CINXE.COM
Search results for: alumina cement
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: alumina cement</title> <meta name="description" content="Search results for: alumina cement"> <meta name="keywords" content="alumina cement"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="alumina cement" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="alumina cement"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 992</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: alumina cement</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">992</span> The Impact of Alumina Cement on Properties of Portland Cement Slurries and Mortars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Zieli%C5%84ski">Krzysztof Zieliński</a>, <a href="https://publications.waset.org/abstracts/search?q=Dariusz%20Kierzek"> Dariusz Kierzek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The addition of a small amount of alumina cement to Portland cement results in immediate setting, a rapid increase in the compressive strength and a clear increase of the adhesion to concrete substrate. This phenomenon is used, among others, for the production of liquid floor self-levelling compounds. Alumina cement is several times more expensive than Portland cement and is a component having a significant impact on prices of products manufactured with its use. For the production of liquid floor self-levelling compounds, low-alumina cement containing approximately 40% Al<sub>2</sub>O<sub>3 </sub>is normally used. The aim of the study was to determine the impact of Portland cement with the addition of alumina cement on the basic physical and mechanical properties of cement slurries and mortars. CEM I 42.5R and three types of alumina cement containing 40%, 50% and 70% of Al<sub>2</sub>O<sub>3</sub> were used for the tests. Mixes containing 4%, 6%, 8%, 10% and 12% of different varieties of alumina cement were prepared; for which, the time of initial and final setting, compressive and flexural strength and adhesion to concrete substrate were determined. The analysis of the obtained test results showed that a similar immediate setting effect and clearly better adhesion strength can be obtained using the addition of 6% of high-alumina cement than 12% of low-alumina cement. As the prices of these cements are similar, this can give significant financial savings in the production of liquid floor self-levelling compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina%20cement" title="alumina cement">alumina cement</a>, <a href="https://publications.waset.org/abstracts/search?q=immediate%20setting" title=" immediate setting"> immediate setting</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20strength" title=" compression strength"> compression strength</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesion%20to%20substrate" title=" adhesion to substrate"> adhesion to substrate</a> </p> <a href="https://publications.waset.org/abstracts/118238/the-impact-of-alumina-cement-on-properties-of-portland-cement-slurries-and-mortars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">991</span> Preparation and Physical Assessment of Portland Cement Base Composites Containing Nano Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Mahmoudi">Amir Mahmoudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research the effects of adding silica and alumina nanoparticles on flow ability and compressive strength of cementitious composites based on Portland cement were investigated. In the first stage, the rheological behavior of different samples containing nanosilica, nanoalumina and polypropylene, polyvinyl alcohol and polyethylene fibers were evaluated. With increasing of nanoparticles in fresh samples, the slump flow diameter reduced. Fibers reduced the flow ability of the samples and viscosity increased. With increasing of the micro silica particles to cement ratio from 2/1 to 2/2, the slump flow diameter increased. By adding silica and alumina nanoparticles up to 3% and 2% respectively, the compressive strength increased and after decreased. Samples containing silica nanoparticles and fibers had the highest compressive strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Portland%20cement" title="Portland cement">Portland cement</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/26368/preparation-and-physical-assessment-of-portland-cement-base-composites-containing-nano-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">990</span> Preparation and Characterization of α–Alumina with Low Sodium Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyung%20Soo%20Jeon">Gyung Soo Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Bae%20Kim"> Hong Bae Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi%20Jung%20Oh"> Chi Jung Oh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to prepare the α-alumina with low content of sodium oxide from aluminum trihydroxide as a reactant, three kinds of methods were employed as follows; the mixture of Chamotte (aggregate composed of silica and alumina), ammonium chloride and aluminum fluoride with aluminum trihydroxide under 1600°C, respectively. The sodium oxide in α-alumina produced above methods was analyzed by XRF and the particle size distribution was determined by particle size analyzer, and the specific surface area of α-alumina was measured by BET method, and phase of α-alumina produced was confirmed by XRD. Acknowledgement: This research was supported by Development Program of Technical Innovation funded by Korea Technology and Information Promotion Agency for SMEs (KTIP-2016-S2401821). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-alumina" title="α-alumina">α-alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20oxide" title=" sodium oxide"> sodium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20trihydroxide" title=" aluminum trihydroxide"> aluminum trihydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=Chamotte" title=" Chamotte"> Chamotte</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonium%20chloride" title=" ammonium chloride"> ammonium chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20fluoride" title=" aluminum fluoride"> aluminum fluoride</a> </p> <a href="https://publications.waset.org/abstracts/66138/preparation-and-characterization-of-a-alumina-with-low-sodium-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">989</span> Effect of Rice Husk Ash and Metakaolin on the Compressive Strengths of Ternary Cement Mortars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olubajo%20Olumide%20Olu">Olubajo Olumide Olu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies the effect of Metakaolin (MK) and Rice husk ash (RHA) on the compressive strength of ternary cement mortar at replacement level up to 30%. The compressive strength test of the blended cement mortars were conducted using Tonic Technic compression and machine. Nineteen ternary cement mortars were prepared comprising of ordinary Portland cement (OPC), Rice husk ash (RHA) and Metakaolin (MK) at different proportion. Ternary mortar prisms in which Portland cement was replaced by up to 30% were tested at various age; 2, 7, 28 and 60 days. Result showed that the compressive strength of the cement mortars increased as the curing days were lengthened for both OPC and the blended cement samples. The ternary cement’s compressive strengths showed significant improvement compared with the control especially beyond 28 days. This can be attributed to the slow pozzolanic reaction resulting from the formation of additional CSH from the interaction of the residual CH content and the silica available in the Metakaolin and Rice husk ash, thus providing significant strength gain at later age. Results indicated that the addition of metakaolin with rice husk ash kept constant was found to lead to an increment in the compressive strength. This can either be attributed to the high silica/alumina contribution to the matrix or the C/S ratio in the cement matrix. Whereas, increment in the rice husk ash content while metakaolin was held constant led to an increment in the compressive strength, which could be attributed to the reactivity of the rice husk ash followed by decrement owing to the presence of unburnt carbon in the RHA matrix. The best compressive strength results were obtained at 10% cement replacement (5% RHA, 5% MK); 15% cement replacement (10% MK and 5% RHA); 20% cement replacement (15% MK and 5% RHA); 25% cement replacement (20% MK and 5% RHA); 30% cement replacement (10%/20% MK and 20%/10% RHA). With the optimal combination of either 15% and 20% MK with 5% RHA giving the best compressive strength of 40.5MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metakaolin" title="metakaolin">metakaolin</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title=" rice husk ash"> rice husk ash</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=ternary%20mortar" title=" ternary mortar"> ternary mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=curing%20days" title=" curing days"> curing days</a> </p> <a href="https://publications.waset.org/abstracts/28975/effect-of-rice-husk-ash-and-metakaolin-on-the-compressive-strengths-of-ternary-cement-mortars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">988</span> Percentages of Alumina Phase and Different Ph on The Ha- Al2o3 Nano Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Tayyebi">S. Tayyebi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Mirjalili"> F. Mirjalili</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Samadi"> H. Samadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nemati"> A. Nemati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, hydroxyapatite-Alumina nano composite powder, containing 15,20 and 25% weight percent of reinforced alumina were prepared by chemical precipitation from the reaction between calcium nitrate tetrahydrate and di-ammonium hydrogen phosphate with ratio of Ca / p = 1.67 and different percentage of aluminum nitrate nona hydrate in different pH of 9,10 and 11. The microstructure and thermal stability of samples were measured by X-ray diffraction (XRD), infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). The results showed that the presence of reinforced alumina phase reduced the degree of crystallinity of hydroxyapatite phase and increased its decomposition to tricalcium phosphate phase. Microstructural analysis showed that the hydroxyapatite-alumina nano composite powder was obtained with spherical shape and size of less than 100 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomaterial" title="biomaterial">biomaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=alumina" title=" alumina"> alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20composite" title=" nano composite"> nano composite</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation%20method" title=" precipitation method"> precipitation method</a> </p> <a href="https://publications.waset.org/abstracts/31034/percentages-of-alumina-phase-and-different-ph-on-the-ha-al2o3-nano-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">987</span> Properties of Hot-Pressed Alumina-Graphene Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Rutkowski">P. Rutkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20G%C3%B3rny"> G. Górny</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Stobierski"> L. Stobierski</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Zientara"> D. Zientara</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Piekarczyk"> W. Piekarczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Tran"> K. Tran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The polycrystalline dense alumina shows thermal conductivity about 30 W/mK and very high electrical resistivity. These last two properties can be modified by introducing commercial relatively cheap graphene nanoparticles which, as two-dimensional flakes show very high thermal and electrical properties. The aim of this work is to show that it is possible to manufacture the anisotropic alumina-graphene material with directed multilayer graphene particles. Such materials can show the anisotropic properties mentioned before. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina" title="alumina">alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=hot-pressed" title=" hot-pressed"> hot-pressed</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a> </p> <a href="https://publications.waset.org/abstracts/40596/properties-of-hot-pressed-alumina-graphene-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">986</span> A Study of the Alumina Distribution in the Lab-Scale Cell during Aluminum Electrolysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olga%20Tkacheva">Olga Tkacheva</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Arkhipov"> Pavel Arkhipov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexey%20Rudenko"> Alexey Rudenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Yurii%20Zaikov"> Yurii Zaikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aluminum electrolysis process in the conventional cryolite-alumina electrolyte with cryolite ratio of 2.7 was carried out at an initial temperature of 970 °C and the anode current density of 0.5 A/cm<sup>2</sup> in a 15A lab-scale cell in order to study the formation of the side ledge during electrolysis and the alumina distribution between electrolyte and side ledge. The alumina contained 35.97% α-phase and 64.03% γ-phase with the particles size in the range of 10-120 μm. The cryolite ratio and the alumina concentration were determined in molten electrolyte during electrolysis and in frozen bath after electrolysis. The side ledge in the electrolysis cell was formed only by the 13<sup>th</sup> hour of electrolysis. With a slight temperature decrease a significant increase in the side ledge thickness was observed. The basic components of the side ledge obtained by the XRD phase analysis were Na<sub>3</sub>AlF<sub>6</sub>, Na<sub>5</sub>Al<sub>3</sub>F<sub>14</sub>, Al<sub>2</sub>O<sub>3</sub>, and NaF<sup>.</sup>5CaF<sub>2</sub><sup>.</sup>AlF<sub>3</sub>. As in the industrial cell, the increased alumina concentration in the side ledge formed on the cell walls and at the ledge-electrolyte-aluminum three-phase boundary during aluminum electrolysis in the lab cell was found (FTP No 05.604.21.0239, IN RFMEFI60419X0239). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina%20distribution" title="alumina distribution">alumina distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20electrolyzer" title=" aluminum electrolyzer"> aluminum electrolyzer</a>, <a href="https://publications.waset.org/abstracts/search?q=cryolie-alumina%20electrolyte" title=" cryolie-alumina electrolyte"> cryolie-alumina electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20ledge" title=" side ledge"> side ledge</a> </p> <a href="https://publications.waset.org/abstracts/118301/a-study-of-the-alumina-distribution-in-the-lab-scale-cell-during-aluminum-electrolysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">985</span> Investigating the Effect of Using Amorphous Silica Ash Obtained from Rice Husk as a Partial Replacement of Ordinary Portland Cement on the Mechanical and Microstructure Properties of Cement Paste and Mortar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliyu%20Usman">Aliyu Usman</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhaammed%20Bello%20Ibrahim"> Muhaammed Bello Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20D.%20Amartey"> Yusuf D. Amartey</a>, <a href="https://publications.waset.org/abstracts/search?q=Jibrin%20M.%20Kaura"> Jibrin M. Kaura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research is aimed at investigating the effect of using amorphous silica ash (ASA) obtained from rice husk as a partial replacement of ordinary Portland cement (OPC) on the mechanical and microstructure properties of cement paste and mortar. ASA was used in partial replacement of ordinary Portland cement in the following percentages 3 percent, 5 percent, 8 percent and 10 percent. These partial replacements were used to produce Cement-ASA paste and Cement-ASA mortar. ASA was found to contain all the major chemical compounds found in cement with the exception of alumina, which are SiO2 (91.5%), CaO (2.84%), Fe2O3 (1.96%), and loss on ignition (LOI) was found to be 9.18%. It also contains other minor oxides found in cement. Consistency of Cement-ASA paste was found to increase with increase in ASA replacement. Likewise, the setting time and soundness of the Cement-ASA paste also increases with increase in ASA replacements. The test on hardened mortar were destructive in nature which include flexural strength test on prismatic beam (40mm x 40mm x 160mm) at 2, 7, 14 and 28 days curing and compressive strength test on the cube size (40mm x 40mm, by using the auxiliary steel platens) at 2,7,14 and 28 days curing. The Cement-ASA mortar flexural and compressive strengths were found to be increasing with curing time and decreases with cement replacement by ASA. It was observed that 5 percent replacement of cement with ASA attained the highest strength for all the curing ages and all the percentage replacements attained the targeted compressive strength of 6N/mm2 for 28 days. There is an increase in the drying shrinkage of Cement-ASA mortar with curing time, it was also observed that the drying shrinkages for all the curing ages were greater than the control specimen all of which were greater than the code recommendation of less than 0.03%. The scanning electron microscope (SEM) was used to study the Cement-ASA mortar microstructure and to also look for hydration product and morphology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amorphous%20silica%20ash" title="amorphous silica ash">amorphous silica ash</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20mortar" title=" cement mortar"> cement mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20paste" title=" cement paste"> cement paste</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope"> scanning electron microscope</a> </p> <a href="https://publications.waset.org/abstracts/79373/investigating-the-effect-of-using-amorphous-silica-ash-obtained-from-rice-husk-as-a-partial-replacement-of-ordinary-portland-cement-on-the-mechanical-and-microstructure-properties-of-cement-paste-and-mortar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">984</span> Nanowire by Ac Electrodeposition Into Nanoporous Alumina Fabrication of High Aspect Ratio Metalic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Beyzaiea">M. Beyzaiea</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mohammadia"> S. Mohammadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High aspect ratio metallic (silver, cobalt) nanowire arrays were fabricated using ac electrodeposition techniques into the nanoporous alumina template. The template with long pore dept fabricated by hard anodization (HA) and thinned for ac electrodeposition. Template preparation was done in short time by using HA technique and high speed thing process. The TEM and XRD investigation confirm the three dimensional nucleation growth mechanism of metallic nanowire inside the nanoporous alumina that fabricated by HA process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metallic" title="metallic">metallic</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowire" title=" nanowire"> nanowire</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoporous%20alumina" title=" nanoporous alumina"> nanoporous alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=ac%20electrodeposition" title=" ac electrodeposition"> ac electrodeposition</a> </p> <a href="https://publications.waset.org/abstracts/43733/nanowire-by-ac-electrodeposition-into-nanoporous-alumina-fabrication-of-high-aspect-ratio-metalic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">983</span> Fire Resistance of High Alumina Cement and Slag Based Ultra High Performance Fibre-Reinforced Cementitious Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Q.%20Sobia">A. Q. Sobia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Hamidah"> M. S. Hamidah</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Azmi"> I. Azmi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20F.%20A.%20Rafeeqi"> S. F. A. Rafeeqi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fibre-reinforced polymer (FRP) strengthened reinforced concrete (RC) structures are susceptible to intense deterioration when exposed to elevated temperatures, particularly in the incident of fire. FRP has the tendency to lose bond with the substrate due to the low glass transition temperature of epoxy; the key component of FRP matrix. In the past few decades, various types of high performance cementitious composites (HPCC) were explored for the protection of RC structural members against elevated temperature. However, there is an inadequate information on the influence of elevated temperature on the ultra high performance fibre-reinforced cementitious composites (UHPFRCC) containing ground granulated blast furnace slag (GGBS) as a replacement of high alumina cement (HAC) in conjunction with hybrid fibres (basalt and polypropylene fibres), which could be a prospective fire resisting material for the structural components. The influence of elevated temperatures on the compressive as well as flexural strength of UHPFRCC, made of HAC-GGBS and hybrid fibres, were examined in this study. Besides control sample (without fibres), three other samples, containing 0.5%, 1% and 1.5% of basalt fibres by total weight of mix and 1 kg/m<sup>3</sup> of polypropylene fibres, were prepared and tested. Another mix was also prepared with only 1 kg/m<sup>3</sup> of polypropylene fibres. Each of the samples were retained at ambient temperature as well as exposed to 400, 700 and 1000 °C followed by testing after 28 and 56 days of conventional curing. Investigation of results disclosed that the use of hybrid fibres significantly helped to improve the ambient temperature compressive and flexural strength of UHPFRCC, which was found to be 80 and 14.3 MPa respectively. However, the optimum residual compressive strength was marked by UHPFRCC-CP (with polypropylene fibres only), equally after both curing days (28 and 56 days), i.e. 41%. In addition, the utmost residual flexural strength, after 28 and 56 days of curing, was marked by UHPFRCC– CP and UHPFRCC– CB2 (1 kg/m<sup>3</sup> of PP fibres + 1% of basalt fibres) i.e. 39% and 48.5% respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fibre%20reinforced%20polymer%20materials%20%28FRP%29" title="fibre reinforced polymer materials (FRP)">fibre reinforced polymer materials (FRP)</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20granulated%20blast%20furnace%20slag%20%28GGBS%29" title=" ground granulated blast furnace slag (GGBS)"> ground granulated blast furnace slag (GGBS)</a>, <a href="https://publications.waset.org/abstracts/search?q=high-alumina%20cement" title=" high-alumina cement"> high-alumina cement</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid" title=" hybrid"> hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=fibres" title=" fibres"> fibres</a> </p> <a href="https://publications.waset.org/abstracts/32969/fire-resistance-of-high-alumina-cement-and-slag-based-ultra-high-performance-fibre-reinforced-cementitious-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">982</span> Comparison of Catalyst Support for High Pressure Reductive Amination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tz-Bang%20Du">Tz-Bang Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Han%20Hsieh"> Cheng-Han Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Ping%20Ju"> Li-Ping Ju</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Jie%20Liou"> Hung-Jie Liou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyether amines synthesize by secondary hydroxyl polyether diol play an important role in epoxy hardener. The low molecular weight product is used in low viscosity and high transparent polyamine product for the logo, ground cover, especially for wind turbine blade, while the high molecular weight products are used in advanced agricultures such as a high-speed railway. High-pressure reductive amination process is required for producing these amines. In the condition of higher than 150 atm pressure and 200 degrees Celsius temperature, supercritical ammonia is used as a reactant and also a solvent. It would be a great challenge to select a catalyst support for such high-temperature alkaline circumstance. In this study, we have established a six-autoclave-type (SAT) high-pressure reactor for amination catalyst screening, which six experiment conditions with different temperature and pressure could be examined at the same time. We synthesized copper-nickel catalyst on different shaped alumina catalyst support and evaluated the catalyst activity for high-pressure reductive amination of polypropylene glycol (PPG) by SAT reactor. Ball type gamma alumina, ball type activated alumina and pellet type gamma alumina catalyst supports are evaluated in this study. Gamma alumina supports have shown better activity on PPG reductive amination than activated alumina support. In addition, the catalysts are evaluated in fixed bed reactor. The diamine product was successfully synthesized via this catalyst and the strength of the catalysts is measured. The crush strength of blank supports is about 13.5 lb for both gamma alumina and activated alumina. The strength increases to 20.3 lb after synthesized to be copper-nickel catalyst. After test in the fixed bed high-pressure reductive amination process for 100 hours, the crush strength of the used catalyst is 3.7 lb for activated alumina support, 12.0 lb for gamma alumina support. The gamma alumina is better than activated alumina to use as catalyst support in high-pressure reductive amination process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20pressure%20reductive%20amination" title="high pressure reductive amination">high pressure reductive amination</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20nickel%20catalyst" title=" copper nickel catalyst"> copper nickel catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=polyether%20amine" title=" polyether amine"> polyether amine</a>, <a href="https://publications.waset.org/abstracts/search?q=alumina" title=" alumina"> alumina</a> </p> <a href="https://publications.waset.org/abstracts/47166/comparison-of-catalyst-support-for-high-pressure-reductive-amination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">981</span> The Effect of Volume Fraction of Nano-Alumina Strengthening on AC4B Composite Characteristics through the Stir Casting Method as a Material Brake Shoe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benny%20Alexander">Benny Alexander</a>, <a href="https://publications.waset.org/abstracts/search?q=Ikhlashia%20N.%20Fadhilah"> Ikhlashia N. Fadhilah</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20R.%20Pasha"> Muhammad R. Pasha</a>, <a href="https://publications.waset.org/abstracts/search?q=Michelle%20Julia"> Michelle Julia</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne%20Z.%20Syahrial"> Anne Z. Syahrial</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brake shoe is a component that serves to reduce speed or stop the train's speed by utilizing the friction force. Generally, the material used as a brake shoe is cast iron, where cast iron itself is a heavy, expensive, and easily worn material. Aluminum matrix composites are one of candidates for the cast iron replacement material as the basic material for brake shoe. The matrix in the composite used is Aluminum AC4B. Reinforcement used in aluminum matrix composites is nano-alumina, where the use of nano-alumina of 0.25%, 0.3%, 0.35%, 0.4%, and 0.5% volume fraction will be tested. The sample is made using the stir casting method; then, it will be tested mechanically. The use of nano-alumina as a reinforcement will increase the strength of the matrix. SEM (scanning electron microscopy) testing is used to test the distribution of reinforcing particles due to stirring. Therefore, the addition of nano-alumina will improve AC4B aluminum matrix composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20matrix%20composites" title="aluminium matrix composites">aluminium matrix composites</a>, <a href="https://publications.waset.org/abstracts/search?q=brake%20shoe%20application" title=" brake shoe application"> brake shoe application</a>, <a href="https://publications.waset.org/abstracts/search?q=stir%20casting" title=" stir casting"> stir casting</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-alumina" title=" nano-alumina"> nano-alumina</a> </p> <a href="https://publications.waset.org/abstracts/125019/the-effect-of-volume-fraction-of-nano-alumina-strengthening-on-ac4b-composite-characteristics-through-the-stir-casting-method-as-a-material-brake-shoe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">980</span> Alumina Nanoparticles in One-Pot Synthesis of Pyrazolopyranopyrimidinones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Khodabakhshi">Saeed Khodabakhshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alimorad%20Rashidi"> Alimorad Rashidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziba%20Tavakoli"> Ziba Tavakoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajad%20Kiani"> Sajad Kiani</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadegh%20Dastkhoon"> Sadegh Dastkhoon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alumina nanoparticles (γ-Al2O3 NPs) were prepared via a new and simple synthetic route and characterized by field emission scanning electron microscope, X-ray diffraction, and Fourier transform infrared spectroscopy. The catalytic activity of prepared γ-Al2O3 NPs was investigated for the one-pot, four-component synthesis of fused tri-heterocyclic compounds containing pyrazole, pyran, and pyrimidine. This procedure has some advantages such as high efficiency, simplicity, high rate and environmental safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina%20nanoparticles" title="alumina nanoparticles">alumina nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=one-pot" title=" one-pot"> one-pot</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20tri-heterocyclic%20compounds" title=" fused tri-heterocyclic compounds"> fused tri-heterocyclic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=pyran" title=" pyran"> pyran</a> </p> <a href="https://publications.waset.org/abstracts/44094/alumina-nanoparticles-in-one-pot-synthesis-of-pyrazolopyranopyrimidinones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">979</span> Effect of Nano-CaCO₃ Addition on the Nano-Mechanical Properties of Cement Paste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muzeyyen%20Balcikanli">Muzeyyen Balcikanli</a>, <a href="https://publications.waset.org/abstracts/search?q=Selma%20Ozaslan"> Selma Ozaslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Osman%20Sahin"> Osman Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Burak%20Uzal"> Burak Uzal</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdogan%20Ozbay"> Erdogan Ozbay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of nano-CaCO3 replacement with cement on the nano-mechanical properties of cement paste was investigated. Hydrophobic and hydrophilic characteristics Two types of nano CaCO3 were replaced with Portland cement at 0, 0.5 and 1%. Water to (cement+nano-CaCO3) ratio was kept constant at 0.5 for all mixtures. 36 indentations were applied on each cement paste, and the values of nano-hardness and elastic modulus of cement pastes were determined from the indentation depth-load graphs. Then, by getting the average of them, nano-hardness and elastic modulus were identified for each mixture. Test results illustrate that replacement of hydrophilic n-CaCO3 with cement lead to a significant increase in nano-mechanical properties, however, replacement of hydrophobic n-CaCO3 with cement worsened the nano-mechanical properties considerably. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoindenter" title="nanoindenter">nanoindenter</a>, <a href="https://publications.waset.org/abstracts/search?q=CaCO3" title=" CaCO3"> CaCO3</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-hardness" title=" nano-hardness"> nano-hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-mechanical%20properties" title=" nano-mechanical properties"> nano-mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/54618/effect-of-nano-caco3-addition-on-the-nano-mechanical-properties-of-cement-paste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">978</span> Synthesis of Ni/Mesopore Silica-Alumina Catalyst for Hydrocracking of Pyrolyzed α-Cellulose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wega%20Trisunaryanti">Wega Trisunaryanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hesty%20Kusumastuti"> Hesty Kusumastuti</a>, <a href="https://publications.waset.org/abstracts/search?q=Iip%20Izul%20Falah"> Iip Izul Falah</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Fajar%20Marsuki"> Muhammad Fajar Marsuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahmad%20Nuryanto"> Rahmad Nuryanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthesis of Ni supported on mesopore silica-alumina (MSA) for hydrocracking of pyrolyzed α-cellulose had been carried out. The silica and alumina were extracted from Sidoarjo mud. Gelatin from catfish bone was used as a template for the mesopore design. The MSA was synthesized by using hydrothermal method at 100 °C for 24 h and calcined at 550 °C for 4 h then characterized by using X-Ray Diffraction Spectrometer (XRD) and Nitrogen Gas Sorption Analyzer (GAS). The Ni metal was loaded to the MSA by wet impregnation method. The catalytic activity in the hydrocracking reaction of pyrolyzed α-cellulose was carried out at 450 °C for 2 h. The MSA synthesized in this work is an amorphous material with specific surface area, total pore volume, and average pore diameter of 212.29 m²/g, 1.29 cm³/g, and 20.05 nm, respectively. The Ni/MSA catalyst produced 73.02 wt.% of liquid product in hydrocracking of pyrolyzed α-cellulose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalyst" title="catalyst">catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=gelatin" title=" gelatin"> gelatin</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocracking" title=" hydrocracking"> hydrocracking</a>, <a href="https://publications.waset.org/abstracts/search?q=mesopore%20silica-alumina" title=" mesopore silica-alumina"> mesopore silica-alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-cellulose" title=" α-cellulose"> α-cellulose</a> </p> <a href="https://publications.waset.org/abstracts/84532/synthesis-of-nimesopore-silica-alumina-catalyst-for-hydrocracking-of-pyrolyzed-a-cellulose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">977</span> The Effect of Soil Fractal Dimension on the Performance of Cement Stabilized Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nkiru%20I.%20Ibeakuzie">Nkiru I. Ibeakuzie</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20D.%20J.%20Watson"> Paul D. J. Watson</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20F.%20Pescatore"> John F. Pescatore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In roadway construction, the cost of soil-cement stabilization per unit area is significantly influenced by the binder content, hence the need to optimise cement usage. This research work will characterize the influence of soil fractal geometry on properties of cement-stabilized soil, and strive to determine a correlation between mechanical proprieties of cement-stabilized soil and the mass fractal dimension Dₘ indicated by particle size distribution (PSD) of aggregate mixtures. Since strength development in cemented soil relies not only on cement content but also on soil PSD, this study will investigate the possibility of reducing cement content by changing the PSD of soil, without compromising on strength, reduced permeability, and compressibility. A series of soil aggregate mixes will be prepared in the laboratory. The mass fractal dimension Dₘ of each mix will be determined from sieve analysis data prior to stabilization with cement. Stabilized soil samples will be tested for strength, permeability, and compressibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractal%20dimension" title="fractal dimension">fractal dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20distribution" title=" particle size distribution"> particle size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20stabilization" title=" cement stabilization"> cement stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20content" title=" cement content"> cement content</a> </p> <a href="https://publications.waset.org/abstracts/101303/the-effect-of-soil-fractal-dimension-on-the-performance-of-cement-stabilized-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">976</span> The Effects of Different Types of Cement on the Permeability of Deep Mixing Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojebullah%20Wahidy">Mojebullah Wahidy</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Olgun"> Murat Olgun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, four different types of cement are used to investigate the permeability of DMC (Deep Mixing Column) in the clay. The clay used in this research is in the kaolin group, and the types of cement are; CEM I 42.5.R. normal portland cement, CEM II/A-M (P-L) pozzolan doped cement, CEM III/A 42.5 N blast furnace slag cement and DMFC-800 fine-grained portland cement. Firstly, some rheological tests are done on every cement, and a 0.9 water/cement ratio is selected as the appropriate ratio. This ratio is used to prepare the small-scale DMCs for all types of cement with %6, %9, %12, and %15, which are determined as the dry weight of the clay. For all the types of cement, three samples were prepared in every percentage and were kept on curing for 7, 14, and 28 days for permeability tests. As a result of the small-scale DMCs, permeability tests, a %12 selected for big-scale DMCs. A total of five big scales DMC were prepared by using a %12-cement and were kept for 28 days curing for permeability tests. The results of the permeability tests show that by increasing the cement percentage and curing time of all DMCs, the permeability coefficient (k) is decreased. Despite variable results in different cement ratios and curing time in general, samples treated by DMFC-800 fine-grained cement have the lowest permeability coefficient. Samples treated with CEM II and CEM I cement types were the second and third lowest permeable samples. The highest permeability coefficient belongs to the samples that were treated with CEM III cement type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20mixing%20column" title="deep mixing column">deep mixing column</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20test" title=" rheological test"> rheological test</a>, <a href="https://publications.waset.org/abstracts/search?q=DMFC-800" title=" DMFC-800"> DMFC-800</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability%20test" title=" permeability test"> permeability test</a> </p> <a href="https://publications.waset.org/abstracts/162073/the-effects-of-different-types-of-cement-on-the-permeability-of-deep-mixing-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">975</span> Evaluating Cement Brands in Southwestern Nigeria for Local Construction Industries </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olonade">Olonade</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A."> K. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaji"> Jaji</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20B."> M. B.</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasak"> Rasak</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A."> S. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ojo"> Ojo</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20A."> B. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Adefuye"> Adefuye</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20E."> O. E.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different brands of cement are used in Nigeria by local contractors for various works without prior knowledge of their performance. Qualities of common cement brands in Southwestern Nigeria were investigated. Elephant, Dangote, Gateway, Purechem, Burham and Five Star cements were selected for the study. Fineness, setting times, chemical composition, compressive and flexural strengths of each of the cement brands were determined. The results showed that all the cement brands contained major oxides in amount within the acceptable values except that the sulphite content of Gateway fell outside the range. Strength comparison indicated that Burham had highest flexural and compressive strength, followed by Elephant and then Dangote while Gateway had the lowest strength at 28 days. It was observed that Dangote cement set earlier than other cement brands. The study has shown that there were differences in performance of the selected cement brands and concluded that the choice of cement brand should be based on the expected performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20brand" title="cement brand">cement brand</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20construction%20industries" title=" local construction industries"> local construction industries</a> </p> <a href="https://publications.waset.org/abstracts/23096/evaluating-cement-brands-in-southwestern-nigeria-for-local-construction-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">974</span> The Effect of the Incorporation of Glass Powder into Cement Sorel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rim%20Zgueb">Rim Zgueb</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Yacoubi"> Noureddine Yacoubi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work concerns thermo-mechanical properties of cement Sorel mixed with different proportions of glass powder. Five specimens were developed. Four different glass powder mixtures were developed 5%, 10%, 15% and 20% with one control sample without glass powder. The research presented in this study focused on evaluating the effects of replacing portion of glass powder with various percentages of cement Sorel. The influence of the glass powder on the thermal conductivity, thermal diffusivity, bulk density and compressive strength of the cement Sorel at 28 days of curing were determined. The thermal property of cement was measured by using Photothermal deflection technique PTD. The results revealed that the glass powder additive affected greatly on the thermal properties of the cement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20sorel" title="cement sorel">cement sorel</a>, <a href="https://publications.waset.org/abstracts/search?q=photothermal%20deflection%20technique" title=" photothermal deflection technique"> photothermal deflection technique</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20diffusivity" title=" thermal diffusivity"> thermal diffusivity</a> </p> <a href="https://publications.waset.org/abstracts/59649/the-effect-of-the-incorporation-of-glass-powder-into-cement-sorel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">973</span> Investigations on Utilization of Chrome Sludge, Chemical Industry Waste, in Cement Manufacturing and Its Effect on Clinker Mineralogy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Vanguri">Suresh Vanguri</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Palla"> Suresh Palla</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasad%20G."> Prasad G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramaswamy%20V."> Ramaswamy V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalyani%20K.%20V."> Kalyani K. V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaturvedi%20S.%20K."> Chaturvedi S. K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohapatra%20B.%20N."> Mohapatra B. N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunder%20Rao%20TBVN"> Sunder Rao TBVN</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The utilization of industrial waste materials and by-products in the cement industry helps in the conservation of natural resources besides avoiding the problems arising due to waste dumping. The use of non-carbonated materials as raw mix components in clinker manufacturing is identified as one of the key areas to reduce Green House Gas (GHG) emissions. Chrome sludge is a waste material generated from the manufacturing process of sodium dichromate. This paper aims to present studies on the use of chrome sludge in clinker manufacturing, its impact on the development of clinker mineral phases and on the cement properties. Chrome sludge was found to contain substantial amounts of CaO, Fe2O3 and Al2O3 and therefore was used to replace some conventional sources of alumina and iron in the raw mix. Different mixes were prepared by varying the chrome sludge content from 0 to 5 % and the mixes were evaluated for burnability. Laboratory prepared clinker samples were evaluated for qualitative and quantitative mineralogy using X-ray Diffraction Studies (XRD). Optical microscopy was employed to study the distribution of clinker phases, their granulometry and mineralogy. Since chrome sludge also contains considerable amounts of chromium, studies were conducted on the leachability of heavy elements in the chrome sludge as well as in the resultant cement samples. Estimation of heavy elements, including chromium was carried out using ICP-OES. Further, the state of chromium valence, Cr (III) & Cr (VI), was studied using conventional chemical analysis methods coupled with UV-VIS spectroscopy. Assimilation of chromium in the clinker phases was investigated using SEM-EDXA studies. Bulk cement was prepared from the clinker to study the effect of chromium sludge on the cement properties such as setting time, soundness, strength development against the control cement. Studies indicated that chrome sludge can be successfully utilized and its content needs to be optimized based on raw material characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chrome%20sludge" title="chrome sludge">chrome sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralogy" title=" mineralogy"> mineralogy</a>, <a href="https://publications.waset.org/abstracts/search?q=non-carbonate%20materials" title=" non-carbonate materials"> non-carbonate materials</a> </p> <a href="https://publications.waset.org/abstracts/135451/investigations-on-utilization-of-chrome-sludge-chemical-industry-waste-in-cement-manufacturing-and-its-effect-on-clinker-mineralogy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">972</span> Oil Palm Shell Ash: Cement Mortar Mixture and Modification of Mechanical Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdoullah%20Namdar">Abdoullah Namdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadzil%20Mat%20Yahaya"> Fadzil Mat Yahaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The waste agriculture materials cause environment pollution, recycle of these materials help sustainable development. This study focused on the impact of used oil palm shell ash on the compressive and flexural strengths of cement mortar. Two different cement mortar mixes have been designed to investigate the impact of oil palm shell ash on strengths of cement mortar. Quantity of 4% oil palm shell ash has been replaced in cement mortar. The main objective of this paper is, to modify mechanical properties of cement mortar by replacement of oil palm ash in it at early age of seven days. The results have been revealed optimum quantity of oil palm ash for replacement in cement mortar. The deflection, load to failure, time to failure of compressive strength and flexural strength of all specimens have significantly been improved. The stress-strain behavior has been indicated ability of modified cement mortar in control stress path and strain. The micro property of cement paste has not been investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=minerals" title="minerals">minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=additive" title=" additive"> additive</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a> </p> <a href="https://publications.waset.org/abstracts/3727/oil-palm-shell-ash-cement-mortar-mixture-and-modification-of-mechanical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">971</span> Preparation of Alumina (Al2O3) Particles and MMCS of (Al-7% Si– 0.45% Mg) Alloy Using Vortex Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulmagid%20A.%20Khattabi">Abdulmagid A. Khattabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to study the manner of alumina (Al2O3) particles dispersion with (2-10) mm size in (Al-7%Si-0.45% Mg) base of alloy melt employing of classical casting method. The mechanism of particles diffusions by melt turning and stirring that makes vortexes help the particles entrance in the matrix of base alloy also has been studied. The samples of metallic composites (MMCs) with dispersed particles percentages (4% - 6% - 8% - 10% - 15% and 20%) are prepared. The effect of the particles dispersion on the mechanical properties of produced samples were carried out by tension & hardness tests. It is found that the ultimate tensile strength of the produced composites can be increased by increasing the percentages of alumina particles in the matrix of the base alloy. It becomes (232 Mpa) at (20%) of added particles. The results showed that the average hardness of prepared samples increasing with increases the alumina content. Microstructure study of prepared samples was carried out. The results showed particles location and distribution of it in the matrix of base alloy. The dissolution of Alumina particles into liquid base alloy was clear in some cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=base%20alloy" title="base alloy">base alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix" title=" matrix"> matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20properties" title=" thermal properties"> thermal properties</a>, <a href="https://publications.waset.org/abstracts/search?q=base%20metal%20MMCs" title=" base metal MMCs "> base metal MMCs </a> </p> <a href="https://publications.waset.org/abstracts/11123/preparation-of-alumina-al2o3-particles-and-mmcs-of-al-7-si-045-mg-alloy-using-vortex-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">970</span> Examining the Impact of Degrees of Slag Replacement on the Carbonation Process of Slag-Blended Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geta%20Bekalu%20Belayneh">Geta Bekalu Belayneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Solmoi%20Park"> Solmoi Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the role of slag in the process of hydration and carbonation of carbonation-cured slag cement. Carbonation-cured slag-blended cement paste samples were prepared with varying slag percentages of 0%, 10%, 30%, and 50%. The curing process lasted for a maximum of 28 days. The findings demonstrated that the carbonation depth increased as the curing period was extended, and a larger slag percentage promoted a more extensive penetration of carbonation. The degree of belite reaction was greatly enhanced in the slag-blended cement, resulting in an increased ability to bind CO₂ in the blended cement. These findings enhance comprehension of the behaviour of blended cement produced through carbonation-curing, facilitating the advancement of more environmentally friendly and long-lasting concrete constructions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbonation%20curing" title="carbonation curing">carbonation curing</a>, <a href="https://publications.waset.org/abstracts/search?q=blast%20furnace%20slag" title=" blast furnace slag"> blast furnace slag</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=Portland%20cement" title=" Portland cement"> Portland cement</a> </p> <a href="https://publications.waset.org/abstracts/179365/examining-the-impact-of-degrees-of-slag-replacement-on-the-carbonation-process-of-slag-blended-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">969</span> The Increasing of Unconfined Compression Strength of Clay Soils Stabilized with Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%CC%87%20Si%CC%87nan%20So%C4%9Fanci">Ali̇ Si̇nan Soğanci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cement stabilization is one of the ground improvement method applied worldwide to increase the strength of clayey soils. The using of cement has got lots of advantages compared to other stabilization methods. Cement stabilization can be done quickly, the cost is low and creates a more durable structure with the soil. Cement can be used in the treatment of a wide variety of soils. The best results of the cement stabilization were seen on silts as well as coarse-grained soils. In this study, blocks of clay were taken from the Apa-Hotamış conveyance channel route which is 125km long will be built in Konya that take the water with 70m3/sec from Mavi tunnel to Hotamış storage. Firstly, the index properties of clay samples were determined according to the Unified Soil Classification System. The experimental program was carried out on compacted soil specimens with 0%, 7 %, 15% and 30 % cement additives and the results of unconfined compression strength were discussed. The results of unconfined compression tests indicated an increase in strength with increasing cement content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20stabilization" title="cement stabilization">cement stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compression%20test" title=" unconfined compression test"> unconfined compression test</a>, <a href="https://publications.waset.org/abstracts/search?q=clayey%20soils" title=" clayey soils"> clayey soils</a>, <a href="https://publications.waset.org/abstracts/search?q=unified%20soil%20classification%20system." title=" unified soil classification system."> unified soil classification system.</a> </p> <a href="https://publications.waset.org/abstracts/35636/the-increasing-of-unconfined-compression-strength-of-clay-soils-stabilized-with-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">968</span> Effect of Nano-Alumina on the Mechanical Properties of Cold Recycled Asphalt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahab%20Hasani%20Nasab">Shahab Hasani Nasab</a>, <a href="https://publications.waset.org/abstracts/search?q=Aran%20Aeini"> Aran Aeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Navid%20Kermanshahi"> Navid Kermanshahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to reduce road building costs and reduce environmental damage, recycled materials can be used instead of mineral materials in the production of asphalt mixtures. Today, in most parts of the world, cold recycled asphalt with bitumen emulsion, has acceptable results. However, Cold Recycled Asphalt have some deficiency such as stripping, thermal cracking, and rutting. This requires the addition of additives to reduce this deficiency of recycled pavement with emulsified asphalt. In this research, nano-alumina and emulsified asphalt were used to modify the properties of recycled asphalt mixtures according to the technical specifications and the operation of cold recycling. Marshall test methods, dynamic creep test, and resiliency modulus test has been used to obtain the nano-alumina’s effects on asphalt mixture properties. The results show that the addition of nano-alumina would reduce the Marshall stability in samples but increases the rutting resistance. The resiliency modulus increases significantly with this additive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20asphalt" title="cold asphalt">cold asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20recycling" title=" cold recycling"> cold recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-alumina" title=" nano-alumina"> nano-alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20creep" title=" dynamic creep"> dynamic creep</a>, <a href="https://publications.waset.org/abstracts/search?q=bitumen%20emulsion" title=" bitumen emulsion"> bitumen emulsion</a> </p> <a href="https://publications.waset.org/abstracts/98810/effect-of-nano-alumina-on-the-mechanical-properties-of-cold-recycled-asphalt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">967</span> Influence of Drying Method in Parts of Alumina Obtained for Rapid Prototyping and Uniaxial Dry Pressing </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20O.%20Muniz">N. O. Muniz</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Vechietti"> F. A. Vechietti</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Treccani"> L. Treccani</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Rezwan"> K. Rezwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Alberto%20dos%20Santos"> Luis Alberto dos Santos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Developing new technologies in the manufacture of biomaterials is a major challenge for researchers in the tissue engineering area. Many in vitro and in vivo studies have revealed the significance of the porous structure of the biomaterials on the promotion of bone ingrowth. The use of Rapid Prototyping in the manufacture of ceramics in the biomedical area has increased in recent years and few studies are conducted on obtaining alumina pieces. The aim of this work was the study of alumina pieces obtained by 3D printing and uniaxial dry pressing (DP) in order to evaluate porosity achieved by this two different techniques. Also, the influence of the powder drying process was determined. The row alumina powders were drying by freeze drying and oven. Apparent porosity, apparent density, retraction after thermal treatment were evaluated. The porosity values obtained by DP, regardless of method of drying powders, were much lower than those obtained by RP as expected. And for the prototyped samples, the method of powder drying significantly influenced porosities, reached 48% for drying oven versus 65% for freeze-drying. Therefore, the method of 3D printing, using different powder drying, allows a better control over the porosity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rapid%20prototyping" title="rapid prototyping">rapid prototyping</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze-drying" title=" freeze-drying"> freeze-drying</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity" title=" porosity"> porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=alumina" title=" alumina"> alumina</a> </p> <a href="https://publications.waset.org/abstracts/17560/influence-of-drying-method-in-parts-of-alumina-obtained-for-rapid-prototyping-and-uniaxial-dry-pressing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">966</span> Viability of Eggshells Ash Affecting the Setting Time of Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fazeera%20Ujin">Fazeera Ujin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Shavarebi%20Ali"> Kamran Shavarebi Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Zarina%20Yasmin%20Hanur%20Harith"> Zarina Yasmin Hanur Harith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research paper reports on the feasibility and viability of eggshells ash and its effects on the water content and setting time of cement. An experiment was carried out to determine the quantity of water required in order to follow standard cement paste of normal consistency in accordance with MS EN 196-3:2007. The eggshells ash passing the 90µm sieve was used in the investigation. Eggshells ash with percentage of 0%, 0.1%, 0.5%, 1.0%, 1.5% and 2.0% were constituted to replace the cement. Chemical properties of both eggshells ash and cement are compared. From the results obtained, both eggshells ash and cement have the same chemical composition and primary composition which is the calcium compounds. Results from the setting time show that by adding the eggshells ash to the cement, the setting time of the cement decreases. In short, the higher amount of eggshells ash, the faster the rate of setting and apply to all percentage of eggshells ash that were used in this investigation. Both initial and final setting times fulfill the setting time requirements by Malaysian Standard. Hence, it is suggested that eggshells ash can be used as an admixture in concrete mix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20materials" title="construction materials">construction materials</a>, <a href="https://publications.waset.org/abstracts/search?q=eggshells%20ash" title=" eggshells ash"> eggshells ash</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste" title=" solid waste"> solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=setting%20time" title=" setting time"> setting time</a> </p> <a href="https://publications.waset.org/abstracts/43490/viability-of-eggshells-ash-affecting-the-setting-time-of-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">965</span> The Mechanical Behavior of a Chemically Stabilized Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I%20Lamri">I Lamri</a>, <a href="https://publications.waset.org/abstracts/search?q=L%20Arabet"> L Arabet</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hidjeb"> M. Hidjeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The direct shear test was used to determine the shear strength parameters C and Ø of a series of samples with different cement content. Samples stabilized with a certain percentage of cement showed a substantial gain in compressive strength and a significant increase in shear strength parameters. C and Ø. The laboratory equipment used in UCS tests consisted of a conventional 102mm diameter sample triaxial loading machine. Beyond 4% cement content a very important increase in shear strength was observed. It can be deduced from a comparative study of shear strength of soil samples with 4%, 7%, and 10% cement with sample containing 2 %, that the sample with a 4% cement content showed 90% increase in shear strength while those with 7% and 10% showed an increase of around 13 and 21 fold. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement" title="cement">cement</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20strength" title=" compression strength"> compression strength</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20stress" title=" shear stress"> shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesion" title=" cohesion"> cohesion</a>, <a href="https://publications.waset.org/abstracts/search?q=angle%20of%20internal%20friction" title=" angle of internal friction"> angle of internal friction</a> </p> <a href="https://publications.waset.org/abstracts/23790/the-mechanical-behavior-of-a-chemically-stabilized-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">964</span> Alumina Generated by Electrocoagulation as Adsorbent for the Elimination of the Iron from Drilling Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aimad%20Oulebsir">Aimad Oulebsir</a>, <a href="https://publications.waset.org/abstracts/search?q=Toufik%20Chaabane"> Toufik Chaabane</a>, <a href="https://publications.waset.org/abstracts/search?q=Venkataraman%20Sivasankar"> Venkataraman Sivasankar</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20Darchen"> André Darchen</a>, <a href="https://publications.waset.org/abstracts/search?q=Titus%20A.%20M.%20Msagati"> Titus A. M. Msagati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the presence of pharmaceutical substances in the environment is an emerging pollution leading to the disruption of ecosystems. Indeed, water loaded with pharmaceutical residues is an issue that has raised the attention of researchers. The aim of this study was to monitor the effectiveness of the alumina electro-generated by the adsorption process the iron of well water for the production of drugs. The Fe2+ was removed from wastewater by adsorption in a batch cell. Performance results of iron removal by alumina electro-generated revealed that the efficiency of the carrier in the method of electro-generated adsorption. The overall Fe2+ of the synthetically solutions and simulated effluent removal efficiencies reached 75% and 65%, respectively. The application of models and isothermal adsorption kinetics complement the results obtained experimentally. Desorption of iron was investigated using a solution of 0.1M NaOH. Regeneration of the tests shows that the adsorbent maintains its capacity after five adsorption/desorption cycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrocoagulation" title="electrocoagulation">electrocoagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20electrode" title=" aluminum electrode"> aluminum electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=electrogenerated%20alumina" title=" electrogenerated alumina"> electrogenerated alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=iron" title=" iron"> iron</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%2Fdesorption" title=" adsorption/desorption"> adsorption/desorption</a> </p> <a href="https://publications.waset.org/abstracts/42493/alumina-generated-by-electrocoagulation-as-adsorbent-for-the-elimination-of-the-iron-from-drilling-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">963</span> Production of Renewable and Clean Bio-Fuel (DME) from Biomethanol over Copper Modified Alumina Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20I.%20Osman">Ahmed I. Osman</a>, <a href="https://publications.waset.org/abstracts/search?q=Jehad%20K.%20Abu-Dahrieh"> Jehad K. Abu-Dahrieh</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20W.%20Rooney"> David W. Rooney</a>, <a href="https://publications.waset.org/abstracts/search?q=Jillian%20Thompson"> Jillian Thompson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of loading of copper on the catalytic performance of different alumina support during the dehydration of methanol to dimethyl ether (DME) was performed in a fixed bed reactor. There are two levels of loading; low loading (1, 2, 4 and 6% Cu wt/wt) and high loading (10 and 15% Cu wt/wt) on both AC350 (alumina catalyst calcined at 350) and AC550 (alumina catalyst calcined at 550), to study the effect of loading and the effect of the support during methanol dehydration to DME (MTD). The catalysts were characterized by TGA, XRD, BET, TPD-NH3, TEM and DRIFT-Pyridine. Under reaction conditions where the temperature ranged from 180-300˚C with a WHSV= 12.1 h-1 it was found that all the catalysts calcined at 550˚C showed higher activity than those calcined at 350˚C. In this study, the optimum catalyst was 6% Cu/AC550. This catalyst showed a high degree of stability, had one half activity of the pure catalyst (AC550) and double the activity of the optimum catalyst calcined at 350˚C (6% Cu/AC350). So, we recommended 6% Cu/AC550 for the production of DME from methanol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-fuel" title="bio-fuel">bio-fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20composite%20catalyst" title=" nano composite catalyst"> nano composite catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=DME" title=" DME"> DME</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu-Al2O3" title=" Cu-Al2O3"> Cu-Al2O3</a> </p> <a href="https://publications.waset.org/abstracts/3494/production-of-renewable-and-clean-bio-fuel-dme-from-biomethanol-over-copper-modified-alumina-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alumina%20cement&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alumina%20cement&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alumina%20cement&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alumina%20cement&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alumina%20cement&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alumina%20cement&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alumina%20cement&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alumina%20cement&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alumina%20cement&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alumina%20cement&page=33">33</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alumina%20cement&page=34">34</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=alumina%20cement&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>