CINXE.COM

Search results for: heat reduction

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: heat reduction</title> <meta name="description" content="Search results for: heat reduction"> <meta name="keywords" content="heat reduction"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="heat reduction" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="heat reduction"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7564</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: heat reduction</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7564</span> The Study of Groundcover for Heat Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Winai%20Mankhatitham">Winai Mankhatitham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research investigated groundcover on the roof (green roof) which can reduce the temperature and carbon monoxide. This study is divided into 3 main aspects: 1) Types of groundcover affecting heat reduction, 2) The efficiency on heat reduction of 3 types of groundcover, i.e. lawn, arachis pintoi, and purslane, 3) Database for designing green roof. This study has been designed as an experimental research by simulating the 3 types of groundcover in 3 trays placed in the green house for recording the temperature change for 24 hours. The results showed that the groundcover with the highest heat reduction efficiency was lawn. The dense of the lawn can protect the heat transfer to the soil. For the further study, there should be a comparative study of the thickness and the types of soil to get more information for the suitable types of groundcover and the soil for designing the energy saving green roof. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20roof" title="green roof">green roof</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20reduction" title=" heat reduction"> heat reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=groundcover" title=" groundcover"> groundcover</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title=" energy saving"> energy saving</a> </p> <a href="https://publications.waset.org/abstracts/8082/the-study-of-groundcover-for-heat-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7563</span> Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Afshar">O. Afshar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=receiver%20tube" title="receiver tube">receiver tube</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20convection" title=" heat convection"> heat convection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20conduction" title=" heat conduction"> heat conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a> </p> <a href="https://publications.waset.org/abstracts/38149/numerical-investigation-of-hot-oil-velocity-effect-on-force-heat-convection-and-impact-of-wind-velocity-on-convection-heat-transfer-in-receiver-tube-of-parabolic-trough-collector-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7562</span> Heat Transfer from Block Heat Sources Mounted on the Wall of a 3-D Cabinet to Ambient Natural Convective Air Stream</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Cheng">J. C. Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20L.%20Tsay"> Y. L. Tsay</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20D.%20Chan"> Z. D. Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Yang"> C. H. Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study the physical system under consideration is a three-dimensional (3-D) cabinet with arrays of block heat sources mounted on one of the walls of the cabinet. The block heat sources dissipate heat to the cabinet surrounding through the conjugate conduction and natural convection. The results illustrate that the difference in hot spot temperatures of the system (θH) for the situations with and without consideration of thermal interaction is higher for smaller Rayleigh number (Ra), and can be up to 94.73% as Ra=10^5. In addition, the heat transfer characteristics depends strongly on the dimensionless heat conductivity of cabinet wall (Kwf), heat conductivity of block (Kpf) and length of cabinet (Ax). The maximum reduction in θH is 70.01% when Kwf varies from 10 to 1000, and it is 30.07% for Ax from 0.5 to 1. While the hot spot temperature of system is not sensitive to the cabinet angle (Φ). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20heat%20sources" title="block heat sources">block heat sources</a>, <a href="https://publications.waset.org/abstracts/search?q=3-D%20cabinet" title=" 3-D cabinet"> 3-D cabinet</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20interaction" title=" thermal interaction"> thermal interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/16075/heat-transfer-from-block-heat-sources-mounted-on-the-wall-of-a-3-d-cabinet-to-ambient-natural-convective-air-stream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7561</span> Effect of Alloying Elements and Hot Forging/Rolling Reduction Ratio on Hardness and Impact Toughness of Heat Treated Low Alloy Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20M.%20Tash">Mahmoud M. Tash </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was carried out to investigate the effect of alloying elements and thermo-mechanical treatment (TMT) i.e. hot rolling and forging with different reduction ratios on the hardness (HV) and impact toughness (J) of heat-treated low alloy steels. An understanding of the combined effect of TMT and alloying elements and by measuring hardness, impact toughness, resulting from different heat treatment following TMT of the low alloy steels, it is possible to determine which conditions yielded optimum mechanical properties and high strength to weight ratio. Experimental Correlations between hot work reduction ratio, hardness and impact toughness for thermo-mechanically heat treated low alloy steels are analyzed quantitatively, and both regression and mathematical hardness and impact toughness models are developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20forging" title="hot forging">hot forging</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20rolling" title=" hot rolling"> hot rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness%20%28HV%29" title=" hardness (HV)"> hardness (HV)</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20toughness%20%28J%29" title=" impact toughness (J)"> impact toughness (J)</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20alloy%20steels" title=" low alloy steels"> low alloy steels</a> </p> <a href="https://publications.waset.org/abstracts/24168/effect-of-alloying-elements-and-hot-forgingrolling-reduction-ratio-on-hardness-and-impact-toughness-of-heat-treated-low-alloy-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7560</span> Optimum Design of Heat Exchanger in Diesel Engine Cold EGR for Pollutants Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasser%20Ghassembaglou">Nasser Ghassembaglou</a>, <a href="https://publications.waset.org/abstracts/search?q=Armin%20Rahmatfam"> Armin Rahmatfam</a>, <a href="https://publications.waset.org/abstracts/search?q=Faramarz%20Ranjbar"> Faramarz Ranjbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using of cold EGR method with variable venturi and turbocharger has a very significant affection on the reduction of NOX and grime simultaneously. EGR cooler is one of the most important parts in the cold EGR circuit. In this paper optimum design of cooler for working in different percents of EGR and for determining of optimum temperature of exhausted gases, growth of efficiency, reduction of weight, reduction of dimension and expenditures, and reduction of sediment and optimum performance by using gas oil which has significant amounts of brimstone are investigated and optimized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20EGR" title="cold EGR">cold EGR</a>, <a href="https://publications.waset.org/abstracts/search?q=NOX" title=" NOX"> NOX</a>, <a href="https://publications.waset.org/abstracts/search?q=cooler" title=" cooler"> cooler</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20oil" title=" gas oil "> gas oil </a> </p> <a href="https://publications.waset.org/abstracts/17939/optimum-design-of-heat-exchanger-in-diesel-engine-cold-egr-for-pollutants-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7559</span> The Experimental Study on Reducing and Carbonizing Titanium-Containing Slag by Iron-Containing Coke</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yadong%20Liu">Yadong Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experimental study on reduction carbonization of coke containing iron respectively with the particle size of <0.3mm, 0.3-0.6mm and 0.6-0.9mm and synthetic sea sand ore smelting reduction titanium-bearing slag as material were studied under the conditions of holding 6h at most at 1500℃. The effects of coke containing iron particle size and heat preservation time on the formation of TiC and the size of TiC crystal were studied by XRD, SEM and EDS. The results show that it is not good for the formation, concentration and growth of TiC crystal when the particle size of coke containing iron is too small or too large. The suitable particle size is 0.3~0.6mm. The heat preservation time of 2h basically ensures that all the component TiO2 in the slag are reduced and carbonized and converted to TiC. The size of TiC crystal will increase with the prolongation of heat preservation time. The thickness of the TiC layer can reach 20μm when the heat preservation time is 6h. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coke%20containing%20iron" title="coke containing iron">coke containing iron</a>, <a href="https://publications.waset.org/abstracts/search?q=formation%20and%20concentration%20and%20growth%20of%20TiC" title=" formation and concentration and growth of TiC"> formation and concentration and growth of TiC</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction%20and%20carbonization" title=" reduction and carbonization"> reduction and carbonization</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium-bearing%20slag" title=" titanium-bearing slag"> titanium-bearing slag</a> </p> <a href="https://publications.waset.org/abstracts/105177/the-experimental-study-on-reducing-and-carbonizing-titanium-containing-slag-by-iron-containing-coke" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7558</span> Development of a New Method for the Evaluation of Heat Tolerant Wheat Genotypes for Genetic Studies and Wheat Breeding </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hameed%20Alsamadany">Hameed Alsamadany</a>, <a href="https://publications.waset.org/abstracts/search?q=Nader%20Aryamanesh"> Nader Aryamanesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Guijun%20Yan"> Guijun Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat is one of the major abiotic stresses limiting wheat production worldwide. To identify heat tolerant genotypes, a newly designed system involving a large plastic box holding many layers of filter papers positioned vertically with wheat seeds sown in between for the ease of screening large number of wheat geno types was developed and used to study heat tolerance. A collection of 499 wheat geno types were screened under heat stress (35ºC) and non-stress (25ºC) conditions using the new method. Compared with those under non-stress conditions, a substantial and very significant reduction in seedling length (SL) under heat stress was observed with an average reduction of 11.7 cm (P<0.01). A damage index (DI) of each geno type based on SL under the two temperatures was calculated and used to rank the genotypes. Three hexaploid geno types of Triticum aestivum [Perenjori (DI= -0.09), Pakistan W 20B (-0.18) and SST16 (-0.28)], all growing better at 35ºC than at 25ºC were identified as extremely heat tolerant (EHT). Two hexaploid genotypes of T. aestivum [Synthetic wheat (0.93) and Stiletto (0.92)] and two tetraploid genotypes of T. turgidum ssp dicoccoides [G3211 (0.98) and G3100 (0.93)] were identified as extremely heat susceptible (EHS). Another 14 geno types were classified as heat tolerant (HT) and 478 as heat susceptible (HS). Extremely heat tolerant and heat susceptible geno types were used to develop re combinant inbreeding line populations for genetic studies. Four major QTLs, HTI4D, HTI3B.1, HTI3B.2 and HTI3A located on wheat chromosomes 4D, 3B (x2) and 3A, explaining up to 34.67 %, 28.93 %, 13.46% % and 11.34% phenotypic variation, respectively, were detected. The four QTLs together accounted for 88.40% of the total phenotypic variation. Random wheat geno types possessing the four heat tolerant alleles performed significantly better under the heat condition than those lacking the heat tolerant alleles indicating the importance of the four QTLs in conferring heat tolerance in wheat. Molecular markers are being developed for marker assisted breeding of heat tolerant wheat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bread%20wheat" title="bread wheat">bread wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20tolerance" title=" heat tolerance"> heat tolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=screening" title=" screening"> screening</a>, <a href="https://publications.waset.org/abstracts/search?q=RILs" title=" RILs"> RILs</a>, <a href="https://publications.waset.org/abstracts/search?q=QTL%20mapping" title=" QTL mapping"> QTL mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=association%20analysis" title=" association analysis"> association analysis</a> </p> <a href="https://publications.waset.org/abstracts/21558/development-of-a-new-method-for-the-evaluation-of-heat-tolerant-wheat-genotypes-for-genetic-studies-and-wheat-breeding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">551</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7557</span> Performance Evaluation of Extruded-type Heat sinks Used in Inverter for Solar Power Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung%20Hyun%20Kim">Jung Hyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyo%20Woo%20Lee"> Gyo Woo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, heat release performances of the three extruded-type heat sinks can be used in the inverter for solar power generation were evaluated. Numbers of fins in the heat sinks (namely E-38, E-47 and E-76) were 38, 47 and 76, respectively. Heat transfer areas of them were 1.8, 1.9 and 2.8 m2. The heat release performances of E-38, E-47, and E-76 heat sinks were measured as 79.6, 81.6, and 83.2%, respectively. The results of heat release performance show that the larger amount of heat transfer area the higher heat release rate. While on the other, in this experiment, variations of the mass flow rates caused by different cross-sectional areas of the three heat sinks may not be the major parameter of the heat release. Despite the 47.4% increment of heat transfer area of E-76 heat sink than that of E-47 one, its heat release rate was higher by only 2.0%; this suggests that its heat transfer area need to be optimized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20Inverter" title="solar Inverter">solar Inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20sink" title=" heat sink"> heat sink</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20evaluation" title=" performance evaluation"> performance evaluation</a> </p> <a href="https://publications.waset.org/abstracts/3314/performance-evaluation-of-extruded-type-heat-sinks-used-in-inverter-for-solar-power-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7556</span> Numerical Study of Heat Release of the Symmetrically Arranged Extruded-Type Heat Sinks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim">Man Young Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyo%20Woo%20Lee"> Gyo Woo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this numerical study, we want to present the design of highly efficient extruded-type heat sink. The symmetrically arranged extruded-type heat sinks are used instead of a single extruded or swaged-type heat sink. In this parametric study, the maximum temperatures, the base temperatures between heaters, and the heat release rates were investigated with respect to the arrangements of heat sources, air flow rates, and amounts of heat input. Based on the results we believe that the use of both side of heat sink is to be much better for release the heat than the use of single side. Also from the results, it is believed that the symmetric arrangement of heat sources is recommended to achieve a higher heat transfer from the heat sink. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20sink" title="heat sink">heat sink</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20evaluation" title=" performance evaluation"> performance evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetrical%20arrangement" title=" symmetrical arrangement "> symmetrical arrangement </a> </p> <a href="https://publications.waset.org/abstracts/16199/numerical-study-of-heat-release-of-the-symmetrically-arranged-extruded-type-heat-sinks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7555</span> Heat Transfer Enhancement Using Aluminium Oxide Nanofluid: Effect of the Base Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Amoura">M. Amoura</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Benmoussa"> M. Benmoussa</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Zeraibi"> N. Zeraibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flow and heat transfer is an important phenomenon in engineering systems due to its wide application in electronic cooling, heat exchangers, double pane windows etc.. The enhancement of heat transfer in these systems is an essential topic from an energy saving perspective. Lower heat transfer performance when conventional fluids, such as water, engine oil and ethylene glycol are used hinders improvements in performance and causes a consequent reduction in the size of such systems. The use of solid particles as an additive suspended into the base fluid is a technique for heat transfer enhancement. Therefore, the heat transfer enhancement in a horizontal circular tube that is maintained at a constant temperature under laminar regime has been investigated numerically. A computational code applied to the problem by use of the finite volume method was developed. Nanofluid was made by dispersion of Al2O3 nanoparticles in pure water and ethylene glycol. Results illustrate that the suspended nanoparticles increase the heat transfer with an increase in the nanoparticles volume fraction and for a considered range of Reynolds numbers. On the other hand, the heat transfer is very sensitive to the base fluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al2O3%20nanoparticles" title="Al2O3 nanoparticles">Al2O3 nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20tube" title=" circular tube"> circular tube</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfert%20enhancement" title=" heat transfert enhancement"> heat transfert enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/38043/heat-transfer-enhancement-using-aluminium-oxide-nanofluid-effect-of-the-base-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7554</span> Effect of Flow Holes on Heat Release Performance of Extruded-Type Heat Sink</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung%20Hyun%20Kim">Jung Hyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyo%20Woo%20Lee"> Gyo Woo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the enhancement of the heat release performance of an extruded-type heat sink to prepare the large-capacity solar inverter thru the flow holes in the base plate near the heat sources was investigated. Optimal location and number of the holes in the baseplate were determined by using a commercial computation program. The heat release performance of the shape-modified heat sink was measured experimentally and compared with that of the simulation. The heat sink with 12 flow holes in the 18-mm-thick base plate has a 8.1% wider heat transfer area, a 2.5% more mass flow of air, and a 2.7% higher heat release rate than those of the original heat sink. Also, the surface temperature of the base plate was lowered 1.5°C by the holes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20sink" title="heat sink">heat sink</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20evaluation" title=" performance evaluation"> performance evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20holes" title=" flow holes"> flow holes</a> </p> <a href="https://publications.waset.org/abstracts/8516/effect-of-flow-holes-on-heat-release-performance-of-extruded-type-heat-sink" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8516.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7553</span> Experimental Analysis on Heat Transfer Enhancement in Double Pipe Heat Exchanger Using Al2O3/Water Nanofluid and Baffled Twisted Tape Inserts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratheesh%20Radhakrishnan">Ratheesh Radhakrishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20C.%20Sreekumar"> P. C. Sreekumar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Krishnamoorthy"> K. Krishnamoorthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat transfer augmentation techniques ultimately results in the reduction of thermal resistance in a conventional heat exchanger by generating higher convective heat transfer coefficient. It also results in reduction of size, increase in heat duty, decrease in approach temperature difference and reduction in pumping power requirements for heat exchangers. Present study deals with compound augmentation technique, which is not widely used. The study deals with the use of Alumina (Al2O3)/water nanofluid and baffled twisted tape inserts in double pipe heat exchanger as compound augmentation technique. Experiments were conducted to evaluate the heat transfer coefficient and friction factor for the flow through the inner tube of heat exchanger in turbulent flow range (8000<Re<60000). It is observed that the equation of Dittus-Boelter applicable for turbulent flow regime shows good agreement with the experimental values for smooth tube. The effect of rectangular, circular, triangular baffled twisted tape having twist ratio (y/w) 4.2 and twisted tapes without baffles of twist ratio (y/w) 4.2 and 5.2 were studied. Experiments were conducted for both water and Alumina/water nanofluid. Al2O3 nanoparticle of 22nm size were purchased, characterized and dispersed in de-ionized water to form stable suspension containing 0.1% volume concentration of nanoparticles. The results showed that there is noticeable enhancement in the heat transfer coefficient with the use of baffled twisted tape and nanofluid .It is also observed that the friction factor for nanofluid and water is almost the same. It is found that the enhancement of heat transfer coefficient by using rectangular baffled twisted tape and nanofluid is about 20%. Performance evaluation criteria were found for water and nanofluid ant it was observed that rectangular baffled twisted tape performs better than other twisted tapes. The maximum value of performance evaluation criteria for nanofluid is obtained as 2.62 at Reynolds number 8483 for rectangular baffled twisted tape. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enhancement" title="enhancement">enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title=" heat transfer coefficient"> heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20factor" title=" friction factor"> friction factor</a>, <a href="https://publications.waset.org/abstracts/search?q=twisted%20tape" title=" twisted tape"> twisted tape</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a> </p> <a href="https://publications.waset.org/abstracts/9936/experimental-analysis-on-heat-transfer-enhancement-in-double-pipe-heat-exchanger-using-al2o3water-nanofluid-and-baffled-twisted-tape-inserts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7552</span> Reduction of Energy Consumption of Distillation Process by Recovering the Heat from Exit Streams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Apichit%20Svang-Ariyaskul">Apichit Svang-Ariyaskul</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanapat%20Chaireongsirikul"> Thanapat Chaireongsirikul</a>, <a href="https://publications.waset.org/abstracts/search?q=Pawit%20Tangviroon"> Pawit Tangviroon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Distillation consumes enormous quantity of energy. This work proposed a process to recover the energy from exit streams during the distillation process of three consecutive columns. There are several novel techniques to recover the heat with the distillation system; however, a complex control system is required. This work proposed a simpler technique by exchanging the heat between streams without interrupting the internal distillation process that might cause a serious control problem. The proposed process is executed by using heat exchanger network with pinch analysis to maximize the process heat recovery. The test model is the distillation of butane, pentane, hexane, and heptanes, which is a common mixture in the petroleum refinery. This proposed process saved the energy consumption for hot and cold utilities of 29 and 27%, which is considered significant. Therefore, the recovery of heat from exit streams from distillation process is proved to be effective for energy saving. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distillation" title="distillation">distillation</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20pinch%20analysis" title=" network pinch analysis"> network pinch analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20engineering" title=" chemical engineering"> chemical engineering</a> </p> <a href="https://publications.waset.org/abstracts/8123/reduction-of-energy-consumption-of-distillation-process-by-recovering-the-heat-from-exit-streams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7551</span> New York’s Heat Pump Mandate: Doubling Annual Heating Costs to Achieve a 13% Reduction in New York’s CO₂ Gas Emissions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=William%20Burdick">William Burdick</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manmade climate change is an existential threat that must be mitigated at the earliest opportunity. The role of government in climate change mitigation is enacting and enforcing law and policy to affect substantial reductions in greenhouse gasses, in the short and long term, without substantial increases in the cost of energy. To be optimally effective those laws and policies must be established and enforced based on peer reviewed evidence and scientific facts and result in substantial outcomes in years, not decades. Over the next fifty years, New York’s 2019 Climate Change and Community Protection Act and 2021 All Electric Building Act that mandate replacing natural gas heating systems with heat pumps will, immediately double annual heating costs and by 2075, yield less than 16.2% reduction in CO₂ emissions from heating systems in new housing units, less than a 13% reduction in total CO₂ emissions, and affect a $40B in cumulative additional heating cost, compared to natural gas fueled heating systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=mandate" title=" mandate"> mandate</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20pump" title=" heat pump"> heat pump</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas" title=" natural gas"> natural gas</a> </p> <a href="https://publications.waset.org/abstracts/176297/new-yorks-heat-pump-mandate-doubling-annual-heating-costs-to-achieve-a-13-reduction-in-new-yorks-co2-gas-emissions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7550</span> Modeling the Effect of Scale Deposition on Heat Transfer in Desalination Multi-Effect Distillation Evaporators </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Bourouni">K. Bourouni</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Chacha"> M. Chacha</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Jaber"> T. Jaber</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tchantchane"> A. Tchantchane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Multi-Effect Distillation (MED) desalination evaporators, the scale deposit outside the tubes presents a barrier to heat transfers reducing the global heat transfer coefficient and causing a decrease in water production; hence a loss of efficiency and an increase in operating and maintenance costs. Scale removal (by acid cleaning) is the main maintenance operation and constitutes the major reason for periodic plant shutdowns. A better understanding of scale deposition mechanisms will lead to an accurate determination of the variation of scale thickness around the tubes and an improved accuracy of the overall heat transfer coefficient calculation. In this paper, a coupled heat transfer-calcium carbonate scale deposition model on a horizontal tube bundle is presented. The developed tool is used to determine precisely the heat transfer area leading to a significant cost reduction for a given water production capacity. Simulations are carried to investigate the influence of different parameters such as water salinity, temperature, etc. on the heat transfer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-effect-evaporator" title="multi-effect-evaporator">multi-effect-evaporator</a>, <a href="https://publications.waset.org/abstracts/search?q=scale%20deposition" title=" scale deposition"> scale deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20desalination" title=" water desalination"> water desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20coefficient" title=" heat transfer coefficient"> heat transfer coefficient</a> </p> <a href="https://publications.waset.org/abstracts/129259/modeling-the-effect-of-scale-deposition-on-heat-transfer-in-desalination-multi-effect-distillation-evaporators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7549</span> Water Heating System with Solar Energy from Solar Panel as Absorber to Reduce the Reduction of Efficiency Solar Panel Use</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mas%20Aji%20Rizki%20Widjayanto">Mas Aji Rizki Widjayanto</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizka%20Yunita"> Rizka Yunita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The building which has an efficient and low-energy today followed by the developers. It’s not because trends on the building nowaday, but rather because of its positive effects in the long term, where the cost of energy per month to be much cheaper, along with the high price of electricity. The use of solar power (Photovoltaic System) becomes one source of electrical energy for the apartment so that will efficiently use energy, water, and other resources in the operations of the apartment. However, more than 80% of the solar radiation is not converted into electrical energy, but reflected and converted into heat energy. This causes an increase on the working temperature of solar panels and consequently decrease the efficiency of conversion to electrical energy. The high temperature solar panels work caused by solar radiation can be used as medium heat exchanger or heating water for the apartments, so that the working temperature of the solar panel can be lowered to reduce the reduction on the efficiency of conversion to electrical energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20system" title="photovoltaic system">photovoltaic system</a>, <a href="https://publications.waset.org/abstracts/search?q=efficient" title=" efficient"> efficient</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20energy" title=" heat energy"> heat energy</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency%20of%20conversion" title=" efficiency of conversion"> efficiency of conversion</a> </p> <a href="https://publications.waset.org/abstracts/23179/water-heating-system-with-solar-energy-from-solar-panel-as-absorber-to-reduce-the-reduction-of-efficiency-solar-panel-use" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7548</span> Characterising the Effects of Heat Treatment on 3CR12 and AISI 316 Stainless Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esther%20T.%20Akinlabi">Esther T. Akinlabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20A.%20Akinlabi"> Stephen A. Akinlabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports on the effects of heat treatment on 3CR12 and AISI 316 stainless steel grades. Heat treatment was conducted on the steel grades and cooled using two different media; air and water in order to study the effect of each medium on the evolving properties of the samples. The heat treated samples were characterized through the evolving microstructure and hardness. It was found that there was a significant grain size reduction in both the heat treated stainless steel specimens compared to the parent materials. The finer grain sizes were achieved as a result of impediment to growth of one phase by the other. The Vickers micro-hardness values of the heat treated samples were higher compared to the parent materials due to the fact that each of the steel grades had a proportion of martensitic structures in their microstructures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=austenite" title="austenite">austenite</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrite" title=" ferrite"> ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20size" title=" grain size"> grain size</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=martensite" title=" martensite"> martensite</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure%20and%20stainless%20steel" title=" microstructure and stainless steel"> microstructure and stainless steel</a> </p> <a href="https://publications.waset.org/abstracts/5781/characterising-the-effects-of-heat-treatment-on-3cr12-and-aisi-316-stainless-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7547</span> A Review: Role of Chromium in Broiler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naveed%20Zahra">Naveed Zahra</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahid%20Kamran"> Zahid Kamran</a>, <a href="https://publications.waset.org/abstracts/search?q=Shakeel%20Ahmad"> Shakeel Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat stress is one of the most important environmental stressors challenging poultry production worldwide. The detrimental effect of heat stress results in reduction in the productive performance of poultry with high incidences of mortality. Researchers have made efforts to prevent such damage to poultry production through dietary manipulation. Supplementation with Chromium (Cr) might have some positive effects on some aspect of blood parameters and broilers performance. Chromium (Cr) the element whose trivalent Cr (III) organic state is present in trace amounts in animal feed and water is found to be a key element in evading heat stress and thus cutting down the heavy expenditure on air conditioning in broiler sheds. Chromium, along with other essential minerals is lost due to increased excretion during heat stress and thus its inclusion in broiler diet is kind of mandatory in areas of hot climate. Chromium picolinate in broiler diet has shown a hike in growth rate including muscle gain with body fat reduction under environmental stress. Fat reduction is probably linked to the ability of chromium to increase the sensitivity of the insulin receptors on tissues and thus the uptake of sugar from blood increases which decreases the amount of glucose to be converted to amino acids and stored in adipose tissue as triglycerides. Organic chromium has also shown to increase lymphocyte proliferation rate and antioxidant levels. So, the immune competency, muscle gain and fat reduction along with evasion of heat stress are good enough signs that indicate the fruitful inclusion of dietary chromium for broiler. This promising element may bring the much needed break in the local poultry industry. The task is now to set the exact dose of the element in the diet that would be useful enough and still not toxic to broiler. In conclusion there is a growing body of evidence which suggest that chromium may be an essential trace element for livestock and poultry. The nutritional requirement for chromium may vary with different species and physiological state within a species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broiler" title="broiler">broiler</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium" title=" chromium"> chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20stress" title=" heat stress"> heat stress</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/37299/a-review-role-of-chromium-in-broiler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7546</span> Waste Heat Recovery Using Spiral Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parthiban%20S.%20R.">Parthiban S. R.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spiral heat exchangers are known as excellent heat exchanger because of far compact and high heat transfer efficiency. An innovative spiral heat exchanger based on polymer materials is designed for waste heat recovery process. Such a design based on polymer film technology provides better corrosion and chemical resistance compared to conventional metal heat exchangers. Due to the smooth surface of polymer film fouling is reduced. A new arrangement for flow of hot flue gas and cold fluid is employed for design, flue gas flows in axial path while the cold fluid flows in a spiral path. Heat load recovery achieved with the presented heat exchanger is in the range of 1.5 kW thermic but potential heat recovery about 3.5 kW might be achievable. To measure the performance of the spiral tube heat exchanger, its model is suitably designed and fabricated so as to perform experimental tests. The paper gives analysis of spiral tube heat exchanger. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spiral%20heat%20exchanger" title="spiral heat exchanger">spiral heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20based%20materials" title=" polymer based materials"> polymer based materials</a>, <a href="https://publications.waset.org/abstracts/search?q=fouling%20factor" title=" fouling factor"> fouling factor</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20load" title=" heat load"> heat load</a> </p> <a href="https://publications.waset.org/abstracts/26107/waste-heat-recovery-using-spiral-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7545</span> Impact of Green Roofs on Hot and Humid Climate-Vijayawada</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santhosh%20Kumar%20Sathi">Santhosh Kumar Sathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In India, Growth and spread of cities lead to the reduction of forests and green areas of the urban center with built structures. This is one of the reasons for increasing temperature about 2-5% in an urban environment and consequently also one of the key causes of urban heat island effects. Green roofs are one option that can reduce the negative impact of urban development providing numerous environmental benefits. In this paper, Vijayawada city is taken as case to study as it is experiencing rapid urbanization because of new capital Amaravati. That has resulted in remarkable urban heat island; which once recorded a highest temperature of 49°c. This paper focuses on the change in quality of the local environment with the introduction of green roofs. An in-depth study has to be carried out to understand the distribution of land surface temperature and land use of Vijayawada. Delineation of an area which has the highest temperature has been selected to adopt green roof retrofitting. Latest technologies of green roof retrofitting have to be implemented in the selected region. The results of the study indicate a significant temperature reduction in the local environment of that region, confirming the potential of green roofs as urban heat island mitigation strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title="energy consumption">energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20roofs" title=" green roofs"> green roofs</a>, <a href="https://publications.waset.org/abstracts/search?q=retrofitting" title=" retrofitting"> retrofitting</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20heat%20island" title=" urban heat island"> urban heat island</a> </p> <a href="https://publications.waset.org/abstracts/81873/impact-of-green-roofs-on-hot-and-humid-climate-vijayawada" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7544</span> Solar System with Plate Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christer%20Frennfelt">Christer Frennfelt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar heating is the most environmentally friendly way to heat water. Brazed Plate Heat Exchangers (BPHEs) are a key component in many solar heating applications for harvesting solar energy into accumulator tanks, producing hot tap water, and heating pools. The combination of high capacity in a compact format, efficient heat transfer, and fast response makes the BPHE the ideal heat exchanger for solar thermal systems. Solar heating is common as a standalone heat source, and as an add-on heat source for boilers, heat pumps, or district heating systems. An accumulator provides the possibility to store heat, which enables combination of different heat sources to a larger extent. In turn this works as protection to reduced access to energy or increased energy prices. For example heat from solar panels is preferably stored during the day for use at night. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=district%20heating%20and%20cooling" title="district heating and cooling">district heating and cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20storage" title=" thermal storage"> thermal storage</a>, <a href="https://publications.waset.org/abstracts/search?q=brazed%20plate%20heat%20exchanger" title=" brazed plate heat exchanger"> brazed plate heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20domestic%20hot%20water%20and%20combisystems" title=" solar domestic hot water and combisystems"> solar domestic hot water and combisystems</a> </p> <a href="https://publications.waset.org/abstracts/48183/solar-system-with-plate-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7543</span> Polymer Spiral Film Gas-Liquid Heat Exchanger for Waste Heat Recovery in Exhaust Gases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Parthiban">S. R. Parthiban</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Elajchet%20Senni"> C. Elajchet Senni </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spiral heat exchangers are known as excellent heat exchanger because of far compact and high heat transfer efficiency. An innovative spiral heat exchanger based on polymer materials is designed for waste heat recovery process. Such a design based on polymer film technology provides better corrosion and chemical resistance compared to conventional metal heat exchangers. Due to the smooth surface of polymer film fouling is reduced. A new arrangement for flow of hot flue gas and cold fluid is employed for design, flue gas flows in axial path while the cold fluid flows in a spiral path. Heat load recovery achieved with the presented heat exchanger is in the range of 1.5 kW thermic but potential heat recovery about 3.5kW might be achievable. To measure the performance of the spiral tube heat exchanger, its model is suitably designed and fabricated so as to perform experimental tests. The paper gives analysis of spiral tube heat exchanger. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spiral%20heat%20exchanger" title="spiral heat exchanger">spiral heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20based%20materials" title=" polymer based materials"> polymer based materials</a>, <a href="https://publications.waset.org/abstracts/search?q=fouling%20factor" title=" fouling factor"> fouling factor</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20load" title=" heat load"> heat load</a> </p> <a href="https://publications.waset.org/abstracts/26811/polymer-spiral-film-gas-liquid-heat-exchanger-for-waste-heat-recovery-in-exhaust-gases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7542</span> Trehalose Application Increased Membrane Stability and Cell Viability to Affect Growth of Wheat Genotypes under Heat Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Thind">S. K. Thind</a>, <a href="https://publications.waset.org/abstracts/search?q=Aparjot%20Kaur"> Aparjot Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat stress is one of the major environmental factors drastically reducing wheat production. Crop heat tolerance can be enhanced by preconditioning of plants by exogenous application of osmoprotectants. Presently, the effect of trehalose pretreatment (at 1 mM, and 1.5 nM) under heat stress of 35±2˚C (moderate) and 40±2˚ (severe) for four and eight hour was conducted in wheat (Tricticum aestivum L.) genotypes viz. HD2967, PBW 175, PBW 343, PBW 621, and PBW 590. Heat stress affects wide spectrum of physiological processes within plants that are irreversibly damaged by stress. Membrane thermal stability (MTS) and cell viability was significantly decreased under heat stress for eight hours. Pretreatment with trehalose improved MTS and cell viability under stress and this effect was more promotory with higher concentration. Thermal stability of photosynthetic apparatus differed markedly between genotypes and Hill reaction activity was recorded more in PBW621 followed by C306 as compared with others. In all genotypes photolysis of water showed decline with increase in temperature stress. Trehalose pretreatment helped in sustaining Hill reaction activity probably by stabilizing the photosynthetic apparatus against heat-induced photo inhibition. Both plant growth and development were affected by temperature in both shoot and root under heat stress. The reduction was compensated partially by trehalose (1.5 mM) application. Adaption to heat stress is associated with the metabolic adjustment which led to accumulation of soluble sugars including non-reducing and reducing for their role in adaptive mechanism. Higher acid invertase activity in shoot of tolerant genotypes appeared to be a characteristic for stress tolerance. As sucrose synthase play central role in sink strength and in studied wheat genotype was positively related to dry matter accumulation. The duration of heat stress for eight hours had more severe effect on these parameters and trehalose application at 1.5 mM ameliorated it to certain extent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20stress" title="heat stress">heat stress</a>, <a href="https://publications.waset.org/abstracts/search?q=Triticum%20aestivum" title=" Triticum aestivum"> Triticum aestivum</a>, <a href="https://publications.waset.org/abstracts/search?q=trehalose" title=" trehalose"> trehalose</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20thermal%20stability" title=" membrane thermal stability"> membrane thermal stability</a>, <a href="https://publications.waset.org/abstracts/search?q=triphenyl%20tetrazolium%20chloride" title=" triphenyl tetrazolium chloride"> triphenyl tetrazolium chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction%20test" title=" reduction test"> reduction test</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20metabolism" title=" sugar metabolism"> sugar metabolism</a> </p> <a href="https://publications.waset.org/abstracts/2397/trehalose-application-increased-membrane-stability-and-cell-viability-to-affect-growth-of-wheat-genotypes-under-heat-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7541</span> Combined Heat and Power Generation in Pressure Reduction City Gas Station (CGS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadegh%20Torfi">Sadegh Torfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Realization of anticipated energy efficiency from recuperative run-around energy recovery (RER) systems requires identification of the system components influential parameters. Because simulation modeling is considered as an integral part of the design and economic evaluation of RER systems, it is essential to calibrate the developed models and validate the performance predictions by means of comparison with data from experimental measurements. Several theoretical and numerical analyses on RER systems by researchers have been done, but generally the effect of distance between hot and cold flow is ignored. The objective of this study is to develop a thermohydroulic model for a typical RER system that accounts for energy loss from the interconnecting piping and effects of interconnecting pipes length performance of run-around energy recovery systems. Numerical simulation shows that energy loss from the interconnecting piping is change linear with pipes length and if pipes are properly isolated, maximum reduction of effectiveness of RER systems is 2% in typical piping systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20heat%20and%20power" title="combined heat and power">combined heat and power</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20recovery" title=" heat recovery"> heat recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=effectiveness" title=" effectiveness"> effectiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=CGS" title=" CGS"> CGS</a> </p> <a href="https://publications.waset.org/abstracts/53612/combined-heat-and-power-generation-in-pressure-reduction-city-gas-station-cgs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7540</span> A Phase Change Materials Thermal Storage for Ground-Source Heat Pumps: Computational Fluid Dynamics Analysis of Innovative Layouts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emanuele%20Bonamente">Emanuele Bonamente</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Aquino"> Andrea Aquino</a>, <a href="https://publications.waset.org/abstracts/search?q=Franco%20Cotana"> Franco Cotana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The exploitation of the low-temperature geothermal resource via ground-source heat pumps is often limited by the high investment cost mainly due to borehole drilling. From the monitoring of a prototypal system currently used by a commercial building, it was found that a simple upgrade of the conventional layout, obtained including a thermal storage between the ground-source heat exchangers and the heat pump, can optimize the ground energy exploitation requiring for shorter/fewer boreholes. For typical applications, a reduction of up to 66% with respect to the conventional layout can be easily achieved. Results from the monitoring campaign of the prototype are presented in this paper, and upgrades of the thermal storage using phase change materials (PCMs) are proposed using computational fluid dynamics simulations. The PCM thermal storage guarantees an improvement of the system coefficient of performance both for summer cooling and winter heating (up to 25%). A drastic reduction of the storage volume (approx. 1/10 of the original size) is also achieved, making it possible to easily place it within the technical room, avoiding extra costs for underground displacement. A preliminary optimization of the PCM geometry is finally proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20%28CFD%29" title="computational fluid dynamics (CFD)">computational fluid dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal%20energy" title=" geothermal energy"> geothermal energy</a>, <a href="https://publications.waset.org/abstracts/search?q=ground-source%20heat%20pumps" title=" ground-source heat pumps"> ground-source heat pumps</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20materials%20%28PCM%29" title=" phase change materials (PCM)"> phase change materials (PCM)</a> </p> <a href="https://publications.waset.org/abstracts/56262/a-phase-change-materials-thermal-storage-for-ground-source-heat-pumps-computational-fluid-dynamics-analysis-of-innovative-layouts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7539</span> Eco-Friendly Electricity Production from the Waste Heat of Air Conditioners</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anvesh%20Rajak">Anvesh Rajak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This is a new innovation that can be developed. Here I am going to use the waste heat of air conditioner so as to produce the electricity by using the Stirling engine because this waste heat creates the thermal pollution in the environment. The waste heat from the air conditioners has caused a temperature rise of 1°–2°C or more on weekdays in the Tokyo office areas. This heating promotes the heat-island phenomenon in Tokyo on weekdays. Now these air conditioners creates the thermal pollution in the environment and hence rising the temperature of the environment. Air conditioner generally emit the waste heat air whose temperature is about 50°C which heat the environment. Today the demand of energy is increasing tremendously, but available energy lacks in supply. Hence, there is no option for proper and efficient utilization and conservation of energy. In this paper the main stress is given on energy conservation by using technique of utilizing waste heat from Air-conditioning system. Actually the focus is on the use of the waste heat rather than improving the COP of the air- conditioners; if also we improve the COP of air conditioners gradually it would emit some waste heat so I want that waste heat to be used up. As I have used air conditioner’s waste heat to produce electricity so similarly there are various other appliances which emit the waste heat in the surrounding so here also we could use the Stirling engines and Geothermal heat pump concept to produce the electricity and hence can reduce the thermal pollution in the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stirling%20engine" title="stirling engine">stirling engine</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal%20heat%20pumps" title=" geothermal heat pumps"> geothermal heat pumps</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20heat" title=" waste heat"> waste heat</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20conditioners" title=" air conditioners"> air conditioners</a> </p> <a href="https://publications.waset.org/abstracts/21473/eco-friendly-electricity-production-from-the-waste-heat-of-air-conditioners" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7538</span> Integrated Passive Cooling Systems for Tropical Residential Buildings: A Review through the Lens of Latent Heat Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Eso">O. Eso</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mohammadi"> M. Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Darkwa"> J. Darkwa</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Calautit"> J. Calautit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Residential buildings are responsible for 22% of the global end-use energy demand and 17% of global CO₂ emissions. Tropical climates particularly present higher latent heat gains, leading to more cooling loads. However, the cooling processes are all based on conventional mechanical air conditioning systems which are energy and carbon intensive technologies. Passive cooling systems have in the past been considered as alternative technologies for minimizing energy consumption in buildings. Nevertheless, replacing mechanical cooling systems with passive ones will require a careful assessment of the passive cooling system heat transfer to determine if suitable to outperform their conventional counterparts. This is because internal heat gains, indoor-outdoor heat transfer, and heat transfer through envelope affects the performance of passive cooling systems. While many studies have investigated sensible heat transfer in passive cooling systems, not many studies have focused on their latent heat transfer capabilities. Furthermore, combining heat prevention, heat modulation and heat dissipation to passively cool indoor spaces in the tropical climates is critical to achieve thermal comfort. Since passive cooling systems use only one of these three approaches at a time, integrating more than one passive cooling system for effective indoor latent heat removal while still saving energy is studied. This study is a systematic review of recently published peer review journals on integrated passive cooling systems for tropical residential buildings. The missing links in the experimental and numerical studies with regards to latent heat reduction interventions are presented. Energy simulation studies of integrated passive cooling systems in tropical residential buildings are also discussed. The review has shown that comfortable indoor environment is attainable when two or more passive cooling systems are integrated in tropical residential buildings. Improvement occurs in the heat transfer rate and cooling performance of the passive cooling systems when thermal energy storage systems like phase change materials are included. Integrating passive cooling systems in tropical residential buildings can reduce energy consumption by 6-87% while achieving up to 17.55% reduction in indoor heat flux. The review has highlighted a lack of numerical studies regarding passive cooling system performance in tropical savannah climates. In addition, detailed studies are required to establish suitable latent heat transfer rate in passive cooling ventilation devices under this climate category. This should be considered in subsequent studies. The conclusions and outcomes of this study will help researchers understand the overall energy performance of integrated passive cooling systems in tropical climates and help them identify and design suitable climate specific options for residential buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20savings" title="energy savings">energy savings</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20heat" title=" latent heat"> latent heat</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20cooling%20systems" title=" passive cooling systems"> passive cooling systems</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20buildings" title=" residential buildings"> residential buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=tropical%20residential%20buildings" title=" tropical residential buildings"> tropical residential buildings</a> </p> <a href="https://publications.waset.org/abstracts/137580/integrated-passive-cooling-systems-for-tropical-residential-buildings-a-review-through-the-lens-of-latent-heat-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7537</span> Comparative Syudy Of Heat Transfer Capacity Limits of Heat Pipe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Shokouhmand">H. Shokouhmand</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghanami"> A. Ghanami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also observed that the vertical orientation of heat pipe enhances it’s heat transfer capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20pipe" title="heat pipe">heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=HVAC%20system" title=" HVAC system"> HVAC system</a>, <a href="https://publications.waset.org/abstracts/search?q=grooved%20heat%20pipe" title=" grooved heat pipe"> grooved heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20pipe%20limits" title=" heat pipe limits "> heat pipe limits </a> </p> <a href="https://publications.waset.org/abstracts/22754/comparative-syudy-of-heat-transfer-capacity-limits-of-heat-pipe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7536</span> Determination of Flow Arrangement for Optimum Performance in Heat Exchangers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Salisu%20Atiku">Ahmed Salisu Atiku</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This task involves the determination of the flow arrangement for optimum performance and the calculation of total heat transfer of two identical double pipe heat exchangers in series. The inner pipe contains the cold water stream at 27°C, whilst the outer pipe contains the two hot stream of water at 50°C and 90 °C which can be mixed in any way desired. The analysis was carried out using counter flow arrangement due to its good heat transfer ability. The best way of heating this cold stream was found out to be passing the 90°C hot stream through the two heat exchangers. The outlet temperature of the cold stream was found to be 39.6°C and overall heat transfer of 131.3 kW. Though starting with 50°C hot stream in the first heat exchanger followed by 90°C hot stream in the second heat exchanger gives an outlet temperature almost the same as 90°C hot stream alone, but the heat transfer is low. The reason for the low heat transfer was that only the heat transfer in the second heat exchanger is considered. Whilst the reason behind high outlet temperature was that the cold stream was already preheated by the first stream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20stream" title="cold stream">cold stream</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20arrangement" title=" flow arrangement"> flow arrangement</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20exchanger" title=" heat exchanger"> heat exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20stream" title=" hot stream"> hot stream</a> </p> <a href="https://publications.waset.org/abstracts/51973/determination-of-flow-arrangement-for-optimum-performance-in-heat-exchangers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7535</span> Comparative Study of Heat Transfer Capacity Limits of Heat Pipes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Shokouhmand">H. Shokouhmand</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghanami"> A. Ghanami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20pipe" title="heat pipe">heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=HVAC%20system" title=" HVAC system"> HVAC system</a>, <a href="https://publications.waset.org/abstracts/search?q=grooved%20Heat%20pipe" title=" grooved Heat pipe"> grooved Heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20pipe%20limits" title=" heat pipe limits"> heat pipe limits</a> </p> <a href="https://publications.waset.org/abstracts/22791/comparative-study-of-heat-transfer-capacity-limits-of-heat-pipes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heat%20reduction&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heat%20reduction&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heat%20reduction&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heat%20reduction&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heat%20reduction&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heat%20reduction&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heat%20reduction&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heat%20reduction&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heat%20reduction&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heat%20reduction&amp;page=252">252</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heat%20reduction&amp;page=253">253</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heat%20reduction&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10