKwJRU-TO-f58x9rVjMwkWFxBs6kbFuJd0yqlNOZWNMa1UQYwHnLoHZASs8Ld2TD3mflptccjguNSssLmTRHNfR8OuwduhLtXcAqekYRUY7ALvtuuccJz8zoO6kfSGgW-Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 2 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "1ebe94e4e0789fa8b2d131b8c8fa0b2acfccc7d16dcf7006953f7257ba0dd6f1", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="EXEfvEyqJs0jbNjD4JBn-unDm_b35PWH3Iw6DCSj2o9Ryb_yBS7WinF_eW8WNCvBzjHVNUqDCgHIdz6O_eJxfg" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://fh-ooe.academia.edu/MichaelAffenzeller" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="Fcjxv6NxQV8N9X_XvyrlQILNJN-7SnHPZaqDBu9F-xxVcFHx6vWxGF_m3ntJjql7pT9qHAYtjklxUYeENgRQ7Q" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>