CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 118 results for author: <span class="mathjax">Hu, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Hu%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Hu, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Hu%2C+M&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Hu, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Hu%2C+M&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Hu%2C+M&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Hu%2C+M&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Hu%2C+M&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.05607">arXiv:2412.05607</a> <span> [<a href="https://arxiv.org/pdf/2412.05607">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Unveiling Non-Hermitian Spectral Topology in Hyperbolic Lattices with Non-Abelian Translation Symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hu%2C+M">Mengying Hu</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+J">Jing Lin</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+K">Kun Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.05607v1-abstract-short" style="display: inline;"> The hyperbolic lattice (HBL) has emerged as a compelling platform for exploring matter in non-Euclidean space. Among its notable features, the breakdown of the conventional Bloch theorem stands out, prompting a reexamination of band theory, with the determination of spectra for non-Hermitian systems being a prominent example. Here, we develop an approach to determining the spectra under open bound… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05607v1-abstract-full').style.display = 'inline'; document.getElementById('2412.05607v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.05607v1-abstract-full" style="display: none;"> The hyperbolic lattice (HBL) has emerged as a compelling platform for exploring matter in non-Euclidean space. Among its notable features, the breakdown of the conventional Bloch theorem stands out, prompting a reexamination of band theory, with the determination of spectra for non-Hermitian systems being a prominent example. Here, we develop an approach to determining the spectra under open boundary conditions (OBCs), one of the foundations in non-Hermitian lattices, from the reciprocal space of HBLs. By introducing supercells to encompass states that are allowed by non-Abelian translational groups, we perform analytic continuation and base on the point gap topology to acquire uniform spectra, the universal OBC spectral range. Applying this method to a single-band nonreciprocal model and a reciprocal non-Abelian semimetal model, we reveal higher-dimensional skin effects and topological phase transitions, respectively, demonstrating the feasibility of our method in predicting spectral topology and investigating non-Hermitian physics in HBLs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05607v1-abstract-full').style.display = 'none'; document.getElementById('2412.05607v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18707">arXiv:2411.18707</a> <span> [<a href="https://arxiv.org/pdf/2411.18707">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> All-passive upconversion imaging of incoherent near-infrared light at intensities down to 50 nW/cm$^2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hamid%2C+R">Rabeeya Hamid</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+D">Demeng Feng</a>, <a href="/search/physics?searchtype=author&query=Narayanan%2C+P">Pournima Narayanan</a>, <a href="/search/physics?searchtype=author&query=Edwards%2C+J+S">Justin S. Edwards</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Manchen Hu</a>, <a href="/search/physics?searchtype=author&query=Belliveau%2C+E">Emma Belliveau</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+M">Minjeong Kim</a>, <a href="/search/physics?searchtype=author&query=Deshpande%2C+S">Sanket Deshpande</a>, <a href="/search/physics?searchtype=author&query=Wan%2C+C">Chenghao Wan</a>, <a href="/search/physics?searchtype=author&query=Pucurimay%2C+L">Linda Pucurimay</a>, <a href="/search/physics?searchtype=author&query=Czaplewski%2C+D+A">David A. Czaplewski</a>, <a href="/search/physics?searchtype=author&query=Congreve%2C+D+N">Daniel N. Congreve</a>, <a href="/search/physics?searchtype=author&query=Kats%2C+M+A">Mikhail A. Kats</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18707v1-abstract-short" style="display: inline;"> Frequency upconversion, which converts low-energy photons into higher-energy ones, typically requires intense coherent illumination to drive nonlinear processes or the use of externally driven optoelectronic devices. Here, we demonstrate a high-resolution upconversion imaging system that converts low-intensity (down to 50 nW/cm$^2$) incoherent near-infrared (NIR) light into the visible, reaching i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18707v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18707v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18707v1-abstract-full" style="display: none;"> Frequency upconversion, which converts low-energy photons into higher-energy ones, typically requires intense coherent illumination to drive nonlinear processes or the use of externally driven optoelectronic devices. Here, we demonstrate a high-resolution upconversion imaging system that converts low-intensity (down to 50 nW/cm$^2$) incoherent near-infrared (NIR) light into the visible, reaching intensities perceptible by the human eye, without the use of any external power input. Our upconverting element is enabled by the following ingredients: (1) photon upconversion via triplet-triplet annihilation in a bulk heterojunction of the organic semiconductors Y6 and rubrene; (2) plasmonic enhancement of absorption and field intensity in the heterojunction layer; (3) collection enhancement using a dichroic thin-film assembly. The upconverting element is inserted at an intermediate image plane of a dual-wavelength telescope system, which preserves the relative directionality of rays between the incident NIR light and output visible light. Our all-passive upconversion imaging system will enable NIR imaging and sensing in low-light environments under energy constraints. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18707v1-abstract-full').style.display = 'none'; document.getElementById('2411.18707v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text + supplementary</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08173">arXiv:2411.08173</a> <span> [<a href="https://arxiv.org/pdf/2411.08173">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Current Progress of Digital Twin Construction Using Medical Imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhao%2C+F">Feng Zhao</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Y">Yizhou Wu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Mingzhe Hu</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+C">Chih-Wei Chang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+R">Ruirui Liu</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+R">Richard Qiu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+X">Xiaofeng Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08173v1-abstract-short" style="display: inline;"> Medical imaging has played a pivotal role in advancing and refining digital twin technology, allowing for the development of highly personalized virtual models that represent human anatomy and physiological functions. A key component in constructing these digital twins is the integration of high-resolution imaging data, such as MRI, CT, PET, and ultrasound, with sophisticated computational models.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08173v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08173v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08173v1-abstract-full" style="display: none;"> Medical imaging has played a pivotal role in advancing and refining digital twin technology, allowing for the development of highly personalized virtual models that represent human anatomy and physiological functions. A key component in constructing these digital twins is the integration of high-resolution imaging data, such as MRI, CT, PET, and ultrasound, with sophisticated computational models. Advances in medical imaging significantly enhance real-time simulation, predictive modeling, and early disease diagnosis, individualized treatment planning, ultimately boosting precision and personalized care. Although challenges persist, such as the complexity of anatomical modeling, integrating various imaging modalities, and high computational demands, recent progress in imaging and machine learning has greatly improved the precision and clinical applicability of digital twins. This review investigates the role of medical imaging in developing digital twins across organ systems. Key findings demonstrate that improvements in medical imaging have enhanced the diagnostic and therapeutic potential of digital twins beyond traditional methods, particularly in imaging accuracy, treatment effectiveness, and patient outcomes. The review also examines the technical barriers that currently limit further development of digital twin technology, despite advances in medical imaging, and outlines future research avenues aimed at overcoming these challenges to unlock the full potential of this technology in precision medicine. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08173v1-abstract-full').style.display = 'none'; document.getElementById('2411.08173v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02153">arXiv:2410.02153</a> <span> [<a href="https://arxiv.org/pdf/2410.02153">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Enhancing heat transfer in X-ray tube by van der heterostructures-based thermionic emission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Huang%2C+S">Sunchao Huang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+S">Suguo Chen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yue Wang</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+X">Xihang Shi</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xiaoqiuyan Zhang</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Min Hu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+P">Ping Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Shaomeng Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+Y">Yubin Gong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02153v1-abstract-short" style="display: inline;"> Van der Waals (vdW) heterostructures have attracted much attention due to their distinctive optical, electrical, and thermal properties, demonstrating promising potential in areas such as photocatalysis, ultrafast photonics, and free electron radiation devices. Particularly, they are promising platforms for studying thermionic emission. Here, we illustrate that using vdW heterostructure-based ther… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02153v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02153v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02153v1-abstract-full" style="display: none;"> Van der Waals (vdW) heterostructures have attracted much attention due to their distinctive optical, electrical, and thermal properties, demonstrating promising potential in areas such as photocatalysis, ultrafast photonics, and free electron radiation devices. Particularly, they are promising platforms for studying thermionic emission. Here, we illustrate that using vdW heterostructure-based thermionic emission can enhance heat transfer in vacuum devices. As a proof of concept, we demonstrate that this approach offers a promising solution to the long-standing overheating issue in X-ray tubes. Specifically, we show that the saturated target temperature of a 2000 W X-ray tube can be reduced from around 1200 celsius to 490 celsius. Additionally, our study demonstrates that by reducing the height of the Schottky barrier formed in the vdW heterostructures, the thermionic cooling performance can be enhanced. Our findings pave the way for the development of high-power X-ray tubes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02153v1-abstract-full').style.display = 'none'; document.getElementById('2410.02153v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures, 11 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09806">arXiv:2409.09806</a> <span> [<a href="https://arxiv.org/pdf/2409.09806">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Room-temperature valley-selective emission in Si-MoSe2 heterostructures enabled by high-quality-factor chiroptical cavities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pan%2C+F">Feng Pan</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xin Li</a>, <a href="/search/physics?searchtype=author&query=Johnson%2C+A+C">Amalya C. Johnson</a>, <a href="/search/physics?searchtype=author&query=Dhuey%2C+S">Scott Dhuey</a>, <a href="/search/physics?searchtype=author&query=Saunders%2C+A">Ashley Saunders</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Meng-Xia Hu</a>, <a href="/search/physics?searchtype=author&query=Dixon%2C+J+P">Jefferson P. Dixon</a>, <a href="/search/physics?searchtype=author&query=Dagli%2C+S">Sahil Dagli</a>, <a href="/search/physics?searchtype=author&query=Lau%2C+S">Sze-Cheung Lau</a>, <a href="/search/physics?searchtype=author&query=Weng%2C+T">Tingting Weng</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+C">Chih-Yi Chen</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+J">Jun-Hao Zeng</a>, <a href="/search/physics?searchtype=author&query=Apte%2C+R">Rajas Apte</a>, <a href="/search/physics?searchtype=author&query=Heinz%2C+T+F">Tony F. Heinz</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+F">Fang Liu</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+Z">Zi-Lan Deng</a>, <a href="/search/physics?searchtype=author&query=Dionne%2C+J+A">Jennifer A. Dionne</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09806v3-abstract-short" style="display: inline;"> Transition metal dichalcogenides (TMDCs) possess valley pseudospin, allowing photon spin to be coupled to electron spin and enabling initialization and readout of both classical and quantum information. Rapid valley-dephasing processes have impeded the development of scalable, high-performance valleytronic devices operating at room temperature. Here we demonstrate that a chiral resonant metasurfac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09806v3-abstract-full').style.display = 'inline'; document.getElementById('2409.09806v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09806v3-abstract-full" style="display: none;"> Transition metal dichalcogenides (TMDCs) possess valley pseudospin, allowing photon spin to be coupled to electron spin and enabling initialization and readout of both classical and quantum information. Rapid valley-dephasing processes have impeded the development of scalable, high-performance valleytronic devices operating at room temperature. Here we demonstrate that a chiral resonant metasurface can enable room-temperature valley-selective emission, even with linearly polarized excitation. This platform provides circular eigen-polarization states with a high quality factor (Q-factor) and strong chiral near-field enhancement, resulting in unitary emission circular dichroism (i.e. single-handed circularly polarized emission). Our fabricated Si chiral metasurfaces exhibit chiral electromagnetic modes with Q-factors up to 450 at visible wavelengths, spectrally tuned to the exciton energy of MoSe2 monolayers. Using spatially- and spectrally-resolved mapping from temperatures of 100 K to 294 K, we demonstrate degrees of circular polarization (DOP) reaching a record high of 0.5 at room temperature. Reciprocal space mapping of the exciton emission reveals the chiral q-BIC localizes valley-selective emission in the vicinity of the photonic gamma-point. Photon-spin and time-resolved photoluminescence measurements show that the high DOP can be attributed to the significantly increased chiroptical local density of states provided by the metasurface, which enhances valley-specific radiative transition rates by a factor of approximately 13, with lifetimes as short as 189 ps. Our work could facilitate the development of compact chiral classical and quantum light sources and the creation of molecular chiral polaritons for quantum enantioselective synthesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09806v3-abstract-full').style.display = 'none'; document.getElementById('2409.09806v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02576">arXiv:2408.02576</a> <span> [<a href="https://arxiv.org/pdf/2408.02576">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Nanoscale Engineering of Wurtzite Ferroelectrics: Unveiling Phase Transition and Ferroelectric Switching in ScAlN Nanowires </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+D">Ding Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+P">Ping Wang</a>, <a href="/search/physics?searchtype=author&query=Mondal%2C+S">Shubham Mondal</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Mingtao Hu</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Y">Yuanpeng Wu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+D">Danhao Wang</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+K">Kai Sun</a>, <a href="/search/physics?searchtype=author&query=Mi%2C+Z">Zetian Mi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02576v1-abstract-short" style="display: inline;"> The pursuit of extreme device miniaturization and the exploration of novel physical phenomena have spurred significant interest in crystallographic phase control and ferroelectric switching in reduced dimensions. Recently, wurtzite ferroelectrics have emerged as a new class of functional materials, offering intriguing piezoelectric and ferroelectric properties, CMOS compatibility, and seamless int… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02576v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02576v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02576v1-abstract-full" style="display: none;"> The pursuit of extreme device miniaturization and the exploration of novel physical phenomena have spurred significant interest in crystallographic phase control and ferroelectric switching in reduced dimensions. Recently, wurtzite ferroelectrics have emerged as a new class of functional materials, offering intriguing piezoelectric and ferroelectric properties, CMOS compatibility, and seamless integration with mainstream semiconductor technology. However, the exploration of crystallographic phase and ferroelectric switching in reduced dimensions, especially in nanostructures, has remained a largely uncharted territory. In this study, we present the first comprehensive investigation into the crystallographic phase transition of ScAlN nanowires across the full Sc compositional range. While a gradual transition from wurtzite to cubic phase was observed with increasing Sc composition, we further demonstrated that a highly ordered wurtzite phase ScAlN could be confined at the ScAlN/GaN interface for Sc contents surpassing what is possible in conventional films, holding great potential to addressing the fundamental high coercive field of wurtzite ferroelectrics. In addition, we provide the first evidence of ferroelectric switching in ScAlN nanowires, a result that holds significant implications for future device miniaturization. Our demonstration of tunable ferroelectric ScAlN nanowires opens new possibilities for nanoscale, domain, alloy, strain, and quantum engineering of wurtzite ferroelectrics, representing a significant stride towards the development of next-generation, miniaturized devices based on wurtzite ferroelectrics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02576v1-abstract-full').style.display = 'none'; document.getElementById('2408.02576v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07651">arXiv:2407.07651</a> <span> [<a href="https://arxiv.org/pdf/2407.07651">pdf</a>, <a href="https://arxiv.org/format/2407.07651">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/physics?searchtype=author&query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&query=Balossino%2C+I">I. Balossino</a>, <a href="/search/physics?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/physics?searchtype=author&query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/physics?searchtype=author&query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/physics?searchtype=author&query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&query=Bianco%2C+E">E. Bianco</a>, <a href="/search/physics?searchtype=author&query=Bortone%2C+A">A. Bortone</a>, <a href="/search/physics?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07651v1-abstract-short" style="display: inline;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07651v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07651v1-abstract-full" style="display: none;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be $(35.9\pm 4.8\pm 3.5)\%$ and $(37.4\pm 3.1\pm 4.6)\%$, respectively. The measurements are in tension with predictions based on the assumption that the $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $c\bar{s}$ component. The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of $15蟽$ in the $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Belle collaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'none'; document.getElementById('2407.07651v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02553">arXiv:2407.02553</a> <span> [<a href="https://arxiv.org/pdf/2407.02553">pdf</a>, <a href="https://arxiv.org/format/2407.02553">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Large-scale quantum reservoir learning with an analog quantum computer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kornja%C4%8Da%2C+M">Milan Kornja膷a</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+H">Hong-Ye Hu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+C">Chen Zhao</a>, <a href="/search/physics?searchtype=author&query=Wurtz%2C+J">Jonathan Wurtz</a>, <a href="/search/physics?searchtype=author&query=Weinberg%2C+P">Phillip Weinberg</a>, <a href="/search/physics?searchtype=author&query=Hamdan%2C+M">Majd Hamdan</a>, <a href="/search/physics?searchtype=author&query=Zhdanov%2C+A">Andrii Zhdanov</a>, <a href="/search/physics?searchtype=author&query=Cantu%2C+S+H">Sergio H. Cantu</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+H">Hengyun Zhou</a>, <a href="/search/physics?searchtype=author&query=Bravo%2C+R+A">Rodrigo Araiza Bravo</a>, <a href="/search/physics?searchtype=author&query=Bagnall%2C+K">Kevin Bagnall</a>, <a href="/search/physics?searchtype=author&query=Basham%2C+J+I">James I. Basham</a>, <a href="/search/physics?searchtype=author&query=Campo%2C+J">Joseph Campo</a>, <a href="/search/physics?searchtype=author&query=Choukri%2C+A">Adam Choukri</a>, <a href="/search/physics?searchtype=author&query=DeAngelo%2C+R">Robert DeAngelo</a>, <a href="/search/physics?searchtype=author&query=Frederick%2C+P">Paige Frederick</a>, <a href="/search/physics?searchtype=author&query=Haines%2C+D">David Haines</a>, <a href="/search/physics?searchtype=author&query=Hammett%2C+J">Julian Hammett</a>, <a href="/search/physics?searchtype=author&query=Hsu%2C+N">Ning Hsu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Ming-Guang Hu</a>, <a href="/search/physics?searchtype=author&query=Huber%2C+F">Florian Huber</a>, <a href="/search/physics?searchtype=author&query=Jepsen%2C+P+N">Paul Niklas Jepsen</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+N">Ningyuan Jia</a>, <a href="/search/physics?searchtype=author&query=Karolyshyn%2C+T">Thomas Karolyshyn</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+M">Minho Kwon</a> , et al. (28 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02553v1-abstract-short" style="display: inline;"> Quantum machine learning has gained considerable attention as quantum technology advances, presenting a promising approach for efficiently learning complex data patterns. Despite this promise, most contemporary quantum methods require significant resources for variational parameter optimization and face issues with vanishing gradients, leading to experiments that are either limited in scale or lac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02553v1-abstract-full').style.display = 'inline'; document.getElementById('2407.02553v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02553v1-abstract-full" style="display: none;"> Quantum machine learning has gained considerable attention as quantum technology advances, presenting a promising approach for efficiently learning complex data patterns. Despite this promise, most contemporary quantum methods require significant resources for variational parameter optimization and face issues with vanishing gradients, leading to experiments that are either limited in scale or lack potential for quantum advantage. To address this, we develop a general-purpose, gradient-free, and scalable quantum reservoir learning algorithm that harnesses the quantum dynamics of neutral-atom analog quantum computers to process data. We experimentally implement the algorithm, achieving competitive performance across various categories of machine learning tasks, including binary and multi-class classification, as well as timeseries prediction. Effective and improving learning is observed with increasing system sizes of up to 108 qubits, demonstrating the largest quantum machine learning experiment to date. We further observe comparative quantum kernel advantage in learning tasks by constructing synthetic datasets based on the geometric differences between generated quantum and classical data kernels. Our findings demonstrate the potential of utilizing classically intractable quantum correlations for effective machine learning. We expect these results to stimulate further extensions to different quantum hardware and machine learning paradigms, including early fault-tolerant hardware and generative machine learning tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02553v1-abstract-full').style.display = 'none'; document.getElementById('2407.02553v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 + 14 pages, 4 + 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.13716">arXiv:2405.13716</a> <span> [<a href="https://arxiv.org/pdf/2405.13716">pdf</a>, <a href="https://arxiv.org/format/2405.13716">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> </div> <p class="title is-5 mathjax"> Bose-Einstein condensation of an optical thermodynamic system into a solitonic state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jiaxuan Zhang</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+J">Jintao Fan</a>, <a href="/search/physics?searchtype=author&query=Mei%2C+C">Chao Mei</a>, <a href="/search/physics?searchtype=author&query=Steinmeyer%2C+G">G眉nter Steinmeyer</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Minglie Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.13716v1-abstract-short" style="display: inline;"> Recent years have seen a resurgence of interest in multimode fibers due to their intriguing physics and applications, with spatial beam self-cleaning (BSC) having received special attention. In BSC light condenses into the fundamental fiber mode at elevated intensities. Despite extensive efforts utilizing optical thermodynamics to explain such counterintuitive beam reshaping process, several chall… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13716v1-abstract-full').style.display = 'inline'; document.getElementById('2405.13716v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.13716v1-abstract-full" style="display: none;"> Recent years have seen a resurgence of interest in multimode fibers due to their intriguing physics and applications, with spatial beam self-cleaning (BSC) having received special attention. In BSC light condenses into the fundamental fiber mode at elevated intensities. Despite extensive efforts utilizing optical thermodynamics to explain such counterintuitive beam reshaping process, several challenges still remain in fully understanding underlying physics. Here we provide compelling experimental evidence that BSC in a dissipative dual-core fiber can be understood in full analogy to Bose-Einstein condensation (BEC) in dilute gases. Being ruled by the identical Gross-Pitaevskii Equation, both systems feature a Townes soliton solution, for which we find further evidence by modal decomposition of our experimental data. Specifically, we observe that efficient BSC only sets in after an initial thermalization phase, causing converge towards a Townes beam profile once a threshold intensity has been surpassed. This process is akin to a transition from classical to quantum-mechanical thermodynamics in BEC. Furthermore, our analysis also identifies dissipative processes as a crucial, yet previously unidentified component for efficient BSC in multimode fiber. This discovery paves the way for unprecedented applications of multimode-fiber based systems in ultrafast lasers, communications, and fiber-based delivery of high-power laser beams. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.13716v1-abstract-full').style.display = 'none'; document.getElementById('2405.13716v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07620">arXiv:2310.07620</a> <span> [<a href="https://arxiv.org/pdf/2310.07620">pdf</a>, <a href="https://arxiv.org/format/2310.07620">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum interference and entanglement in ultracold atom-exchange reactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yi-Xiang Liu</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+L">Lingbang Zhu</a>, <a href="/search/physics?searchtype=author&query=Luke%2C+J">Jeshurun Luke</a>, <a href="/search/physics?searchtype=author&query=Houwman%2C+J+J+A">J. J. Arfor Houwman</a>, <a href="/search/physics?searchtype=author&query=Babin%2C+M+C">Mark C. Babin</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Ming-Guang Hu</a>, <a href="/search/physics?searchtype=author&query=Ni%2C+K">Kang-Kuen Ni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07620v1-abstract-short" style="display: inline;"> Coherent superpositions and entanglement are hallmarks of quantum mechanics, but they are fragile and can easily be perturbed by their environment. Selected isolated physical systems can maintain coherence and generate entanglement using well-controlled interactions. Chemical reactions, where bonds break and form, are highly dynamic quantum processes. A fundamental question is whether coherence ca… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07620v1-abstract-full').style.display = 'inline'; document.getElementById('2310.07620v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07620v1-abstract-full" style="display: none;"> Coherent superpositions and entanglement are hallmarks of quantum mechanics, but they are fragile and can easily be perturbed by their environment. Selected isolated physical systems can maintain coherence and generate entanglement using well-controlled interactions. Chemical reactions, where bonds break and form, are highly dynamic quantum processes. A fundamental question is whether coherence can be preserved in chemical reactions and then harnessed to generate entangled products. Here we investigate this question by studying the 2KRb $\rightarrow$ K$_2$ + Rb$_2$ reaction at 500 nK, focusing on the the nuclear spin degrees of freedom. We prepare the initial nuclear spins in KRb in an entangled state and characterize the preserved coherence in nuclear spin wavefunction after the reaction. The data are consistent with full coherence at the end of the reaction. This suggests that entanglement can be prepared within the reactants, followed by a chemical reaction that produces separate, entangled molecules. We additionally demonstrate control of the reaction product state distribution by deliberately decohering the reactants. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07620v1-abstract-full').style.display = 'none'; document.getElementById('2310.07620v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.04490">arXiv:2309.04490</a> <span> [<a href="https://arxiv.org/pdf/2309.04490">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Efficient synthesis of Vitamin D3 in a 3D ultraviolet photochemical microreactor fabricated using an ultrafast laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+A">Aodong Zhang</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+J">Jian Xu</a>, <a href="/search/physics?searchtype=author&query=Xia%2C+L">Lingling Xia</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Ming Hu</a>, <a href="/search/physics?searchtype=author&query=Song%2C+Y">Yunpeng Song</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+M">Miao Wu</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+Y">Ya Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.04490v1-abstract-short" style="display: inline;"> Large-scale, high-precision, and high-transparency microchannels hold great potential for developing high-performance continuous-flow photochemical reactions. We demonstrate ultrafast laser-enabled fabrication of 3D microchannel reactors in ultraviolet (UV) grade fused silica which exhibit high transparency under the illumination of UV light sources of wavelengths well below 300 nm with excellent… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04490v1-abstract-full').style.display = 'inline'; document.getElementById('2309.04490v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.04490v1-abstract-full" style="display: none;"> Large-scale, high-precision, and high-transparency microchannels hold great potential for developing high-performance continuous-flow photochemical reactions. We demonstrate ultrafast laser-enabled fabrication of 3D microchannel reactors in ultraviolet (UV) grade fused silica which exhibit high transparency under the illumination of UV light sources of wavelengths well below 300 nm with excellent mixing efficiency. With the fabricated glass microchannel reactors, we demonstrate continuous-flow UV photochemical synthesis of vitamin D3 with low power consumption of the UV light sources. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.04490v1-abstract-full').style.display = 'none'; document.getElementById('2309.04490v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.14349">arXiv:2308.14349</a> <span> [<a href="https://arxiv.org/pdf/2308.14349">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11433-023-2344-6">10.1007/s11433-023-2344-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Anisotropic magnetism and band evolution induced by ferromagnetic phase transition in titanium-based kagome ferromagnet SmTi3Bi4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zheng%2C+Z">Zhe Zheng</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+L">Long Chen</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+X">Xuecong Ji</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Y">Ying Zhou</a>, <a href="/search/physics?searchtype=author&query=Qu%2C+G">Gexing Qu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Mingzhe Hu</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y">Yaobo Huang</a>, <a href="/search/physics?searchtype=author&query=Weng%2C+H">Hongming Weng</a>, <a href="/search/physics?searchtype=author&query=Qian%2C+T">Tian Qian</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+G">Gang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.14349v2-abstract-short" style="display: inline;"> Kagome magnets with diverse topological quantum responses are crucial for next-generation topological engineering. The anisotropic magnetism and band evolution induced by ferromagnetic phase transition (FMPT) is reported in a newly discovered titanium-based kagome ferromagnet S mTi3 Bi4, which features a distorted Ti kagome lattice and S m atomic zig-zag chains. Temperature-dependent resistivity,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14349v2-abstract-full').style.display = 'inline'; document.getElementById('2308.14349v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.14349v2-abstract-full" style="display: none;"> Kagome magnets with diverse topological quantum responses are crucial for next-generation topological engineering. The anisotropic magnetism and band evolution induced by ferromagnetic phase transition (FMPT) is reported in a newly discovered titanium-based kagome ferromagnet S mTi3 Bi4, which features a distorted Ti kagome lattice and S m atomic zig-zag chains. Temperature-dependent resistivity, heat capacity, and magnetic susceptibility reveal a ferromagnetic ordering temperature Tc of 23.2 K. A large magnetic anisotropy, observed by applying the magnetic field along three crystallographic axes, identifies the b axis as the easy axis. Angle-resolved photoemission spectroscopy with first-principles calculations unveils the characteristic kagome motif, including the Dirac point at the Fermi level and multiple van Hove singularities. Notably, a band splitting and gap closing attributed to FMPT is observed, originating from the exchange coupling between S m 4 f local moments and itinerant electrons of the kagome Ti atoms, as well as the time-reversal symmetry breaking induced by the long-range ferromagnetic order. Considering the large in-plane magnetization and the evolution of electronic structure under the influence of ferromagnetic ordering, such materials promise to be a new platform for exploring the intricate electronic properties and magnetic phases based on the kagome lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14349v2-abstract-full').style.display = 'none'; document.getElementById('2308.14349v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript: 9 pages, 4 figures, Supporting information: 4 pages,6 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. China Phys. Mech. Astron. 67, 267411 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.14238">arXiv:2308.14238</a> <span> [<a href="https://arxiv.org/pdf/2308.14238">pdf</a>, <a href="https://arxiv.org/format/2308.14238">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Dynamic Mechanism of Catastrophic Collapse: An New Perspective on Earthquake Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Regenauer-Lieb%2C+K">Klaus Regenauer-Lieb</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Manman Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.14238v1-abstract-short" style="display: inline;"> The collapse of man-made and natural structures is a complex phenomenon that has been studied for centuries. We propose a new approach to understanding catastrophic instabilities, based on the idea that they do not occur at the critical point, but rather develop out of the subcritical regime as short-lived extreme events. We use an extension of Onsager's reciprocal theorem to study the subcritical… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14238v1-abstract-full').style.display = 'inline'; document.getElementById('2308.14238v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.14238v1-abstract-full" style="display: none;"> The collapse of man-made and natural structures is a complex phenomenon that has been studied for centuries. We propose a new approach to understanding catastrophic instabilities, based on the idea that they do not occur at the critical point, but rather develop out of the subcritical regime as short-lived extreme events. We use an extension of Onsager's reciprocal theorem to study the subcritical regime, and we show that excitable systems in this regime are attracted to a nonlocal equilibrium that defines the maximum entropy production of at least two interacting phases. In most cases, these feedback systems are arrested by dissipative processes at larger scale, but in rare cases they can form tensor networks of instabilities that ripple from the small scale to the largest scale, forming extreme events. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14238v1-abstract-full').style.display = 'none'; document.getElementById('2308.14238v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.06930">arXiv:2308.06930</a> <span> [<a href="https://arxiv.org/pdf/2308.06930">pdf</a>, <a href="https://arxiv.org/format/2308.06930">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevFluids.9.L072001">10.1103/PhysRevFluids.9.L072001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Vertical-supercooling-controlled interfacial instability for a spreading liquid film </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+L">Li Chen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+F">Feng Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yingrui Wang</a>, <a href="/search/physics?searchtype=author&query=Huo%2C+P">Peng Huo</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yuqi Li</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+X">Xi Gu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Man Hu</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+D">Daosheng Deng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.06930v2-abstract-short" style="display: inline;"> Thermal effect is essential to regulate the interfacial instabilities for diverse technology applications. Here we report the fingering instability at the propagation front for a spreading liquid film subjected to the supercooling at the vertical direction. We find the onset timescale of hydrodynamic instability is strongly correlated with that of the vertical solidification process. This correlat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06930v2-abstract-full').style.display = 'inline'; document.getElementById('2308.06930v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.06930v2-abstract-full" style="display: none;"> Thermal effect is essential to regulate the interfacial instabilities for diverse technology applications. Here we report the fingering instability at the propagation front for a spreading liquid film subjected to the supercooling at the vertical direction. We find the onset timescale of hydrodynamic instability is strongly correlated with that of the vertical solidification process. This correlation is further validated in a non-uniform geometry, demonstrating the capability of controlling fingering instability by structure design. We attribute the identified interfacial instability to a pronounced thermo-viscous effect, since the rapidly increased viscosity of propagation front undergoing solidification can significantly enhance the mobility contrast locally in the vicinity of the spreading front, consequently producing the instability analogous to viscous fingering. This work offers another valuable dimension by gating the vertical temperature to exploit the interfacial stabilities and steer liquid flow, consequently shedding light on the microfluidic cooling for electronics, and the advanced functional fibers and fabrics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.06930v2-abstract-full').style.display = 'none'; document.getElementById('2308.06930v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Fluids 9, L072001 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.04756">arXiv:2307.04756</a> <span> [<a href="https://arxiv.org/pdf/2307.04756">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> A general approach to improve the bias stability of NMR gyroscope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Dong%2C+H">Haifeng Dong</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Min Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.04756v2-abstract-short" style="display: inline;"> In recent years, progress in improving the bias stability of NMR gyroscopes has been hindered. Taking inspiration from the core idea of rotation modulation in the strapdown inertial navigation system, we propose a general approach to enhancing the bias stability of NMR gyroscopes that does not require consideration of the actual physical sources. The method operates on the fact that the sign of th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04756v2-abstract-full').style.display = 'inline'; document.getElementById('2307.04756v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.04756v2-abstract-full" style="display: none;"> In recent years, progress in improving the bias stability of NMR gyroscopes has been hindered. Taking inspiration from the core idea of rotation modulation in the strapdown inertial navigation system, we propose a general approach to enhancing the bias stability of NMR gyroscopes that does not require consideration of the actual physical sources. The method operates on the fact that the sign of the bias does not follow that of the sensing direction of the NMR gyroscope, which is much easier to modulate than with other types of gyroscopes. We conducted simulations to validate the method's feasibility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04756v2-abstract-full').style.display = 'none'; document.getElementById('2307.04756v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.07867">arXiv:2305.07867</a> <span> [<a href="https://arxiv.org/pdf/2305.07867">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/jacs.3c03271">10.1021/jacs.3c03271 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An integrated system built for small-molecule semiconductors via high-throughput approaches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wu%2C+J">Jianchang Wu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jiyun Zhang</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Manman Hu</a>, <a href="/search/physics?searchtype=author&query=Reiser%2C+P">Patrick Reiser</a>, <a href="/search/physics?searchtype=author&query=Torresi%2C+L">Luca Torresi</a>, <a href="/search/physics?searchtype=author&query=Friederich%2C+P">Pascal Friederich</a>, <a href="/search/physics?searchtype=author&query=Lahn%2C+L">Leopold Lahn</a>, <a href="/search/physics?searchtype=author&query=Kasian%2C+O">Olga Kasian</a>, <a href="/search/physics?searchtype=author&query=Guldi%2C+D+M">Dirk M. Guldi</a>, <a href="/search/physics?searchtype=author&query=P%C3%A9rez-Ojeda%2C+M+E">M. Eugenia P茅rez-Ojeda</a>, <a href="/search/physics?searchtype=author&query=Barabash%2C+A">Anastasia Barabash</a>, <a href="/search/physics?searchtype=author&query=Rocha-Ortiz%2C+J+S">Juan S. Rocha-Ortiz</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Yicheng Zhao</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+Z">Zhiqiang Xie</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+J">Junsheng Luo</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yunuo Wang</a>, <a href="/search/physics?searchtype=author&query=Seok%2C+S+I">Sang Il Seok</a>, <a href="/search/physics?searchtype=author&query=Hauch%2C+J+A">Jens A. Hauch</a>, <a href="/search/physics?searchtype=author&query=Brabec%2C+C+J">Christoph J. Brabec</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.07867v1-abstract-short" style="display: inline;"> High-throughput synthesis of solution-processable structurally variable small-molecule semiconductors is both an opportunity and a challenge. A large number of diverse molecules provide a possibility for quick material discovery and machine learning based on experimental data. However, the diversity of molecular structure leads to the complexity of molecular properties, such as solubility, polarit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07867v1-abstract-full').style.display = 'inline'; document.getElementById('2305.07867v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.07867v1-abstract-full" style="display: none;"> High-throughput synthesis of solution-processable structurally variable small-molecule semiconductors is both an opportunity and a challenge. A large number of diverse molecules provide a possibility for quick material discovery and machine learning based on experimental data. However, the diversity of molecular structure leads to the complexity of molecular properties, such as solubility, polarity, and crystallinity, which poses great challenges to solution processing and purification. Here, we first report an integrated system for the high-throughput synthesis, purification, and characterization of molecules with a large variety. Based on the principle of Like dissolves like, we combine theoretical calculations and a robotic platform to accelerate the purification of those molecules. With this platform, a material library containing 125 molecules and their optical-electric properties was built within a timeframe of weeks. More importantly, the high repeatability of recrystallization we design is a reliable approach to further upgrading and industrial production. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07867v1-abstract-full').style.display = 'none'; document.getElementById('2305.07867v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Am. Chem. Soc. 2023, 145, 30, 1651-16525 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00920">arXiv:2305.00920</a> <span> [<a href="https://arxiv.org/pdf/2305.00920">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Real-time spectroscopic monitoring of continuous synthesis of zinc oxide nanostructures in femtosecond laser fabricated 3D microfluidic microchannels with integrated on-chip fiber probe array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wu%2C+M">Miao Wu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xin Li</a>, <a href="/search/physics?searchtype=author&query=Yin%2C+D">Di-Feng Yin</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+W">Wei Chen</a>, <a href="/search/physics?searchtype=author&query=Qi%2C+J">Jia Qi</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Ming Hu</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+J">Jian Xu</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+Y">Ya Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00920v1-abstract-short" style="display: inline;"> Materials synthesis in a microfluidic environment enables the flexible and controllable production of various types of nanostructures which are of great potential in the fields of chemistry, environmental science, bioengineering, and medicine. Here, we demonstrate on-chip simultaneous continuous-flow synthesis and in-situ spectrum diagnosis of zinc oxide (ZnO) nanomaterials using a femtosecond-fab… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00920v1-abstract-full').style.display = 'inline'; document.getElementById('2305.00920v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00920v1-abstract-full" style="display: none;"> Materials synthesis in a microfluidic environment enables the flexible and controllable production of various types of nanostructures which are of great potential in the fields of chemistry, environmental science, bioengineering, and medicine. Here, we demonstrate on-chip simultaneous continuous-flow synthesis and in-situ spectrum diagnosis of zinc oxide (ZnO) nanomaterials using a femtosecond-fabricated three-dimensional microchannel reactor integrated with an array of optical fiber probes. The microchannel reactor including 3D concentration gradient generators followed by 3D micromixing units provides high-efficiency manipulation of reactants with different concentrations as well as parallel reaction dynamics in an autonomous manner. The integrated optical fiber probe array allows precise and parallel spectropic detection in different microchannels with high spatial and temporal resolutions for screening the synthetic conditions. The synthesized ZnO nanostructures can be tailored in size, shape, and morphology by tuning the flow rates and reactant concentrations based on the spectroscopic signals detected with the fiber probe array. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00920v1-abstract-full').style.display = 'none'; document.getElementById('2305.00920v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages with supplementary information included</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.15790">arXiv:2303.15790</a> <span> [<a href="https://arxiv.org/pdf/2303.15790">pdf</a>, <a href="https://arxiv.org/format/2303.15790">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11467-023-1333-z">10.1007/s11467-023-1333-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> STCF Conceptual Design Report: Volume 1 -- Physics & Detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Achasov%2C+M">M. Achasov</a>, <a href="/search/physics?searchtype=author&query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&query=An%2C+L+P">L. P. An</a>, <a href="/search/physics?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X+Z">X. Z. Bai</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&query=Barnyakov%2C+A">A. Barnyakov</a>, <a href="/search/physics?searchtype=author&query=Blinov%2C+V">V. Blinov</a>, <a href="/search/physics?searchtype=author&query=Bobrovnikov%2C+V">V. Bobrovnikov</a>, <a href="/search/physics?searchtype=author&query=Bodrov%2C+D">D. Bodrov</a>, <a href="/search/physics?searchtype=author&query=Bogomyagkov%2C+A">A. Bogomyagkov</a>, <a href="/search/physics?searchtype=author&query=Bondar%2C+A">A. Bondar</a>, <a href="/search/physics?searchtype=author&query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&query=Bu%2C+Z+H">Z. H. Bu</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+F+M">F. M. Cai</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+H">H. Cai</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+J+J">J. J. Cao</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+Q+H">Q. H. Cao</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+Z">Z. Cao</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+Q">Q. Chang</a>, <a href="/search/physics?searchtype=author&query=Chao%2C+K+T">K. T. Chao</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+D+Y">D. Y. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">H. Chen</a> , et al. (413 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.15790v3-abstract-short" style="display: inline;"> The Super $蟿$-Charm facility (STCF) is an electron-positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of $0.5\times 10^{35}{\rm cm}^{-2}{\rm s}^{-1}$ or higher. The STCF will produce a data sample about a factor of 100 larger than that by the present $蟿$-Charm factory -- the BEPCII,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15790v3-abstract-full').style.display = 'inline'; document.getElementById('2303.15790v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.15790v3-abstract-full" style="display: none;"> The Super $蟿$-Charm facility (STCF) is an electron-positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of $0.5\times 10^{35}{\rm cm}^{-2}{\rm s}^{-1}$ or higher. The STCF will produce a data sample about a factor of 100 larger than that by the present $蟿$-Charm factory -- the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R\&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R\&D and physics case studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15790v3-abstract-full').style.display = 'none'; document.getElementById('2303.15790v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Front. Phys. 19(1), 14701 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.06314">arXiv:2302.06314</a> <span> [<a href="https://arxiv.org/pdf/2302.06314">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.207201">10.1103/PhysRevLett.131.207201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental Realization of Geometry-Dependent Skin Effect in a Reciprocal Two-Dimensional Lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+W">Wei Wang</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Mengying Hu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xulong Wang</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+G">Guancong Ma</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+K">Kun Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.06314v1-abstract-short" style="display: inline;"> Recent studies of non-Hermitian periodic lattices unveiled the non-Hermitian skin effect (NHSE), in which the bulk modes under the periodic boundary conditions (PBC) become skin modes under open boundary conditions (OBC). The NHSE is a topological effect owing to the non-trivial spectral winding, and such spectral behaviors appear naturally in non-reciprocal systems. Hence prevailing approaches re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06314v1-abstract-full').style.display = 'inline'; document.getElementById('2302.06314v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.06314v1-abstract-full" style="display: none;"> Recent studies of non-Hermitian periodic lattices unveiled the non-Hermitian skin effect (NHSE), in which the bulk modes under the periodic boundary conditions (PBC) become skin modes under open boundary conditions (OBC). The NHSE is a topological effect owing to the non-trivial spectral winding, and such spectral behaviors appear naturally in non-reciprocal systems. Hence prevailing approaches rely on non-reciprocity to achieve the NHSE. Here, we report the experimental realization of the geometry-dependent skin effect (GDSE) in a two-dimensional (2D) reciprocal system, in which the skin effect occurs only at boundaries whose macroscopic symmetry mismatches with the lattice symmetry. The role of spectral reciprocity and symmetry is revealed by connecting reflective channels at given boundaries with the spectral topology of the PBC spectrum. Our work highlights the vital role of reciprocity and macroscopic geometry on the NHSE in systems with dimensions larger than one and opens new routes for wave structuring using non-Hermitian effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.06314v1-abstract-full').style.display = 'none'; document.getElementById('2302.06314v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 131, 207201 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.01418">arXiv:2301.01418</a> <span> [<a href="https://arxiv.org/pdf/2301.01418">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.195140">10.1103/PhysRevB.107.195140 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic light amplification by stimulated emission of radiation in subwavelength systems of a dielectric cavity and magnetic quantum emitters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yang%2C+Z">Zhong-Jian Yang</a>, <a href="/search/physics?searchtype=author&query=Du%2C+X">Xiao-Jing Du</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Ma-Long Hu</a>, <a href="/search/physics?searchtype=author&query=He%2C+J">Jun He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.01418v2-abstract-short" style="display: inline;"> We propose a magnetic laser in a subwavelength system consisting of a high-refractive-index dielectric cavity and an active medium formed by magnetic quantum emitters. Stimulated emissions of magnetic quantum emitters induced by their coherent interactions with quantized magnetic fields of a cavity are theoretically considered. The condition to archive such a magnetic laser is obtained. Numerical… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01418v2-abstract-full').style.display = 'inline'; document.getElementById('2301.01418v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.01418v2-abstract-full" style="display: none;"> We propose a magnetic laser in a subwavelength system consisting of a high-refractive-index dielectric cavity and an active medium formed by magnetic quantum emitters. Stimulated emissions of magnetic quantum emitters induced by their coherent interactions with quantized magnetic fields of a cavity are theoretically considered. The condition to archive such a magnetic laser is obtained. Numerical results show that magnetic lasers are feasible in some realistic systems, for example, a silicon disk of high-quality whispering gallery modes with embedded emitters. Furthermore, the competitions between the electric interaction and magnetic one in terms of their Purcell factors are also considered in some magnetic laser achievable systems. In a wavelength-scale silicon block of a high-order magnetic mode, the ratio of magnetic Purcell factor to the electric one can reach more than ~10^3 large. Our results open up ways to enhanced magnetic light-matter interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01418v2-abstract-full').style.display = 'none'; document.getElementById('2301.01418v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 107, 195140 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.05425">arXiv:2211.05425</a> <span> [<a href="https://arxiv.org/pdf/2211.05425">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Fast predicting the complex nonlinear dynamics of mode-locked fiber laser by a recurrent neural network with prior information feeding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pu%2C+G">Guoqing Pu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+R">Runmin Liu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+H">Hang Yang</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Y">Yongxin Xu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+W">Weisheng Hu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Minglie Hu</a>, <a href="/search/physics?searchtype=author&query=Yi%2C+L">Lilin Yi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.05425v1-abstract-short" style="display: inline;"> As an imperative method of investigating the internal mechanism of femtosecond lasers, traditional femtosecond laser modeling relies on the split-step Fourier method (SSFM) to iteratively resolve the nonlinear Schrodinger equation suffering from the large computation complexity. To realize inverse design and optimization of femtosecond lasers, numerous simulations of mode-locked fiber lasers with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05425v1-abstract-full').style.display = 'inline'; document.getElementById('2211.05425v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.05425v1-abstract-full" style="display: none;"> As an imperative method of investigating the internal mechanism of femtosecond lasers, traditional femtosecond laser modeling relies on the split-step Fourier method (SSFM) to iteratively resolve the nonlinear Schrodinger equation suffering from the large computation complexity. To realize inverse design and optimization of femtosecond lasers, numerous simulations of mode-locked fiber lasers with different cavity settings are required further highlighting the time-consuming problem induced by the large computation complexity. Here, a recurrent neural network is proposed to realize fast and accurate femtosecond mode-locked fiber laser modeling for the first time. The generalization over different cavity settings is achieved via our proposed prior information feeding method. With the acceleration of GPU, the mean time of the artificial intelligence (AI) model inferring 500 roundtrips is less than 0.1 s. Even on an identical CPU-based hardware platform, the AI model is still 6 times faster than the SSFM method. The proposed AI-enabled method is promising to become a standard approach to femtosecond laser modeling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05425v1-abstract-full').style.display = 'none'; document.getElementById('2211.05425v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.04923">arXiv:2211.04923</a> <span> [<a href="https://arxiv.org/pdf/2211.04923">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.479837">10.1364/OE.479837 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Collision-induced Hopf-type bifurcation reversible transitions in a dual-wavelength femtosecond fiber laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+R">Runmin Liu</a>, <a href="/search/physics?searchtype=author&query=Zou%2C+D">Defeng Zou</a>, <a href="/search/physics?searchtype=author&query=Niu%2C+S">Shuang Niu</a>, <a href="/search/physics?searchtype=author&query=Song%2C+Y">Youjian Song</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Minglie Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.04923v1-abstract-short" style="display: inline;"> Collision refers to a striking nonlinear interaction in dissipative systems, revealing the particle-like properties of solitons. In dual-wavelength mode-locked fiber lasers, collisions are inherent and periodic. However, how collisions influence the dynamical transitions in the dual-wavelength mode-locked state has still not been explored. In our research, dispersion management triggers the comple… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04923v1-abstract-full').style.display = 'inline'; document.getElementById('2211.04923v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.04923v1-abstract-full" style="display: none;"> Collision refers to a striking nonlinear interaction in dissipative systems, revealing the particle-like properties of solitons. In dual-wavelength mode-locked fiber lasers, collisions are inherent and periodic. However, how collisions influence the dynamical transitions in the dual-wavelength mode-locked state has still not been explored. In our research, dispersion management triggers the complex interactions between solitons in the cavity. We reveal the smooth or reversible Hopf-type bifurcation transitions of dual-color soliton molecules (SMs) during collision by real-time spectral measurement technique of TS-DFT. The reversible transitions from stationary SM to vibrating SM, revealing that cavity parameters pass through a bifurcation point in the collision process without active external intervention. The numerical results confirm the universality of collision-induced bifurcation behavior. These findings provide new insights into collision dynamics in dual-wavelength ultrafast fiber lasers. Furthermore, the study of intermolecular collisions is of great significance for other branches of nonlinear science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.04923v1-abstract-full').style.display = 'none'; document.getElementById('2211.04923v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.02910">arXiv:2211.02910</a> <span> [<a href="https://arxiv.org/pdf/2211.02910">pdf</a>, <a href="https://arxiv.org/format/2211.02910">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> </div> <p class="title is-5 mathjax"> Chaotic internal dynamics of dissipative optical soliton molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Song%2C+Y">Youjian Song</a>, <a href="/search/physics?searchtype=author&query=Zou%2C+D">Defeng Zou</a>, <a href="/search/physics?searchtype=author&query=Gat%2C+O">Omri Gat</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Minglie Hu</a>, <a href="/search/physics?searchtype=author&query=Grelu%2C+P">Philippe Grelu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.02910v1-abstract-short" style="display: inline;"> When a laser cavity supports the propagation of several ultrashort pulses, these pulses interact and can form compact bound states called soliton molecules. Soliton molecules are fascinating objects of nonlinear science, which present striking analogies with their matter molecules counterparts. The soliton pair, composed of two identical pulses, constitutes the chief soliton molecule of fundamenta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02910v1-abstract-full').style.display = 'inline'; document.getElementById('2211.02910v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.02910v1-abstract-full" style="display: none;"> When a laser cavity supports the propagation of several ultrashort pulses, these pulses interact and can form compact bound states called soliton molecules. Soliton molecules are fascinating objects of nonlinear science, which present striking analogies with their matter molecules counterparts. The soliton pair, composed of two identical pulses, constitutes the chief soliton molecule of fundamental interest. The relative timing and phase between the two propagating pulses are the most salient internal degrees of freedom of the soliton molecule. These two internal degrees of freedom allow self-oscillating soliton molecules, which have indeed been repeatedly observed, whereas the lowdimensional chaotic dynamics of a soliton-pair molecule remains elusive, noting that it would require at least three degrees of freedom. We here report the observation of chaotic soliton-pair molecules within an ultrafast fiber laser, by means of a direct measurement of the relative optical pulse separation with sub-femtosecond precision in real time. Moreover, we demonstrate an all-optical control of the chaotic dynamics followed by the soliton molecule, by injecting a modulated optical signal that resynchronizes the internal periodic vibration of soliton molecule. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02910v1-abstract-full').style.display = 'none'; document.getElementById('2211.02910v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.13051">arXiv:2210.13051</a> <span> [<a href="https://arxiv.org/pdf/2210.13051">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.optcom.2023.129784">10.1016/j.optcom.2023.129784 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Understanding thermal induced escape mechanism of optically levitated sphere in vacuum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hu%2C+M">Mengzhu Hu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+N">Nan Li</a>, <a href="/search/physics?searchtype=author&query=Fu%2C+Z">Zhenhai Fu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yizhou Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W">Wenqiang Li</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+H">Huizhu Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.13051v3-abstract-short" style="display: inline;"> The escape phenomenon, mainly caused by thermal effects, is known as an obstacle to the further practical application of optical levitation system in vacuum. Irregular photophoresis induced by thermal effects can act as an amplifier of Brownian motion. Studies on this topic provide interpretation for particle escaping phenomenon during the pressure decreasing process, as well as valuable insights… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13051v3-abstract-full').style.display = 'inline'; document.getElementById('2210.13051v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.13051v3-abstract-full" style="display: none;"> The escape phenomenon, mainly caused by thermal effects, is known as an obstacle to the further practical application of optical levitation system in vacuum. Irregular photophoresis induced by thermal effects can act as an amplifier of Brownian motion. Studies on this topic provide interpretation for particle escaping phenomenon during the pressure decreasing process, as well as valuable insights into the micro- and nanoscale thermal effects in optical trap in vacuum. In this paper, we derive and test a dynamic model for the motion of an optically levitated particle in a non-equilibrium state and demonstrate the escaping mechanism of heated particles. The result of theoretical investigations is consistent with experimental escape at 0.1mbar. This work reveals and provides a theoretical basis for the stable operation of laser levitated oscillator in high vacuum and pave the way for the practicability of ultra-sensitive sensing devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13051v3-abstract-full').style.display = 'none'; document.getElementById('2210.13051v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.11657">arXiv:2210.11657</a> <span> [<a href="https://arxiv.org/pdf/2210.11657">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> MnEdgeNet -- Accurate Decomposition of Mixed Oxidation States for Mn XAS and EELS L2,3 Edges without Reference and Calibration </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xin%2C+H+L">Huolin L. Xin</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Mike Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.11657v1-abstract-short" style="display: inline;"> Accurate decomposition of the mixed Mn oxidation states is highly important for characterizing the electronic structures, charge transfer, and redox centers for electronic, electrocatalytic, and energy storage materials that contain Mn. Electron energy loss spectroscopy (EELS) and soft X-ray absorption spectroscopy (XAS) measurements of the Mn L2,3 edges are widely used for this purpose. To date,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.11657v1-abstract-full').style.display = 'inline'; document.getElementById('2210.11657v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.11657v1-abstract-full" style="display: none;"> Accurate decomposition of the mixed Mn oxidation states is highly important for characterizing the electronic structures, charge transfer, and redox centers for electronic, electrocatalytic, and energy storage materials that contain Mn. Electron energy loss spectroscopy (EELS) and soft X-ray absorption spectroscopy (XAS) measurements of the Mn L2,3 edges are widely used for this purpose. To date, although the measurement of the Mn L2,3 edges is straightforward given the sample is prepared properly, an accurate decomposition of the mix valence states of Mn remains non-trivial. For both EELS and XAS, 2+, 3+, 4+ reference spectra need to be taken on the same instrument/beamline and preferably in the same experimental session because the instrumental resolution and the energy axis offset could vary from one session to another. To circumvent this hurdle, in this study, we adopted a deep learning approach and developed a calibration-free and reference-free method to decompose the oxidation state of Mn L2,3 edges for both EELS and XAS. To synthesize physics-informed and ground-truth labeled training datasets, we created a forward model that takes into account plural scattering, instrumentation broadening, noise, and energy axis offset. With that, we created a 1.2 million-spectrum database with a three-element oxidation state composition label. The library includes a sufficient variety of data including both EELS and XAS spectra. By training on this large database, our convolutional neural network achieves 85% accuracy on the validation dataset. We tested the model and found it is robust against noise (down to PSNR of 10) and plural scattering (up to t/位 = 1). We further validated the model against spectral data that were not used in training. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.11657v1-abstract-full').style.display = 'none'; document.getElementById('2210.11657v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.04818">arXiv:2209.04818</a> <span> [<a href="https://arxiv.org/pdf/2209.04818">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.205420">10.1103/PhysRevB.106.205420 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong Superradiance of Coherently Coupled Magnetic Dipole Emitters Mediated by Whispering Gallery Modes of a Subwavelength All-Dielectric Cavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hu%2C+M">Ma-Long Hu</a>, <a href="/search/physics?searchtype=author&query=Du%2C+X">Xiao-Jing Du</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+L">Lin Ma</a>, <a href="/search/physics?searchtype=author&query=He%2C+J">Jun He</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Z">Zhong-Jian Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.04818v2-abstract-short" style="display: inline;"> The interaction of magnetic dipole (MD) emitters and common photonic cavities is usually weak, which is partially due to the low magnetic near field enhancements of the cavities. Here, we show that whispering gallery modes (WGMs) of a subwavelength dielectric cavity can not only greatly boost the emission rate of a MD emitter but also bring efficient couplings between coherent MD emitters. In a WG… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.04818v2-abstract-full').style.display = 'inline'; document.getElementById('2209.04818v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.04818v2-abstract-full" style="display: none;"> The interaction of magnetic dipole (MD) emitters and common photonic cavities is usually weak, which is partially due to the low magnetic near field enhancements of the cavities. Here, we show that whispering gallery modes (WGMs) of a subwavelength dielectric cavity can not only greatly boost the emission rate of a MD emitter but also bring efficient couplings between coherent MD emitters. In a WGM cavity, the maximal emission rate (纬max) of a single emitter occurs at an antinode of the field pattern. The emission of the MD emitter can also be greatly affected by another coherent one depending on the magnetic field response of the WGM. The maximal contribution can also reach 纬max. Notably, the cooperative emission rate of the coherent MD emitters does not decay with distance in the considered range due to the high-quality feature of a WGM. In contrast to the emission, the absorption of an emitter is hardly affected by the coherent couplings between emitters mediated by a WGM. The difference between the performances of emission and absorption is highly related to the excitation behaviors of WGMs. Our results are important for enhanced magnetic light-matter interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.04818v2-abstract-full').style.display = 'none'; document.getElementById('2209.04818v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.04260">arXiv:2209.04260</a> <span> [<a href="https://arxiv.org/pdf/2209.04260">pdf</a>, <a href="https://arxiv.org/format/2209.04260">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.063026">10.1103/PhysRevD.106.063026 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for relativistic fractionally charged particles in space </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DAMPE+Collaboration"> DAMPE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Alemanno%2C+F">F. Alemanno</a>, <a href="/search/physics?searchtype=author&query=Altomare%2C+C">C. Altomare</a>, <a href="/search/physics?searchtype=author&query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&query=Azzarello%2C+P">P. Azzarello</a>, <a href="/search/physics?searchtype=author&query=Barbato%2C+F+C+T">F. C. T. Barbato</a>, <a href="/search/physics?searchtype=author&query=Bernardini%2C+P">P. Bernardini</a>, <a href="/search/physics?searchtype=author&query=Bi%2C+X+J">X. J. Bi</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+M+S">M. S. Cai</a>, <a href="/search/physics?searchtype=author&query=Casilli%2C+E">E. Casilli</a>, <a href="/search/physics?searchtype=author&query=Catanzani%2C+E">E. Catanzani</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+J">J. Chang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+D+Y">D. Y. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J+L">J. L. Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z+F">Z. F. Chen</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+M+Y">M. Y. Cui</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+T+S">T. S. Cui</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+Y+X">Y. X. Cui</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+H+T">H. T. Dai</a>, <a href="/search/physics?searchtype=author&query=De-Benedittis%2C+A">A. De-Benedittis</a>, <a href="/search/physics?searchtype=author&query=De+Mitri%2C+I">I. De Mitri</a>, <a href="/search/physics?searchtype=author&query=de+Palma%2C+F">F. de Palma</a>, <a href="/search/physics?searchtype=author&query=Deliyergiyev%2C+M">M. Deliyergiyev</a>, <a href="/search/physics?searchtype=author&query=Di+Giovanni%2C+A">A. Di Giovanni</a>, <a href="/search/physics?searchtype=author&query=Di+Santo%2C+M">M. Di Santo</a> , et al. (126 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.04260v1-abstract-short" style="display: inline;"> More than a century after the performance of the oil drop experiment, the possible existence of fractionally charged particles FCP still remains unsettled. The search for FCPs is crucial for some extensions of the Standard Model in particle physics. Most of the previously conducted searches for FCPs in cosmic rays were based on experiments underground or at high altitudes. However, there have been… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.04260v1-abstract-full').style.display = 'inline'; document.getElementById('2209.04260v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.04260v1-abstract-full" style="display: none;"> More than a century after the performance of the oil drop experiment, the possible existence of fractionally charged particles FCP still remains unsettled. The search for FCPs is crucial for some extensions of the Standard Model in particle physics. Most of the previously conducted searches for FCPs in cosmic rays were based on experiments underground or at high altitudes. However, there have been few searches for FCPs in cosmic rays carried out in orbit other than AMS-01 flown by a space shuttle and BESS by a balloon at the top of the atmosphere. In this study, we conduct an FCP search in space based on on-orbit data obtained using the DArk Matter Particle Explorer (DAMPE) satellite over a period of five years. Unlike underground experiments, which require an FCP energy of the order of hundreds of GeV, our FCP search starts at only a few GeV. An upper limit of $6.2\times 10^{-10}~~\mathrm{cm^{-2}sr^{-1} s^{-1}}$ is obtained for the flux. Our results demonstrate that DAMPE exhibits higher sensitivity than experiments of similar types by three orders of magnitude that more stringently restricts the conditions for the existence of FCP in primary cosmic rays. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.04260v1-abstract-full').style.display = 'none'; document.getElementById('2209.04260v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 6 figures, accepted by PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 106, 063026 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review D 106.6 (2022): 063026 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.10076">arXiv:2208.10076</a> <span> [<a href="https://arxiv.org/pdf/2208.10076">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Synchronization of the internal dynamics of optical soliton molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zou%2C+D">Defeng Zou</a>, <a href="/search/physics?searchtype=author&query=Song%2C+Y">Youjian Song</a>, <a href="/search/physics?searchtype=author&query=Gat%2C+O">Omri Gat</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Minglie Hu</a>, <a href="/search/physics?searchtype=author&query=Grelu%2C+P">Philippe Grelu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.10076v1-abstract-short" style="display: inline;"> Optical soliton molecules in ultrafast lasers present striking analogies with their matter molecule counterparts, such as internal vibrations. However, the vibrations of soliton molecules are nonlinear, with frequencies that are sensitive to the system parameters, thus presenting an opportunity of control. Here, we experimentally demonstrate the synchronization of the internal vibrations of self-e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.10076v1-abstract-full').style.display = 'inline'; document.getElementById('2208.10076v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.10076v1-abstract-full" style="display: none;"> Optical soliton molecules in ultrafast lasers present striking analogies with their matter molecule counterparts, such as internal vibrations. However, the vibrations of soliton molecules are nonlinear, with frequencies that are sensitive to the system parameters, thus presenting an opportunity of control. Here, we experimentally demonstrate the synchronization of the internal vibrations of self-excited vibrating soliton molecules through a modulated optical injection. We show efficient sub-harmonic, fundamental and super-harmonic synchronization, forming a pattern of Arnold tongues with respect to the injection strength. Our observations are supported by numerical simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.10076v1-abstract-full').style.display = 'none'; document.getElementById('2208.10076v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This work is supported by the National Natural Science Foundation of China (Grant 61975144, 61827821); Ph.G. acknowledges support from the EIPHI Graduate School (ANR-17-EURE-0002) and from PIA3 ISITE-BFC (ANR-15-IDEX-0003); O. Gat acknowledges support from the Israel Science Foundation (ISF) (Grant No. 2403/20)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.09234">arXiv:2207.09234</a> <span> [<a href="https://arxiv.org/pdf/2207.09234">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> A photon counting reconstructive spectrometer combining metasurfaces and superconducting nanowire single-photon detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zheng%2C+J">Jingyuan Zheng</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+Y">You Xiao</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Mingzhong Hu</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Yuchen Zhao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hao Li</a>, <a href="/search/physics?searchtype=author&query=You%2C+L">Lixing You</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+X">Xue Feng</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+F">Fang Liu</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+K">Kaiyu Cui</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y">Yidong Huang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+W">Wei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.09234v1-abstract-short" style="display: inline;"> Faint light spectroscopy has many important applications such as fluorescence spectroscopy, lidar and astronomical observations. However, long measurement time limit its application on real-time measurement. In this work, a photon counting reconstructive spectrometer combining metasurfaces and superconducting nanowire single photon detectors (SNSPDs) was proposed. A prototype device was fabricated… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.09234v1-abstract-full').style.display = 'inline'; document.getElementById('2207.09234v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.09234v1-abstract-full" style="display: none;"> Faint light spectroscopy has many important applications such as fluorescence spectroscopy, lidar and astronomical observations. However, long measurement time limit its application on real-time measurement. In this work, a photon counting reconstructive spectrometer combining metasurfaces and superconducting nanowire single photon detectors (SNSPDs) was proposed. A prototype device was fabricated on a silicon on isolator (SOI) substrate, and its performance was characterized. Experiment results show that this device support spectral reconstruction of mono-color lights with a resolution of 2 nm in the wavelength region of 1500 nm ~ 1600 nm. The detection efficiency of this device is 1.4% ~ 3.2% in this wavelength region. The measurement time required by this photon counting reconstructive spectrometer was also investigated experimentally, showing its potential to be applied in the scenarios requiring real-time measurement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.09234v1-abstract-full').style.display = 'none'; document.getElementById('2207.09234v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.13414">arXiv:2205.13414</a> <span> [<a href="https://arxiv.org/pdf/2205.13414">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c01139">10.1021/acs.nanolett.3c01139 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrahigh ion diffusion in oxide crystal by engineering the interfacial transporter channels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+L">Liang Li</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Min Hu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+C">Changlong Hu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+B">Bowen Li</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+S">Shanguang Zhao</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+G">Guobin Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Liangbin Li</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+J">Jun Jiang</a>, <a href="/search/physics?searchtype=author&query=Zou%2C+C">Chongwen Zou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.13414v1-abstract-short" style="display: inline;"> The mass storage and removal in solid conductors always played vital role on the technological applications such as modern batteries, permeation membranes and neuronal computations, which were seriously lying on the ion diffusion and kinetics in bulk lattice. However, the ions transport was kinetically limited by the low diffusional process, which made it a challenge to fabricate applicable conduc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13414v1-abstract-full').style.display = 'inline'; document.getElementById('2205.13414v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.13414v1-abstract-full" style="display: none;"> The mass storage and removal in solid conductors always played vital role on the technological applications such as modern batteries, permeation membranes and neuronal computations, which were seriously lying on the ion diffusion and kinetics in bulk lattice. However, the ions transport was kinetically limited by the low diffusional process, which made it a challenge to fabricate applicable conductors with high electronic and ionic conductivities at room temperature. It was known that at essentially all interfaces, the existed space charge layers could modify the charge transport, storage and transfer properties. Thus, in the current study, we proposed an acid solution/WO3/ITO structure and achieved an ultrafast hydrogen transport in WO3 layer by interfacial job-sharing diffusion. In this sandwich structure, the transport pathways of the protons and electrons were spatially separated in acid solution and ITO layer respectively, resulting the pronounced increasing of effective hydrogen diffusion coefficient (Deff) up to 106 times. The experiment and theory simulations also revealed that this accelerated hydrogen transport based on the interfacial job-sharing diffusion was universal and could be extended to other ions and oxide materials as well, which would potentially stimulate systematic studies on ultrafast mixed conductors or faster solid-state electrochemical switching devices in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13414v1-abstract-full').style.display = 'none'; document.getElementById('2205.13414v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 2023, 23, 7297 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.11649">arXiv:2204.11649</a> <span> [<a href="https://arxiv.org/pdf/2204.11649">pdf</a>, <a href="https://arxiv.org/format/2204.11649">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/05/P05045">10.1088/1748-0221/17/05/P05045 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pre-launch characterization of the spectrometer of Hard X-ray Imager (HXI) onboard the ASO-S mission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+W">W. Liu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Z. Zhang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+J">J. Wu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+T">T. Ma</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Y. Zhang</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+Y+M">Y. M. Hu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y+Q">Y. Q. Zhang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y+Y">Y. Y. Huang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H+X">H. X. Wang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+X+K">X. K. Jiang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+D+Y">D. Y. Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.11649v1-abstract-short" style="display: inline;"> As one of the three payloads of the Advanced Space-based Solar Observatory (ASO-S), the pre-launch characterization of HXI includes the characterization of the collimator and the spectrometer. This article focuses on the pre-launch characterization of HXI's spectrometer, including detection efficiency, energy resolution, and energy to ADC channel (E-C) relationship. The detection efficiency charac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11649v1-abstract-full').style.display = 'inline'; document.getElementById('2204.11649v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.11649v1-abstract-full" style="display: none;"> As one of the three payloads of the Advanced Space-based Solar Observatory (ASO-S), the pre-launch characterization of HXI includes the characterization of the collimator and the spectrometer. This article focuses on the pre-launch characterization of HXI's spectrometer, including detection efficiency, energy resolution, and energy to ADC channel (E-C) relationship. The detection efficiency characterization necessitates a sufficient number of calibrated energy points in the HXI observation energy range, with a refined measurement around the absorption edge of the lanthanum bromide crystal, and is calibrated with an X-ray beam. The characterization results are consistent with the simulations and show that the detection efficiency difference between detector modules is controlled within $\pm3\%$. Radioactive sources $^{133}\textrm{Ba}$ and $^{137}\textrm{Cs}$ are used to calibrate the energy resolution and E-C relationship. The characterization results show that all detector modules' energy resolutions are better than $26\%$ at 32 keV, meeting the design specification. And their E-C relationships vary regularly with voltage. All of the characterization results indicate that the flight model of the HXI spectrometer meets the performance requirements and is capable of performing on-orbit observation activities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11649v1-abstract-full').style.display = 'none'; document.getElementById('2204.11649v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.08866">arXiv:2204.08866</a> <span> [<a href="https://arxiv.org/pdf/2204.08866">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1515/nanoph-2022-0211">10.1515/nanoph-2022-0211 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Geometry-dependent skin effects in reciprocal photonic crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Fang%2C+Z">Zhening Fang</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Mengying Hu</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+L">Lei Zhou</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+K">Kun Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.08866v2-abstract-short" style="display: inline;"> Skin effect that all eigenmodes within a frequency range become edge states is dictated by the topological properties of complex eigenvalues unique in non-Hermitian systems. The prevailing attempts to realize such a fascinating effect are confined to either one-dimensional or nonreciprocal systems exhibiting asymmetric couplings. Here, inspired by a recent model Hamiltonian theory, we propose a re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.08866v2-abstract-full').style.display = 'inline'; document.getElementById('2204.08866v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.08866v2-abstract-full" style="display: none;"> Skin effect that all eigenmodes within a frequency range become edge states is dictated by the topological properties of complex eigenvalues unique in non-Hermitian systems. The prevailing attempts to realize such a fascinating effect are confined to either one-dimensional or nonreciprocal systems exhibiting asymmetric couplings. Here, inspired by a recent model Hamiltonian theory, we propose a realistic reciprocal two-dimensional (2D) photonic crystal (PhC) system that shows the desired skin effect. Specifically, we establish a routine for designing such non-Hermitian systems via revealing the inherent connections between the non-trivial eigenvalue topology of order-2 exceptional points (EPs) and the skin effects. Guided by the proposed strategy, we successfully design a 2D PhC that possesses the EPs with nonzero eigenvalue winding numbers. The spectral area along a specific wavevector direction is then formed by leveraging the symmetry of the macroscopic geometry and the unit cell. The projected-band-structure calculations are performed to demonstrate that the desired skin effect exists at the specific crystalline interfaces. We finally employ time-domain simulations to vividly illustrate this phenomenon by exciting a pulse at the center of a finite-sized PhC. Our results form a solid basis for further experimental confirmations and applications of the skin effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.08866v2-abstract-full').style.display = 'none'; document.getElementById('2204.08866v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nanophotonics 11, 3447 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.06054">arXiv:2203.06054</a> <span> [<a href="https://arxiv.org/pdf/2203.06054">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/mi13040543">10.3390/mi13040543 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> 3D large-scale fused silica microfluidic chips enabled by hybrid laser microfabrication for continuous-flow UV photochemical synthesis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+A">Aodong Zhang</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+J">Jian Xu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yucen Li</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Ming Hu</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+Z">Zijie Lin</a>, <a href="/search/physics?searchtype=author&query=Song%2C+Y">Yunpeng Song</a>, <a href="/search/physics?searchtype=author&query=Qi%2C+J">Jia Qi</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+W">Wei Chen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Z">Zhaoxiang Liu</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+Y">Ya Cheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.06054v1-abstract-short" style="display: inline;"> We demonstrate a hybrid laser microfabrication approach, which combines the technical merits of ultrafast laser-assisted chemical etching and carbon dioxide laser-induced in-situ melting, for centimeter-scale and bonding-free fabrication of 3D complex hollow microstructures in fused silica glass. With the developed approach, large-scale fused silica microfluidic chips with integrated 3D cascaded m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06054v1-abstract-full').style.display = 'inline'; document.getElementById('2203.06054v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.06054v1-abstract-full" style="display: none;"> We demonstrate a hybrid laser microfabrication approach, which combines the technical merits of ultrafast laser-assisted chemical etching and carbon dioxide laser-induced in-situ melting, for centimeter-scale and bonding-free fabrication of 3D complex hollow microstructures in fused silica glass. With the developed approach, large-scale fused silica microfluidic chips with integrated 3D cascaded micromixing units can be reliably manufactured. High-performance on-chip mixing and continuous-flow photochemical synthesis under UV LEDs irradiation at ~280 nm were demonstrated using the manufactured chip, indicating a powerful capability for versatile fabrication of highly transparent all-glass microfluidic reactors for on-chip photochemical synthesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06054v1-abstract-full').style.display = 'none'; document.getElementById('2203.06054v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Micromachines 2022, 13(4), 543 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.07891">arXiv:2202.07891</a> <span> [<a href="https://arxiv.org/pdf/2202.07891">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D2CP01117D">10.1039/D2CP01117D <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electrically driven robust tuning of lattice thermal conductivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhou%2C+E">E Zhou</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+D">Donghai Wei</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+J">Jing Wu</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+G">Guangzhao Qin</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Ming Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.07891v1-abstract-short" style="display: inline;"> Two-dimensional (2D) materials represented by graphene stand out in future electrical industry and have been widely studied. As a commonly existing factor in electronic devices, the electric field has been extensively utilized to modulate the performance. However, how the electric field regulates thermal transport is rarely studied. Herein, we investigate the modulation of thermal transport proper… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07891v1-abstract-full').style.display = 'inline'; document.getElementById('2202.07891v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.07891v1-abstract-full" style="display: none;"> Two-dimensional (2D) materials represented by graphene stand out in future electrical industry and have been widely studied. As a commonly existing factor in electronic devices, the electric field has been extensively utilized to modulate the performance. However, how the electric field regulates thermal transport is rarely studied. Herein, we investigate the modulation of thermal transport properties by applying the external electric field ranging from 0 to 0.4 VA-1, with bilayer graphene, monolayer silicene, and germanene as study cases. The monotonic decreasing trend of thermal conductivity of all the three materials is revealed. The significant effect on the scattering rate is found to be responsible for the decreased thermal conductivity by electric field. Further evidences show that the reconstruction of internal electric field and the generation of induced charges lead to the increased scattering rate from strong phonon anharmonicity. Thus, the ultra-low thermal conductivity emerges with external electric field applied. Applying external electric field to regulate thermal conductivity enlightens the constructive idea for high-efficient thermal management. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.07891v1-abstract-full').style.display = 'none'; document.getElementById('2202.07891v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.03517">arXiv:2111.03517</a> <span> [<a href="https://arxiv.org/pdf/2111.03517">pdf</a>, <a href="https://arxiv.org/format/2111.03517">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.447499">10.1364/OE.447499 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Snapshot Ptychography on Array cameras </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+C">Chengyu Wang</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Minghao Hu</a>, <a href="/search/physics?searchtype=author&query=Takashima%2C+Y">Yuzuru Takashima</a>, <a href="/search/physics?searchtype=author&query=Schulz%2C+T+J">Timothy J. Schulz</a>, <a href="/search/physics?searchtype=author&query=Brady%2C+D+J">David J. Brady</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.03517v1-abstract-short" style="display: inline;"> We use convolutional neural networks to recover images optically down-sampled by $6.7\times$ using coherent aperture synthesis over a 16 camera array. Where conventional ptychography relies on scanning and oversampling, here we apply decompressive neural estimation to recover full resolution image from a single snapshot, although as shown in simulation multiple snapshots can be used to improve SNR… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03517v1-abstract-full').style.display = 'inline'; document.getElementById('2111.03517v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.03517v1-abstract-full" style="display: none;"> We use convolutional neural networks to recover images optically down-sampled by $6.7\times$ using coherent aperture synthesis over a 16 camera array. Where conventional ptychography relies on scanning and oversampling, here we apply decompressive neural estimation to recover full resolution image from a single snapshot, although as shown in simulation multiple snapshots can be used to improve SNR. In place training on experimental measurements eliminates the need to directly calibrate the measurement system. We also present simulations of diverse array camera sampling strategies to explore how snapshot compressive systems might be optimized. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.03517v1-abstract-full').style.display = 'none'; document.getElementById('2111.03517v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.01453">arXiv:2111.01453</a> <span> [<a href="https://arxiv.org/pdf/2111.01453">pdf</a>, <a href="https://arxiv.org/format/2111.01453">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.104.052817">10.1103/PhysRevA.104.052817 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A model for nuclear spin product-state distributions of ultracold chemical reactions in magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Qu%C3%A9m%C3%A9ner%2C+G">Goulven Qu茅m茅ner</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Ming-Guang Hu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yu Liu</a>, <a href="/search/physics?searchtype=author&query=Nichols%2C+M+A">Matthew A. Nichols</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+L">Lingbang Zhu</a>, <a href="/search/physics?searchtype=author&query=Ni%2C+K">Kang-Kuen Ni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.01453v1-abstract-short" style="display: inline;"> Based on a theoretical model where the nuclear spins remain unchanged during a collision, we provide an analytical and general expression for the nuclear spin state-to-state distribution of an ultracold chemical reaction in a magnetic field, for given rotational transitions of the molecules. It simply requires knowledge of the field-dependent eigenfunctions of the molecular reactants and products… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01453v1-abstract-full').style.display = 'inline'; document.getElementById('2111.01453v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.01453v1-abstract-full" style="display: none;"> Based on a theoretical model where the nuclear spins remain unchanged during a collision, we provide an analytical and general expression for the nuclear spin state-to-state distribution of an ultracold chemical reaction in a magnetic field, for given rotational transitions of the molecules. It simply requires knowledge of the field-dependent eigenfunctions of the molecular reactants and products of the chemical reaction. The final state-to-state distribution drastically changes with the magnetic field. When the distribution is summed over all the final products, a simplified expression is found where only the knowledge of the eigenfunctions of the molecular reactants is required. The present theoretical formalism has been successfully used to explain the magnetic field behavior of the product-state distribution in chemical reactions of ultracold KRb molecules [Hu et al., Nat. Chem. 13, 435 (2021)]. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01453v1-abstract-full').style.display = 'none'; document.getElementById('2111.01453v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 104, 052817 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.04516">arXiv:2108.04516</a> <span> [<a href="https://arxiv.org/pdf/2108.04516">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41377-021-00614-6">10.1038/s41377-021-00614-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Double-bowl State in photonic Dirac nodal line semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hu%2C+M">Mengying Hu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Ye Zhang</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+X">Xi Jiang</a>, <a href="/search/physics?searchtype=author&query=Qiao%2C+T">Tong Qiao</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Q">Qiang Wang</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+S">Shining Zhu</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+M">Meng Xiao</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hui Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.04516v2-abstract-short" style="display: inline;"> The past decade has seen a proliferation of topological materials for both insulators and semimetals in electronic systems and classical waves. Topological semimetals exhibit topologically protected band degeneracies, such as nodal points and nodal lines. Dirac nodal line semimetals (DNLS), which own four-fold line degeneracy, have drawn particular attention. DNLSs have been studied in electronic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.04516v2-abstract-full').style.display = 'inline'; document.getElementById('2108.04516v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.04516v2-abstract-full" style="display: none;"> The past decade has seen a proliferation of topological materials for both insulators and semimetals in electronic systems and classical waves. Topological semimetals exhibit topologically protected band degeneracies, such as nodal points and nodal lines. Dirac nodal line semimetals (DNLS), which own four-fold line degeneracy, have drawn particular attention. DNLSs have been studied in electronic systems but there is no photonic DNLS. Here in this work, we provide a new mechanism which is unique for photonic systems to investigate a stringent photonic DNLS. When truncated, the photonic DNLS exhibits double-bowl states (DBS), which comprises two sets of perpendicularly polarized surface states. In sharp contrast to nondegenerate surface states in other photonic systems, here the two sets of surface states are almost degenerate over the whole spectrum range. The DBS and the bulk Dirac nodal ring (DNR) dispersion along the relevant directions, are experimentally resolved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.04516v2-abstract-full').style.display = 'none'; document.getElementById('2108.04516v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Light:Science & Applications 10,170 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.04266">arXiv:2107.04266</a> <span> [<a href="https://arxiv.org/pdf/2107.04266">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsphotonics.1c00507">10.1021/acsphotonics.1c00507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Generation and Tunability of Supermodes in Tamm Plasmon Topological Superlattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Qiao%2C+T">Tong Qiao</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Mengying Hu</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+X">Xi Jiang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Q">Qiang Wang</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+S">Shining Zhu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hui Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.04266v1-abstract-short" style="display: inline;"> In this study, we propose and experimentally demonstrate a novel kind of Tamm plasmon topological superlattice (TTS) by engineering Tamm photonic crystals (TPCs) belonging to a different class of topology. Utilizing specifically designed double-layer metasurfaces etching on planar multilayered photonic structures, the TPC that supports the Tamm plasmon photonic bandgap is realized in the visible r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04266v1-abstract-full').style.display = 'inline'; document.getElementById('2107.04266v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.04266v1-abstract-full" style="display: none;"> In this study, we propose and experimentally demonstrate a novel kind of Tamm plasmon topological superlattice (TTS) by engineering Tamm photonic crystals (TPCs) belonging to a different class of topology. Utilizing specifically designed double-layer metasurfaces etching on planar multilayered photonic structures, the TPC that supports the Tamm plasmon photonic bandgap is realized in the visible regime. Through the coupling of topological interface states existing between different TPCs, hybrid topological interface states of Tamm plasmon, called supermodes, are obtained that can be fully described by a tight-binding model. Meanwhile, we can achieve a tunable bandwidth of supermodes via varying the etching depth difference between double-layer metasurfaces. We show that the bandwidth decreases with the increase of etching depth difference, resulting in a nearly flat dispersion of supermodes with strong localization regardless of excitation angles. All the results are experimentally verified by measuring angular-resolved reflectance spectra. The TTS and supermodes proposed here open a new pathway for the manipulation of Tamm plasmons, based on which various promising applications such as integrated photonic devices, optical sensing, and enhancing light-matter interactions can be realized. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04266v1-abstract-full').style.display = 'none'; document.getElementById('2107.04266v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 4 figures. ACS Photonics (online)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.03892">arXiv:2107.03892</a> <span> [<a href="https://arxiv.org/pdf/2107.03892">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.045408">10.1103/PhysRevB.104.045408 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunability of Spin-Dependent Secondary Topological Interface States Induced in an Optical Complex Superlattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hu%2C+M">Mengying Hu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hui Liu</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+S">Shining Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.03892v1-abstract-short" style="display: inline;"> The past decade has witnessed a booming development of topological photonics, which revolutionizes the methodology for controlling the behavior of light. A gigantic achievement is to engineer robust confined modes localized at interfaces between topologically distinct regions, where the optical context can trigger exotic topological phenomena exclusive to photons. Here, we provide an experimentall… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03892v1-abstract-full').style.display = 'inline'; document.getElementById('2107.03892v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.03892v1-abstract-full" style="display: none;"> The past decade has witnessed a booming development of topological photonics, which revolutionizes the methodology for controlling the behavior of light. A gigantic achievement is to engineer robust confined modes localized at interfaces between topologically distinct regions, where the optical context can trigger exotic topological phenomena exclusive to photons. Here, we provide an experimentally flexible approach to engineering topologically induced interface states in the visible regime via a unique design of complex superlattice formed by connecting two component superlattices of distinguished topological phases. Assisted by the intrinsic pseudospin degree due to the splitting between TM and TE polarized modes, we attain a precise manipulation of the spin-dependent topological interface states that can manifest themselves straightforwardly through transmission spectra. More specifically, since these topological localized modes stem from the hybridization of artificial photonic orbitals that are of topological origin as well, they are deemed as a novel topological effect and thus named as the secondary topological interface states. Our work develops an innovative and productive strategy to tune topologically protected localized modes, based on which various applications such as selective local enhancement can be exploited. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.03892v1-abstract-full').style.display = 'none'; document.getElementById('2107.03892v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 104, 045408 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.09953">arXiv:2106.09953</a> <span> [<a href="https://arxiv.org/pdf/2106.09953">pdf</a>, <a href="https://arxiv.org/format/2106.09953">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevFluids.6.093901">10.1103/PhysRevFluids.6.093901 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Armstrong Liquid Bridge: Formation, Evolution and Breakup </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pan%2C+X">Xueqin Pan</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Man Hu</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+B">Bingrui Xu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+F">Feng Wang</a>, <a href="/search/physics?searchtype=author&query=Huo%2C+P">Peng Huo</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+F">Fangqi Chen</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+Z">Zhibo Gu</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+D">Daosheng Deng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.09953v1-abstract-short" style="display: inline;"> In this paper, we experimentally explore the formation, evolution and breakup of Armstrong liquid bridge. The extremely complicated evolution stage is revealed, which involves many coupled processes including the morphology change, current variation, heat transfer, and water evaporation. By focusing on the final fate of this liquid bridge, we observe that the breakup occurs once an effective lengt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.09953v1-abstract-full').style.display = 'inline'; document.getElementById('2106.09953v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.09953v1-abstract-full" style="display: none;"> In this paper, we experimentally explore the formation, evolution and breakup of Armstrong liquid bridge. The extremely complicated evolution stage is revealed, which involves many coupled processes including the morphology change, current variation, heat transfer, and water evaporation. By focusing on the final fate of this liquid bridge, we observe that the breakup occurs once an effective length ($\tilde{L}$) is reached. This effective length increases linearly with the applied voltage, implying a threshold electric field to sustain the liquid bridge. Moreover, by an introduced external flow, the lifetime of the liquid bridge can be controlled, while the effective length associated with the breakup is independent on the external flow rate. Hence, these findings remarkably demonstrate that the breakup of liquid bridge is directly correlated with the effective length. In order to understand this correlation, a simplified model of an electrified jet is employed to take the electric field into account. By the linear stability analysis, the attained phase diagram agrees with the experiments well. Although a more comprehensive theory is required to consider other factors such as the surface charges, these results might provide a fresh perspective on the ``century-old" Armstrong liquid bridge to further elucidate its underlying physical mechanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.09953v1-abstract-full').style.display = 'none'; document.getElementById('2106.09953v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Fluids 6, 093901 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.14960">arXiv:2105.14960</a> <span> [<a href="https://arxiv.org/pdf/2105.14960">pdf</a>, <a href="https://arxiv.org/format/2105.14960">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Detection of Long-Lived Complexes in Ultracold Atom-Molecule Collisions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Nichols%2C+M+A">Matthew A. Nichols</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yi-Xiang Liu</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+L">Lingbang Zhu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Ming-Guang Hu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yu Liu</a>, <a href="/search/physics?searchtype=author&query=Ni%2C+K">Kang-Kuen Ni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.14960v1-abstract-short" style="display: inline;"> We investigate collisional loss in an ultracold mixture of $^{40}$K$^{87}$Rb molecules and $^{87}$Rb atoms, where chemical reactions between the two species are energetically forbidden. Through direct detection of the KRb$_{2}^{*}$ intermediate complexes formed from atom-molecule collisions, we show that a $1064$ nm laser source used for optical trapping of the sample can efficiently deplete the c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.14960v1-abstract-full').style.display = 'inline'; document.getElementById('2105.14960v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.14960v1-abstract-full" style="display: none;"> We investigate collisional loss in an ultracold mixture of $^{40}$K$^{87}$Rb molecules and $^{87}$Rb atoms, where chemical reactions between the two species are energetically forbidden. Through direct detection of the KRb$_{2}^{*}$ intermediate complexes formed from atom-molecule collisions, we show that a $1064$ nm laser source used for optical trapping of the sample can efficiently deplete the complex population via photo-excitation, an effect which can explain the universal two-body loss observed in the mixture. By monitoring the time-evolution of the KRb$_{2}^{*}$ population after a sudden reduction in the $1064$ nm laser intensity, we measure the lifetime of the complex ($0.39(6)$ ms), as well as the photo-excitation rate for $1064$ nm light ($0.50(3)$ $渭$s$^{-1}($kW/cm$^{2})^{-1}$). The observed lifetime is ${\sim}10^{5}$ times longer than recent estimates based on the Rice-Ramsperger-Kassel-Marcus statistical theory, which calls for new insight to explain such a dramatic discrepancy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.14960v1-abstract-full').style.display = 'none'; document.getElementById('2105.14960v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.11761">arXiv:2101.11761</a> <span> [<a href="https://arxiv.org/pdf/2101.11761">pdf</a>, <a href="https://arxiv.org/ps/2101.11761">ps</a>, <a href="https://arxiv.org/format/2101.11761">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physrep.2020.12.003">10.1016/j.physrep.2020.12.003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Percolation on complex networks: Theory and application </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+M">Ming Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+R">Run-Ran Liu</a>, <a href="/search/physics?searchtype=author&query=L%C3%BC%2C+L">Linyuan L眉</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Mao-Bin Hu</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+S">Shuqi Xu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yi-Cheng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.11761v1-abstract-short" style="display: inline;"> In the last two decades, network science has blossomed and influenced various fields, such as statistical physics, computer science, biology and sociology, from the perspective of the heterogeneous interaction patterns of components composing the complex systems. As a paradigm for random and semi-random connectivity, percolation model plays a key role in the development of network science and its… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.11761v1-abstract-full').style.display = 'inline'; document.getElementById('2101.11761v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.11761v1-abstract-full" style="display: none;"> In the last two decades, network science has blossomed and influenced various fields, such as statistical physics, computer science, biology and sociology, from the perspective of the heterogeneous interaction patterns of components composing the complex systems. As a paradigm for random and semi-random connectivity, percolation model plays a key role in the development of network science and its applications. On the one hand, the concepts and analytical methods, such as the emergence of the giant cluster, the finite-size scaling, and the mean-field method, which are intimately related to the percolation theory, are employed to quantify and solve some core problems of networks. On the other hand, the insights into the percolation theory also facilitate the understanding of networked systems, such as robustness, epidemic spreading, vital node identification, and community detection. Meanwhile, network science also brings some new issues to the percolation theory itself, such as percolation of strong heterogeneous systems, topological transition of networks beyond pairwise interactions, and emergence of a giant cluster with mutual connections. So far, the percolation theory has already percolated into the researches of structure analysis and dynamic modeling in network science. Understanding the percolation theory should help the study of many fields in network science, including the still opening questions in the frontiers of networks, such as networks beyond pairwise interactions, temporal networks, and network of networks. The intention of this paper is to offer an overview of these applications, as well as the basic theory of percolation transition on network systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.11761v1-abstract-full').style.display = 'none'; document.getElementById('2101.11761v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">88 pages,19 figures, 5 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics Reports 907, 1-68 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.03738">arXiv:2101.03738</a> <span> [<a href="https://arxiv.org/pdf/2101.03738">pdf</a>, <a href="https://arxiv.org/format/2101.03738">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/PRJ.419368">10.1364/PRJ.419368 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Arbitrary cylindrical vector beam generation enabled by polarization-selective Gouy phase shifter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jia%2C+J">J. Jia</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+K">K. Zhang</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+G">G. Hu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">M. Hu</a>, <a href="/search/physics?searchtype=author&query=Tong%2C+T">T. Tong</a>, <a href="/search/physics?searchtype=author&query=Mu%2C+Q">Q. Mu</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+H">H. Gao</a>, <a href="/search/physics?searchtype=author&query=Li%2C+F">F. Li</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+C">C. Qiu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+P">P. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.03738v1-abstract-short" style="display: inline;"> Cylindrical vector beams (CVBs), which possesses polarization distribution of rotational symmetry on the transverse plane, can be developed in many optical technologies. Conventional methods to generate CVBs contain redundant interferometers or need to switch among diverse elements, thus being inconvenient in applications containing multiple CVBs. Here we provide a passive polarization-selective d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.03738v1-abstract-full').style.display = 'inline'; document.getElementById('2101.03738v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.03738v1-abstract-full" style="display: none;"> Cylindrical vector beams (CVBs), which possesses polarization distribution of rotational symmetry on the transverse plane, can be developed in many optical technologies. Conventional methods to generate CVBs contain redundant interferometers or need to switch among diverse elements, thus being inconvenient in applications containing multiple CVBs. Here we provide a passive polarization-selective device to substitute interferometers and simplify generation setup. It is accomplished by reversing topological charges of orbital angular momentum based on polarization-selective Gouy phase. In the process, tunable input light is the only condition to generate CVB with arbitrary topological charges. To cover both azimuthal and radial parameters of CVBs, we express the mapping between scalar Laguerre-Gaussian light on basic Poincar茅 sphere and CVB on high-order Poincar茅 sphere. The proposed device simplifies the generation of CVBs enormously, and thus has potentials in integrated devices for both quantum and classic optical experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.03738v1-abstract-full').style.display = 'none'; document.getElementById('2101.03738v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Photonics Research 9.6 (2021): 1048-1054 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.15842">arXiv:2012.15842</a> <span> [<a href="https://arxiv.org/pdf/2012.15842">pdf</a>, <a href="https://arxiv.org/format/2012.15842">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-021-03459-6">10.1038/s41586-021-03459-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Precision test of statistical dynamics with state-to-state ultracold chemistry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yu Liu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Ming-Guang Hu</a>, <a href="/search/physics?searchtype=author&query=Nichols%2C+M+A">Matthew A. Nichols</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+D">Dongzheng Yang</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+D">Daiqian Xie</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+H">Hua Guo</a>, <a href="/search/physics?searchtype=author&query=Ni%2C+K">Kang-Kuen Ni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.15842v1-abstract-short" style="display: inline;"> Chemical reactions represent a class of quantum problems that challenge both the current theoretical understanding and computational capabilities. Reactions that occur at ultralow temperatures provide an ideal testing ground for quantum chemistry and scattering theories, as they can be experimentally studied with unprecedented control, yet display dynamics that are highly complex. Here, we report… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.15842v1-abstract-full').style.display = 'inline'; document.getElementById('2012.15842v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.15842v1-abstract-full" style="display: none;"> Chemical reactions represent a class of quantum problems that challenge both the current theoretical understanding and computational capabilities. Reactions that occur at ultralow temperatures provide an ideal testing ground for quantum chemistry and scattering theories, as they can be experimentally studied with unprecedented control, yet display dynamics that are highly complex. Here, we report the full product state distribution for the reaction 2KRb $\rightarrow$ K$_2$ + Rb$_2$. Ultracold preparation of the reactants grants complete control over their initial quantum degrees of freedom, while state-resolved, coincident detection of both products enables the measurement of scattering probabilities into all 57 allowed rotational state-pairs. Our results show an overall agreement with a state-counting model based on statistical theory, but also reveal several deviating state-pairs. In particular, we observe a strong suppression of population in the state-pair closest to the exoergicity limit, which we precisely determine to be $9.7711^{+0.0007}_{-0.0005}$ cm$^{-1}$, as a result of the long-range potential inhibiting the escape of products. The completeness of our measurements provides a valuable benchmark for quantum dynamics calculations beyond the current state-of-the-art. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.15842v1-abstract-full').style.display = 'none'; document.getElementById('2012.15842v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 593, 379-384 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.08905">arXiv:2010.08905</a> <span> [<a href="https://arxiv.org/pdf/2010.08905">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0038265">10.1063/5.0038265 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing the Phonon Mean Free Paths in Dislocation Core by Molecular Dynamics Simulation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sun%2C+Y">Yandong Sun</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+Y">Yanguang Zhou</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Ming Hu</a>, <a href="/search/physics?searchtype=author&query=Snyder%2C+G+J">G. Jeffrey Snyder</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+B">Ben Xu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">Wei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.08905v2-abstract-short" style="display: inline;"> Thermal management is extremely important for designing high-performance devices. The lattice thermal conductivity of materials is strongly dependent on the structural defects at different length scales, particularly point defects like vacancies, line defects like dislocations, and planar defects such as grain boundaries. Traditionally, the McKelvey-Shockley phonon Boltzmann's transport equation (… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08905v2-abstract-full').style.display = 'inline'; document.getElementById('2010.08905v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.08905v2-abstract-full" style="display: none;"> Thermal management is extremely important for designing high-performance devices. The lattice thermal conductivity of materials is strongly dependent on the structural defects at different length scales, particularly point defects like vacancies, line defects like dislocations, and planar defects such as grain boundaries. Traditionally, the McKelvey-Shockley phonon Boltzmann's transport equation (BTE) method combined with molecular dynamics simulations has been widely used to evaluate the phonon mean free paths (MFPs) in defective systems. However, this method can only provide the aggregate MFPs of the whole sample. It is, therefore, challenging to extract the MFPs in the different regions with different thermal properties. In this study, the 1D McKelvey-Shockley phonon BTE method was extended to model inhomogeneous materials, where the effect of defects on the phonon MFPs is explicitly obtained. Then, the method was used to study the phonon interactions with the core structure of an edge dislocation. The phonon MFPs in the dislocation core were obtained and consistent with the analytical model such that high frequency phonons are likely to be scattered in this area. This method not only advances the knowledge of phonon-dislocation scattering but also shows the potential to investigate phonon transport behaviors in more complicated materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.08905v2-abstract-full').style.display = 'none'; document.getElementById('2010.08905v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 80A05 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.6.0 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.04510">arXiv:2010.04510</a> <span> [<a href="https://arxiv.org/pdf/2010.04510">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Narrow-linewidth optical frequency comb reference to a fiber delay line </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tian%2C+H">Haochen Tian</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+F">Fei Meng</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+B">Baike Lin</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+S">Shiying Cao</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+Z">Zhanjun Fang</a>, <a href="/search/physics?searchtype=author&query=Song%2C+Y">Youjian Song</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Minglie Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.04510v1-abstract-short" style="display: inline;"> In this letter, we derive a fully-stabilized narrow-linewidth optical frequency comb (OFC) reference to a kilometer-long fiber delay line for the first time, to the best of our knowledge. The 1537-nm comb modes and 1566-nm comb modes in the OFC are phase-locked to the fiber delay line with 40-kHz locking bandwidth. From out-of-loop measurement, the 1542-nm comb mode has residual phase noise of 925… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.04510v1-abstract-full').style.display = 'inline'; document.getElementById('2010.04510v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.04510v1-abstract-full" style="display: none;"> In this letter, we derive a fully-stabilized narrow-linewidth optical frequency comb (OFC) reference to a kilometer-long fiber delay line for the first time, to the best of our knowledge. The 1537-nm comb modes and 1566-nm comb modes in the OFC are phase-locked to the fiber delay line with 40-kHz locking bandwidth. From out-of-loop measurement, the 1542-nm comb mode has residual phase noise of 925 mrad (integrated from 10 MHz to 1 kHz), fractional frequency stability of 9.13*10(-13) at 12.8 ms average time and 580 Hz linewidth. The linewidth has been compressed by a factor of ~ 170 compared to the free-running condition. Short-term stability of presented OFC exceeds most commercial microwave oscillators. The entire phase-locking system is compact and highly-integrated benefiting from absence of optical amplifiers, f-2f interferometers and optical/radio references. The presented OFC shows significant potential of being reliable laser source in low-noise-OFC-based precise metrology, microwave generation and dual-comb spectroscopic applications outside the laboratory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.04510v1-abstract-full').style.display = 'none'; document.getElementById('2010.04510v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages,9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.03670">arXiv:2008.03670</a> <span> [<a href="https://arxiv.org/pdf/2008.03670">pdf</a>, <a href="https://arxiv.org/format/2008.03670">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpca.0c08103">10.1021/acs.jpca.0c08103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Lattice Thermal Conductivity Prediction using Symbolic Regression and Machine Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Loftis%2C+C">Christian Loftis</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+K">Kunpeng Yuan</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Ming Hu</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+J">Jianjun Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.03670v1-abstract-short" style="display: inline;"> Prediction models of lattice thermal conductivity have wide applications in the discovery of thermoelectrics, thermal barrier coatings, and thermal management of semiconductors. kL is notoriously difficult to predict. While classic models such as the Debye-Callaway model and the Slack model have been used to approximate the kL of inorganic compounds, their accuracy is far from being satisfactory.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.03670v1-abstract-full').style.display = 'inline'; document.getElementById('2008.03670v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.03670v1-abstract-full" style="display: none;"> Prediction models of lattice thermal conductivity have wide applications in the discovery of thermoelectrics, thermal barrier coatings, and thermal management of semiconductors. kL is notoriously difficult to predict. While classic models such as the Debye-Callaway model and the Slack model have been used to approximate the kL of inorganic compounds, their accuracy is far from being satisfactory. Herein, we propose a genetic programming based Symbolic Regression approach for explicit kL models and compare it with Multi-Layer Perceptron neural networks and a Random Forest Regressor using a hybrid cross-validation approach including both K-Fold CV and holdout validation. Four formulae have been discovered by our symbolic regression approach that outperform the Slack formula as evaluated on our dataset. Through the analysis of our models' performance and the formulae generated, we found that the trained formulae successfully reproduce the correct physical law that governs the lattice thermal conductivity of materials. We also identified that extrapolation prediction remains to be a key issue in both symbolic regression and regular machine learning methods and find the distribution of the samples place a key role in training a prediction model with high generalization capability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.03670v1-abstract-full').style.display = 'none'; document.getElementById('2008.03670v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.11760">arXiv:2007.11760</a> <span> [<a href="https://arxiv.org/pdf/2007.11760">pdf</a>, <a href="https://arxiv.org/format/2007.11760">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Applications of mesoporous silica encapsulated gold nanorods loaded doxorubicin in chemo-photothermal therapy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lien%2C+N+T+H">Nghiem Thi Ha Lien</a>, <a href="/search/physics?searchtype=author&query=Phan%2C+A+D">Anh D. Phan</a>, <a href="/search/physics?searchtype=author&query=Van+Khanh%2C+B+T">Bui Thi Van Khanh</a>, <a href="/search/physics?searchtype=author&query=Thuy%2C+N+T">Nguyen Thi Thuy</a>, <a href="/search/physics?searchtype=author&query=Nghia%2C+N+T">Nguyen Trong Nghia</a>, <a href="/search/physics?searchtype=author&query=Nhung%2C+H+T+M">Hoang Thi My Nhung</a>, <a href="/search/physics?searchtype=author&query=Nhung%2C+T+H">Tran Hong Nhung</a>, <a href="/search/physics?searchtype=author&query=Hoa%2C+D+Q">Do Quang Hoa</a>, <a href="/search/physics?searchtype=author&query=Duong%2C+V">Vu Duong</a>, <a href="/search/physics?searchtype=author&query=Hue%2C+N+M">Nguyen Minh Hue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.11760v1-abstract-short" style="display: inline;"> We investigate chemo-photothermal effects of gold nanorods (GNRs) coated using mesoporous silica (mSiO2) loading doxorubicin (DOX). When the mesoporous silica layer is embedded by doxorubicin drugs, a significant change in absorption spectra enable to quantify the drug loading. We carry out photothermal experiments on saline and livers of mice having GNRs@mSiO2 and GNRs@mSiO2-DOX. We also inject t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.11760v1-abstract-full').style.display = 'inline'; document.getElementById('2007.11760v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.11760v1-abstract-full" style="display: none;"> We investigate chemo-photothermal effects of gold nanorods (GNRs) coated using mesoporous silica (mSiO2) loading doxorubicin (DOX). When the mesoporous silica layer is embedded by doxorubicin drugs, a significant change in absorption spectra enable to quantify the drug loading. We carry out photothermal experiments on saline and livers of mice having GNRs@mSiO2 and GNRs@mSiO2-DOX. We also inject the gold nanostructures into many tumor-implanted mice and use laser illumination on some of them. By measuring weight and size of tumors, the distinct efficiency of photothermal therapy and chemotherapy on treatment is determined. We experimentally confirm the accumulation of gold nanostructures in liver. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.11760v1-abstract-full').style.display = 'none'; document.getElementById('2007.11760v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures, accepted for publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.14120">arXiv:2005.14120</a> <span> [<a href="https://arxiv.org/pdf/2005.14120">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D0NR02012E">10.1039/D0NR02012E <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A highly sensitive piezoresistive sensor based on MXene and polyvinyl butyral with a wide detection limit and low power consumption </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Qin%2C+R">Ruzhan Qin</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Mingjun Hu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xin Li</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+L">Li Yan</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+C">Chuanguang Wu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+J">Jinzhang Liu</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+H">Haibin Gao</a>, <a href="/search/physics?searchtype=author&query=Shan%2C+G">Guangcun Shan</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+W">Wei Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.14120v1-abstract-short" style="display: inline;"> As a new class of two-dimensional transition-metal carbide and carbonitride, MXene have been widely used in the energy storage, sensor, catalysis, electromagnetic interference shielding and other field. It is a challenge to simultaneously realize a sensor of extremely high sensitivity, wide detection limits, low power consumption and good mechanical stability. In this work, taking advantage of hig… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.14120v1-abstract-full').style.display = 'inline'; document.getElementById('2005.14120v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.14120v1-abstract-full" style="display: none;"> As a new class of two-dimensional transition-metal carbide and carbonitride, MXene have been widely used in the energy storage, sensor, catalysis, electromagnetic interference shielding and other field. It is a challenge to simultaneously realize a sensor of extremely high sensitivity, wide detection limits, low power consumption and good mechanical stability. In this work, taking advantage of high conductivity of MXene and porous structure of polyvinyl butyral, a highly sensitive piezoresistive sensor was fabricated. The fabricated MXene/PVB-based sensor exhibits highly sensitive reliably with a factor of ~11.9 kPa^-1, ~1.15 kPa^-1 and ~0.20 kPa^-1 in the ranges of 31.2 Pa-312 Pa, 312 Pa- 62.4 kPa and 62.4 kPa-1248.4 kPa, respectively. The sensor has a wide detection range (~31.2 Pa to ~2.205 MPa), low detection limit (6.8 Pa), low detection voltage (0.1 mV), low power consumption (~3.6 * 10^-10 W), fast response time ( ~110 ms), as well as good mechanical stability (over 10,000 maximum-pressure cycles). Moreover, it is demonstrated that the sensor can detect subtle bending and release activities of human, including arterial pulses and voice signal, which is potentially suitable as a wide detection range, highly sensitive and low power consumption piezoresistive sensor. This work provides a new avenue to expand the application of MXene-based flexible pressure sensor in the field of wide sensing range and ultra-low power consumption. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.14120v1-abstract-full').style.display = 'none'; document.getElementById('2005.14120v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nanoscale 2020</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.10820">arXiv:2005.10820</a> <span> [<a href="https://arxiv.org/pdf/2005.10820">pdf</a>, <a href="https://arxiv.org/format/2005.10820">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41557-020-00610-0">10.1038/s41557-020-00610-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> State-to-state control of ultracold molecular reactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hu%2C+M">Ming-Guang Hu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yu Liu</a>, <a href="/search/physics?searchtype=author&query=Nichols%2C+M+A">Matthew A. Nichols</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+L">Lingbang Zhu</a>, <a href="/search/physics?searchtype=author&query=Qu%C3%A9m%C3%A9ner%2C+G">Goulven Qu茅m茅ner</a>, <a href="/search/physics?searchtype=author&query=Dulieu%2C+O">Olivier Dulieu</a>, <a href="/search/physics?searchtype=author&query=Ni%2C+K">Kang-Kuen Ni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.10820v2-abstract-short" style="display: inline;"> Quantum control of reactive systems has enabled microscopic probes of underlying interaction potentials, the opening of novel reaction pathways, and the alteration of reaction rates using quantum statistics. However, extending such control to the quantum states of reaction outcomes remains challenging. In this work, we realize this goal through the nuclear spin degree of freedom, a result which re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10820v2-abstract-full').style.display = 'inline'; document.getElementById('2005.10820v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.10820v2-abstract-full" style="display: none;"> Quantum control of reactive systems has enabled microscopic probes of underlying interaction potentials, the opening of novel reaction pathways, and the alteration of reaction rates using quantum statistics. However, extending such control to the quantum states of reaction outcomes remains challenging. In this work, we realize this goal through the nuclear spin degree of freedom, a result which relies on the conservation of nuclear spins throughout the reaction. Using resonance-enhanced multiphoton ionization spectroscopy to investigate the products formed in bimolecular reactions between ultracold KRb molecules, we find that the system retains a near-perfect memory of the reactants' nuclear spins, manifested as a strong parity preference for the rotational states of the products. We leverage this effect to alter the occupation of these product states by changing the coherent superposition of initial nuclear spin states with an external magnetic field. In this way, we are able to control both the inputs and outputs of a bimolecular reaction with quantum state resolution. The techniques demonstrated here open up the possibilities to study quantum interference between reaction pathways, quantum entanglement between reaction products, and ultracold reaction dynamics at the state-to-state level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10820v2-abstract-full').style.display = 'none'; document.getElementById('2005.10820v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures in main text; Accepted for publication in Nature Chemistry</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Chem. 13, 435 (2021) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Hu%2C+M&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Hu%2C+M&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Hu%2C+M&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Hu%2C+M&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>