CINXE.COM
Search results for: ethylene
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ethylene</title> <meta name="description" content="Search results for: ethylene"> <meta name="keywords" content="ethylene"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ethylene" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ethylene"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 277</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ethylene</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">277</span> Ethylene Sensitivity in Orchids and Its Control Using 1-MCP: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parviz%20Almasi">Parviz Almasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ethylene is produced as a gaseous growth regulator in all plants and their constructive parts such as roots, stems, leaves, flowers and fruits. It is considered a multifunctional phytohormone that regulates both growths including flowering, fruit ripening, inhibition of root growth, and senescence such as senescence of leaves and flowers and etc. In addition, exposure to external ethylene is caused some changes that are often undesirable and harmful. Some flowers are more sensitive to others and when exposed to ethylene; their aging process is hastened. 1-MCP is an exogenous and endogenous ethylene action inhibitor, which binds to the ethylene receptors in the plants and prevents ethylene-dependent reactions. The binding affinity of 1- MCP for the receptors is about 10 times more than ethylene. Hence, 1-MCP can be a potential candidate for controlling of ethylene injury in horticultural crops. This review integrates knowledge of ethylene biosynthesis in the plants and also a mode of action of 1-MCP in preventing of ethylene injury. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethylene%20injury" title="ethylene injury">ethylene injury</a>, <a href="https://publications.waset.org/abstracts/search?q=biosynthesis" title=" biosynthesis"> biosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene%20sensitivity" title=" ethylene sensitivity"> ethylene sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=1-MCP" title=" 1-MCP"> 1-MCP</a> </p> <a href="https://publications.waset.org/abstracts/151840/ethylene-sensitivity-in-orchids-and-its-control-using-1-mcp-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">276</span> Parametric Studies of Ethylene Dichloride Purification Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sh.%20Arzani">Sh. Arzani</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kazemi%20Esfeh"> H. Kazemi Esfeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Galeh%20Zadeh"> Y. Galeh Zadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Akbari"> V. Akbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ethylene dichloride is a colorless liquid with a smell like chloroform. EDC is classified in the simple hydrocarbon group which is obtained from chlorinating ethylene gas. Its chemical formula is C2H2Cl2 which is used as the main mediator in VCM production. Therefore, the purification process of EDC is important in the petrochemical process. In this study, the purification unit of EDC was simulated, and then validation was performed. Finally, the impact of process parameter was studied for the degree of EDC purity. The results showed that by increasing the feed flow, the reflux impure combinations increase and result in an EDC purity decrease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethylene%20dichloride" title="ethylene dichloride">ethylene dichloride</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification"> purification</a>, <a href="https://publications.waset.org/abstracts/search?q=edc" title=" edc"> edc</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/35735/parametric-studies-of-ethylene-dichloride-purification-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35735.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">275</span> Removal of Brilliant Green in Environmental Samples by Poly Ethylene Terephthalate Granule</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Homayon%20Ahmad%20Panahi">Homayon Ahmad Panahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nika%20Shakerin"> Nika Shakerin</a>, <a href="https://publications.waset.org/abstracts/search?q=Farahnaz%20Zolriasatain"> Farahnaz Zolriasatain</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Moniri"> Elham Moniri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, poly-ethylene terephthalate granule was prepared from Tak Corporation. The granule was characterized by fourier transform infra-red spectroscopy. Then the effects of various parameters on brilliant green sorption such as pH, contact time were studied. The optimum pH value for sorption of brilliant green was 6. The sorption capacity of the granule for brilliant green was 4.6 mg g−1. The profile of brilliant green uptake on this sorbent reflects a good accessibility of the chelating sites in the poly-ethylene terephthalate granule. The developed method was utilized for the determination of brilliant green in environmental water samples by UV/Vis spectrophotometry with satisfactory results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poly-ethylene%20terephthalate%20granule" title="poly-ethylene terephthalate granule">poly-ethylene terephthalate granule</a>, <a href="https://publications.waset.org/abstracts/search?q=brilliant%20green" title=" brilliant green"> brilliant green</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20sample" title=" environmental sample"> environmental sample</a>, <a href="https://publications.waset.org/abstracts/search?q=removal" title=" removal"> removal</a> </p> <a href="https://publications.waset.org/abstracts/1520/removal-of-brilliant-green-in-environmental-samples-by-poly-ethylene-terephthalate-granule" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">274</span> The Plant Hormone Auxin Impacts the Profile of Aroma Compounds in Tomato Fruits (Solanum lycopersicum)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vanessa%20Caroline%20De%20Barros%20Bonato">Vanessa Caroline De Barros Bonato</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruna%20Lima%20Gomes"> Bruna Lima Gomes</a>, <a href="https://publications.waset.org/abstracts/search?q=Luciano%20Freschi"> Luciano Freschi</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20Purgatto"> Eduardo Purgatto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The plant hormone ethylene is closely related to the metabolic changes that occur during fruit ripening, including volatile biosynthesis. Although knowledge about the biochemistry pathways that produce flavor compounds and the importance of ethylene to these processes are extensively covered, little is known about the regulation mechanisms. In addition, growing body of evidences indicates that auxin is also involved in controlling ripening. However, there is scarce information about the involvement of auxin in fruit volatile production. This study aimed to assess auxin-ethylene interactions and its influence on tomato fruit volatile profile. Fruits from tomato cultivar Micro-Tom were treated with IAA and ethylene, separately and in combination. The hormonal treatment was performed by injection (IAA) or gas exposure (ethylene) and the volatiles were extracted by Solid Phase Microextraction (SPME) and analyzed by GC-MS. Ethylene levels and color were measured by gas chromatography and colorimetry, respectively. The results indicate that the treatment with IAA (even in the presence of high concentrations of exogenous ethylene), impacted the profile of volatile compounds derived from fatty acids, amino acids, carbohydrates and isoprenoids. Ethylene is a well-known regulator of the transition from green to red color and also is implicated in the biosynthesis of characteristic volatile compounds of tomato fruit. The effects observed suggest the existence of a crosstalk between IAA and ethylene in the aroma volatile formation in the fruit. A possible interference of IAA in the ethylene sensitivity in the fruit flesh is discussed. The data suggest that auxin plays an important role in the volatile synthesis in the tomato fruit and introduce a new level of complexity in the regulation of the fruit aroma formation during ripening. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aroma%20compounds" title="aroma compounds">aroma compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20ripening" title=" fruit ripening"> fruit ripening</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20quality" title=" fruit quality"> fruit quality</a>, <a href="https://publications.waset.org/abstracts/search?q=phytohormones" title=" phytohormones"> phytohormones</a> </p> <a href="https://publications.waset.org/abstracts/23649/the-plant-hormone-auxin-impacts-the-profile-of-aroma-compounds-in-tomato-fruits-solanum-lycopersicum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">273</span> New Insights into Ethylene and Auxin Interplay during Tomato Ripening</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bruna%20Lima%20Gomes">Bruna Lima Gomes</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanessa%20Caroline%20De%20Barros%20Bonato"> Vanessa Caroline De Barros Bonato</a>, <a href="https://publications.waset.org/abstracts/search?q=Luciano%20Freschi"> Luciano Freschi</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20Purgatto"> Eduardo Purgatto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant hormones are long known to be tightly associated with fruit development and are involved in controlling various aspects of fruit ripening. For fleshy fruits, ripening is characterized for changes in texture, color, aroma and other parameters that markedly contribute to its quality. Ethylene is one of the major players regulating the ripening-related processes, but emerging evidences suggest that auxin is also part of this dynamic control. Thus, the aim of this study was providing new insights into the auxin role during ripening and the hormonal interplay between auxin and ethylene. For that, tomato fruits (Micro-Tom) were collected at mature green stage and separated in four groups: one for indole-3-acetic acid (IAA) treatment, one for ethylene, one for a combination of IAA and ethylene, and one for control. Hormone solution was injected through the stylar apex, while mock samples were injected with buffer only. For ethylene treatments, fruits were exposed to gaseous hormone. Then, fruits were left to ripen under standard conditions and to assess ripening development, hue angle was reported as color indicator and ethylene production was measured by gas chromatography. The transcript levels of three ripening-related ethylene receptors (LeETR3, LeETR4 and LeETR6) were evaluated by RT-qPCR. Results showed that ethylene treatment induced ripening, stimulated ethylene production, accelerated color changes and induced receptor expression, as expected. Nonetheless, auxin treatment showed the opposite effect once fruits remained green for longer time than control group and ethylene perception has changed, taking account the reduced levels of receptor transcripts. Further, treatment with both hormones revealed that auxin effect in delaying ripening was predominant, even with higher levels of ethylene. Altogether, the data suggest that auxin modulates several aspects of the tomato fruit ripening modifying the ethylene perception. The knowledge about hormonal control of fruit development will help design new strategies for effective manipulation of ripening regarding fruit quality and brings a new level of complexity on fruit ripening regulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethylene" title="ethylene">ethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=auxin" title=" auxin"> auxin</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20ripening" title=" fruit ripening"> fruit ripening</a>, <a href="https://publications.waset.org/abstracts/search?q=hormonal%20crosstalk" title=" hormonal crosstalk"> hormonal crosstalk</a> </p> <a href="https://publications.waset.org/abstracts/23375/new-insights-into-ethylene-and-auxin-interplay-during-tomato-ripening" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23375.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">272</span> Design and Optimisation of 2-Oxoglutarate Dioxygenase Expression in Escherichia coli Strains for Production of Bioethylene from Crude Glycerol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Idan%20Chiyanzu">Idan Chiyanzu</a>, <a href="https://publications.waset.org/abstracts/search?q=Maruping%20Mangena"> Maruping Mangena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crude glycerol, a major by-product from the transesterification of triacylglycerides with alcohol to biodiesel, is known to have a broad range of applications. For example, its bioconversion can afford a wide range of chemicals including alcohols, organic acids, hydrogen, solvents and intermediate compounds. In bacteria, the 2-oxoglutarate dioxygenase (2-OGD) enzymes are widely found among the Pseudomonas syringae species and have been recognized with an emerging importance in ethylene formation. However, the use of optimized enzyme function in recombinant systems for crude glycerol conversion to ethylene is still not been reported. The present study investigated the production of ethylene from crude glycerol using engineered E. coli MG1655 and JM109 strains. Ethylene production with an optimized expression system for 2-OGD in E. coli using a codon optimized construct of the ethylene-forming gene was studied. The codon-optimization resulted in a 20-fold increase of protein production and thus an enhanced production of the ethylene gas. For a reliable bioreactor performance, the effect of temperature, fermentation time, pH, substrate concentration, the concentration of methanol, concentration of potassium hydroxide and media supplements on ethylene yield was investigated. The results demonstrate that the recombinant enzyme can be used for future studies to exploit the conversion of low-priced crude glycerol into advanced value products like light olefins, and tools including recombineering techniques for DNA, molecular biology, and bioengineering can be used to allowing unlimited the production of ethylene directly from the fermentation of crude glycerol. It can be concluded that recombinant E.coli production systems represent significantly secure, renewable and environmentally safe alternative to thermochemical approach to ethylene production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20glycerol" title="crude glycerol">crude glycerol</a>, <a href="https://publications.waset.org/abstracts/search?q=bioethylene" title=" bioethylene"> bioethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=recombinant%20E.%20coli" title=" recombinant E. coli"> recombinant E. coli</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/54648/design-and-optimisation-of-2-oxoglutarate-dioxygenase-expression-in-escherichia-coli-strains-for-production-of-bioethylene-from-crude-glycerol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">271</span> The Utilization of Salicylic Acid of the Extract from Avocado Skin as an Inhibitor of Ethylene Production to Keep the Quality of Banana in Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adira%20Nofeadri%20Ryofi">Adira Nofeadri Ryofi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alvin%20Andrianus"> Alvin Andrianus</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Khairunnisa"> Anna Khairunnisa</a>, <a href="https://publications.waset.org/abstracts/search?q=Anugrah%20Cahyo%20Widodo"> Anugrah Cahyo Widodo</a>, <a href="https://publications.waset.org/abstracts/search?q=Arbhyando%20Tri%20Putrananda"> Arbhyando Tri Putrananda</a>, <a href="https://publications.waset.org/abstracts/search?q=Arsy%20Imanda%20N.%20Raswati"> Arsy Imanda N. Raswati</a>, <a href="https://publications.waset.org/abstracts/search?q=Gita%20Rahmaningsih"> Gita Rahmaningsih</a>, <a href="https://publications.waset.org/abstracts/search?q=Ina%20Agustina"> Ina Agustina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The consumption level of fresh bananas from 2005 until 2010, increased from 8.2 to 10 kg/capita/year. The commercial scale of banana generally harvested when it still green to make the banana avoid physical damage, chemical, and disease after harvest and ripe fruit. That first metabolism activity can be used as a synthesis reaction. Ripening fruit was influenced by ethylene hormone that synthesized in fruit which is experiencing ripe and including hormone in the ripening fruit process in klimaterik phase. This ethylene hormone is affected by the respiration level that would speed up the restructuring of carbohydrates inside the fruit, so the weighting of fruit will be decreased. Compared to other klimaterik fruit, banana is a fruit that has a medium ethylene production rate and the rate of respiration is low. The salicylic acid can regulate the result number of the growth process or the development of fruits and plants. Salicylic acid serves to hinder biosynthesis ethylene and delay senses. The research aims to understand the influence of salicylic acid concentration that derived from the waste of avocado skin in inhibition process to ethylene production that the maturation can be controlled, so it can keep the quality of banana for storage. It is also to increase the potential value of the waste of avocado skin that were still used in industrial cosmetics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethylene%20hormone" title="ethylene hormone">ethylene hormone</a>, <a href="https://publications.waset.org/abstracts/search?q=extract%20avocado%20skin" title=" extract avocado skin"> extract avocado skin</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitor" title=" inhibitor"> inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=salicylic%20acid" title=" salicylic acid"> salicylic acid</a> </p> <a href="https://publications.waset.org/abstracts/48712/the-utilization-of-salicylic-acid-of-the-extract-from-avocado-skin-as-an-inhibitor-of-ethylene-production-to-keep-the-quality-of-banana-in-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">270</span> Copolymers of Pyrrole and α,ω-Dithienyl Terminated Poly(ethylene glycol)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nesrin%20K%C3%B6ken">Nesrin Köken</a>, <a href="https://publications.waset.org/abstracts/search?q=Esin%20A.%20G%C3%BCvel"> Esin A. Güvel</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilg%C3%BCn%20K%C4%B1z%C4%B1lcan"> Nilgün Kızılcan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents synthesis of α,ω-dithienyl terminated poly(ethylene glycol) (PEGTh) capable for further chain extension by either chemical or electrochemical polymerization. PEGTh was characterized by FTIR and 1H-NMR. Further, copolymerization of PEGTh and pyrrole (Py) was performed by chemical oxidative polymerization using ceric (IV) salt as an oxidant (PPy-PEGTh). PEG without end group modification was used directly to prepare copolymers with Py by Ce (IV) salt (PPy-PEG). Block copolymers with mole ratio of pyrrole to PEGTh (PEG) 50:1 and 10:1 were synthesized. The electrical conductivities of copolymers PPy-PEGTh and PPy-PEG were determined by four-point probe technique. Influence of the synthetic route and content of the insulating segment on conductivity and yield of the copolymers were investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxidative%20polymerization" title="chemical oxidative polymerization">chemical oxidative polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=conducting%20polymer" title=" conducting polymer"> conducting polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28ethylene%20glycol%29" title=" poly(ethylene glycol)"> poly(ethylene glycol)</a>, <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title=" polypyrrole"> polypyrrole</a> </p> <a href="https://publications.waset.org/abstracts/20954/copolymers-of-pyrrole-and-ao-dithienyl-terminated-polyethylene-glycol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">269</span> N-Heptane as Model Molecule for Cracking Catalyst Evaluation to Improve the Yield of Ethylene and Propylene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tony%20K.%20Joseph">Tony K. Joseph</a>, <a href="https://publications.waset.org/abstracts/search?q=Balasubramanian%20Vathilingam"> Balasubramanian Vathilingam</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephane%20Morin"> Stephane Morin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the refiners around the world are more focused on improving the yield of light olefins (propylene and ethylene) as both of them are very prominent raw materials to produce wide spectrum of polymeric materials such as polyethylene and polypropylene. Henceforth, it is desirable to increase the yield of light olefins via selective cracking of heavy oil fractions. In this study, zeolite grown on SiC was used as the catalyst to do model cracking reaction of n-heptane. The catalytic cracking of n-heptane was performed in a fixed bed reactor (12 mm i.d.) at three different temperatures (425, 450 and 475 °C) and at atmospheric pressure. A carrier gas (N₂) was mixed with n-heptane with ratio of 90:10 (N₂:n-heptane), and the gaseous mixture was introduced into the fixed bed reactor. Various flow rate of reactants was tested to increase the yield of ethylene and propylene. For the comparison purpose, commercial zeolite was also tested in addition to Zeolite on SiC. The products were analyzed using an Agilent gas chromatograph (GC-9860) equipped with flame ionization detector (FID). The GC is connected online with the reactor and all the cracking tests were successfully reproduced. The entire catalytic evaluation results will be presented during the conference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cracking" title="cracking">cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene" title=" ethylene"> ethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=heptane" title=" heptane"> heptane</a>, <a href="https://publications.waset.org/abstracts/search?q=propylene" title=" propylene"> propylene</a> </p> <a href="https://publications.waset.org/abstracts/118988/n-heptane-as-model-molecule-for-cracking-catalyst-evaluation-to-improve-the-yield-of-ethylene-and-propylene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">268</span> Tackling Food Waste Challenge with Nanotechnology: Controllable Ripening via Metal Organic Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boce%20Zhang">Boce Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaguang%20Luo"> Yaguang Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ripening of climacteric fruits, such as bananas and avocados, are usually initiated days prior to the retail marketing. However, upon the onset of irreversible ripening, they undergo rapid spoilage if not consumed within a narrow climacteric time window. Controlled ripening of climacteric fruits is a critical step to provide consumers with high-quality products while reducing postharvest losses and food waste. There is a high demand for technologies that can retard the ripening process or enable accelerated ripening immediately before consumption. In this work, metal−organic framework (MOF) was developed as a solid porous matrix to encapsulate gaseous hormone, including ethylene, for subsequent application. The feasibility of the on-demand stimulated ripening of bananas and avocados is also evaluated. MOF was synthesized and loaded with ethylene gas. The MOF−ethylene was placed inside sealed containers with preclimacteric bananas and avocados and stored at 16 °C. The fruits were treated for 24-48 hours, and evaluated for ripening progress. Results indicate that MOF−ethylene treatment significantly accelerated the ripening-related changes of color and textural properties in treated bananas and avocados. The average ripening period for both avocados and bananas were reduced in half by using this method. No significant differences of quality characteristics at respective ripening stages were observed between produce ripened via MOF-ethylene versus exogenously supplied ethylene gas or endogenously produced ethylene. Solid MOF matrices could have multiple advantages compared to existing systems, including easy to transport and safe to use by minimally trained produce handlers and consumers. We envision that this technology can help tackle food waste challenges at the critical retail and consumer stages in the food supply chain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climacteric%20produce" title="climacteric produce">climacteric produce</a>, <a href="https://publications.waset.org/abstracts/search?q=controllable%20ripening" title=" controllable ripening"> controllable ripening</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20waste%20challenge" title=" food waste challenge"> food waste challenge</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20organic%20framework" title=" metal organic framework"> metal organic framework</a> </p> <a href="https://publications.waset.org/abstracts/68138/tackling-food-waste-challenge-with-nanotechnology-controllable-ripening-via-metal-organic-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">267</span> Removal of Pb(II) Ions from Wastewater Using Magnetic Chitosan–Ethylene Glycol Diglycidyl Ether Beads as Adsorbent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pyar%20Singh%20Jassal">Pyar Singh Jassal</a>, <a href="https://publications.waset.org/abstracts/search?q=Priti%20Rani"> Priti Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajni%20Johar"> Rajni Johar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adsorption of Pb(II) ions from wastewater using ethylene glycol diglycidyl ether cross-linked magnetic chitosan beads (EGDE-MCB) was carried out by considering a number of parameters. The removal efficiency of the metal ion by magnetic chitosan beads (MCB) and its cross-linked derivatives depended on viz contact time, dose of the adsorbent, pH, temperature, etc. The concentration of Cd( II) at different time intervals was estimated by differential pulse anodic stripping voltammetry (DPSAV) using 797 voltametric analyzer computrace. The adsorption data could be well interpreted by Langmuir and Freundlich adsorption model. The equilibrium parameter, RL values, support that the adsorption (0<RL<1) is a favorable and spontaneous process. The thermodynamic parameters suggest that it is an exothermic reaction which results with an increase in the randomness of the adsorption process. The kinetic data of Pb(II) ions fitted well with the pseudo-second-order kinetic model. The EGDE-MCB was characterized by using FTIR, SEM, EDX, and TGA techniques. The desorption of metal ion loaded chitosan beads was performed with 0.1M ethylene diamine tetra acetic acid (EDTA) solution for further use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20chitosan%20beads" title="magnetic chitosan beads">magnetic chitosan beads</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene%20glycol%20diglycidyl%20ether" title=" ethylene glycol diglycidyl ether"> ethylene glycol diglycidyl ether</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium%20parameters" title=" equilibrium parameters"> equilibrium parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=desorption" title=" desorption"> desorption</a> </p> <a href="https://publications.waset.org/abstracts/147347/removal-of-pbii-ions-from-wastewater-using-magnetic-chitosan-ethylene-glycol-diglycidyl-ether-beads-as-adsorbent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147347.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">266</span> The Effect of Floor Impact Sound Insulation Performance Using Scrambled Thermoplastic Poly Urethane and Ethylene Vinyl Acetate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bonsoo%20Koo">Bonsoo Koo</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong%20Shin%20Hong"> Seong Shin Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Byung%20Kwon%20Lee"> Byung Kwon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of apartments in Korea have wall type structure that present poor performance regarding floor impact sound insulation. In order to minimize the transmission of floor impact sound, flooring structures are used in which an insulating material, 30 mm thickness pad of EPS or EVA, is sandwiched between a concrete slab and the finished mortar. Generally, a single-material pad used for insulation has a heavyweight impact sound level of 44~47 dB with 210 mm thickness slab. This study provides an analysis of the floor impact sound insulation performance using thermoplastic poly urethane (TPU), ethylene vinyl acetate (EVA), and expanded polystyrene (EPS) materials with buffering performance. Following mock-up tests the effect of lightweight impact sound turned out to be similar but heavyweight impact sound was decreased by 3 dB compared to conventional single material insulation pad. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floor%20impact%20sound" title="floor impact sound">floor impact sound</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20poly%20urethane" title=" thermoplastic poly urethane"> thermoplastic poly urethane</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene%20vinyl%20acetate" title=" ethylene vinyl acetate"> ethylene vinyl acetate</a>, <a href="https://publications.waset.org/abstracts/search?q=heavyweight%20impact%20sound" title=" heavyweight impact sound"> heavyweight impact sound</a> </p> <a href="https://publications.waset.org/abstracts/84146/the-effect-of-floor-impact-sound-insulation-performance-using-scrambled-thermoplastic-poly-urethane-and-ethylene-vinyl-acetate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">265</span> Polysorb®-A Versatile Monomer for Improving Thermoplastics and Thermosetting Properties: Case Study of Polyesters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Saint-Loup">R. Saint-Loup</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Amedro"> H. Amedro</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Jacquel"> N. Jacquel</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Legrand"> S. Legrand</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Fenouillot"> F. Fenouillot</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Pascault"> J. P. Pascault</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rousseau"> A. Rousseau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Isosorbide or 1,4-3,6 dianhydrohexitol has been developped for several years as a new biobased monomer. It is commercially available as a starch derivative, more precisely obtained derivated from starch and more precisely from sorbitol. Isosorbide can find several applications, directly as a monomer or after chemical modification, in different polymer fields like thermoplastics (obtained from polycondensation or from radical polymerization of unsaturated monomers) or like Thermosetting resins (like cross linked PU, or after modification like acrylates or epoxy coatings) Concerning aliphatic or semi-aromatic polyesters, the addition of isosorbide improves thermal stability an,d optical properties, allowing a large range of applications as semi-crystalline or amorphous polymers. The preparation of poly (ethylene-co-isosorbide) terephthalate with different ratios of isosorbide will be particularly detailed. The structure – properties relationship will permit a focus on the obtention of polyesters with semi-crystalline or amorphous structures. The influence of isosorbide on the polymerization, on the processing of the resulting polyester as well as the modification of the final properties will be enlightened. The properties of Poly (ethylene-co-isosorbide) terephthlate will be emphasized and related to their applications. The evolutions related to Isosorbide with the replacement of ethylene glycol by Cyclohexanedimethanol allowed to drastically change the properties of the resulting polyester, with a large gap on the properties and new potential applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modified%20PET" title="modified PET">modified PET</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28ethylene-co-isosorbide%29terephthalate" title=" poly(ethylene-co-isosorbide)terephthalate"> poly(ethylene-co-isosorbide)terephthalate</a>, <a href="https://publications.waset.org/abstracts/search?q=specialy%20polyester" title=" specialy polyester"> specialy polyester</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28isosorbide_co_cyclohexanediol%29terephthalate" title=" poly(isosorbide_co_cyclohexanediol)terephthalate"> poly(isosorbide_co_cyclohexanediol)terephthalate</a> </p> <a href="https://publications.waset.org/abstracts/167680/polysorb-a-versatile-monomer-for-improving-thermoplastics-and-thermosetting-properties-case-study-of-polyesters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">264</span> Metabolic Regulation of Rhizobacteria for Cool-Season Grass Tolerance to Heat Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kashif%20Jaeel">Kashif Jaeel</a>, <a href="https://publications.waset.org/abstracts/search?q=Bingru%20Huang"> Bingru Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stress-induced accumulation of ethylene exacerbates drought damages in plants, and suppressing stress induction of ethylene may promote plant tolerance to heat stress. The objective of this study was to investigate the effects of endophytic bacteria (Paraburkholderia aspalathi) with 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase enzymes in suppressing ethylene production on plant tolerance to heat stress and underlying physiological mechanisms of P. aspalathi-regulation in creeping bentgrass (Agrostis stolonifera). A novel strain of P. aspalathi, ‘WSF23’, with ACC deaminase activity was used to inoculate the roots of plants (cv. ‘Penncross’) subjected to heat stress in controlled-environment chambers. Inoculation with WSF23 bacteria resulted in improved shoot and root growth during heat stress. The differential changes in metabolite regulation due to the bacterial inoculation could contribute to ACC deamination bacteria-improved heat tolerance in cool-season grass species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rhizobacteria" title="rhizobacteria">rhizobacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=grass" title=" grass"> grass</a>, <a href="https://publications.waset.org/abstracts/search?q=heat" title=" heat"> heat</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20metabolism" title=" plant metabolism"> plant metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20bacteria" title=" soil bacteria"> soil bacteria</a> </p> <a href="https://publications.waset.org/abstracts/177551/metabolic-regulation-of-rhizobacteria-for-cool-season-grass-tolerance-to-heat-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">263</span> Improvement of Thermal Stability in Ethylene Methyl Acrylate Composites for Gasket Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pemika%20Ketsuwan">Pemika Ketsuwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Pitt%20Supaphol"> Pitt Supaphol</a>, <a href="https://publications.waset.org/abstracts/search?q=Manit%20Nithitanakul"> Manit Nithitanakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A typical used of ethylene methyl acrylate (EMA) gasket is in the manufacture of optical lens, and often, they are deteriorated rapidly due to high temperature during the process. The objective of this project is to improve the thermal stability of the EMA copolymer gasket by preparing EMA with cellulose and silica composites. Hydroxy propyl methyl cellulose (HPMC) and Carboxy methyl cellulose (CMC) were used in preparing of EMA/cellulose composites and fumed silica (SiO2) was used in preparing EMA/silica composites with different amounts of filler (3, 5, 7, 10, 15 wt.%), using a twin screw extruder at 160 °C and the test specimens were prepared by the injection molding machine. The morphology and dispersion of fillers in the EMA matrix were investigated by field emission scanning electron microscopy (FESEM). The thermal stability of the composite was determined by thermal gravimetric analysis (TGA), and differential scanning calorimeter (DSC). Mechanical properties were evaluated by tensile testing. The developed composites were found to enhance thermal and mechanical properties when compared to that of the EMA copolymer alone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethylene%20methyl%20acrylate" title="ethylene methyl acrylate">ethylene methyl acrylate</a>, <a href="https://publications.waset.org/abstracts/search?q=HPMC" title=" HPMC"> HPMC</a>, <a href="https://publications.waset.org/abstracts/search?q=Silica" title=" Silica"> Silica</a>, <a href="https://publications.waset.org/abstracts/search?q=Thermal%20stability" title=" Thermal stability"> Thermal stability</a> </p> <a href="https://publications.waset.org/abstracts/124859/improvement-of-thermal-stability-in-ethylene-methyl-acrylate-composites-for-gasket-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">262</span> Improvement on the Specific Activities of Immobilized Enzymes by Poly(Ethylene Oxide) Surface Modification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaohua%20Li">Shaohua Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Aihua%20Zhang"> Aihua Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kelly%20Zatopek"> Kelly Zatopek</a>, <a href="https://publications.waset.org/abstracts/search?q=Saba%20Parvez"> Saba Parvez</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20F.%20Gardner"> Andrew F. Gardner</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20R.%20Corr%C3%AAa%20Jr."> Ivan R. Corrêa Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20J.%20Noren"> Christopher J. Noren</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Qun%20Xu"> Ming-Qun Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Covalent immobilization of enzymes on solid supports is an alternative approach to biocatalysis with the added benefits of simple enzyme removal, improved stability, and adaptability to automation and high-throughput applications. Nevertheless, immobilized enzymes generally suffer from reduced activities compared to their soluble counterparts. One major factor leading to activity loss is the intrinsic hydrophobic property of the supporting material surface, which could result in the conformational change/confinement of enzymes. We report a strategy of utilizing flexible poly (ethylene oxide) (PEO) moieties as to improve the surface hydrophilicity of solid supports used for enzyme immobilization. DNA modifying enzymes were covalently conjugated to PEO-coated magnetic-beads. Kinetics studies proved that the activities of the covalently-immobilized DNA modifying enzymes were greatly enhanced by the PEO modification on the bead surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immobilized%20enzymes" title="immobilized enzymes">immobilized enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=biocatalysis" title=" biocatalysis"> biocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28ethylene%20oxide%29" title=" poly(ethylene oxide)"> poly(ethylene oxide)</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a> </p> <a href="https://publications.waset.org/abstracts/79716/improvement-on-the-specific-activities-of-immobilized-enzymes-by-polyethylene-oxide-surface-modification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">261</span> Studying the Evolution of Soot and Precursors in Turbulent Flames Using Laser Diagnostics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20A.%20Ashraf">Muhammad A. Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Scott%20Steinmetz"> Scott Steinmetz</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20J.%20Dunn"> Matthew J. Dunn</a>, <a href="https://publications.waset.org/abstracts/search?q=Assaad%20R.%20Masri"> Assaad R. Masri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study focuses on the evolution of soot and soot precursors in three different piloted diffusion turbulent flames. The fuel composition is as follow flame A (ethylene/nitrogen, 2:3 by volume), flame B (ethylene/air, 2:3 by volume), and flame C (pure methane). These flames are stabilized using a 4mm diameter jet surrounded by a pilot annulus with an outer diameter of 15 mm. The pilot issues combustion products from stoichiometric premixed flames of hydrogen, acetylene, and air. In all cases, the jet Reynolds number is 10,000, and air flows in the coflow stream at a velocity of 5 m/s. Time-resolved laser-induced fluorescence (LIF) is collected at two wavelength bands in the visible (445 nm) and UV regions (266 nm) along with laser-induced incandescence (LII). The combined results are employed to study concentration, size, and growth of soot and precursors. A set of four fast photo-multiplier tubes are used to record emission data in temporal domain. A 266nm laser pulse preferentially excites smaller nanoparticles which emit a fluorescence spectrum which is analysed to track the presence, evolution, and destruction of nanoparticles. A 1064nm laser pulse excites sufficiently large soot particles, and the resulting incandescence is collected at 1064nm. At downstream and outer radial locations, intermittency becomes a relevant factor. Therefore, data collected in turbulent flames is conditioned to account for intermittency so that the resulting mean profiles for scattering, fluorescence, and incandescence are shown for the events that contain traces of soot. It is found that in the upstream regions of the ethylene-air and ethylene-nitrogen flames, the presence of soot precursors is rather similar. However, further downstream, soot concentration grows larger in the ethylene-air flames. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20induced%20incandescence" title="laser induced incandescence">laser induced incandescence</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20induced%20fluorescence" title=" laser induced fluorescence"> laser induced fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=soot" title=" soot"> soot</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/109826/studying-the-evolution-of-soot-and-precursors-in-turbulent-flames-using-laser-diagnostics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">260</span> Modeling of Oligomerization of Ethylene in a Falling film Reactor for the Production of Linear Alpha Olefins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adil%20A.%20Mohammed">Adil A. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Seif-Eddeen%20K.%20Fateen"> Seif-Eddeen K. Fateen</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamer%20S.%20Ahmed"> Tamer S. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20M.%20Moustafa"> Tarek M. Moustafa </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Falling film were widely used for gas-liquid absorption and reaction process. Modeling of falling film for oligomerization of ethylene reaction to linear alpha olefins is developed. Although there are many researchers discuss modeling of falling film in many processes, there has been no publish study the simulation of falling film for the oligomerization of ethylene reaction to produce linear alpha olefins. The Comsol multiphysics software was used to simulate the mass transfer with chemical reaction in falling film absorption process. The effect of concentration profile absorption of the products through falling thickness is discussed. The effect of catalyst concentration, catalyst/co-catalyst ratio, and temperature is also studied. For the effect of the temperature, as it increase the concentration of C4 increase. For catalyst concentration and catalyst/co-catalyst ratio as they increases the concentration of C4 increases, till it reached almost constant value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=falling%20film" title="falling film">falling film</a>, <a href="https://publications.waset.org/abstracts/search?q=oligomerization" title=" oligomerization"> oligomerization</a>, <a href="https://publications.waset.org/abstracts/search?q=comsol%20mutiphysics" title=" comsol mutiphysics"> comsol mutiphysics</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20alpha%20olefins" title=" linear alpha olefins"> linear alpha olefins</a> </p> <a href="https://publications.waset.org/abstracts/23890/modeling-of-oligomerization-of-ethylene-in-a-falling-film-reactor-for-the-production-of-linear-alpha-olefins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">259</span> Synthesis of α-Diimin Nickel(II) Catalyst Supported on Graphene and Graphene Oxide for Ethylene Slurry Polymerization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrji%20Khosravan">Mehrji Khosravan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Fathali-Sianib"> Mostafa Fathali-Sianib</a>, <a href="https://publications.waset.org/abstracts/search?q=Davood%20Soudbar"> Davood Soudbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sasan%20Talebnezhad"> Sasan Talebnezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad-Reza%20Ebrahimi"> Mohammad-Reza Ebrahimi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The late transition metal catalyst of the end group of transition metals in the periodic table as Ni, Fe, Co, and Pd was grown up rapidly in polyolefin industries recently. These metals with suitable ligands exhibited special characteristic properties and appropriate activities in the production of polyolefins. The ligand 1,4-bis (2,6-diisopropyl phenyl) acenaphthene was synthesized by reaction of 2,6-diisopropyl aniline and acenaphthenequinone. The ligand was added to nickel (II) dibromide salt for synthesis the 1,4-bis (2,6 diisopropylphenyl) acenaphthene nickel (II) dibromide catalyst. The structure of the ligand characterized by IR technique. The catalyst then deposited on graphene and graphene oxide by vander walss-attachment for use in Ethylene slurry polymerization process in the presence of catalyst activator such as methylaluminoxane (MAO) in hexane solvent. The structure of the catalyst characterized by IR and TEM techniques and some of the polymers were characterized by DSC. The highest activity was achieved at 600 C for catalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-diimine%20nickel%20%28II%29%20complex" title="α-diimine nickel (II) complex">α-diimine nickel (II) complex</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20as%20supported%20catalyst" title=" graphene as supported catalyst"> graphene as supported catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=late%20transition%20metal" title=" late transition metal"> late transition metal</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene%20polymerization" title=" ethylene polymerization"> ethylene polymerization</a> </p> <a href="https://publications.waset.org/abstracts/22317/synthesis-of-a-diimin-nickelii-catalyst-supported-on-graphene-and-graphene-oxide-for-ethylene-slurry-polymerization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">258</span> Rheological Characteristics of Ice Slurries Based on Propylene- and Ethylene-Glycol at High Ice Fractions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Senda%20Trabelsi">Senda Trabelsi</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%A9bastien%20Poncet"> Sébastien Poncet</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Poirier"> Michel Poirier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ice slurries are considered as a promising phase-changing secondary fluids for air-conditioning, packaging or cooling industrial processes. An experimental study has been here carried out to measure the rheological characteristics of ice slurries. Ice slurries consist in a solid phase (flake ice crystals) and a liquid phase. The later is composed of a mixture of liquid water and an additive being here either (1) Propylene-Glycol (PG) or (2) Ethylene-Glycol (EG) used to lower the freezing point of water. Concentrations of 5%, 14% and 24% of both additives are investigated with ice mass fractions ranging from 5% to 85%. The rheological measurements are carried out using a Discovery HR-2 vane-concentric cylinder with four full-length blades. The experimental results show that the behavior of ice slurries is generally non-Newtonian with shear-thinning or shear-thickening behaviors depending on the experimental conditions. In order to determine the consistency and the flow index, the Herschel-Bulkley model is used to describe the behavior of ice slurries. The present results are finally validated against an experimental database found in the literature and the predictions of an Artificial Neural Network model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ice%20slurry" title="ice slurry">ice slurry</a>, <a href="https://publications.waset.org/abstracts/search?q=propylene-glycol" title=" propylene-glycol"> propylene-glycol</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene-glycol" title=" ethylene-glycol"> ethylene-glycol</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a> </p> <a href="https://publications.waset.org/abstracts/62475/rheological-characteristics-of-ice-slurries-based-on-propylene-and-ethylene-glycol-at-high-ice-fractions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">257</span> Advanced Materials Based on Ethylene-Propylene-Diene Terpolymers and Organically Modified Montmorillonite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20D.%20Stelescu">M. D. Stelescu</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Manaila"> E. Manaila</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Pelin"> G. Pelin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Georgescu"> M. Georgescu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sonmez"> M. Sonmez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents studies on the development and characterization of nanocomposites based on ethylene-propylene terpolymer rubber (EPDM), chlorobutyl rubber (IIR-Cl) and organically modified montmorillonite (OMMT). Mixtures were made containing 0, 3 and 6 phr (parts per 100 parts rubber) OMMT, respectively. They were obtained by melt intercalation in an internal mixer - Plasti-Corder Brabender, in suitable blending parameters, at high temperature for 11 minutes. Curing agents were embedded on a laboratory roller at 70-100 ºC, friction 1:1.1, processing time 5 minutes. Rubber specimens were obtained by compression, using a hydraulic press at 165 ºC and a pressing force of 300 kN. Curing time, determined using the Monsanto rheometer, decreases with the increased amount of OMMT in the mixtures. At the same time, it was noticed that mixtures containing OMMT show improvement in physical-mechanical properties. These types of nanocomposites may be used to obtain rubber seals for the space application or for other areas of application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chlorobutyl%20rubber" title="chlorobutyl rubber">chlorobutyl rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene-propylene-diene%20terpolymers" title=" ethylene-propylene-diene terpolymers"> ethylene-propylene-diene terpolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=montmorillonite" title=" montmorillonite"> montmorillonite</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber%20seals" title=" rubber seals"> rubber seals</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20application" title=" space application"> space application</a> </p> <a href="https://publications.waset.org/abstracts/101045/advanced-materials-based-on-ethylene-propylene-diene-terpolymers-and-organically-modified-montmorillonite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">256</span> Estimation of Antiurolithiatic Activity of a Biochemical Medicine, Magnesia phosphorica, in Ethylene Glycol-Induced Nephrolithiasis in Wistar Rats by Urine Analysis, Biochemical, Histopathological, and Electron Microscopic Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priti%20S.%20Tidke">Priti S. Tidke</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandragouda%20R.%20Patil"> Chandragouda R. Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was designed to investigate the effect of Magnesia phosphorica, a biochemical medicine on urine screeing, biochemical, histopathological, and electron microscopic images in ethylene glycol induced nepholithiasis in rats.Male Wistar albino rats were divided into six groups and were orally administered saline once daily (IR-sham and IR-control) or Magnesia phosphorica 100 mg/kg twice daily for 24 days.The effect of various dilutions of biochemical Mag phos3x, 6x, 30x was determined on urine output by comparing the urine volume collected by keeping individual animals in metabolic cages. Calcium oxalate urolithiasis and hyperoxaluria in male Wistar rats was induced by oral administration of 0.75% Ethylene glycol p.o. daily for 24 days. Simultaneous administration of biochemical 3x, 6x, 30xMag phos (100mg/kg p.o. twice a day) along with ethylene glycol significantly decreased calcium oxalate, urea, creatinine, Calcium, Magnesium, Chloride, Phosphorus, Albumin, Alkaline Phosphatase content in urine compared with vehicle-treated control group.After the completion of treatment period animals were sacrificed, kidneys were removed and subjected to microscopic examination for possible stone formation. Histological estimation of kidney treated with biochemical Mag phos (3x, 6x, 30xMag phos 100 mg/kg, p.o.) along with ethylene glycol inhibited the growth of calculi and reduced the number of stones in kidney compared with control group. Biochemical Mag phos of 3x dilution and its crude equivalent also showed potent diuretic and antiurolithiatic activity in ethylene glycol induced urolithiasis. A significant decrease in the weight of stones was observed after treatment in animals which received biochemical Mag phos of 3x dilution and its crude equivalent in comparison with control groups. From this study, it can be proposed that the 3x dilution of biochemical Mag phos exhibits a significant inhibitory effect on crystal growth, with the improvement of kidney function and substantiates claims on the biological activity of twelve tissue remedies which can be proved scientifically through laboratory animal studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mag%20phos" title="Mag phos">Mag phos</a>, <a href="https://publications.waset.org/abstracts/search?q=Magnesia%20phosphorica" title=" Magnesia phosphorica"> Magnesia phosphorica</a>, <a href="https://publications.waset.org/abstracts/search?q=ciochemic%20medicine" title=" ciochemic medicine"> ciochemic medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=urolithiasis" title=" urolithiasis"> urolithiasis</a>, <a href="https://publications.waset.org/abstracts/search?q=kidney%20stone" title=" kidney stone"> kidney stone</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene%20glycol" title=" ethylene glycol"> ethylene glycol</a> </p> <a href="https://publications.waset.org/abstracts/24066/estimation-of-antiurolithiatic-activity-of-a-biochemical-medicine-magnesia-phosphorica-in-ethylene-glycol-induced-nephrolithiasis-in-wistar-rats-by-urine-analysis-biochemical-histopathological-and-electron-microscopic-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">255</span> Heterophase Polymerization of Pyrrole and Thienyl End Capped Ethoxylated Nonyl Phenol by Iron (III) Chloride</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%B6rkem%20%C3%9Clk%C3%BC">Görkem Ülkü</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesrin%20K%C3%B6ken"> Nesrin Köken</a>, <a href="https://publications.waset.org/abstracts/search?q=Esin%20A.%20G%C3%BCvel"> Esin A. Güvel</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilg%C3%BCn%20K%C4%B1z%C4%B1lcan"> Nilgün Kızılcan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ethoxylated nonyl phenols (ENP) and ceric ammonium nitrate redox systems have been used for the polymerization of vinyl and acrylic monomers. In that case, ENP acted as an organic reducing agent in the presence of Ce (IV) salt and a radical was formed. The polymers obtained with that redox system contained ENP chain ends because the radicals are formed on the reducing molecules. Similar copolymer synthesis has been reported using poly(ethylene oxide) instead of its nonyl phenol terminated derivative, ENP. However, copolymers of poly(ethylene oxide) and conducting polymers synthesized by ferric ions were produced in two steps. Firstly, heteroatoms (pyrrole, thiophene etc.) were attached to the poly(ethylene oxide) chains then copolymerization with heterocyclic monomers was carried out. In this work, ethoxylated nonylphenol (ENP) was reacted with 2-thiophenecarbonyl chloride in order to synthesize a macromonomer containing thienyl end-group (ENP-ThC). Then, copolymers of ENP-ThC and pyrrole were synthesized by chemical oxidative polymerization using iron (III) chloride as an oxidant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=end%20capped%20polymer" title="end capped polymer">end capped polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=ethoxylated%20nonylphenol" title=" ethoxylated nonylphenol"> ethoxylated nonylphenol</a>, <a href="https://publications.waset.org/abstracts/search?q=heterophase%20polymerization" title=" heterophase polymerization"> heterophase polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title=" polypyrrole"> polypyrrole</a> </p> <a href="https://publications.waset.org/abstracts/20937/heterophase-polymerization-of-pyrrole-and-thienyl-end-capped-ethoxylated-nonyl-phenol-by-iron-iii-chloride" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">254</span> Extractive Desulfurization of Fuels Using Choline Chloride-Based Deep Eutectic Solvents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Zaki">T. Zaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Fathi%20S.%20Soliman"> Fathi S. Soliman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Desulfurization process is required by most, if not all refineries, to achieve ultra-low sulfur fuel, that contains less than 10 ppm sulfur. A lot of research works and many effective technologies have been studied to achieve deep desulfurization process in moderate reaction environment, such as adsorption desulfurization (ADS), oxidative desulfurization (ODS), biodesulfurization and extraction desulfurization (EDS). Extraction desulfurization using deep eutectic solvents (DESs) is considered as simple, cheap, highly efficient and environmentally friend process. In this work, four DESs were designed and synthesized. Choline chloride (ChCl) was selected as typical hydrogen bond acceptors (HBA), and ethylene glycol (EG), glycerol (Gl), urea (Ur) and thiourea (Tu) were selected as hydrogen bond donors (HBD), from which a series of deep eutectic solvents were synthesized. The experimental data showed that the synthesized DESs showed desulfurization affinities towards the thiophene species in cyclohexane solvent. Ethylene glycol molecules showed more affinity to create hydrogen bond with thiophene instead of choline chloride. Accordingly, ethylene glycol choline chloride DES has the highest extraction efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DES" title="DES">DES</a>, <a href="https://publications.waset.org/abstracts/search?q=desulfurization" title=" desulfurization"> desulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20solvent" title=" green solvent"> green solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a> </p> <a href="https://publications.waset.org/abstracts/73326/extractive-desulfurization-of-fuels-using-choline-chloride-based-deep-eutectic-solvents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">253</span> Organic Oils Fumigation and Ozonated Cold Storage Influence Storage Life and Fruit Quality in Granny Smith Apples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahil%20Malekipoor">Rahil Malekipoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Zora%20Singh"> Zora Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20Payne"> Alan Payne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ethylene management during storage life of organically grown apples is a challenging issue due to limited available options. The objective of this investigation was to examine the effects of lemon and cinnamon oils fumigation on storage life, the incidence of superficial scald and quality of Granny Smith apple which were kept in cold storage with and without ozone. The fruit was fumigated with 3µl L⁻¹ lemon or cinnamon oil for 24 h and untreated fruit was kept as a control. Following the treatments, the fruit was stored at (0.5 to -1°C) with and without ozone for 100 and 150 days. After each storage period, ethylene production and respiration rate, superficial scald and various fruit quality parameters were estimated. Lemon oil fumigated fruit showed significantly reduced the mean climacteric peak ethylene production rate in both 100 and 150 days stored fruit. Mean climacteric peak ethylene production rate was significantly reduced in the apples which were kept in an ozonated as compared to cold stored without ozone for 100 days only. The climacteric ethylene peak was delayed only in 100 days cold stored fruit with ozone (8.78 d) as compared to without ozone (3.89 d). Firmness was significantly higher in the fruit fumigated with lemon or cinnamon oil compared to control for both storage time. The fruit stored for 150 days in cold storage without ozone exhibited higher mean firmness than those stored in ozonated. Lemon or cinnamon oil fumigation significantly reduced superficial scald in both cold stored fruit with or without ozone. Levels of total phenols were significantly higher in cinnamon oil treated fruit and stored for 100 days as compared to all other treatments. In 150 days stored fruit fumigated with lemon oil showed the significantly higher level of total phenols compared to cinnamon oil fumigation and control. The fruit fumigated with lemon oil or cinnamon oil following 150 days cold storage resulted in significantly higher levels of ascorbic acid and antioxidant capacity as compared to the control fruit. In conclusion, lemon oil fumigation was more effective in suppressing ethylene production in 100-150 days cold stored fruit than cinnamon oil. Whilst, fumigation of both lemon or cinnamon oil were effective in reducing superficial scald and maintaining quality in 100-150 days cold stored fruit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apple" title="apple">apple</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20storage" title=" cold storage"> cold storage</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20oil" title=" organic oil"> organic oil</a>, <a href="https://publications.waset.org/abstracts/search?q=ozone" title=" ozone"> ozone</a> </p> <a href="https://publications.waset.org/abstracts/95610/organic-oils-fumigation-and-ozonated-cold-storage-influence-storage-life-and-fruit-quality-in-granny-smith-apples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">252</span> Changes of Chemical Composition and Physicochemical Properties of Banana during Ethylene-Induced Ripening</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiun-C.R.%20Wang">Chiun-C.R. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Po-Wen%20Yen"> Po-Wen Yen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Chun%20Huang"> Chien-Chun Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Banana is produced in large quantities in tropical and subtropical areas. Banana is one of the important fruits which constitute a valuable source of energy, vitamins and minerals. The ripening and maturity standards of banana vary from country to country depending on the expected shelf life of market. The compositions of bananas change dramatically during ethylene-induced ripening that are categorized as nutritive values and commercial utilization. Nevertheless, there is few study reporting the changes of physicochemical properties of banana starch during ethylene-induced ripening of green banana. The objectives of this study were to investigate the changes of chemical composition and enzyme activity of banana and physicochemical properties of banana starch during ethylene-induced ripening. Green bananas were harvested and ripened by ethylene gas at low temperature (15℃) for seven stages. At each stage, banana was sliced and freeze-dried for banana flour preparation. The changes of total starch, resistant starch, chemical compositions, physicochemical properties, activity of amylase, polyphenolic oxidase (PPO) and phenylalanine ammonia lyase (PAL) of banana were analyzed each stage during ripening. The banana starch was isolated and analyzed for gelatinization properties, pasting properties and microscopic appearance each stage of ripening. The results indicated that the highest total starch and resistant starch content of green banana were 76.2% and 34.6%, respectively at the harvest stage. Both total starch and resistant starch content were significantly declined to 25.3% and 8.8%, respectively at the seventh stage. Soluble sugars content of banana increased from 1.21% at harvest stage to 37.72% at seventh stage during ethylene-induced ripening. Swelling power of banana flour decreased with the progress of ripening stage, but solubility increased. These results strongly related with the decreases of starch content of banana flour during ethylene-induced ripening. Both water insoluble and alcohol insoluble solids of banana flour decreased with the progress of ripening stage. Both activity of PPO and PAL increased, but the total free phenolics content decreased, with the increases of ripening stages. As ripening stage extended, the gelatinization enthalpy of banana starch significantly decreased from 15.31 J/g at the harvest stage to 10.55 J/g at the seventh stage. The peak viscosity and setback increased with the progress of ripening stages in the pasting properties of banana starch. The highest final viscosity, 5701 RVU, of banana starch slurry was found at the seventh stage. The scanning electron micrograph of banana starch showed the shapes of banana starch appeared to be round and elongated forms, ranging in 10-50 μm at the harvest stage. As the banana closed to ripe status, some parallel striations were observed on the surface of banana starch granular which could be caused by enzyme reaction during ripening. These results inferred that the highest resistant starch was found in the green banana at the harvest stage could be considered as a potential application of healthy foods. The changes of chemical composition and physicochemical properties of banana could be caused by the hydrolysis of enzymes during the ethylene-induced ripening treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethylene-induced%20ripening" title="ethylene-induced ripening">ethylene-induced ripening</a>, <a href="https://publications.waset.org/abstracts/search?q=banana%20starch" title=" banana starch"> banana starch</a>, <a href="https://publications.waset.org/abstracts/search?q=resistant%20starch" title=" resistant starch"> resistant starch</a>, <a href="https://publications.waset.org/abstracts/search?q=soluble%20sugars" title=" soluble sugars"> soluble sugars</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20properties" title=" physicochemical properties"> physicochemical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=gelatinization%20enthalpy" title=" gelatinization enthalpy"> gelatinization enthalpy</a>, <a href="https://publications.waset.org/abstracts/search?q=pasting%20characteristics" title=" pasting characteristics"> pasting characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopic%20appearance" title=" microscopic appearance"> microscopic appearance</a> </p> <a href="https://publications.waset.org/abstracts/24689/changes-of-chemical-composition-and-physicochemical-properties-of-banana-during-ethylene-induced-ripening" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">251</span> Failure Analysis of a 304 Stainless Steel Flange Crack at Pipeline Transportation of Ethylene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parisa%20Hasanpour">Parisa Hasanpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahram%20Borooghani"> Bahram Borooghani</a>, <a href="https://publications.waset.org/abstracts/search?q=Vahid%20Asadi"> Vahid Asadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current research, a catastrophic failure of a 304 stainless steel flange at pipeline transportation of ethylene in a petrochemical refinery was studied. Cracking was found in the flange after about 78840h service. Through the chemical analysis, tensile tests in addition to microstructural analysis such as optical microscopy and Scanning Electron Microscopy (SEM) on the failed part, it found that the fatigue was responsible for the fracture of the flange, which originated from bumps and depressions on the outer surface and propagated by vibration caused by the working condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure%20analysis" title="failure analysis">failure analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=304%20stainless%20steel" title=" 304 stainless steel"> 304 stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=flange" title=" flange"> flange</a>, <a href="https://publications.waset.org/abstracts/search?q=petrochemical%20refinery" title=" petrochemical refinery"> petrochemical refinery</a> </p> <a href="https://publications.waset.org/abstracts/153854/failure-analysis-of-a-304-stainless-steel-flange-crack-at-pipeline-transportation-of-ethylene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">250</span> Biologically Active Caffeic Acid-Derived Biopolymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Barbakadze">V. Barbakadze</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Gogilashvili"> L. Gogilashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Amiranashvili"> L. Amiranashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Merlani"> M. Merlani</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Mulkijanyan"> K. Mulkijanyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high-molecular water-soluble preparations from several species of two genera (Symphytum and Anchusa) of Boraginaceae family Symphytum asperum, S. caucasicum, S.officinale and Anchusa italica were isolated. According to IR, 13C and 1H NMR, APT, 1D NOE, 2D heteronuclear 1H/13C HSQC and 2D DOSY experiments, the main chemical constit¬uent of these preparations was found to be caffeic acid-derived polyether, namely poly[3-(3,4-dihydroxyphenyl)glyceric acid] (PDPGA) or poly[oxy-1-carboxy-2-(3,4-dihydroxyphenyl)ethylene]. Most carboxylic groups of this caffeic acid-derived polymer of A. italica are methylated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anchusa" title="Anchusa">Anchusa</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%5B3-%283" title=" poly[3-(3"> poly[3-(3</a>, <a href="https://publications.waset.org/abstracts/search?q=4-dihydroxyphenyl%29glyceric%20acid%5D" title="4-dihydroxyphenyl)glyceric acid]">4-dihydroxyphenyl)glyceric acid]</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%5Boxy-1-carboxy-2-%283" title=" poly[oxy-1-carboxy-2-(3"> poly[oxy-1-carboxy-2-(3</a>, <a href="https://publications.waset.org/abstracts/search?q=4-dihydroxyphenyl%29ethylene%5D" title="4-dihydroxyphenyl)ethylene]">4-dihydroxyphenyl)ethylene]</a>, <a href="https://publications.waset.org/abstracts/search?q=Symphytum" title=" Symphytum"> Symphytum</a> </p> <a href="https://publications.waset.org/abstracts/1643/biologically-active-caffeic-acid-derived-biopolymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">249</span> Effects of Ethylene Scavengering Packaging on the Shelf Life of Edible Mushroom </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Javanmard">Majid Javanmard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Edible mushrooms are those agricultural products which contain high quantity of protein and can have special role in human diet. So search for methods to increase their shelf life is important. One of these strategies can be use of active packaging for absorb the ethylene which has been studied in present study. In this study, initially, production of impregnating zeolite with potassium permanganate has been studied with zeolite clinoptiolite available in iran. After that, these ethylene scavengers were placed in the package of edible mushrooms and then transferred to the refrigerator with temperature 4c for a period of 20 days. Each 5 days, several experiments accomplished on edible mushrooms such as weight loss, moisture content, color, texture, bacterial experiments and sensory evaluation. After production of impregnating zeolite with potassium permanganate (with a concentration of %2.5, %5, %7.5, %10 and %12.5) by zeolite type clinoptiolite (with mesh 35 and 60), samples have been analyzed with gas chromatography and titration with sodium oxalate. The results showed that zeolite by concentration of %5, %7.5 and %10 potassium permanganate and mesh 60 have a higher efficiency. Results from the experiments on edible mushrooms proved that impregnated zeolite with potassium permanganate have a meaningful influence in prevent the weight loss, decrease of moisture content and L-value, increase of a-value and overall color change (ΔE) and decrease of firmness texture of mushrooms. In addition, these absorbents can influence on decrease microbial load (mesophilic bacteria) rather than control. Generally, concluded that the impregnated zeolite with 10% permanganate potassium has a high efficiency on increase the shelf life of fresh edible mushrooms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20packaging" title="active packaging">active packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene%20scavenger" title=" ethylene scavenger"> ethylene scavenger</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolite%20clinoptiolite" title=" zeolite clinoptiolite"> zeolite clinoptiolite</a>, <a href="https://publications.waset.org/abstracts/search?q=permanganate%20potassium" title=" permanganate potassium"> permanganate potassium</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20life" title=" shelf life"> shelf life</a> </p> <a href="https://publications.waset.org/abstracts/20262/effects-of-ethylene-scavengering-packaging-on-the-shelf-life-of-edible-mushroom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">248</span> Effect of N2 Pretreatment on the Properties of Tungsten Based Catalysts in Metathesis of Ethylene and 2-Butene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kriangkrai%20Aranyarat">Kriangkrai Aranyarat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of N2 pretreatment on the catalytic activity of tungsten-based catalysts was investigated in the metathesis of ethylene and trans-2-butene at 450oC and atmospheric pressure. The presence of tungsten active species was confirmed by UV-Vis and Raman spectroscopy. Compared to the WO3-based catalysts treated in air, higher amount of WO42- tetrahedral species and lower amount of WO3 crystalline species were observed on the N2-treated ones. These contribute to the higher conversion of 2-butene and propylene selectivity during 10 h time-on-stream. Moreover, N2 treatment led to lower amount of coke formation as revealed by TPO of the spent catalysts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metathesis" title="metathesis">metathesis</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=propylene" title=" propylene"> propylene</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten" title=" tungsten"> tungsten</a> </p> <a href="https://publications.waset.org/abstracts/25492/effect-of-n2-pretreatment-on-the-properties-of-tungsten-based-catalysts-in-metathesis-of-ethylene-and-2-butene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ethylene&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ethylene&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ethylene&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ethylene&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ethylene&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ethylene&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ethylene&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ethylene&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ethylene&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ethylene&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>