CINXE.COM
Search results for: hydrogenation reactions
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: hydrogenation reactions</title> <meta name="description" content="Search results for: hydrogenation reactions"> <meta name="keywords" content="hydrogenation reactions"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="hydrogenation reactions" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="hydrogenation reactions"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1073</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: hydrogenation reactions</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1073</span> Chiral Ruthenium Aminophosphine and Phosphine Iminopyridine Complexes: Synthesis and Application to Asymmetric Hydrogenation and Transfer Hydrogenation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Littlelet%20N.%20Scarlet">Littlelet N. Scarlet</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamaluddin%20Abdur-Rashid"> Kamaluddin Abdur-Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20T.%20Maragh"> Paul T. Maragh</a>, <a href="https://publications.waset.org/abstracts/search?q=Tara%20Dasgupta"> Tara Dasgupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aminophosphines are a privileged class of ancillary ligands with emerging importance in homogeneous catalysis. The unique combination of soft phosphorus (P) and hard nitrogen (N) centres affords a variety of transition metal complexes as potential pre-catalysts for synthetically useful reactions. Herein three ligand systems will be reported; two bidentate ligands - (S)-8-(diphenyl-phosphino)-1,2,3,4-tetrahydronaphthalen-1-amine, (S)THNANH2, and (Rc)-1-((Sp)-2-diphenylphosphino) ferrocenylethylamine, (RcSp)PPFNH2 - and a tridentate (Rc)-1-((Sp)-2-diphenylphosphino) ferrocenylimino-pyridine, (RcSp)PPFNNH2 ligand; the latter prepared from the condensation of selected ferrocene aminophosphines with pyridine-2-carboxaldehyde. Suitable combinations of these aminophosphine ligands with ruthenium precursors have afforded highly efficient systems for the asymmetric hydrogenation and transfer hydrogenation of selected ketones in 2-propanol. The Ru-(S)THNANH2 precatalyst was the most efficient in the asymmetric hydrogenation of selected ketones with 100% conversions within 4 hours at a catalyst loading of 0.1 mol%. The Ru-(RcSp)PPFNNH2 precatalyst was the most efficient in the asymmetric transfer hydrogenation of the ketones with conversions as high as 98% with 0.1 mol% catalyst. However, the enantioselectivities were generally low. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aminophosphine" title="aminophosphine">aminophosphine</a>, <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20hydrogenation" title=" asymmetric hydrogenation"> asymmetric hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=homogeneous%20catalysis" title=" homogeneous catalysis"> homogeneous catalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ruthenium%20%28II%29" title=" ruthenium (II)"> ruthenium (II)</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20hydrogenation" title=" transfer hydrogenation"> transfer hydrogenation</a> </p> <a href="https://publications.waset.org/abstracts/70318/chiral-ruthenium-aminophosphine-and-phosphine-iminopyridine-complexes-synthesis-and-application-to-asymmetric-hydrogenation-and-transfer-hydrogenation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1072</span> “Double Layer” Theory of Hydrogenation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vaclav%20Heral">Vaclav Heral</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ideas about the mechanism of heterogeneous catalytic hydrogenation are diverse. The Horiuti-Polanyi mechanism is most often referred to, based on the idea of a semi-hydrogenated state. In our opinion, it does not represent a satisfactory explanation of the hydrogenation mechanism, because, for example: (1) It neglects the fact that the bond of atomic hydrogen to the metal surface is strongly polarized, (2) It does not explain why a surface deprived of atomic hydrogen (by thermal desorption or by alkyne) loses isomerization capabilities, but hydrogenation capabilities remain preserved, (3) It was observed that during the hydrogenation of 1-alkenes, the reaction can be of the 0th order to hydrogen and to the alkene at the same time, which is excluded during the competitive adsorption of both reactants on the catalyst surface. We offer an alternative mechanism that satisfactorily explains many of the ambiguities: It is the idea of an independent course of olefin isomerization, catalyzed by acidic atomic hydrogen bonded on the surface of the catalyst, in addition to the hydrogenation itself, in which a two-layer complex appears on the surface of the catalyst: olefin bound to the surface and molecular hydrogen bound to it in the second layer. The rate-determining step of hydrogenation is the conversion of this complex into the final product. We believe that the Horiuti-Polanyi mechanism is flawed and we naturally think that our two-layer theory better describes the experimental findings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acidity%20of%20hydrogenation%20catalyst" title="acidity of hydrogenation catalyst">acidity of hydrogenation catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=Horiuti-Polanyi" title=" Horiuti-Polanyi"> Horiuti-Polanyi</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogenation" title=" hydrogenation"> hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=two-layer%20hydrogenation" title=" two-layer hydrogenation"> two-layer hydrogenation</a> </p> <a href="https://publications.waset.org/abstracts/173813/double-layer-theory-of-hydrogenation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1071</span> Development of Catalyst, Incorporating Phosphinite Ligands, for Transfer Hydrogenation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Assylbekova">S. Assylbekova</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Zolotareva"> D. Zolotareva</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Dauletbakov"> A. Dauletbakov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye.%20Belyankova"> Ye. Belyankova</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bayazit"> S. Bayazit</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Basharimova"> A. Basharimova</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zazybin"> A. Zazybin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Isimberlenova"> A. Isimberlenova</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kakimova"> A. Kakimova</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Aydemir"> M. Aydemir</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kairullinova"> A. Kairullinova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transfer hydrogenation (TH) is a key process in organic chemistry, especially in pharmaceutical and agrochemical synthesis, offering a safer and more sustainable approach compared to traditional methods. This work is devoted to the synthesis and use of ruthenium catalysts containing phosphinite ligands in TH reactions. Ruthenium complexes are particularly noteworthy for their effectiveness in asymmetric TH. Their stability and adaptability to different reaction environments make them ideal for both laboratory-scale and industrial applications. Phosphinite ligands (P(OR)R'2) are used in the synthesis of complexes to improve their properties. These ligands are known for their ability to finely tune the electronic and steric properties of metal centers. The electron-donating nature of the phosphorus atom, combined with the variability in the R and R' groups, allows for significant customization of the catalyst's properties. The purpose and difference of the work is to study the incorporation of a hydrophilic ionic liquid into the composition of a phosphinite ligand, which will then be converted into a catalyst. The technique involves the synthesis of a phosphinite ligand with an ionic liquid at room temperature under an inert atmosphere and then a ruthenium complex. Next, the TH reactions of acetophenone and its derivatives are carried out using the resulting catalyst. The conversion of ketone to alcohol is analyzed using a gas chromatograph. This study contributes to the understanding of the influence of catalyst physico-chemical properties on transfer hydrogenation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transfer%20hydrogenation" title="transfer hydrogenation">transfer hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=ruthenium" title=" ruthenium"> ruthenium</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysts" title=" catalysts"> catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphinite%20ligands" title=" phosphinite ligands"> phosphinite ligands</a> </p> <a href="https://publications.waset.org/abstracts/185905/development-of-catalyst-incorporating-phosphinite-ligands-for-transfer-hydrogenation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1070</span> Design and Control of an Integrated Plant for Simultaneous Production of γ-Butyrolactone and 2-Methyl Furan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahtesham%20Javaid">Ahtesham Javaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Costin%20S.%20Bildea"> Costin S. Bildea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design and plantwide control of an integrated plant where the endothermic 1,4-butanediol dehydrogenation and the exothermic furfural hydrogenation is simultaneously performed in a single reactor is studied. The reactions can be carried out in an adiabatic reactor using small hydrogen excess and with reduced parameter sensitivity. The plant is robust and flexible enough to allow different production rates of γ-butyrolactone and 2-methyl furan, keeping high product purities. Rigorous steady state and dynamic simulations performed in AspenPlus and AspenDynamics to support the conclusions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dehydrogenation%20and%20hydrogenation" title="dehydrogenation and hydrogenation">dehydrogenation and hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20coupling" title=" reaction coupling"> reaction coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20and%20control" title=" design and control"> design and control</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20integration" title=" process integration"> process integration</a> </p> <a href="https://publications.waset.org/abstracts/15414/design-and-control-of-an-integrated-plant-for-simultaneous-production-of-gh-butyrolactone-and-2-methyl-furan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1069</span> The Catalytic Properties of PtSn/Al2O3 for Acetic Acid Hydrogenation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingchuan%20Zhou">Mingchuan Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongfang%20Ma"> Hongfang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alumina supported platinum and tin catalysts with different loadings of Pt and Sn were prepared and characterized by low temperature N<sub>2</sub> adsorption/desorption, H<sub>2</sub>-temperature programed reduction and CO pulse chemisorption. Pt and Sn below 1% loading were suitable for acetic acid hydrogenation. The best performance over 0.75Pt1Sn/Al<sub>2</sub>O<sub>3</sub> can reach 87.55% conversion of acetic acid and 47.39% selectivity of ethanol. The operating conditions of acetic acid hydrogenation over 1Pt1Sn/Al<sub>2</sub>O<sub>3</sub> were investigated. High reaction temperature can enhance the conversion of acetic acid, but it decreased total selectivity of ethanol and acetyl acetate. High pressure and low weight hourly space velocity were beneficial to both conversion of acetic acid and selectivity to ethanol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetic%20acid" title="acetic acid">acetic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogenation" title=" hydrogenation"> hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20condition" title=" operating condition"> operating condition</a>, <a href="https://publications.waset.org/abstracts/search?q=PtSn" title=" PtSn"> PtSn</a> </p> <a href="https://publications.waset.org/abstracts/46773/the-catalytic-properties-of-ptsnal2o3-for-acetic-acid-hydrogenation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1068</span> Continuous Catalytic Hydrogenation and Purification for Synthesis Non-Phthalate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Ling%20Li">Chia-Ling Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The scope of this article includes the production of 10,000 metric tons of non-phthalate per annum. The production process will include hydrogenation, separation, purification, and recycling of unprocessed feedstock. Based on experimental data, conversion and selectivity were chosen as reaction model parameters. The synthesis and separation processes of non-phthalate and phthalate were established by using Aspen Plus software. The article will be divided into six parts: estimation of physical properties, integration of production processes, purification case study, utility consumption, economic feasibility study and identification of bottlenecks. The purities of products was higher than 99.9 wt. %. Process parameters have important guiding significance to the commercialization of hydrogenation of phthalate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=economic%20analysis" title="economic analysis">economic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogenation" title=" hydrogenation"> hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-phthalate" title=" non-phthalate"> non-phthalate</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20simulation" title=" process simulation"> process simulation</a> </p> <a href="https://publications.waset.org/abstracts/51541/continuous-catalytic-hydrogenation-and-purification-for-synthesis-non-phthalate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1067</span> Oxidative Dehydrogenation and Hydrogenation of Malic Acid over Transition Metal Oxides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gheorghi%C5%A3a%20Mitran">Gheorghiţa Mitran</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20Urd%C4%83"> Adriana Urdă</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihaela%20Florea"> Mihaela Florea</a>, <a href="https://publications.waset.org/abstracts/search?q=Octavian%20Dumitru%20Pavel"> Octavian Dumitru Pavel</a>, <a href="https://publications.waset.org/abstracts/search?q=Florentina%20Nea%C5%A3u"> Florentina Neaţu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oxidative dehydrogenation and hydrogenation reactions of L-malic acid are interesting ways for its transformation into valuable products, including oxaloacetic, pyruvic and malonic acids but also 1,4-butanediol and 1,2,4-butanetriol. Keto acids have a range of applicationsin many chemical syntheses as pharmaceuticals, food additives and cosmetics. 3-Hydroxybutyrolactone and 1,2,4-butanetriol are used for the synthesis of chiral pharmaceuticals and other fine chemicals, while 1,4-butanediol can be used for organic syntheses, such as polybutylene succinate (PBS), polybutylene terephthalate (PBT), and for production of tetrahydrofuran (THF). L-malic acid is a non-toxic and natural organic acid present in fruits, and it is the main component of wine alongside tartaric acid representing about 90% of the wine total acidity. Iron oxides dopped with cobalt (CoxFe3-xO4; x= 0; 0.05; 0.1; 0.15) were studied as catalysts in these reactions. There is no mention in the literature of non-noble transition metal catalysts for these reactions. The method used for catalysts preparation was coprecipitation, whileBET XRD, XPS, FTIR and UV-VIS spectroscopy were used for the physicochemical properties evaluation.TheXRD patterns revealed the presence of α-Fe2O3 rhombohedral hematite structure, with cobalt atoms well dispersed and embedded in this structure. The studied samples are highly crystalline, with a crystallite size ranged from 58 to 65 nm. The optical absorption properties were investigated using UV-Vis spectroscopy, emphasizing the presence of bands that correspond with the reported hematite nanoparticle. Likewise, the presence of bands corresponding to lattice vibration of hexagonal hematite structurehas been evidenced in DRIFT spectra. Oxidative dehydrogenation of malic acid was studied using as solvents for malic acid ethanol or water(2, 5 and 10% malic acid in 5 mL solvent)at room temperature, while the hydrogenation reaction was evaluated in water as solvent (5%), in the presence of 1% catalyst. The oxidation of malic acid into oxaloacetic acid is the first step, after that, oxaloacetic acid is rapidly decarboxylated to malonic acid or pyruvic acid, depending on the active site. The concentration of malic acid in solution, it, in turn, has an influence on conversionthis decreases when the concentration of malic acid in the solution is high. The spent catalysts after the oxidative dehydrogenation of malic acid in ethanol were characterized by DRIFT spectroscopy and the presence of oxaloacetic, pyruvic and malonicacids, along with unreacted malic acidwere observed on the surface. The increase of the ratio of Co/Fe on the surface has an influence on the malic acid conversion and on the pyruvic acid yield, while the yield of malonic acid is influenced by the percentage of iron on the surface (determined from XPS). Oxaloacetic acid yield reaches a maximumat one hour of reaction, being higher when ethanol is used as a solvent, after which it suddenly decreases. The hydrogenation of malic acid occurs by consecutive reactions with the production of 3-hydroxy-butyrolactone, 1,2,4-butanetriol and 1,4-butanediol. Malic acid conversion increases with cobalt loading increasing up to Co/Fe ratio of 0.1, after which it has a slight decrease, while the yield in 1,4-butanediol is directly proportional to the cobalt content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malic%20acid" title="malic acid">malic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20dehydrogenation" title=" oxidative dehydrogenation"> oxidative dehydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogenation" title=" hydrogenation"> hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=oxaloacetic%20acid" title="oxaloacetic acid">oxaloacetic acid</a> </p> <a href="https://publications.waset.org/abstracts/141633/oxidative-dehydrogenation-and-hydrogenation-of-malic-acid-over-transition-metal-oxides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1066</span> Modeling and Optimal Control of Acetylene Catalytic Hydrogenation Reactor in Olefin Plant by Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faezeh%20Aghazadeh">Faezeh Aghazadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Javad%20Sharifi"> Mohammad Javad Sharifi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of neural networks to model a full-scale industrial acetylene hydrogenation in olefin plant has been studied. The operating variables studied are the, input-temperature of the reactor, output-temperature of the reactor, hydrogen ratio of the reactor, [C₂H₂]input, and [C₂H₆]input. The studied operating variables were used as the input to the constructed neural network to predict the [C₂H₆]output at any time as the output or the target. The constructed neural network was found to be highly precise in predicting the quantity of [C₂H₆]output for the new input data, which are kept unaware of the trained neural network showing its applicability to determine the [C₂H₆]output for any operating conditions. The enhancement of [C₂H₆]output as compared with [C₂H₆]input was a consequence of low selective acetylene hydrogenation to ethylene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetylene%20hydrogenation" title="acetylene hydrogenation">acetylene hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=Pd-Ag%2FAl%E2%82%82O%E2%82%83" title=" Pd-Ag/Al₂O₃"> Pd-Ag/Al₂O₃</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20design" title=" optimal design"> optimal design</a> </p> <a href="https://publications.waset.org/abstracts/158850/modeling-and-optimal-control-of-acetylene-catalytic-hydrogenation-reactor-in-olefin-plant-by-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1065</span> Preparation of Nb Silicide-Based Alloy Powder by Hydrogenation-Dehydrogenation (HDH) Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gi-Beom%20Park">Gi-Beom Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyong-Gi%20Park"> Hyong-Gi Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong-Yong%20Lee"> Seong-Yong Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaeho%20Choi"> Jaeho Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok%20Hong%20Min"> Seok Hong Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Nb silicide-based alloy has the excellent high-temperature strength and relatively lower density than the Ni-based superalloy; therefore, it has been receiving a lot of attention for the next generation high-temperature material. To enhance the high temperature creep property and oxidation resistance, Si was added to the Nb-based alloy, resulting in a multi-phase microstructure with metal solid solution and silicide phase. Since the silicide phase has a low machinability due to its brittle nature, it is necessary to fabricate components using the powder metallurgy. However, powder manufacturing techniques for the alloys have not yet been developed. In this study, we tried to fabricate Nb-based alloy powder by the hydrogenation-dehydrogenation reaction. The Nb-based alloy ingot was prepared by vacuum arc melting and it was annealed in the hydrogen atmosphere for the hydrogenation. After annealing, the hydrogen concentration was increased from 0.004wt% to 1.22wt% and Nb metal phase was transformed to Nb hydride phase. The alloy after hydrogenation could be easily pulverized into powder by ball milling due to its brittleness. For dehydrogenation, the alloy powders were annealed in the vacuum atmosphere. After vacuum annealing, the hydrogen concentration was decreased to 0.003wt% and Nb hydride phase was transformed back to Nb metal phase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nb%20alloy" title="Nb alloy">Nb alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=Nb%20metal%20and%20silicide%20composite" title=" Nb metal and silicide composite"> Nb metal and silicide composite</a>, <a href="https://publications.waset.org/abstracts/search?q=powder" title=" powder"> powder</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogenation-dehydrogenation%20reaction" title=" hydrogenation-dehydrogenation reaction"> hydrogenation-dehydrogenation reaction</a> </p> <a href="https://publications.waset.org/abstracts/96692/preparation-of-nb-silicide-based-alloy-powder-by-hydrogenation-dehydrogenation-hdh-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1064</span> Hydrogenation of CO2 to Methanol over Copper-Zinc Oxide-Based Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20F.%20H.%20Tasfy">S. F. H. Tasfy</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20M.%20Zabidi"> N. A. M. Zabidi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Shaharun"> M. S. Shaharun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon dioxide is highly thermochemical stable molecules where it is very difficult to activate the molecule and achieve higher catalytic conversion into alcohols or other hydrocarbon compounds. In this paper, series of the bimetallic Cu/ZnO-based catalyst supported by SBA-15 were systematically prepared via impregnation technique with different Cu: Zn ratio for hydrogenation of CO<sub>2</sub> to methanol. The synthesized catalysts were characterized by transmission electron microscopy (TEM), temperature programmed desorption, reduction, oxidation and pulse chemisorption (TPDRO), and surface area determination was also performed. All catalysts were tested with respect to the hydrogenation of CO<sub>2</sub> to methanol in microactivity fixed-bed reactor at 250<sup>o</sup>C, 2.25 MPa, and H<sub>2</sub>/CO<sub>2</sub> ratio of 3. The results demonstrate that the catalytic structure, activity, and methanol selectivity was strongly affected by the ratio between Cu: Zn, Where higher catalytic activity of 14 % and methanol selectivity of 92 % was obtained over Cu/ZnO-SBA-15 catalyst with Cu:Zn ratio of 7:3 wt. %. Comparing with the single catalyst, the synergetic between Cu and Zn provides additional active sites to adsorb more H<sub>2</sub> and CO<sub>2</sub> and accelerate the CO<sub>2</sub> conversion, resulting in higher methanol production under mild reaction conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogenation%20of%20carbon%20dioxide" title="hydrogenation of carbon dioxide">hydrogenation of carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol%20synthesis" title=" methanol synthesis"> methanol synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu%2FZnO-based%20catalyst" title=" Cu/ZnO-based catalyst"> Cu/ZnO-based catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20silica%20%28SBA-15%29" title=" mesoporous silica (SBA-15)"> mesoporous silica (SBA-15)</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20ratio" title=" metal ratio"> metal ratio</a> </p> <a href="https://publications.waset.org/abstracts/59554/hydrogenation-of-co2-to-methanol-over-copper-zinc-oxide-based-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1063</span> Influence of Electrode Assembly on Catalytic Activation and Deactivation of a PT Film Immobilized H+ Conducting Solid Electrolyte in Electrocatalytic Reduction Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Hasnat">M. A. Hasnat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Amirul%20Islam"> M. Amirul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Rashed"> M. A. Rashed</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamil.%20Safwan"> Jamil. Safwan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mahabubul%20Alam"> M. Mahabubul Alam </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Symmetric (Cu–Pt|Nafion|Pt–Cu) and asymmetric(Pt|Nafion|Pt–Cu) assemblies were fabricated to study the nitrate reduction processes at the cathode. The electrocatalytic nitrate reduction reactions were performed in these assemblies in order to investigate the prerequisite for the enhanced catalytic activity, electrochemical cell durability as well as preferable product selectivity resulting from the reduction of nitrate at the cathode. It has been observed for the symmetric assembly that Cu particles were oxidized on the anode surface under an applied potential and the resulting copper ions migrated to the cathode surface through the Nafion membrane, which deposited as copper oxide on the cathode surface. The formation of this copper oxide covering layer on the Pt–Cu cathode surface is attributed as the reason for the deactivation of the cathode that governed the reduced nitrate reduction along with increasing nitrite selectivity. These problems were addressed and resolved with the asymmetric design of the electrocatalytic reactor, where enhanced hydrogen evolution activates the surface by eroding the CuO over layer as well as speeding up the slow rate determining hydrogenation reactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane" title="membrane">membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate" title=" nitrate"> nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalysis" title=" electrocatalysis"> electrocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=voltammetry" title=" voltammetry"> voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolysis" title=" electrolysis"> electrolysis</a> </p> <a href="https://publications.waset.org/abstracts/40350/influence-of-electrode-assembly-on-catalytic-activation-and-deactivation-of-a-pt-film-immobilized-h-conducting-solid-electrolyte-in-electrocatalytic-reduction-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1062</span> Glycerol-Based Bio-Solvents for Organic Synthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dorith%20Tavor">Dorith Tavor</a>, <a href="https://publications.waset.org/abstracts/search?q=Adi%20Wolfson"> Adi Wolfson </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the past two decades a variety of green solvents have been proposed, including water, ionic liquids, fluorous solvents, and supercritical fluids. However, their implementation in industrial processes is still limited due to their tedious and non-sustainable synthesis, lack of experimental data and familiarity, as well as operational restrictions and high cost. Several years ago we presented, for the first time, the use of glycerol-based solvents as alternative sustainable reaction mediums in both catalytic and non-catalytic organic synthesis. Glycerol is the main by-product from the conversion of oils and fats in oleochemical production. Moreover, in the past decade, its price has substantially decreased due to an increase in supply from the production and use of fatty acid derivatives in the food, cosmetics, and drugs industries and in biofuel synthesis, i.e., biodiesel. The renewable origin, beneficial physicochemical properties and reusability of glycerol-based solvents, enabled improved product yield and selectivity as well as easy product separation and catalyst recycling. Furthermore, their high boiling point and polarity make them perfect candidates for non-conventional heating and mixing techniques such as ultrasound- and microwave-assisted reactions. Finally, in some reactions, such as catalytic transfer-hydrogenation or transesterification, they can also be used simultaneously as both solvent and reactant. In our ongoing efforts to design a viable protocol that will facilitate the acceptance of glycerol and its derivatives as sustainable solvents, pure glycerol and glycerol triacetate (triacetin) as well as various glycerol-triacetin mixtures were tested as sustainable solvents in several representative organic reactions, such as nucleophilic substitution of benzyl chloride to benzyl acetate, Suzuki-Miyaura cross-coupling of iodobenzene and phenylboronic acid, baker’s yeast reduction of ketones, and transfer hydrogenation of olefins. It was found that reaction performance was affected by the glycerol to triacetin ratio, as the solubility of the substrates in the solvent determined product yield. Thereby, employing optimal glycerol to triacetin ratio resulted in maximum product yield. In addition, using glycerol-based solvents enabled easy and successful separation of the products and recycling of the catalysts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glycerol" title="glycerol">glycerol</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20chemistry" title=" green chemistry"> green chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysis" title=" catalysis"> catalysis</a> </p> <a href="https://publications.waset.org/abstracts/18947/glycerol-based-bio-solvents-for-organic-synthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">624</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1061</span> Acoustic Emission for Investigation of Processes Occurring at Hydrogenation of Metallic Titanium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anatoly%20A.%20Kuznetsov">Anatoly A. Kuznetsov</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20G.%20Berezhko"> Pavel G. Berezhko</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20M.%20Kunavin"> Sergey M. Kunavin</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugeny%20V.%20Zhilkin"> Eugeny V. Zhilkin</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxim%20V.%20Tsarev"> Maxim V. Tsarev</a>, <a href="https://publications.waset.org/abstracts/search?q=Vyacheslav%20V.%20Yaroshenko"> Vyacheslav V. Yaroshenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Valery%20V.%20Mokrushin"> Valery V. Mokrushin</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Y.%20Yunchina"> Olga Y. Yunchina</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20A.%20Mityashin"> Sergey A. Mityashin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The acoustic emission is caused by short-time propagation of elastic waves that are generated as a result of quick energy release from sources localized inside some material. In particular, the acoustic emission phenomenon lies in the generation of acoustic waves resulted from the reconstruction of material internal structures. This phenomenon is observed at various physicochemical transformations, in particular, at those accompanying hydrogenation processes of metals or intermetallic compounds that make it possible to study parameters of these transformations through recording and analyzing the acoustic signals. It has been known that at the interaction between metals or inter metallides with hydrogen the most intensive acoustic signals are generated as a result of cracking or crumbling of an initial compact powder sample as a result of the change of material crystal structure under hydrogenation. This work is dedicated to the study into changes occurring in metallic titanium samples at their interaction with hydrogen and followed by acoustic emission signals. In this work the subjects for investigation were specimens of metallic titanium in two various initial forms: titanium sponge and fine titanium powder made of this sponge. The kinetic of the interaction of these materials with hydrogen, the acoustic emission signals accompanying hydrogenation processes and the structure of the materials before and after hydrogenation were investigated. It was determined that in both cases interaction of metallic titanium and hydrogen is followed by acoustic emission signals of high amplitude generated on reaching some certain value of the atomic ratio [H]/[Ti] in a solid phase because of metal cracking at a macrolevel. The typical sizes of the cracks are comparable with particle sizes of hydrogenated specimens. The reasons for cracking are internal stresses initiated in a sample due to the increasing volume of a solid phase as a result of changes in a material crystal lattice under hydrogenation. When the titanium powder is used, the atomic ratio [H]/[Ti] in a solid phase corresponding to the maximum amplitude of an acoustic emission signal are, as a rule, higher than when titanium sponge is used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20emission%20signal" title="acoustic emission signal">acoustic emission signal</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking" title=" cracking"> cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogenation" title=" hydrogenation"> hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20specimen" title=" titanium specimen"> titanium specimen</a> </p> <a href="https://publications.waset.org/abstracts/62156/acoustic-emission-for-investigation-of-processes-occurring-at-hydrogenation-of-metallic-titanium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1060</span> Synergistic Effect of Cold Plasma on Antioxidant Properties and Fatty Acid Composition of Rice Bran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Thirumdas">Rohit Thirumdas</a>, <a href="https://publications.waset.org/abstracts/search?q=Annapure%20U.%20S."> Annapure U. S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low-pressure air plasma is used to investigate the antioxidant properties and fatty acid composition of rice bran at different power levels (40 W and 60 W). We observed partial hydrogenation of rice bran oil after the treatment. The fatty acid composition analysis by gas chromatography showed an increase of 28.2% in palmitic acid and a 29.4% decrease in linoleic acid. FTIR spectrum shows no new peak formation, which confirms negligible amounts of trans-fatty acids. There is a decrease in peroxide value and iodine value, which can be correlated to an increase in saturated fatty acids. The total polyphenolic content was observed to be increased by 20.1% after the treatment. There is an increase in reducing power and DPPH % inhibition of rice bran due to plasma treatment. This study shows cold plasma treatment can be considered an alternative technology for the hydrogenation of oils, replacing traditional toxic processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20plasma" title="cold plasma">cold plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20bran" title=" rice bran"> rice bran</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20composition" title=" fatty acid composition"> fatty acid composition</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogenation%20of%20oils" title=" hydrogenation of oils"> hydrogenation of oils</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20properties" title=" antioxidant properties"> antioxidant properties</a> </p> <a href="https://publications.waset.org/abstracts/155547/synergistic-effect-of-cold-plasma-on-antioxidant-properties-and-fatty-acid-composition-of-rice-bran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1059</span> The Performance of PtSn/Al₂O₃ with Cylindrical Particles for Acetic Acid Hydrogenation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingchuan%20Zhou">Mingchuan Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongfang%20Ma"> Hongfang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alumina supported PtSn catalysts with cylindrical particles were prepared and characterized by using low temperature N2 adsorption/desorption and X-ray diffraction. Low temperature N2 adsorption/desorption demonstrate that the tableting changed the texture properties of catalysts. XRD pattern indicate that the crystal structure of supports had no change after reaction. The performances over particles of PtSn/Al2O3 catalysts were investigated with regards to reaction temperature, pressure, and H2/AcOH mole ratio. After tableting, the conversion of acetic acid and selectivity of ethanol and acetyl acetate decreased. High reaction temperature and pressure can improve conversion of acetic acid. H2/AcOH mole ratio of 9.36 showed the best performance on acetic acid hydrogenation. High pressure had benefits for the selectivity of ethanol and other two parameters had no obvious effect on selectivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetic%20acid%20hydrogenation" title="acetic acid hydrogenation">acetic acid hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=cylindrical%20particles" title=" cylindrical particles"> cylindrical particles</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=PtSn" title=" PtSn"> PtSn</a> </p> <a href="https://publications.waset.org/abstracts/49368/the-performance-of-ptsnal2o3-with-cylindrical-particles-for-acetic-acid-hydrogenation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1058</span> Selective Synthesis of Pyrrolic Nitrogen-Doped Carbon Nanotubes Its Physicochemical Properties and Application as Pd Nanoparticles Support</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Ombaka">L. M. Ombaka</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Oosthuizen"> R. S. Oosthuizen</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20G.%20Ndungu"> P. G. Ndungu</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20O.%20Nyamori"> V. O. Nyamori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the role of nitrogen species on the catalytic properties of nitrogen-doped carbon nanotubes (N-CNTs) as catalysts supports is critical as nitrogen species influence the support’s properties. To evaluate the influence of pyrrolic nitrogen on the physicochemical properties and catalytic activity of N-CNTs supported Pd (Pd/N-CNTs); N-CNTs containing varying pyrrolic contents were synthesized. The catalysts were characterised by the use of transmission electron microscope (TEM), scanning electron microscope, X-ray photoelectron spectroscopy (XPS), X-ray diffraction, Fourier transform infrared spectroscopy, and temperature programmed reduction. TEM analysis showed that the Pd nanoparticles were mainly located along the defect sites on N-CNTs. XPS analysis revealed that the abundance of Pd0 decreased while that of Pd2+ increased as the quantity of pyrrolic nitrogen increased. The increase of Pd2+ species was accredited to the formation of stable Pd-N coordination complexes which prevented further reduction of Pd2+ to Pd0 during synthesis. The formed Pd-N complexes increased the stability and dispersion of Pd2+ nanoparticles. The selective hydrogenation of nitrobenzophenone to aminobenzophenone over Pd/N-CNTs was compared to that of Pd on carbon nanotubes (Pd/CNTs). Pd/N-CNTs showed a higher catalytic activity and selectivity compared with Pd/CNTs. Pyrrolic nitrogen functional groups significantly promoted the selectivity towards aminobenzophenone formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pyrrolic%20N-CNTs" title="pyrrolic N-CNTs">pyrrolic N-CNTs</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogenation%20reactions" title=" hydrogenation reactions"> hydrogenation reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20vapour%20deposition%20technique" title=" chemical vapour deposition technique "> chemical vapour deposition technique </a> </p> <a href="https://publications.waset.org/abstracts/19568/selective-synthesis-of-pyrrolic-nitrogen-doped-carbon-nanotubes-its-physicochemical-properties-and-application-as-pd-nanoparticles-support" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1057</span> Carbon Dioxide Hydrogenation to Methanol over Cu/ZnO-SBA-15 Catalyst: Effect of Metal Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20F.%20H.%20Tasfy">S. F. H. Tasfy</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20M.%20Zabidi"> N. A. M. Zabidi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.-S.%20Shaharun"> M.-S. Shaharun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Utilization of CO2 as a carbon source to produce valuable chemicals is one of the important ways to reduce the global warming caused by increasing CO2 in the atmosphere. Supported metal catalysts are crucial for the production of clean and renewable fuels and chemicals from the stable CO2 molecules. The catalytic conversion of CO2 into methanol is recently under increased scrutiny as an opportunity to be used as a low-cost carbon source. Therefore, series of the bimetallic Cu/ZnO-based catalyst supported by SBA-15 were synthesized via impregnation technique with different total metal loading and tested in the catalytic hydrogenation of CO2 to methanol. The morphological and textural properties of the synthesized catalysts were determined by transmission electron microscopy (TEM), temperature programmed desorption, reduction, oxidation and pulse chemisorption (TPDRO), and N2-adsorption. The CO2 hydrogenation reaction was performed in microactivity fixed-bed system at 250 °C, 2.25 MPa, and H2/CO2 ratio of 3. Experimental results showed that the catalytic structure and performance was strongly affected by the loading of the active site. Where, the catalytic activity, methanol selectivity as well as the space-time yield increased with increasing the metal loading until it reaches the maximum values at a metal loading of 15 wt% while further addition of metal inhibits the catalytic performance. The higher catalytic activity of 14 % and methanol selectivity of 92 % were obtained over Cu/ZnO-SBA-15 catalyst with total bimetallic loading of 15 wt%. The excellent performance of 15 wt% Cu/ZnO-SBA-15 catalyst is attributed to the presence of well disperses active sites with small particle size, higher Cu surface area, and lower catalytic reducibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogenation%20of%20carbon%20dioxide" title="hydrogenation of carbon dioxide">hydrogenation of carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol%20synthesis" title=" methanol synthesis"> methanol synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20loading" title=" metal loading"> metal loading</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu%2FZnO-SBA-15%20catalyst" title=" Cu/ZnO-SBA-15 catalyst"> Cu/ZnO-SBA-15 catalyst</a> </p> <a href="https://publications.waset.org/abstracts/59596/carbon-dioxide-hydrogenation-to-methanol-over-cuzno-sba-15-catalyst-effect-of-metal-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1056</span> Study on Pd Catalyst Supported on Carbon Materials for C₂ Hydrogenation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huanru%20Wang">Huanru Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianzhun%20Jiang"> Jianzhun Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, the preparation of the catalyst by carbon carrier is one of the improvement directions of the C₂ pre-hydrogenation catalyst. Carbon materials can be prepared from coal direct liquefaction residues, coconut shells, biomass, etc., and the pore structure of carbon carrier materials can be adjusted through the preparation process; at high temperatures, the carbon carrier itself also shows certain catalytic activity. Therefore, this paper mainly selected typical activated carbon and coconut shell carbon as carbon carrier materials, studied their microstructure and surface properties, prepared a series of carbon-based catalysts loaded with Pd, and investigated the effects of the content of promoter Ag and the concentration of reductant on the structure and performance of the catalyst and its catalytic performance for the pre hydrogenation of C₂. In this paper, the carbon supports from two sources and the catalysts prepared by them were characterized in detail. The results showed that the morphology and structure of different supports and the performance of the catalysts prepared were also obviously different. The catalyst supported on coconut shell carbon has a small specific surface area and large pore diameter. The catalyst supported on activated carbon has a large specific surface area and rich pore structure. The active carbon support is mainly a mixture of amorphous graphite and microcrystalline graphite. For the catalyst prepared with coconut shell carbon as the carrier, the sample is very uneven, and its specific surface area and pore volume are irregular. Compared with coconut shell carbon, activated carbon is more suitable as the carrier of the C₂ hydrogenation catalyst. The conversion of acetylene, methyl acetylene, and butadiene decreased, and the ethylene selectivity increased after Ag was added to the supported Pd catalyst. When the amount of promoter Ag is 0.01-0.015%, the catalyst has relatively good catalytic performance. Ag and Pd form an alloying effect, thus reducing the effective demand for Ag. The Pd Ag ratio is the key factor affecting the catalytic performance. When the addition amount of Ag is 0.01-0.015%, the dispersion of Pd on the carbon support surface can be significantly improved, and the size of active particles can be reduced. The Pd Ag ratio is the main factor in improving the selectivity of the catalyst. When the additional amount of sodium formate is 1%, the catalyst prepared has both high acetylene conversion and high ethylene selectivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=C%E2%82%82%20hydrogenation" title="C₂ hydrogenation">C₂ hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=Ag%20promoter" title=" Ag promoter"> Ag promoter</a>, <a href="https://publications.waset.org/abstracts/search?q=Pd%20catalysts" title=" Pd catalysts"> Pd catalysts</a> </p> <a href="https://publications.waset.org/abstracts/158188/study-on-pd-catalyst-supported-on-carbon-materials-for-c2-hydrogenation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1055</span> Pd(II) Complex with 4-Bromo-2,6-Bis-Hydroxymethyl-Phenol and Nikotinamid: Synthesis and Spectral Analysis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%96zlen%20Altun">Özlen Altun</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeliha%20Yoru%C3%A7"> Zeliha Yoruç</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the reactions involving 4-Bromo-2,6-bis-hydroxymethyl-phenol (BBHMP) and nikotinamide (NA) in the presence Pd (II) ion were investigated. Optimum conditions for the reactions were established as pH 7 and λ = 450 nm. According to absorbance measurements, the mole ratio of BBHMP : NA : Pd2+ was found as 1 : 2 : 2. As a result of physico-chemical, spectrophotometric and thermal analysis results, the reactions of BBHMP and NA with Pd (II) is complexation reactions and one molecule BBHMP and two molecules of NA react with two molecules of metal (II) ion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=4-Bromo-2" title="4-Bromo-2">4-Bromo-2</a>, <a href="https://publications.waset.org/abstracts/search?q=6-bis-hydroxymethyl-phenol" title="6-bis-hydroxymethyl-phenol">6-bis-hydroxymethyl-phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=nicotinamide" title=" nicotinamide"> nicotinamide</a>, <a href="https://publications.waset.org/abstracts/search?q=Pd%28II%29" title=" Pd(II)"> Pd(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20analysis" title=" spectral analysis"> spectral analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/82499/pdii-complex-with-4-bromo-26-bis-hydroxymethyl-phenol-and-nikotinamid-synthesis-and-spectral-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1054</span> Hydrogen Storage in Carbonized Coconut Meat (Kernel)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viney%20Dixit">Viney Dixit</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohit%20R.%20Shahi"> Rohit R. Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Bhatnagar"> Ashish Bhatnagar</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Jain"> P. Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20P.%20Yadav"> T. P. Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20N.%20Srivastava"> O. N. Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbons are being widely investigated as hydrogen storage material owing to their light weight, fast hydrogen absorption kinetics and low cost. However, these materials suffer from low hydrogen storage capacity at room temperature. The aim of the present study is to synthesize carbon based material which shows moderate hydrogen storage at room temperature. For this purpose, hydrogenation characteristics of natural precursor coconut kernel is studied in this work. The hydrogen storage measurement reveals that the as-synthesized materials have good hydrogen adsorption and desorption capacity with fast kinetics. The synthesized material absorbs 8 wt.% of hydrogen at liquid nitrogen temperature and 2.3 wt.% at room temperature. This could be due to the presence of certain elements (KCl, Mg, Ca) which are confirmed by TEM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20kernel" title="coconut kernel">coconut kernel</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonization" title=" carbonization"> carbonization</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogenation" title=" hydrogenation"> hydrogenation</a>, <a href="https://publications.waset.org/abstracts/search?q=KCl" title=" KCl"> KCl</a>, <a href="https://publications.waset.org/abstracts/search?q=Mg" title=" Mg"> Mg</a>, <a href="https://publications.waset.org/abstracts/search?q=Ca" title=" Ca"> Ca</a> </p> <a href="https://publications.waset.org/abstracts/12194/hydrogen-storage-in-carbonized-coconut-meat-kernel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1053</span> Chemical and Electrochemical Syntheses of Two Organic Components of Ginger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrienn%20Kiss">Adrienn Kiss</a>, <a href="https://publications.waset.org/abstracts/search?q=Karoly%20Zauer"> Karoly Zauer</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyorgy%20Keglevich"> Gyorgy Keglevich</a>, <a href="https://publications.waset.org/abstracts/search?q=Rita%20Molnarne%20Bernath"> Rita Molnarne Bernath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ginger (Zingiber officinale) is a perennial plant from Southeast Asia, widely used as a spice, herb, and medicine for many illnesses since its beneficial health effects were observed thousands of years ago. Among the compounds found in ginger, zingerone [4-hydroxy-3- methoxyphenyl-2-butanone] deserves special attention: it has an anti-inflammatory and antispasmodic effect, it can be used in case of diarrheal disease, helps to prevent the formation of blood clots, has antimicrobial properties, and can also play a role in preventing the Alzheimer's disease. Ferulic acid [(E)-3-(4-hydroxy-3-methoxyphenyl)-prop-2-enoic acid] is another cinnamic acid derivative in ginger, which has promising properties. Like many phenolic compounds, ferulic acid is also an antioxidant. Based on the results of animal experiments, it is assumed to have a direct antitumoral effect in lung and liver cancer. It also deactivates free radicals that can damage the cell membrane and the DNA and helps to protect the skin against UV radiation. The aim of this work was to synthesize these two compounds by new methods. A few of the reactions were based on the hydrogenation of dehydrozingerone [4-(4-Hydroxy-3-methoxyphenyl)-3-buten-2-one] to zingerone. Dehydrozingerone can be synthesized by a relatively simple method from acetone and vanillin with good yield (80%, melting point: 41 °C). Hydrogenation can be carried out chemically, for example by the reaction of zinc and acetic acid, or Grignard magnesium and ethyl alcohol. Another way to complete the reduction is the electrochemical pathway. The electrolysis of dehydrozingerone without diaphragm in aqueous media was attempted to produce ferulic acid in the presence of sodium carbonate and potassium iodide using platinum electrodes. The electrolysis of dehydrozingerone in the presence of potassium carbonate and acetic acid to prepare zingerone was carried out similarly. Ferulic acid was expected to be converted to dihydroferulic acid [3-(4-Hydroxy-3-methoxyphenyl)propanoic acid] in potassium hydroxide solution using iron electrodes, separating the anode and cathode space with a Soxhlet paper sheath impregnated with saturated magnesium chloride solution. For this reaction, ferulic acid was synthesized from vanillin and malonic acid in the presence of pyridine and piperidine (yield: 88.7%, melting point: 173°C). Unfortunately, in many cases, the expected transformations did not happen or took place in low conversions, although gas evolution occurred. Thus, a deeper understanding of these experiments and optimization are needed. Since both compounds are found in different plants, they can also be obtained by alkaline extraction or steam distillation from distinct plant parts (ferulic acid from ground bamboo shoots, zingerone from grated ginger root). The products of these reactions are rich in several other organic compounds as well; therefore, their separation must be solved to get the desired pure material. The products of the reactions described above were characterized by infrared spectral data and melting points. The use of these two simple methods may be informative for the formation of the products. In the future, we would like to study the ferulic acid and zingerone content of other plants and extract them efficiently. The optimization of electrochemical reactions and the use of other test methods are also among our plans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferulic%20acid" title="ferulic acid">ferulic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger" title=" ginger"> ginger</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=zingerone" title=" zingerone"> zingerone</a> </p> <a href="https://publications.waset.org/abstracts/82801/chemical-and-electrochemical-syntheses-of-two-organic-components-of-ginger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1052</span> Descriptive Study of Adverse Drug Reactions in a Paediatric Hospital in Mongolia from 2015 to 2019</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaliun%20Nyambayar">Khaliun Nyambayar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nomindari%20Azzaya"> Nomindari Azzaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Batkhuyag%20Purevjav"> Batkhuyag Purevjav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pharmacovigilance was officially introduced in Mongolia in 2003, in accordance with the Health Minister Order 183 for the registry of adverse drug reactions (ADR), approved in 2006 and was reviewed in 2010. This study was designed to evaluate the incidence and common types of adverse drug reactions among hospitalized children, the frequency of adverse drug reaction reported by health care providers, and the follow-up processes resulting from adverse drug reactions. A retrospective study of paediatric patients who experienced an adverse drug reaction from 2015 to 2019, extracted from the “yellow” card at the State Research Center for Maternal and Child Health, (city). A total of 417 adverse drug reactions were reported with an overall incidence was 80 (21.5%). Adverse reactions resulting from the use of antibiotics (particularly gentamycin, cephalosporins, and vancomycin) were usually mild. ADR’s were reported by physicians and nurses (93.8%), pharmacists (6.25%). Although documentation of physician notification occurred for 93% of adverse drug reactions, only 29% of cases were documented in the patient's medical chart, 13% included follow-up education for individuals involved, and 10% were updated in the allergy profile of the hospital computer system. Measures to improve the detection and reporting of adverse drug reactions by all health care professionals should be improved, to enhance our understanding of the nature and impact of these reactions in children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adverse%20drug%20reaction" title="adverse drug reaction">adverse drug reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=pediatric" title=" pediatric"> pediatric</a>, <a href="https://publications.waset.org/abstracts/search?q=yellow%20card" title=" yellow card"> yellow card</a>, <a href="https://publications.waset.org/abstracts/search?q=Mongolia" title=" Mongolia"> Mongolia</a> </p> <a href="https://publications.waset.org/abstracts/157437/descriptive-study-of-adverse-drug-reactions-in-a-paediatric-hospital-in-mongolia-from-2015-to-2019" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1051</span> Adverse Reactions from Contrast Media in Patients Undergone Computed Tomography at the Department of Radiology, Srinagarind Hospital</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pranee%20Suecharoen">Pranee Suecharoen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaturat%20Kanpittaya"> Jaturat Kanpittaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The incidence of adverse reactions to iodinated contrast media has risen. The dearth of reports on reactions to the administration of iso- and low-osmolar contrast media should be addressed. We, therefore, studied the profile of adverse reactions to iodinated contrast media; viz., (a) the body systems affected (b) causality, (c) severity, and (d) preventability. Objective: To study adverse reactions (causes and severity) to iodinated contrast media at Srinagarind Hospital. Method: Between March and July, 2015, 1,101 patients from the Department of Radiology were observed and interviewed for the occurrence of adverse reactions. The patients were classified per Naranjo’s algorithm and through use of an adverse reactions questionnaire. Results: A total of 105 cases (9.5%) reported adverse reactions (57% male; 43% female); among whom 2% were iso-osmolar vs. 98% low-osmolar. Diagnoses included hepatoma and cholangiocarcinoma (24.8%), colorectal cancer (9.5%), breast cancer (5.7%), cervical cancer (3.8%), lung cancer (2.9%), bone cancer (1.9%), and others (51.5%). Underlying diseases included hypertension and diabetes mellitus type 2. Mild, moderate, and severe adverse reactions accounted for 92, 5 and 3%, respectively. The respective groups of escalating symptoms included (a) mild urticaria, itching, rash, nausea, vomiting, dizziness, and headache; (b) moderate hypertension, hypotension, dyspnea, tachycardia and bronchospasm; and (c) severe laryngeal edema, profound hypotension, and convulsions. All reactions could be anticipated per Naranjo’s algorithm. Conclusion: Mild to moderate adverse reactions to low-osmolar contrast media were most common and these occurred immediately after administration. For patient safety and better outcomes, improving the identification of patients likely to have an adverse reaction is essential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adverse%20reactions" title="adverse reactions">adverse reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=contrast%20media" title=" contrast media"> contrast media</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title=" computed tomography"> computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=iodinated%20contrast%20agents" title=" iodinated contrast agents"> iodinated contrast agents</a> </p> <a href="https://publications.waset.org/abstracts/38173/adverse-reactions-from-contrast-media-in-patients-undergone-computed-tomography-at-the-department-of-radiology-srinagarind-hospital" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1050</span> Modeling Aggregation of Insoluble Phase in Reactors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Brener">A. Brener</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Ismailov"> B. Ismailov</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Berdalieva"> G. Berdalieva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the paper we submit the modification of kinetic Smoluchowski equation for binary aggregation applying to systems with chemical reactions of first and second orders in which the main product is insoluble. The goal of this work is to create theoretical foundation and engineering procedures for calculating the chemical apparatuses in the conditions of joint course of chemical reactions and processes of aggregation of insoluble dispersed phases which are formed in working zones of the reactor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20aggregation" title="binary aggregation">binary aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=clusters" title=" clusters"> clusters</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20reactions" title=" chemical reactions"> chemical reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=insoluble%20phases" title=" insoluble phases"> insoluble phases</a> </p> <a href="https://publications.waset.org/abstracts/4173/modeling-aggregation-of-insoluble-phase-in-reactors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1049</span> Pd Supported on Activated Carbon: Effect of Support Texture on the Dispersion of Pd</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%20Sun%20Kim">Ji Sun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae%20Ho%20Baek"> Jae Ho Baek</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyeong%20Ho%20Kim"> Kyeong Ho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Hae%20Ha"> Ji Hae Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong%20Soo%20Hong"> Seong Soo Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Wook%20Park"> Jung-Wook Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Sig%20Lee"> Man Sig Lee </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon supported palladium catalysts have been used in many industrial reactions, especially for hydrogenation in the fine chemical industry. Porous carbons had been widely used as catalyst supports due to its higher surface area and larger pore volume. The specific surface area, pore structure and surface chemical functional groups of porous carbon affects metal dispersion and particle size. In this paper, we confirm the effect of support texture on the dispersion of Pd. Pd catalyst supported on activated carbon having various specific surface area were characterized by BET, XRD and FE-TEM. Catalyst activity and dispersion of prepared catalyst were evaluated on the basis of the CO adsorption capacity by CO-chemisorption. As concluding remark to this part of our study, let us note that specific area of carbon play important role on the synthesis of Pd/C catalyst/. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon" title="carbon">carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=Pd%2FC" title=" Pd/C"> Pd/C</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20are" title=" specific are"> specific are</a>, <a href="https://publications.waset.org/abstracts/search?q=support" title=" support"> support</a> </p> <a href="https://publications.waset.org/abstracts/40084/pd-supported-on-activated-carbon-effect-of-support-texture-on-the-dispersion-of-pd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1048</span> Study of First Hydrogenation Kinetics at Different Temperatures of BCC Alloy 52Ti-12V-36Cr + x wt% Zr (x = 4, 8 & 12)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Prakash">Ravi Prakash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of Zr addition on kinetics and hydrogen absorption characteristics of BCC alloy 52Ti-12V-36Cr doped with x wt% of Zr (x = 0, 4, 8 & 12) was investigated. The samples have been characterized by X-ray diffraction, and activation study were made at four different temperatures- 100 oC, 200 oC, 300 oC and 400 oC. First hydrogenation kinetics of alloys were studied at 20 bar of hydrogen pressure and room temperature after giving heat treatment at different temperatures for 6 hours. Among the various Zr doped alloys studied, the composition 52Ti-12V-36Cr + 4wt% Zr shows maximum hydrogen storage capacity of 3.6wt%. Small amount of Zr shows advantageous effects on kinetics of alloy. It was also found out that alloys with the higher Zr concentration can be activated by giving heat treatment at lower temperatures. There is reduction in hydrogen storage capacity with increasing Zr content in the alloy primarily due to increasing abundance of secondary phase as established by X-Ray Diffraction and Scanning Electron Microscope results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20storage" title="hydrogen storage">hydrogen storage</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20hydrides" title=" metal hydrides"> metal hydrides</a>, <a href="https://publications.waset.org/abstracts/search?q=bcc%20alloy" title=" bcc alloy"> bcc alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a> </p> <a href="https://publications.waset.org/abstracts/168987/study-of-first-hydrogenation-kinetics-at-different-temperatures-of-bcc-alloy-52ti-12v-36cr-x-wt-zr-x-4-8-12" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1047</span> Determination of Viscosity and Degree of Hydrogenation of Liquid Organic Hydrogen Carriers by Cavity Based Permittivity Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Wiemann">I. Wiemann</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Wei%C3%9F"> N. Weiß</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Schl%C3%BCcker"> E. Schlücker</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Wensing"> M. Wensing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A very promising alternative to compression or cryogenics is the chemical storage of hydrogen by liquid organic hydrogen carriers (LOHC). These carriers enable high energy density and allow, at the same time, efficient and safe storage under ambient conditions without leakage losses. Another benefit of this storage medium is the possibility of transporting it using already available infrastructure for the transport of fossil fuels. Efficient use of LOHC is related to precise process control, which requires a number of sensors in order to measure all relevant process parameters, for example, to measure the level of hydrogen loading of the carrier. The degree of loading is relevant for the energy content of the storage carrier and simultaneously represents the modification in the chemical structure of the carrier molecules. This variation can be detected in different physical properties like permittivity, viscosity, or density. E.g., each degree of loading corresponds to different viscosity values. Conventional measurements currently use invasive viscosity measurements or near-line measurements to obtain quantitative information. This study investigates permittivity changes resulting from changes in hydrogenation degree (chemical structure) and temperature. Based on calibration measurements, the degree of loading and temperature of LOHC can thus be determined by comparatively simple permittivity measurements in a cavity resonator. Subsequently, viscosity and density can be calculated. An experimental setup with a heating device and flow test bench was designed. By varying temperature in the range of 293,15 K -393,15 K and flow velocity up to 140 mm/s, corresponding changes in the resonation frequency were determined in the hundredths of the GHz range. This approach allows inline process monitoring of hydrogenation of the liquid organic hydrogen carrier (LOHC). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20loading" title="hydrogen loading">hydrogen loading</a>, <a href="https://publications.waset.org/abstracts/search?q=LOHC" title=" LOHC"> LOHC</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement" title=" measurement"> measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=permittivity" title=" permittivity"> permittivity</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/161031/determination-of-viscosity-and-degree-of-hydrogenation-of-liquid-organic-hydrogen-carriers-by-cavity-based-permittivity-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1046</span> Mathematical Modeling of Bi-Substrate Enzymatic Reactions in the Presence of Different Types of Inhibitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafayel%20Azizyan">Rafayel Azizyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Valeri%20Arakelyan"> Valeri Arakelyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Aram%20Gevorgyan"> Aram Gevorgyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Varduhi%20Balayan"> Varduhi Balayan</a>, <a href="https://publications.waset.org/abstracts/search?q=Emil%20Gevorgyan"> Emil Gevorgyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, mathematical and computer modeling are widely used in different biological studies to predict or assess behavior of such complex systems as biological ones. This study deals with mathematical and computer modeling of bi-substrate enzymatic reactions, which play an important role in different biochemical pathways. The main objective of this study is to represent the results from in silico investigation of bi-substrate enzymatic reactions in the presence of uncompetitive inhibitors, as well as to describe in details the inhibition effects. Four models of uncompetitive inhibition were designed using different software packages. Particularly, uncompetitive inhibitor to the first [ES1] and the second ([ES1S2]; [FS2]) enzyme-substrate complexes have been studied. The simulation, using the same kinetic parameters for all models allowed investigating the behavior of reactions as well as determined some interesting aspects concerning influence of different cases of uncompetitive inhibition. Besides that shown, that uncompetitive inhibitors exhibit specific selectivity depending on mechanism of bi-substrate enzymatic reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title="mathematical modeling">mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-substrate%20enzymatic%20reactions" title=" bi-substrate enzymatic reactions"> bi-substrate enzymatic reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=reversible%20inhibition" title=" reversible inhibition"> reversible inhibition</a> </p> <a href="https://publications.waset.org/abstracts/10675/mathematical-modeling-of-bi-substrate-enzymatic-reactions-in-the-presence-of-different-types-of-inhibitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1045</span> Management Tools for Assessment of Adverse Reactions Caused by Contrast Media at the Hospital</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pranee%20Suecharoen">Pranee Suecharoen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratchadaporn%20Soontornpas"> Ratchadaporn Soontornpas</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaturat%20Kanpittaya"> Jaturat Kanpittaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Contrast media has an important role for disease diagnosis through detection of pathologies. Contrast media can, however, cause adverse reactions after administration of its agents. Although non-ionic contrast media are commonly used, the incidence of adverse events is relatively low. The most common reactions found (10.5%) were mild and manageable and/or preventable. Pharmacists can play an important role in evaluating adverse reactions, including awareness of the specific preparation and the type of adverse reaction. As most common types of adverse reactions are idiosyncratic or pseudo-allergic reactions, common standards need to be established to prevent and control adverse reactions promptly and effectively. Objective: To measure the effect of using tools for symptom evaluation in order to reduce the severity, or prevent the occurrence, of adverse reactions from contrast media. Methods: Retrospective review descriptive research with data collected on adverse reactions assessment and Naranjo’s algorithm between June 2015 and May 2016. Results: 158 patients (10.53%) had adverse reactions. Of the 1,500 participants with an adverse event evaluation, 137 (9.13%) had a mild adverse reaction, including hives, nausea, vomiting, dizziness, and headache. These types of symptoms can be treated (i.e., with antihistamines, anti-emetics) and the patient recovers completely within one day. The group with moderate adverse reactions, numbering 18 cases (1.2%), had hypertension or hypotension, and shortness of breath. Severe adverse reactions numbered 3 cases (0.2%) and included swelling of the larynx, cardiac arrest, and loss of consciousness, requiring immediate treatment. No other complications under close medical supervision were recorded (i.e., corticosteroids use, epinephrine, dopamine, atropine, or life-saving devices). Using the guideline, therapies are divided into general and specific and are performed according to the severity, risk factors and ingestion of contrast media agents. Patients who have high-risk factors were screened and treated (i.e., prophylactic premedication) for prevention of severe adverse reactions, especially those with renal failure. Thus, awareness for the need for prescreening of different risk factors is necessary for early recognition and prompt treatment. Conclusion: Studying adverse reactions can be used to develop a model for reducing the level of severity and setting a guideline for a standardized, multidisciplinary approach to adverse reactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=role%20of%20pharmacist" title="role of pharmacist">role of pharmacist</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20of%20adverse%20reactions" title=" management of adverse reactions"> management of adverse reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=guideline%20for%20contrast%20media" title=" guideline for contrast media"> guideline for contrast media</a>, <a href="https://publications.waset.org/abstracts/search?q=non-ionic%20contrast%20media" title=" non-ionic contrast media"> non-ionic contrast media</a> </p> <a href="https://publications.waset.org/abstracts/76622/management-tools-for-assessment-of-adverse-reactions-caused-by-contrast-media-at-the-hospital" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1044</span> Social Workers’ Reactions and Coping Strategies: An Exploratory Study about the Social Worker-Client Contacting Experiences in Hong Kong</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sze%20Ming%20Yau">Sze Ming Yau </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Social worker-client interacting experience is scarcely studied in Hong Kong. Through this qualitative study, the experiences of Hong Kong social work practitioners in relating with clients provide new insights on social worker training and development. Thematic analysis is applied to examine the data collected by in-depth interviews with six local social work practitioners. The results show all practitioners have experienced both positive and challenging situations during the relating process. Their reactions either facilitate or hinder the process. Most of the practitioners’ strong reactions can be accounted for by using the concept of countertransference reactions during the interview session with clients. Moreover, they also have rarely reviewed the implications of those reactions after the session. In addition to countertransference, the self-expectation of practitioners also influences the relating process. Their self-expectations of being capable to help lead to anxiety. Though countertransference and anxiety of practitioners significantly influence the relating process, the practitioners do not adequately address personal issues and anxiety. Enhancing case conceptualization ability is their major coping strategy. The study has implications, including enhancement of social work training, workplace support, practitioner’s self-reflection, and integration of theory and practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coping" title="coping">coping</a>, <a href="https://publications.waset.org/abstracts/search?q=countertransference" title=" countertransference"> countertransference</a>, <a href="https://publications.waset.org/abstracts/search?q=reactions" title=" reactions"> reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=relating%20process" title=" relating process"> relating process</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20workers" title=" social workers"> social workers</a> </p> <a href="https://publications.waset.org/abstracts/138610/social-workers-reactions-and-coping-strategies-an-exploratory-study-about-the-social-worker-client-contacting-experiences-in-hong-kong" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogenation%20reactions&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogenation%20reactions&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogenation%20reactions&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogenation%20reactions&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogenation%20reactions&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogenation%20reactions&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogenation%20reactions&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogenation%20reactions&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogenation%20reactions&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogenation%20reactions&page=35">35</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogenation%20reactions&page=36">36</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydrogenation%20reactions&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>