CINXE.COM
Group action - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Group action - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"c23a3869-994d-468d-80eb-d9b316a67f9c","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Group_action","wgTitle":"Group action","wgCurRevisionId":1256994680,"wgRevisionId":1256994680,"wgArticleId":12781,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","All articles with unsourced statements","Articles with unsourced statements from May 2023","All accuracy disputes","Articles with disputed statements from March 2015","Group theory","Group actions (mathematics)","Representation theory of groups","Symmetry"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Group_action","wgRelevantArticleId":12781, "wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"Orbit_(group_theory)","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgInternalRedirectTargetUrl":"/wiki/Group_action#Orbits_and_stabilizers","wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q288465", "wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","mediawiki.page.gallery.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","mediawiki.page.media", "ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cmediawiki.page.gallery.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/1200px-Cyclic_group.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1167"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/800px-Cyclic_group.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="778"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/640px-Cyclic_group.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="623"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Group action - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Group_action#Orbits_and_stabilizers"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Group_action&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Group_action#Orbits_and_stabilizers"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Group_action rootpage-Group_action skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Group+action" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Group+action" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Group+action" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Group+action" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <button aria-controls="toc-Definition-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definition subsection</span> </button> <ul id="toc-Definition-sublist" class="vector-toc-list"> <li id="toc-Left_group_action" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Left_group_action"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Left group action</span> </div> </a> <ul id="toc-Left_group_action-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Right_group_action" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Right_group_action"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Right group action</span> </div> </a> <ul id="toc-Right_group_action-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Notable_properties_of_actions" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notable_properties_of_actions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Notable properties of actions</span> </div> </a> <button aria-controls="toc-Notable_properties_of_actions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Notable properties of actions subsection</span> </button> <ul id="toc-Notable_properties_of_actions-sublist" class="vector-toc-list"> <li id="toc-Transitivity_properties" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Transitivity_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Transitivity properties</span> </div> </a> <ul id="toc-Transitivity_properties-sublist" class="vector-toc-list"> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.1</span> <span>Examples</span> </div> </a> <ul id="toc-Examples-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Primitive_actions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Primitive_actions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Primitive actions</span> </div> </a> <ul id="toc-Primitive_actions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Topological_properties" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Topological_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Topological properties</span> </div> </a> <ul id="toc-Topological_properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Actions_of_topological_groups" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Actions_of_topological_groups"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Actions of topological groups</span> </div> </a> <ul id="toc-Actions_of_topological_groups-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Linear_actions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Linear_actions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Linear actions</span> </div> </a> <ul id="toc-Linear_actions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Orbits_and_stabilizers" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Orbits_and_stabilizers"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Orbits and stabilizers</span> </div> </a> <button aria-controls="toc-Orbits_and_stabilizers-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Orbits and stabilizers subsection</span> </button> <ul id="toc-Orbits_and_stabilizers-sublist" class="vector-toc-list"> <li id="toc-Invariant_subsets" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Invariant_subsets"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Invariant subsets</span> </div> </a> <ul id="toc-Invariant_subsets-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fixed_points_and_stabilizer_subgroups" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fixed_points_and_stabilizer_subgroups"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Fixed points and stabilizer subgroups</span> </div> </a> <ul id="toc-Fixed_points_and_stabilizer_subgroups-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Orbit-stabilizer_theorem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Orbit-stabilizer_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span><span><span>Orbit-stabilizer theorem</span></span></span> </div> </a> <ul id="toc-Orbit-stabilizer_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Burnside's_lemma" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Burnside's_lemma"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Burnside's lemma</span> </div> </a> <ul id="toc-Burnside's_lemma-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Examples_2" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Examples_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Examples</span> </div> </a> <ul id="toc-Examples_2-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Group_actions_and_groupoids" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Group_actions_and_groupoids"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Group actions and groupoids</span> </div> </a> <ul id="toc-Group_actions_and_groupoids-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Morphisms_and_isomorphisms_between_G-sets" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Morphisms_and_isomorphisms_between_G-sets"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Morphisms and isomorphisms between <i>G</i>-sets</span> </div> </a> <ul id="toc-Morphisms_and_isomorphisms_between_G-sets-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Variants_and_generalizations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Variants_and_generalizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Variants and generalizations</span> </div> </a> <ul id="toc-Variants_and_generalizations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Gallery" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Gallery"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Gallery</span> </div> </a> <ul id="toc-Gallery-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Citations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Citations"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Citations</span> </div> </a> <ul id="toc-Citations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Group action</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 25 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-25" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">25 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%94%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D0%B5_%D0%BD%D0%B0_%D0%B3%D1%80%D1%83%D0%BF%D0%B0" title="Действие на група – Bulgarian" lang="bg" hreflang="bg" data-title="Действие на група" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Acci%C3%B3_(matem%C3%A0tiques)" title="Acció (matemàtiques) – Catalan" lang="ca" hreflang="ca" data-title="Acció (matemàtiques)" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Akce_grupy_na_mno%C5%BEin%C4%9B" title="Akce grupy na množině – Czech" lang="cs" hreflang="cs" data-title="Akce grupy na množině" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Gruppenoperation" title="Gruppenoperation – German" lang="de" hreflang="de" data-title="Gruppenoperation" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/R%C3%BChma_toime" title="Rühma toime – Estonian" lang="et" hreflang="et" data-title="Rühma toime" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Acci%C3%B3n_(matem%C3%A1tica)" title="Acción (matemática) – Spanish" lang="es" hreflang="es" data-title="Acción (matemática)" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Grupa_ago" title="Grupa ago – Esperanto" lang="eo" hreflang="eo" data-title="Grupa ago" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%DA%A9%D9%86%D8%B4_%DA%AF%D8%B1%D9%88%D9%87%DB%8C" title="کنش گروهی – Persian" lang="fa" hreflang="fa" data-title="کنش گروهی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Action_de_groupe_(math%C3%A9matiques)" title="Action de groupe (mathématiques) – French" lang="fr" hreflang="fr" data-title="Action de groupe (mathématiques)" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EA%B5%B0%EC%9D%98_%EC%9E%91%EC%9A%A9" title="군의 작용 – Korean" lang="ko" hreflang="ko" data-title="군의 작용" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Tindakan_grup_(matematika)" title="Tindakan grup (matematika) – Indonesian" lang="id" hreflang="id" data-title="Tindakan grup (matematika)" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Azione_di_gruppo" title="Azione di gruppo – Italian" lang="it" hreflang="it" data-title="Azione di gruppo" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A4%D7%A2%D7%95%D7%9C%D7%AA_%D7%97%D7%91%D7%95%D7%A8%D7%94" title="פעולת חבורה – Hebrew" lang="he" hreflang="he" data-title="פעולת חבורה" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Csoporthat%C3%A1s" title="Csoporthatás – Hungarian" lang="hu" hreflang="hu" data-title="Csoporthatás" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Groepswerking" title="Groepswerking – Dutch" lang="nl" hreflang="nl" data-title="Groepswerking" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%BE%A4%E4%BD%9C%E7%94%A8" title="群作用 – Japanese" lang="ja" hreflang="ja" data-title="群作用" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Assion" title="Assion – Piedmontese" lang="pms" hreflang="pms" data-title="Assion" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Dzia%C5%82anie_grupy_na_zbiorze" title="Działanie grupy na zbiorze – Polish" lang="pl" hreflang="pl" data-title="Działanie grupy na zbiorze" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/A%C3%A7%C3%A3o_de_grupo" title="Ação de grupo – Portuguese" lang="pt" hreflang="pt" data-title="Ação de grupo" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%94%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D0%B5_%D0%B3%D1%80%D1%83%D0%BF%D0%BF%D1%8B" title="Действие группы – Russian" lang="ru" hreflang="ru" data-title="Действие группы" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Gruppverkan" title="Gruppverkan – Swedish" lang="sv" hreflang="sv" data-title="Gruppverkan" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%94%D1%96%D1%8F_%D0%B3%D1%80%D1%83%D0%BF%D0%B8" title="Дія групи – Ukrainian" lang="uk" hreflang="uk" data-title="Дія групи" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/T%C3%A1c_%C4%91%E1%BB%99ng_nh%C3%B3m" title="Tác động nhóm – Vietnamese" lang="vi" hreflang="vi" data-title="Tác động nhóm" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E7%BE%A3%E4%BD%9C%E7%94%A8" title="羣作用 – Cantonese" lang="yue" hreflang="yue" data-title="羣作用" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%BE%A4%E4%BD%9C%E7%94%A8" title="群作用 – Chinese" lang="zh" hreflang="zh" data-title="群作用" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q288465#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Group_action" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Group_action" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Group_action"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Group_action&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Group_action&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Group_action"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Group_action&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Group_action&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Group_action" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Group_action" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Group_action&oldid=1256994680" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Group_action&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Group_action&id=1256994680&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGroup_action%23Orbits_and_stabilizers"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGroup_action%23Orbits_and_stabilizers"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Group_action&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Group_action&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Group_actions" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikibooks mw-list-item"><a href="https://en.wikibooks.org/wiki/Abstract_Algebra/Group_Theory/Group_actions_on_sets" hreflang="en"><span>Wikibooks</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q288465" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=Orbit_(group_theory)&redirect=no" class="mw-redirect" title="Orbit (group theory)">Orbit (group theory)</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Transformations induced by a mathematical group</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about the mathematical concept. For the sociology term, see <a href="/wiki/Group_action_(sociology)" title="Group action (sociology)">group action (sociology)</a>.</div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1246091330"><table class="sidebar sidebar-collapse nomobile nowraplinks" style="width:20.0em;"><tbody><tr><th class="sidebar-title" style="padding-bottom:0.4em;"><span style="font-size: 8pt; font-weight: none"><a href="/wiki/Algebraic_structure" title="Algebraic structure">Algebraic structure</a> → <b>Group theory</b></span><br /><a href="/wiki/Group_theory" title="Group theory">Group theory</a></th></tr><tr><td class="sidebar-image"><span class="skin-invert"><span typeof="mw:File"><a href="/wiki/File:Cyclic_group.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/120px-Cyclic_group.svg.png" decoding="async" width="120" height="117" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/180px-Cyclic_group.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Cyclic_group.svg/240px-Cyclic_group.svg.png 2x" data-file-width="443" data-file-height="431" /></a></span></span></td></tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)">Basic notions</div><div class="sidebar-list-content mw-collapsible-content hlist" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><table class="sidebar nomobile nowraplinks" style="background-color: transparent; color: var( --color-base ); border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Subgroup" title="Subgroup">Subgroup</a></li> <li><a href="/wiki/Normal_subgroup" title="Normal subgroup">Normal subgroup</a></li> <li><a class="mw-selflink selflink">Group action</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Quotient_group" title="Quotient group">Quotient group</a></li> <li><a href="/wiki/Semidirect_product" title="Semidirect product">(Semi-)</a><a href="/wiki/Direct_product_of_groups" title="Direct product of groups">direct product</a></li> <li><a href="/wiki/Direct_sum_of_groups" title="Direct sum of groups">Direct sum</a></li> <li><a href="/wiki/Free_product" title="Free product">Free product</a></li> <li><a href="/wiki/Wreath_product" title="Wreath product">Wreath product</a></li></ul></td> </tr><tr><th class="sidebar-heading"> <i><a href="/wiki/Group_homomorphism" title="Group homomorphism">Group homomorphisms</a></i></th></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Kernel_(algebra)#Group_homomorphisms" title="Kernel (algebra)">kernel</a></li> <li><a href="/wiki/Image_(mathematics)" title="Image (mathematics)">image</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Simple_group" title="Simple group">simple</a></li> <li><a href="/wiki/Finite_group" title="Finite group">finite</a></li> <li><a href="/wiki/Infinite_group" title="Infinite group">infinite</a></li> <li><a href="/wiki/Continuous_group" class="mw-redirect" title="Continuous group">continuous</a></li> <li><a href="/wiki/Multiplicative_group" title="Multiplicative group">multiplicative</a></li> <li><a href="/wiki/Additive_group" title="Additive group">additive</a></li> <li><a href="/wiki/Cyclic_group" title="Cyclic group">cyclic</a></li> <li><a href="/wiki/Abelian_group" title="Abelian group">abelian</a></li> <li><a href="/wiki/Dihedral_group" title="Dihedral group">dihedral</a></li> <li><a href="/wiki/Nilpotent_group" title="Nilpotent group">nilpotent</a></li> <li><a href="/wiki/Solvable_group" title="Solvable group">solvable</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Glossary_of_group_theory" title="Glossary of group theory">Glossary of group theory</a></li> <li><a href="/wiki/List_of_group_theory_topics" title="List of group theory topics">List of group theory topics</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)"><a href="/wiki/Finite_group" title="Finite group">Finite groups</a></div><div class="sidebar-list-content mw-collapsible-content hlist" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"><table class="sidebar nomobile nowraplinks" style="background-color: transparent; color: var( --color-base ); border-collapse:collapse; border-spacing:0px; border:none; width:100%; margin:0px; font-size:100%; clear:none; float:none"><tbody><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Cyclic_group" title="Cyclic group">Cyclic group</a> Z<sub><i>n</i></sub></li> <li><a href="/wiki/Symmetric_group" title="Symmetric group">Symmetric group</a> S<sub><i>n</i></sub></li> <li><a href="/wiki/Alternating_group" title="Alternating group">Alternating group</a> A<sub><i>n</i></sub></li></ul> <ul><li><a href="/wiki/Dihedral_group" title="Dihedral group">Dihedral group</a> D<sub><i>n</i></sub></li> <li><a href="/wiki/Quaternion_group" title="Quaternion group">Quaternion group</a> Q</li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Cauchy%27s_theorem_(group_theory)" title="Cauchy's theorem (group theory)">Cauchy's theorem</a></li> <li><a href="/wiki/Lagrange%27s_theorem_(group_theory)" title="Lagrange's theorem (group theory)">Lagrange's theorem</a></li></ul> <ul><li><a href="/wiki/Sylow_theorems" title="Sylow theorems">Sylow theorems</a></li> <li><a href="/wiki/Hall_subgroup" title="Hall subgroup">Hall's theorem</a></li></ul> <ul><li><a href="/wiki/P-group" title="P-group"><i>p</i>-group</a></li> <li><a href="/wiki/Elementary_abelian_group" title="Elementary abelian group">Elementary abelian group</a></li></ul> <ul><li><a href="/wiki/Frobenius_group" title="Frobenius group">Frobenius group</a></li></ul> <ul><li><a href="/wiki/Schur_multiplier" title="Schur multiplier">Schur multiplier</a></li></ul></td> </tr><tr><th class="sidebar-heading"> <a href="/wiki/Classification_of_finite_simple_groups" title="Classification of finite simple groups">Classification of finite simple groups</a></th></tr><tr><td class="sidebar-content"> <ul><li>cyclic</li> <li>alternating</li> <li><a href="/wiki/Group_of_Lie_type" title="Group of Lie type">Lie type</a></li> <li><a href="/wiki/Sporadic_group" title="Sporadic group">sporadic</a></li></ul></td> </tr></tbody></table></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)"><div class="hlist"><ul><li><a href="/wiki/Discrete_group" title="Discrete group">Discrete groups</a></li><li><a href="/wiki/Lattice_(discrete_subgroup)" title="Lattice (discrete subgroup)">Lattices</a></li></ul></div></div><div class="sidebar-list-content mw-collapsible-content hlist" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Integer" title="Integer">Integers</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>)</li> <li><a href="/wiki/Free_group" title="Free group">Free group</a></li></ul> <div style="display:inline-block; padding:0.2em 0.4em; line-height:1.2em;"><a href="/wiki/Modular_group" title="Modular group">Modular groups</a> <div class="hlist"><ul><li>PSL(2, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>)</li><li>SL(2, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/449494a083e0a1fda2b61c62b2f09b6bee4633dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.176ex;" alt="{\displaystyle \mathbb {Z} }"></span>)</li></ul></div></div> <ul><li><a href="/wiki/Arithmetic_group" title="Arithmetic group">Arithmetic group</a></li> <li><a href="/wiki/Lattice_(group)" title="Lattice (group)">Lattice</a></li> <li><a href="/wiki/Hyperbolic_group" title="Hyperbolic group">Hyperbolic group</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)"><a href="/wiki/Topological_group" title="Topological group">Topological</a> and <a href="/wiki/Lie_group" title="Lie group">Lie groups</a></div><div class="sidebar-list-content mw-collapsible-content hlist" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Solenoid_(mathematics)" title="Solenoid (mathematics)">Solenoid</a></li> <li><a href="/wiki/Circle_group" title="Circle group">Circle</a></li></ul> <ul><li><a href="/wiki/General_linear_group" title="General linear group">General linear</a> GL(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Special_linear_group" title="Special linear group">Special linear</a> SL(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Orthogonal_group" title="Orthogonal group">Orthogonal</a> O(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Euclidean_group" title="Euclidean group">Euclidean</a> E(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Special_orthogonal_group" class="mw-redirect" title="Special orthogonal group">Special orthogonal</a> SO(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Unitary_group" title="Unitary group">Unitary</a> U(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Special_unitary_group" title="Special unitary group">Special unitary</a> SU(<i>n</i>)</li></ul> <ul><li><a href="/wiki/Symplectic_group" title="Symplectic group">Symplectic</a> Sp(<i>n</i>)</li></ul> <ul><li><a href="/wiki/G2_(mathematics)" title="G2 (mathematics)">G<sub>2</sub></a></li> <li><a href="/wiki/F4_(mathematics)" title="F4 (mathematics)">F<sub>4</sub></a></li> <li><a href="/wiki/E6_(mathematics)" title="E6 (mathematics)">E<sub>6</sub></a></li> <li><a href="/wiki/E7_(mathematics)" title="E7 (mathematics)">E<sub>7</sub></a></li> <li><a href="/wiki/E8_(mathematics)" title="E8 (mathematics)">E<sub>8</sub></a></li></ul> <ul><li><a href="/wiki/Lorentz_group" title="Lorentz group">Lorentz</a></li> <li><a href="/wiki/Poincar%C3%A9_group" title="Poincaré group">Poincaré</a></li> <li><a href="/wiki/Conformal_group" title="Conformal group">Conformal</a></li></ul> <ul><li><a href="/wiki/Diffeomorphism" title="Diffeomorphism">Diffeomorphism</a></li> <li><a href="/wiki/Loop_group" title="Loop group">Loop</a></li></ul> <div style="display:inline-block; padding:0.2em 0.4em; line-height:1.2em;"><a href="/wiki/Infinite_dimensional_Lie_group" class="mw-redirect" title="Infinite dimensional Lie group">Infinite dimensional Lie group</a> <div class="hlist"><ul><li>O(∞)</li><li>SU(∞)</li><li>Sp(∞)</li></ul></div></div></div></div></td> </tr><tr><td class="sidebar-content"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:transparent;border-top:1px solid #aaa;text-align:center;;color: var(--color-base)"><a href="/wiki/Algebraic_group" title="Algebraic group">Algebraic groups</a></div><div class="sidebar-list-content mw-collapsible-content hlist" style="border-top:1px solid #aaa;border-bottom:1px solid #aaa;"> <ul><li><a href="/wiki/Linear_algebraic_group" title="Linear algebraic group">Linear algebraic group</a></li></ul> <ul><li><a href="/wiki/Reductive_group" title="Reductive group">Reductive group</a></li></ul> <ul><li><a href="/wiki/Abelian_variety" title="Abelian variety">Abelian variety</a></li></ul> <ul><li><a href="/wiki/Elliptic_curve" title="Elliptic curve">Elliptic curve</a></li></ul></div></div></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Group_theory_sidebar" title="Template:Group theory sidebar"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Group_theory_sidebar" title="Template talk:Group theory sidebar"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Group_theory_sidebar" title="Special:EditPage/Template:Group theory sidebar"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Group_action_on_equilateral_triangle.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6c/Group_action_on_equilateral_triangle.svg/220px-Group_action_on_equilateral_triangle.svg.png" decoding="async" width="220" height="228" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6c/Group_action_on_equilateral_triangle.svg/330px-Group_action_on_equilateral_triangle.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6c/Group_action_on_equilateral_triangle.svg/440px-Group_action_on_equilateral_triangle.svg.png 2x" data-file-width="467" data-file-height="485" /></a><figcaption>The <a href="/wiki/Cyclic_group" title="Cyclic group">cyclic group</a> <span class="texhtml">C<sub>3</sub></span> consisting of the <a href="/wiki/Rotation_(mathematics)" title="Rotation (mathematics)">rotations</a> by 0°, 120° and 240° acts on the set of the three vertices.</figcaption></figure> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, many sets of <a href="/wiki/Transformation_(function)" title="Transformation (function)">transformations</a> form a <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a> under <a href="/wiki/Function_composition" title="Function composition">function composition</a>; for example, the <a href="/wiki/Rotation_(mathematics)" title="Rotation (mathematics)">rotations</a> around a point in the plane. It is often useful to consider the group as an <a href="/wiki/Abstract_group" class="mw-redirect" title="Abstract group">abstract group</a>, and to say that one has a <b>group action</b> of the abstract group that consists of performing the transformations of the group of transformations. The reason for distinguishing the group from the transformations is that, generally, a group of transformations of a <a href="/wiki/Mathematical_structure" title="Mathematical structure">structure</a> acts also on various related structures; for example, the above rotation group <b>acts</b> also on triangles by transforming triangles into triangles. </p><p>Formally, a <b>group action</b> of a group <span class="texhtml"><i>G</i></span> on a <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> <span class="texhtml"><i>S</i></span> is a <a href="/wiki/Group_homomorphism" title="Group homomorphism">group homomorphism</a> from <span class="texhtml"><i>G</i></span> to some group (under <a href="/wiki/Function_composition" title="Function composition">function composition</a>) of functions from <span class="texhtml"><i>S</i></span> to itself. </p><p>If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of <a href="/wiki/Euclidean_isometry" class="mw-redirect" title="Euclidean isometry">Euclidean isometries</a> acts on <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a> and also on the figures drawn in it; in particular, it acts on the set of all <a href="/wiki/Triangle" title="Triangle">triangles</a>. Similarly, the group of <a href="/wiki/Symmetries" class="mw-redirect" title="Symmetries">symmetries</a> of a <a href="/wiki/Polyhedron" title="Polyhedron">polyhedron</a> acts on the <a href="/wiki/Vertex_(geometry)" title="Vertex (geometry)">vertices</a>, the <a href="/wiki/Edge_(geometry)" title="Edge (geometry)">edges</a>, and the <a href="/wiki/Face_(geometry)" title="Face (geometry)">faces</a> of the polyhedron. </p><p>A group action on a <a href="/wiki/Vector_space" title="Vector space">vector space</a> is called a <a href="/wiki/Group_representation" title="Group representation">representation</a> of the group. In the case of a finite-dimensional vector space, it allows one to identify many groups with <a href="/wiki/Subgroups" class="mw-redirect" title="Subgroups">subgroups</a> of the <a href="/wiki/General_linear_group" title="General linear group">general linear group</a> <span class="texhtml">GL(<i>n</i>, <i>K</i>)</span>, the group of the <a href="/wiki/Invertible_matrices" class="mw-redirect" title="Invertible matrices">invertible matrices</a> of <a href="/wiki/Dimension" title="Dimension">dimension</a> <span class="texhtml"><i>n</i></span> over a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> <span class="texhtml"><i>K</i></span>. </p><p>The <a href="/wiki/Symmetric_group" title="Symmetric group">symmetric group</a> <span class="texhtml"><i>S</i><sub><i>n</i></sub></span> acts on any <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> with <span class="texhtml"><i>n</i></span> elements by permuting the elements of the set. Although the group of all <a href="/wiki/Permutation" title="Permutation">permutations</a> of a set depends formally on the set, the concept of group action allows one to consider a single group for studying the permutations of all sets with the same <a href="/wiki/Cardinality" title="Cardinality">cardinality</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_action&action=edit&section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Left_group_action">Left group action</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_action&action=edit&section=2" title="Edit section: Left group action"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="texhtml mvar" style="font-style:italic;">G</span> is a <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a> with <a href="/wiki/Identity_element" title="Identity element">identity element</a> <span class="texhtml mvar" style="font-style:italic;">e</span>, and <span class="texhtml mvar" style="font-style:italic;">X</span> is a set, then a (<i>left</i>) <i>group action</i> <span class="texhtml mvar" style="font-style:italic;">α</span> of <span class="texhtml mvar" style="font-style:italic;">G</span> on <span class="texhtml mvar" style="font-style:italic;">X</span> is a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \colon G\times X\to X,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> <mo>:<!-- : --></mo> <mi>G</mi> <mo>×<!-- × --></mo> <mi>X</mi> <mo stretchy="false">→<!-- → --></mo> <mi>X</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha \colon G\times X\to X,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cf7b5dab5b12bccc26aba8d70cd10f033235207" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.41ex; height:2.509ex;" alt="{\displaystyle \alpha \colon G\times X\to X,}"></span></dd></dl> <p>that satisfies the following two <a href="/wiki/Axioms" class="mw-redirect" title="Axioms">axioms</a>:<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><table> <tbody><tr> <td>Identity: </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha (e,x)=x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> <mo stretchy="false">(</mo> <mi>e</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha (e,x)=x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3561976c1831704a750238f40e9f8226c6445282" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.172ex; height:2.843ex;" alt="{\displaystyle \alpha (e,x)=x}"></span> </td></tr> <tr> <td>Compatibility: </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha (g,\alpha (h,x))=\alpha (gh,x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo>,</mo> <mi>α<!-- α --></mi> <mo stretchy="false">(</mo> <mi>h</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>α<!-- α --></mi> <mo stretchy="false">(</mo> <mi>g</mi> <mi>h</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha (g,\alpha (h,x))=\alpha (gh,x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03f8d33310c99c29d66c7443ac84617a26a21daf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.66ex; height:2.843ex;" alt="{\displaystyle \alpha (g,\alpha (h,x))=\alpha (gh,x)}"></span> </td></tr></tbody></table></dd></dl> <p>for all <span class="texhtml mvar" style="font-style:italic;">g</span> and <span class="texhtml mvar" style="font-style:italic;">h</span> in <span class="texhtml mvar" style="font-style:italic;">G</span> and all <span class="texhtml mvar" style="font-style:italic;">x</span> in <span class="texhtml mvar" style="font-style:italic;">X</span>. </p><p>The group <span class="texhtml mvar" style="font-style:italic;">G</span> is then said to act on <span class="texhtml mvar" style="font-style:italic;">X</span> (from the left). A set <span class="texhtml mvar" style="font-style:italic;">X</span> together with an action of <span class="texhtml mvar" style="font-style:italic;">G</span> is called a (<i>left</i>) <span class="texhtml mvar" style="font-style:italic;">G</span>-<i>set</i>. </p><p>It can be notationally convenient to <a href="/wiki/Currying" title="Currying">curry</a> the action <span class="texhtml"><i>α</i></span>, so that, instead, one has a collection of <a href="/wiki/Transformation_(geometry)" class="mw-redirect" title="Transformation (geometry)">transformations</a> <span class="texhtml"><i>α</i><sub><i>g</i></sub> : <i>X</i> → <i>X</i></span>, with one transformation <span class="texhtml"><i>α</i><sub><i>g</i></sub></span> for each group element <span class="texhtml"><i>g</i> ∈ <i>G</i></span>. The identity and compatibility relations then read </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha _{e}(x)=x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha _{e}(x)=x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5d879f406b55745b0266e93fa0993c36dacbeb9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.053ex; height:2.843ex;" alt="{\displaystyle \alpha _{e}(x)=x}"></span></dd></dl> <p>and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha _{g}(\alpha _{h}(x))=(\alpha _{g}\circ \alpha _{h})(x)=\alpha _{gh}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo>∘<!-- ∘ --></mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> <mi>h</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha _{g}(\alpha _{h}(x))=(\alpha _{g}\circ \alpha _{h})(x)=\alpha _{gh}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8cc509b62b21ace4715c3a05c229cfacca89065d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:35.234ex; height:3.009ex;" alt="{\displaystyle \alpha _{g}(\alpha _{h}(x))=(\alpha _{g}\circ \alpha _{h})(x)=\alpha _{gh}(x)}"></span></dd></dl> <p>with <span class="texhtml">∘</span> being <a href="/wiki/Function_composition" title="Function composition">function composition</a>. The second axiom then states that the function composition is compatible with the group multiplication; they form a <a href="/wiki/Commutative_diagram" title="Commutative diagram">commutative diagram</a>. This axiom can be shortened even further, and written as <span class="texhtml"><i>α</i><sub><i>g</i></sub> ∘ <i>α</i><sub><i>h</i></sub> = <i>α</i><sub><i>gh</i></sub></span>. </p><p>With the above understanding, it is very common to avoid writing <span class="texhtml"><i>α</i></span> entirely, and to replace it with either a dot, or with nothing at all. Thus, <span class="texhtml"><i>α</i>(<i>g</i>, <i>x</i>)</span> can be shortened to <span class="texhtml"><i>g</i>⋅<i>x</i></span> or <span class="texhtml"><i>gx</i></span>, especially when the action is clear from context. The axioms are then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e{\cdot }x=x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>⋅<!-- ⋅ --></mo> </mrow> <mi>x</mi> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e{\cdot }x=x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e9ceb0477ff18e21bd41f3f6c331c03cde4a898" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.488ex; height:1.676ex;" alt="{\displaystyle e{\cdot }x=x}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g{\cdot }(h{\cdot }x)=(gh){\cdot }x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>⋅<!-- ⋅ --></mo> </mrow> <mo stretchy="false">(</mo> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>⋅<!-- ⋅ --></mo> </mrow> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>g</mi> <mi>h</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>⋅<!-- ⋅ --></mo> </mrow> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g{\cdot }(h{\cdot }x)=(gh){\cdot }x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/901503f3f767332e832b09c0b695a49d278c94d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.227ex; height:2.843ex;" alt="{\displaystyle g{\cdot }(h{\cdot }x)=(gh){\cdot }x}"></span></dd></dl> <p>From these two axioms, it follows that for any fixed <span class="texhtml mvar" style="font-style:italic;">g</span> in <span class="texhtml mvar" style="font-style:italic;">G</span>, the function from <span class="texhtml mvar" style="font-style:italic;">X</span> to itself which maps <span class="texhtml mvar" style="font-style:italic;">x</span> to <span class="texhtml"><i>g</i>⋅<i>x</i></span> is a <a href="/wiki/Bijection" title="Bijection">bijection</a>, with inverse bijection the corresponding map for <span class="texhtml"><i>g</i><sup>−1</sup></span>. Therefore, one may equivalently define a group action of <span class="texhtml mvar" style="font-style:italic;">G</span> on <span class="texhtml mvar" style="font-style:italic;">X</span> as a group homomorphism from <span class="texhtml mvar" style="font-style:italic;">G</span> into the symmetric group <span class="texhtml">Sym(<i>X</i>)</span> of all bijections from <span class="texhtml mvar" style="font-style:italic;">X</span> to itself.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Right_group_action">Right group action</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_action&action=edit&section=3" title="Edit section: Right group action"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Likewise, a <i>right group action</i> of <span class="texhtml mvar" style="font-style:italic;">G</span> on <span class="texhtml mvar" style="font-style:italic;">X</span> is a function </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \colon X\times G\to X,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> <mo>:<!-- : --></mo> <mi>X</mi> <mo>×<!-- × --></mo> <mi>G</mi> <mo stretchy="false">→<!-- → --></mo> <mi>X</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha \colon X\times G\to X,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/701b5addd623fafb50926517c30c83813ea9833c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.41ex; height:2.509ex;" alt="{\displaystyle \alpha \colon X\times G\to X,}"></span></dd></dl> <p>that satisfies the analogous axioms:<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><table> <tbody><tr> <td>Identity: </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha (x,e)=x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>e</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha (x,e)=x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/614802108ff47918f4996e03f7e858131418af8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.172ex; height:2.843ex;" alt="{\displaystyle \alpha (x,e)=x}"></span> </td></tr> <tr> <td>Compatibility: </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha (\alpha (x,g),h)=\alpha (x,gh)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>α<!-- α --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>g</mi> <mi>h</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha (\alpha (x,g),h)=\alpha (x,gh)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f54205aee0089ec041830d9833001f5a9e0f8fa5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.66ex; height:2.843ex;" alt="{\displaystyle \alpha (\alpha (x,g),h)=\alpha (x,gh)}"></span> </td></tr></tbody></table></dd></dl> <p>(with <span class="texhtml"><i>α</i>(<i>x</i>, <i>g</i>)</span> often shortened to <span class="texhtml"><i>xg</i></span> or <span class="texhtml"><i>x</i>⋅<i>g</i></span> when the action being considered is clear from context) </p> <dl><dd><table> <tbody><tr> <td>Identity: </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x{\cdot }e=x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>⋅<!-- ⋅ --></mo> </mrow> <mi>e</mi> <mo>=</mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x{\cdot }e=x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ebd8961c2a659a8b3ad1554e444fd5a38cee843" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.488ex; height:1.676ex;" alt="{\displaystyle x{\cdot }e=x}"></span> </td></tr> <tr> <td>Compatibility: </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x{\cdot }g){\cdot }h=x{\cdot }(gh)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>⋅<!-- ⋅ --></mo> </mrow> <mi>g</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>⋅<!-- ⋅ --></mo> </mrow> <mi>h</mi> <mo>=</mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>⋅<!-- ⋅ --></mo> </mrow> <mo stretchy="false">(</mo> <mi>g</mi> <mi>h</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x{\cdot }g){\cdot }h=x{\cdot }(gh)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48867204316ef06523e85759ae0498a15535130c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.227ex; height:2.843ex;" alt="{\displaystyle (x{\cdot }g){\cdot }h=x{\cdot }(gh)}"></span> </td></tr></tbody></table></dd></dl> <p>for all <span class="texhtml mvar" style="font-style:italic;">g</span> and <span class="texhtml mvar" style="font-style:italic;">h</span> in <span class="texhtml mvar" style="font-style:italic;">G</span> and all <span class="texhtml mvar" style="font-style:italic;">x</span> in <span class="texhtml mvar" style="font-style:italic;">X</span>. </p><p>The difference between left and right actions is in the order in which a product <span class="texhtml"><i>gh</i></span> acts on <span class="texhtml mvar" style="font-style:italic;">x</span>. For a left action, <span class="texhtml mvar" style="font-style:italic;">h</span> acts first, followed by <span class="texhtml mvar" style="font-style:italic;">g</span> second. For a right action, <span class="texhtml mvar" style="font-style:italic;">g</span> acts first, followed by <span class="texhtml mvar" style="font-style:italic;">h</span> second. Because of the formula <span class="texhtml">(<i>gh</i>)<sup>−1</sup> = <i>h</i><sup>−1</sup><i>g</i><sup>−1</sup></span>, a left action can be constructed from a right action by composing with the inverse operation of the group. Also, a right action of a group <span class="texhtml mvar" style="font-style:italic;">G</span> on <span class="texhtml mvar" style="font-style:italic;">X</span> can be considered as a left action of its <a href="/wiki/Opposite_group" title="Opposite group">opposite group</a> <span class="texhtml"><i>G</i><sup>op</sup></span> on <span class="texhtml mvar" style="font-style:italic;">X</span>. </p><p>Thus, for establishing general properties of group actions, it suffices to consider only left actions. However, there are cases where this is not possible. For example, the multiplication of a group <a href="/wiki/Induced_representation" title="Induced representation">induces</a> both a left action and a right action on the group itself—multiplication on the left and on the right, respectively. </p> <div class="mw-heading mw-heading2"><h2 id="Notable_properties_of_actions">Notable properties of actions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_action&action=edit&section=4" title="Edit section: Notable properties of actions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="texhtml"><i>G</i></span> be a group acting on a set <span class="texhtml"><i>X</i></span>. The action is called <i><style data-mw-deduplicate="TemplateStyles:r1238216509">.mw-parser-output .vanchor>:target~.vanchor-text{background-color:#b1d2ff}@media screen{html.skin-theme-clientpref-night .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}</style><span class="vanchor"><span id="faithful"></span><span class="vanchor-text">faithful</span></span></i> or <i><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="effective"></span><span class="vanchor-text">effective</span></span></i> if <span class="texhtml"><i>g</i>⋅<i>x</i> = <i>x</i></span> for all <span class="texhtml"><i>x</i> ∈ <i>X</i></span> implies that <span class="texhtml"><i>g</i> = <i>e</i><sub><i>G</i></sub></span>. Equivalently, the <a href="/wiki/Homomorphism" title="Homomorphism">homomorphism</a> from <span class="texhtml"><i>G</i></span> to the group of bijections of <span class="texhtml"><i>X</i></span> corresponding to the action is <a href="/wiki/Injective" class="mw-redirect" title="Injective">injective</a>. </p><p>The action is called <i><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="free"></span><span class="vanchor-text">free</span></span></i> (or <i>semiregular</i> or <i>fixed-point free</i>) if the statement that <span class="texhtml"><i>g</i>⋅<i>x</i> = <i>x</i></span> for some <span class="texhtml"><i>x</i> ∈ <i>X</i></span> already implies that <span class="texhtml"><i>g</i> = <i>e</i><sub><i>G</i></sub></span>. In other words, no non-trivial element of <span class="texhtml"><i>G</i></span> fixes a point of <span class="texhtml"><i>X</i></span>. This is a much stronger property than faithfulness. </p><p>For example, the action of any group on itself by left multiplication is free. This observation implies <a href="/wiki/Cayley%27s_theorem" title="Cayley's theorem">Cayley's theorem</a> that any group can be <a href="/wiki/Embedding" title="Embedding">embedded</a> in a symmetric group (which is infinite when the group is). A finite group may act faithfully on a set of size much smaller than its cardinality (however such an action cannot be free). For instance the abelian 2-group <span class="texhtml">(<b>Z</b> / 2<b>Z</b>)<sup><i>n</i></sup></span> (of cardinality <span class="texhtml">2<sup><i>n</i></sup></span>) acts faithfully on a set of size <span class="texhtml">2<i>n</i></span>. This is not always the case, for example the <a href="/wiki/Cyclic_group" title="Cyclic group">cyclic group</a> <span class="texhtml"><b>Z</b> / 2<sup><i>n</i></sup><b>Z</b></span> cannot act faithfully on a set of size less than <span class="texhtml">2<sup><i>n</i></sup></span>. </p><p>In general the smallest set on which a faithful action can be defined can vary greatly for groups of the same size. For example, three groups of size 120 are the symmetric group <span class="texhtml">S<sub>5</sub></span>, the icosahedral group <span class="texhtml">A<sub>5</sub> × <b>Z</b> / 2<b>Z</b></span> and the cyclic group <span class="texhtml"><b>Z</b> / 120<b>Z</b></span>. The smallest sets on which faithful actions can be defined for these groups are of size 5, 7, and 16 respectively. </p> <div class="mw-heading mw-heading3"><h3 id="Transitivity_properties">Transitivity properties</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_action&action=edit&section=5" title="Edit section: Transitivity properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The action of <span class="texhtml"><i>G</i></span> on <span class="texhtml"><i>X</i></span> is called <i><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="transitive"></span><span class="vanchor-text">transitive</span></span></i> if for any two points <span class="texhtml"><i>x</i>, <i>y</i> ∈ <i>X</i></span> there exists a <span class="texhtml"><i>g</i> ∈ <i>G</i></span> so that <span class="texhtml"><i>g</i> ⋅ <i>x</i> = <i>y</i></span>. </p><p>The action is <i><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="simply_transitive"></span><span class="vanchor-text">simply transitive</span></span></i> (or <i>sharply transitive</i>, or <i><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="regular"></span><span class="vanchor-text">regular</span></span></i>) if it is both transitive and free. This means that given <span class="texhtml"><i>x</i>, <i>y</i> ∈ <i>X</i></span> the element <span class="texhtml"><i>g</i></span> in the definition of transitivity is unique. If <span class="texhtml"><i>X</i></span> is acted upon simply transitively by a group <span class="texhtml"><i>G</i></span> then it is called a <a href="/wiki/Principal_homogeneous_space" title="Principal homogeneous space">principal homogeneous space</a> for <span class="texhtml"><i>G</i></span> or a <span class="texhtml"><i>G</i></span>-torsor. </p><p>For an integer <span class="texhtml"><i>n</i> ≥ 1</span>, the action is <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="n-transitive"></span><span class="vanchor-text"><i><span class="texhtml mvar" style="font-style:italic;">n</span>-transitive</i></span></span> if <span class="texhtml"><i>X</i></span> has at least <span class="texhtml"><i>n</i></span> elements, and for any pair of <span class="texhtml"><i>n</i></span>-tuples <span class="texhtml">(<i>x</i><sub>1</sub>, ..., <i>x</i><sub><i>n</i></sub>), (<i>y</i><sub>1</sub>, ..., <i>y</i><sub><i>n</i></sub>) ∈ <i>X</i><sup><i>n</i></sup></span> with pairwise distinct entries (that is <span class="texhtml"><i>x</i><sub><i>i</i></sub> ≠ <i>x</i><sub><i>j</i></sub></span>, <span class="texhtml"><i>y</i><sub><i>i</i></sub> ≠ <i>y</i><sub><i>j</i></sub></span> when <span class="texhtml"><i>i</i> ≠ <i>j</i></span>) there exists a <span class="texhtml"><i>g</i> ∈ <i>G</i></span> such that <span class="texhtml"><i>g</i>⋅<i>x</i><sub><i>i</i></sub> = <i>y</i><sub><i>i</i></sub></span> for <span class="texhtml"><i>i</i> = 1, ..., <i>n</i></span>. In other words, the action on the subset of <span class="texhtml"><i>X</i><sup><i>n</i></sup></span> of tuples without repeated entries is transitive. For <span class="texhtml"><i>n</i> = 2, 3</span> this is often called double, respectively triple, transitivity. The class of <a href="/wiki/2-transitive_group" class="mw-redirect" title="2-transitive group">2-transitive groups</a> (that is, subgroups of a finite symmetric group whose action is 2-transitive) and more generally <a href="/wiki/Multiply_transitive_group" class="mw-redirect" title="Multiply transitive group">multiply transitive groups</a> is well-studied in finite group theory. </p><p>An action is <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="sharply_n-transitive"></span><span class="vanchor-text"><i>sharply <span class="texhtml mvar" style="font-style:italic;">n</span>-transitive</i></span></span> when the action on tuples without repeated entries in <span class="texhtml"><i>X</i><sup><i>n</i></sup></span> is sharply transitive. </p> <div class="mw-heading mw-heading4"><h4 id="Examples">Examples</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_action&action=edit&section=6" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The action of the symmetric group of <span class="texhtml"><i>X</i></span> is transitive, in fact <span class="texhtml"><i>n</i></span>-transitive for any <span class="texhtml"><i>n</i></span> up to the cardinality of <span class="texhtml"><i>X</i></span>. If <span class="texhtml"><i>X</i></span> has cardinality <span class="texhtml"><i>n</i></span>, the action of the <a href="/wiki/Alternating_group" title="Alternating group">alternating group</a> is <span class="texhtml">(<i>n</i> − 2)</span>-transitive but not <span class="texhtml">(<i>n</i> − 1)</span>-transitive. </p><p>The action of the <a href="/wiki/General_linear_group" title="General linear group">general linear group</a> of a vector space <span class="texhtml"><i>V</i></span> on the set <span class="texhtml"><i>V</i> ∖ {0}</span> of non-zero vectors is transitive, but not 2-transitive (similarly for the action of the <a href="/wiki/Special_linear_group" title="Special linear group">special linear group</a> if the dimension of <span class="texhtml"><i>v</i></span> is at least 2). The action of the <a href="/wiki/Orthogonal_group" title="Orthogonal group">orthogonal group</a> of a Euclidean space is not transitive on nonzero vectors but it is on the <a href="/wiki/Unit_sphere" title="Unit sphere">unit sphere</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Primitive_actions">Primitive actions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_action&action=edit&section=7" title="Edit section: Primitive actions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Primitive_permutation_group" title="Primitive permutation group">primitive permutation group</a></div> <p>The action of <span class="texhtml"><i>G</i></span> on <span class="texhtml"><i>X</i></span> is called <i>primitive</i> if there is no <a href="/wiki/Partition_of_a_set" title="Partition of a set">partition</a> of <span class="texhtml"><i>X</i></span> preserved by all elements of <span class="texhtml"><i>G</i></span> apart from the trivial partitions (the partition in a single piece and its <a href="/wiki/Dual_space" title="Dual space">dual</a>, the partition into <a href="/wiki/Singleton_(mathematics)" title="Singleton (mathematics)">singletons</a>). </p> <div class="mw-heading mw-heading3"><h3 id="Topological_properties">Topological properties</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_action&action=edit&section=8" title="Edit section: Topological properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Assume that <span class="texhtml"><i>X</i></span> is a <a href="/wiki/Topological_space" title="Topological space">topological space</a> and the action of <span class="texhtml"><i>G</i></span> is by <a href="/wiki/Homeomorphism" title="Homeomorphism">homeomorphisms</a>. </p><p>The action is <i>wandering</i> if every <span class="texhtml"><i>x</i> ∈ <i>X</i></span> has a <a href="/wiki/Neighbourhood_(mathematics)" title="Neighbourhood (mathematics)">neighbourhood</a> <span class="texhtml"><i>U</i></span> such that there are only finitely many <span class="texhtml"><i>g</i> ∈ <i>G</i></span> with <span class="texhtml"><i>g</i>⋅<i>U</i> ∩ <i>U</i> ≠ ∅</span>.<sup id="cite_ref-FOOTNOTEThurston1997Definition_3.5.1(iv)_4-0" class="reference"><a href="#cite_note-FOOTNOTEThurston1997Definition_3.5.1(iv)-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p><p>More generally, a point <span class="texhtml"><i>x</i> ∈ <i>X</i></span> is called a point of discontinuity for the action of <span class="texhtml"><i>G</i></span> if there is an open subset <span class="texhtml"><i>U</i> ∋ <i>x</i></span> such that there are only finitely many <span class="texhtml"><i>g</i> ∈ <i>G</i></span> with <span class="texhtml"><i>g</i>⋅<i>U</i> ∩ <i>U</i> ≠ ∅</span>. The <i>domain of discontinuity</i> of the action is the set of all points of discontinuity. Equivalently it is the largest <span class="texhtml"><i>G</i></span>-stable open subset <span class="texhtml">Ω ⊂ <i>X</i></span> such that the action of <span class="texhtml"><i>G</i></span> on <span class="texhtml">Ω</span> is wandering.<sup id="cite_ref-FOOTNOTEKapovich2009p._73_5-0" class="reference"><a href="#cite_note-FOOTNOTEKapovich2009p._73-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> In a dynamical context this is also called a <i><a href="/wiki/Wandering_set" title="Wandering set">wandering set</a></i>. </p><p>The action is <i>properly discontinuous</i> if for every <a href="/wiki/Compact_space" title="Compact space">compact</a> subset <span class="texhtml"><i>K</i> ⊂ <i>X</i></span> there are only finitely many <span class="texhtml"><i>g</i> ∈ <i>G</i></span> such that <span class="texhtml"><i>g</i>⋅<i>K</i> ∩ <i>K</i> ≠ ∅</span>. This is strictly stronger than wandering; for instance the action of <span class="texhtml"><b>Z</b></span> on <span class="texhtml"><b>R</b><sup>2</sup> ∖ {(0, 0)}</span> given by <span class="texhtml"><i>n</i>⋅(<i>x</i>, <i>y</i>) = (2<sup><i>n</i></sup><i>x</i>, 2<sup>−<i>n</i></sup><i>y</i>)</span> is wandering and free but not properly discontinuous.<sup id="cite_ref-FOOTNOTEThurston1980176_6-0" class="reference"><a href="#cite_note-FOOTNOTEThurston1980176-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p><p>The action by <a href="/wiki/Deck_transformation" class="mw-redirect" title="Deck transformation">deck transformations</a> of the <a href="/wiki/Fundamental_group" title="Fundamental group">fundamental group</a> of a locally simply connected space on a <a href="/wiki/Covering_space#Universal_covering" title="Covering space">universal cover</a> is wandering and free. Such actions can be characterized by the following property: every <span class="texhtml"><i>x</i> ∈ <i>X</i></span> has a neighbourhood <span class="texhtml"><i>U</i></span> such that <span class="texhtml"><i>g</i>⋅<i>U</i> ∩ <i>U</i> = ∅</span> for every <span class="texhtml"><i>g</i> ∈ <i>G</i> ∖ {<i>e</i><sub><i>G</i></sub>}</span>.<sup id="cite_ref-FOOTNOTEHatcher2002p._72_7-0" class="reference"><a href="#cite_note-FOOTNOTEHatcher2002p._72-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> Actions with this property are sometimes called <i>freely discontinuous</i>, and the largest subset on which the action is freely discontinuous is then called the <i>free regular set</i>.<sup id="cite_ref-FOOTNOTEMaskit1988II.A.1,_II.A.2_8-0" class="reference"><a href="#cite_note-FOOTNOTEMaskit1988II.A.1,_II.A.2-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p><p>An action of a group <span class="texhtml"><i>G</i></span> on a <a href="/wiki/Locally_compact_space" title="Locally compact space">locally compact space</a> <span class="texhtml"><i>X</i></span> is called <i><a href="/wiki/Cocompact_group_action" title="Cocompact group action">cocompact</a></i> if there exists a compact subset <span class="texhtml"><i>A</i> ⊂ <i>X</i></span> such that <span class="texhtml"><i>X</i> = <i>G</i> ⋅ <i>A</i></span>. For a properly discontinuous action, cocompactness is equivalent to compactness of the <a href="/wiki/Quotient_space_(topology)" title="Quotient space (topology)">quotient space</a> <span class="texhtml"><i>G</i> \ <i>X</i></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Actions_of_topological_groups">Actions of topological groups</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_action&action=edit&section=9" title="Edit section: Actions of topological groups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Continuous_group_action" title="Continuous group action">Continuous group action</a></div> <p>Now assume <span class="texhtml"><i>G</i></span> is a <a href="/wiki/Topological_group" title="Topological group">topological group</a> and <span class="texhtml"><i>X</i></span> a topological space on which it acts by homeomorphisms. The action is said to be <i>continuous</i> if the map <span class="texhtml"><i>G</i> × <i>X</i> → <i>X</i></span> is continuous for the <a href="/wiki/Product_topology" title="Product topology">product topology</a>. </p><p>The action is said to be <i><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="proper"></span><span class="vanchor-text">proper</span></span></i> if the map <span class="texhtml"><i>G</i> × <i>X</i> → <i>X</i> × <i>X</i></span> defined by <span class="texhtml">(<i>g</i>, <i>x</i>) ↦ (<i>x</i>, <i>g</i>⋅<i>x</i>)</span> is <a href="/wiki/Proper_map" title="Proper map">proper</a>.<sup id="cite_ref-FOOTNOTEtom_Dieck1987_9-0" class="reference"><a href="#cite_note-FOOTNOTEtom_Dieck1987-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> This means that given compact sets <span class="texhtml"><i>K</i>, <i>K</i>′</span> the set of <span class="texhtml"><i>g</i> ∈ <i>G</i></span> such that <span class="texhtml"><i>g</i>⋅<i>K</i> ∩ <i>K</i>′ ≠ ∅</span> is compact. In particular, this is equivalent to proper discontinuity <span class="texhtml"><i>G</i></span> is a <a href="/wiki/Discrete_group" title="Discrete group">discrete group</a>. </p><p>It is said to be <i>locally free</i> if there exists a neighbourhood <span class="texhtml"><i>U</i></span> of <span class="texhtml"><i>e</i><sub><i>G</i></sub></span> such that <span class="texhtml"><i>g</i>⋅<i>x</i> ≠ <i>x</i></span> for all <span class="texhtml"><i>x</i> ∈ <i>X</i></span> and <span class="texhtml"><i>g</i> ∈ <i>U</i> ∖ {<i>e</i><sub><i>G</i></sub>}</span>. </p><p>The action is said to be <i>strongly continuous</i> if the orbital map <span class="texhtml"><i>g</i> ↦ <i>g</i>⋅<i>x</i></span> is continuous for every <span class="texhtml"><i>x</i> ∈ <i>X</i></span>. Contrary to what the name suggests, this is a weaker property than continuity of the action.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (May 2023)">citation needed</span></a></i>]</sup> </p><p>If <span class="texhtml"><i>G</i></span> is a <a href="/wiki/Lie_group" title="Lie group">Lie group</a> and <span class="texhtml"><i>X</i></span> a <a href="/wiki/Differentiable_manifold" title="Differentiable manifold">differentiable manifold</a>, then the subspace of <i>smooth points</i> for the action is the set of points <span class="texhtml"><i>x</i> ∈ <i>X</i></span> such that the map <span class="texhtml"><i>g</i> ↦ <i>g</i>⋅<i>x</i></span> is <a href="/wiki/Smooth_map" class="mw-redirect" title="Smooth map">smooth</a>. There is a well-developed theory of <a href="/wiki/Lie_group_action" title="Lie group action">Lie group actions</a>, i.e. action which are smooth on the whole space. </p> <div class="mw-heading mw-heading3"><h3 id="Linear_actions">Linear actions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_action&action=edit&section=10" title="Edit section: Linear actions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Group_representation" title="Group representation">Group representation</a></div> <p>If <span class="texhtml"><i>g</i></span> acts by linear transformations on a <a href="/wiki/Module_(mathematics)" title="Module (mathematics)">module</a> over a <a href="/wiki/Commutative_ring" title="Commutative ring">commutative ring</a>, the action is said to be <a href="/wiki/Irreducible_representation" title="Irreducible representation">irreducible</a> if there are no proper nonzero <span class="texhtml"><i>g</i></span>-invariant submodules. It is said to be <i><a href="/wiki/Semi-simplicity" title="Semi-simplicity">semisimple</a></i> if it decomposes as a <a href="/wiki/Direct_sum" title="Direct sum">direct sum</a> of irreducible actions. </p> <div class="mw-heading mw-heading2"><h2 id="Orbits_and_stabilizers"><span id="orbstab"></span><span id="quotient"></span> Orbits and stabilizers</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_action&action=edit&section=11" title="Edit section: Orbits and stabilizers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Compound_of_five_tetrahedra.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6c/Compound_of_five_tetrahedra.png/220px-Compound_of_five_tetrahedra.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6c/Compound_of_five_tetrahedra.png/330px-Compound_of_five_tetrahedra.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6c/Compound_of_five_tetrahedra.png/440px-Compound_of_five_tetrahedra.png 2x" data-file-width="1000" data-file-height="1000" /></a><figcaption>In the <a href="/wiki/Compound_of_five_tetrahedra" title="Compound of five tetrahedra">compound of five tetrahedra</a>, the symmetry group is the (rotational) icosahedral group <span class="texhtml"><i>I</i></span> of order 60, while the stabilizer of a single chosen tetrahedron is the (rotational) <a href="/wiki/Tetrahedral_group" class="mw-redirect" title="Tetrahedral group">tetrahedral group</a> <span class="texhtml"><i>T</i></span> of order 12, and the orbit space <span class="texhtml"><i>I</i> / <i>T</i></span> (of order 60/12 = 5) is naturally identified with the 5 tetrahedra – the coset <span class="texhtml"><i>gT</i></span> corresponds to the tetrahedron to which <span class="texhtml"><i>g</i></span> sends the chosen tetrahedron.</figcaption></figure> <p>Consider a group <span class="texhtml"><i>G</i></span> acting on a set <span class="texhtml"><i>X</i></span>. The <i><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="orbit"></span><span class="vanchor-text">orbit</span></span></i> of an element <span class="texhtml"><i>x</i></span> in <span class="texhtml"><i>X</i></span> is the set of elements in <span class="texhtml"><i>X</i></span> to which <span class="texhtml"><i>x</i></span> can be moved by the elements of <span class="texhtml"><i>G</i></span>. The orbit of <span class="texhtml"><i>x</i></span> is denoted by <span class="texhtml"><i>G</i>⋅<i>x</i></span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G{\cdot }x=\{g{\cdot }x:g\in G\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>⋅<!-- ⋅ --></mo> </mrow> <mi>x</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>⋅<!-- ⋅ --></mo> </mrow> <mi>x</mi> <mo>:</mo> <mi>g</mi> <mo>∈<!-- ∈ --></mo> <mi>G</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G{\cdot }x=\{g{\cdot }x:g\in G\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf07be5473d2e0459718618f2c1f0f380ec880c3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.687ex; height:2.843ex;" alt="{\displaystyle G{\cdot }x=\{g{\cdot }x:g\in G\}.}"></span> </p><p>The defining properties of a group guarantee that the set of orbits of (points <span class="texhtml"><i>x</i></span> in) <span class="texhtml"><i>X</i></span> under the action of <span class="texhtml"><i>G</i></span> form a <a href="/wiki/Partition_of_a_set" title="Partition of a set">partition</a> of <span class="texhtml"><i>X</i></span>. The associated <a href="/wiki/Equivalence_relation" title="Equivalence relation">equivalence relation</a> is defined by saying <span class="texhtml"><i>x</i> ~ <i>y</i></span> <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> there exists a <span class="texhtml"><i>g</i></span> in <span class="texhtml"><i>G</i></span> with <span class="texhtml"><i>g</i>⋅<i>x</i> = <i>y</i></span>. The orbits are then the <a href="/wiki/Equivalence_class" title="Equivalence class">equivalence classes</a> under this relation; two elements <span class="texhtml"><i>x</i></span> and <span class="texhtml"><i>y</i></span> are equivalent if and only if their orbits are the same, that is, <span class="texhtml"><i>G</i>⋅<i>x</i> = <i>G</i>⋅<i>y</i></span>. </p><p>The group action is <a href="/wiki/Group_action_(mathematics)#Notable_properties_of_actions" class="mw-redirect" title="Group action (mathematics)">transitive</a> if and only if it has exactly one orbit, that is, if there exists <span class="texhtml"><i>x</i></span> in <span class="texhtml"><i>X</i></span> with <span class="texhtml"><i>G</i>⋅<i>x</i> = <i>X</i></span>. This is the case if and only if <span class="texhtml"><i>G</i>⋅<i>x</i> = <i>X</i></span> for <em>all</em> <span class="texhtml"><i>x</i></span> in <span class="texhtml"><i>X</i></span> (given that <span class="texhtml"><i>X</i></span> is non-empty). </p><p>The set of all orbits of <span class="texhtml"><i>X</i></span> under the action of <span class="texhtml"><i>G</i></span> is written as <span class="texhtml"><i>X</i> / <i>G</i></span> (or, less frequently, as <span class="texhtml"><i>G</i> \ <i>X</i></span>), and is called the <i><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="quotient"></span><span class="vanchor-text">quotient</span></span></i> of the action. In geometric situations it may be called the <i><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="orbit_space"></span><span class="vanchor-text">orbit space</span></span></i>, while in algebraic situations it may be called the space of <i><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="coinvariants"></span><span class="vanchor-text">coinvariants</span></span></i>, and written <span class="texhtml"><i>X</i><sub><i>G</i></sub></span>, by contrast with the invariants (fixed points), denoted <span class="texhtml"><i>X</i><sup><i>G</i></sup></span>: the coinvariants are a <em>quotient</em> while the invariants are a <em>subset</em>. The coinvariant terminology and notation are used particularly in <a href="/wiki/Group_cohomology" title="Group cohomology">group cohomology</a> and <a href="/wiki/Group_homology" class="mw-redirect" title="Group homology">group homology</a>, which use the same superscript/subscript convention. </p> <div class="mw-heading mw-heading3"><h3 id="Invariant_subsets">Invariant subsets</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_action&action=edit&section=12" title="Edit section: Invariant subsets"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="texhtml"><i>Y</i></span> is a <a href="/wiki/Subset" title="Subset">subset</a> of <span class="texhtml"><i>X</i></span>, then <span class="texhtml"><i>G</i>⋅<i>Y</i></span> denotes the set <span class="texhtml">{<i>g</i>⋅<i>y</i> : <i>g</i> ∈ <i>G</i> and <i>y</i> ∈ <i>Y</i>}</span>. The subset <span class="texhtml"><i>Y</i></span> is said to be <i>invariant under </i><span class="texhtml"><i>G</i></span> if <span class="texhtml"><i>G</i>⋅<i>Y</i> = <i>Y</i></span> (which is equivalent <span class="texhtml"><i>G</i>⋅<i>Y</i> ⊆ <i>Y</i></span>). In that case, <span class="texhtml"><i>G</i></span> also operates on <span class="texhtml"><i>Y</i></span> by <a href="/wiki/Restriction_(mathematics)" title="Restriction (mathematics)">restricting</a> the action to <span class="texhtml"><i>Y</i></span>. The subset <span class="texhtml"><i>Y</i></span> is called <i>fixed under </i><span class="texhtml"><i>G</i></span> if <span class="texhtml"><i>g</i>⋅<i>y</i> = <i>y</i></span> for all <span class="texhtml"><i>g</i></span> in <span class="texhtml"><i>G</i></span> and all <span class="texhtml"><i>y</i></span> in <span class="texhtml"><i>Y</i></span>. Every subset that is fixed under <span class="texhtml"><i>G</i></span> is also invariant under <span class="texhtml"><i>G</i></span>, but not conversely. </p><p>Every orbit is an invariant subset of <span class="texhtml"><i>X</i></span> on which <span class="texhtml"><i>G</i></span> acts <a href="/wiki/Group_action_(mathematics)#Notable_properties_of_actions" class="mw-redirect" title="Group action (mathematics)">transitively</a>. Conversely, any invariant subset of <span class="texhtml"><i>X</i></span> is a union of orbits. The action of <span class="texhtml"><i>G</i></span> on <span class="texhtml"><i>X</i></span> is <i>transitive</i> if and only if all elements are equivalent, meaning that there is only one orbit. </p><p>A <span class="texhtml"><i>G</i></span><i>-invariant</i> element of <span class="texhtml"><i>X</i></span> is <span class="texhtml"><i>x</i> ∈ <i>X</i></span> such that <span class="texhtml"><i>g</i>⋅<i>x</i> = <i>x</i></span> for all <span class="texhtml"><i>g</i> ∈ <i>G</i></span>. The set of all such <span class="texhtml"><i>x</i></span> is denoted <span class="texhtml"><i>X</i><sup><i>G</i></sup></span> and called the <span class="texhtml"><i>G</i></span><i>-invariants</i> of <span class="texhtml"><i>X</i></span>. When <span class="texhtml"><i>X</i></span> is a <a href="/wiki/G-module" title="G-module"><span class="texhtml"><i>G</i></span>-module</a>, <span class="texhtml"><i>X</i><sup><i>G</i></sup></span> is the zeroth <a href="/wiki/Group_cohomology" title="Group cohomology">cohomology</a> group of <span class="texhtml"><i>G</i></span> with coefficients in <span class="texhtml"><i>X</i></span>, and the higher cohomology groups are the <a href="/wiki/Derived_functor" title="Derived functor">derived functors</a> of the <a href="/wiki/Functor" title="Functor">functor</a> of <span class="texhtml"><i>G</i></span>-invariants. </p> <div class="mw-heading mw-heading3"><h3 id="Fixed_points_and_stabilizer_subgroups">Fixed points and stabilizer subgroups</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_action&action=edit&section=13" title="Edit section: Fixed points and stabilizer subgroups"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given <span class="texhtml"><i>g</i></span> in <span class="texhtml"><i>G</i></span> and <span class="texhtml"><i>x</i></span> in <span class="texhtml"><i>X</i></span> with <span class="texhtml"><i>g</i>⋅<i>x</i> = <i>x</i></span>, it is said that "<span class="texhtml"><i>x</i></span> is a fixed point of <span class="texhtml"><i>g</i></span>" or that "<span class="texhtml"><i>g</i></span> fixes <span class="texhtml"><i>x</i></span>". For every <span class="texhtml"><i>x</i></span> in <span class="texhtml"><i>X</i></span>, the <b><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="stabilizer_subgroup"></span><span class="vanchor-text">stabilizer subgroup</span></span></b> of <span class="texhtml"><i>G</i></span> with respect to <span class="texhtml"><i>x</i></span> (also called the <b>isotropy group</b> or <b>little group</b><sup id="cite_ref-Procesi_10-0" class="reference"><a href="#cite_note-Procesi-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup>) is the set of all elements in <span class="texhtml"><i>G</i></span> that fix <span class="texhtml"><i>x</i></span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{x}=\{g\in G:g{\cdot }x=x\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>g</mi> <mo>∈<!-- ∈ --></mo> <mi>G</mi> <mo>:</mo> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>⋅<!-- ⋅ --></mo> </mrow> <mi>x</mi> <mo>=</mo> <mi>x</mi> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{x}=\{g\in G:g{\cdot }x=x\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a84445f34b016a3662405602af20a618e4ad1861" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.311ex; height:2.843ex;" alt="{\displaystyle G_{x}=\{g\in G:g{\cdot }x=x\}.}"></span> This is a <a href="/wiki/Subgroup" title="Subgroup">subgroup</a> of <span class="texhtml"><i>G</i></span>, though typically not a normal one. The action of <span class="texhtml"><i>G</i></span> on <span class="texhtml"><i>X</i></span> is <a href="/wiki/Group_action_(mathematics)#Notable_properties_of_actions" class="mw-redirect" title="Group action (mathematics)">free</a> if and only if all stabilizers are trivial. The kernel <span class="texhtml"><i>N</i></span> of the homomorphism with the symmetric group, <span class="texhtml"><i>G</i> → Sym(<i>X</i>)</span>, is given by the <a href="/wiki/Intersection_(set_theory)" title="Intersection (set theory)">intersection</a> of the stabilizers <span class="texhtml"><i>G</i><sub><i>x</i></sub></span> for all <span class="texhtml"><i>x</i></span> in <span class="texhtml"><i>X</i></span>. If <span class="texhtml"><i>N</i></span> is trivial, the action is said to be faithful (or effective). </p><p>Let <span class="texhtml"><i>x</i></span> and <span class="texhtml"><i>y</i></span> be two elements in <span class="texhtml"><i>X</i></span>, and let <span class="texhtml"><i>g</i></span> be a group element such that <span class="texhtml"><i>y</i> = <i>g</i>⋅<i>x</i></span>. Then the two stabilizer groups <span class="texhtml"><i>G</i><sub><i>x</i></sub></span> and <span class="texhtml"><i>G</i><sub><i>y</i></sub></span> are related by <span class="texhtml"><i>G</i><sub><i>y</i></sub> = <i>gG</i><sub><i>x</i></sub><i>g</i><sup>−1</sup></span>. Proof: by definition, <span class="texhtml"><i>h</i> ∈ <i>G</i><sub><i>y</i></sub></span> if and only if <span class="texhtml"><i>h</i>⋅(<i>g</i>⋅<i>x</i>) = <i>g</i>⋅<i>x</i></span>. Applying <span class="texhtml"><i>g</i><sup>−1</sup></span> to both sides of this equality yields <span class="texhtml">(<i>g</i><sup>−1</sup><i>hg</i>)⋅<i>x</i> = <i>x</i></span>; that is, <span class="texhtml"><i>g</i><sup>−1</sup><i>hg</i> ∈ <i>G</i><sub><i>x</i></sub></span>. An opposite inclusion follows similarly by taking <span class="texhtml"><i>h</i> ∈ <i>G</i><sub><i>x</i></sub></span> and <span class="texhtml"><i>x</i> = <i>g</i><sup>−1</sup>⋅<i>y</i></span>. </p><p>The above says that the stabilizers of elements in the same orbit are <a href="/wiki/Conjugacy_class" title="Conjugacy class">conjugate</a> to each other. Thus, to each orbit, we can associate a <a href="/wiki/Conjugacy_class" title="Conjugacy class">conjugacy class</a> of a subgroup of <span class="texhtml"><i>G</i></span> (that is, the set of all conjugates of the subgroup). Let <span class="texhtml">(<i>H</i>)</span> denote the conjugacy class of <span class="texhtml"><i>H</i></span>. Then the orbit <span class="texhtml"><i>O</i></span> has type <span class="texhtml">(<i>H</i>)</span> if the stabilizer <span class="texhtml"><i>G</i><sub><i>x</i></sub></span> of some/any <span class="texhtml"><i>x</i></span> in <span class="texhtml"><i>O</i></span> belongs to <span class="texhtml">(<i>H</i>)</span>. A maximal orbit type is often called a <a href="/wiki/Principal_orbit_type" class="mw-redirect" title="Principal orbit type">principal orbit type</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Orbit-stabilizer_theorem"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="Orbit-stabilizer_theorem"></span><span class="vanchor-text">Orbit-stabilizer theorem</span></span></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_action&action=edit&section=14" title="Edit section: Orbit-stabilizer theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Orbits and stabilizers are closely related. For a fixed <span class="texhtml"><i>x</i></span> in <span class="texhtml"><i>X</i></span>, consider the map <span class="texhtml"><i>f</i> : <i>G</i> → <i>X</i></span> given by <span class="texhtml"><i>g</i> ↦ <i>g</i>⋅<i>x</i></span>. By definition the image <span class="texhtml"><i>f</i>(<i>G</i>)</span> of this map is the orbit <span class="texhtml"><i>G</i>⋅<i>x</i></span>. The condition for two elements to have the same image is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(g)=f(h)\iff g{\cdot }x=h{\cdot }x\iff g^{-1}h{\cdot }x=x\iff g^{-1}h\in G_{x}\iff h\in gG_{x}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mspace width="thickmathspace" /> <mo stretchy="false">⟺<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>⋅<!-- ⋅ --></mo> </mrow> <mi>x</mi> <mo>=</mo> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>⋅<!-- ⋅ --></mo> </mrow> <mi>x</mi> <mspace width="thickmathspace" /> <mo stretchy="false">⟺<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>⋅<!-- ⋅ --></mo> </mrow> <mi>x</mi> <mo>=</mo> <mi>x</mi> <mspace width="thickmathspace" /> <mo stretchy="false">⟺<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>h</mi> <mo>∈<!-- ∈ --></mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mspace width="thickmathspace" /> <mo stretchy="false">⟺<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mi>h</mi> <mo>∈<!-- ∈ --></mo> <mi>g</mi> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(g)=f(h)\iff g{\cdot }x=h{\cdot }x\iff g^{-1}h{\cdot }x=x\iff g^{-1}h\in G_{x}\iff h\in gG_{x}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2abb119ece1b4cabc0f87b562bc3441c50c8f755" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:79.591ex; height:3.176ex;" alt="{\displaystyle f(g)=f(h)\iff g{\cdot }x=h{\cdot }x\iff g^{-1}h{\cdot }x=x\iff g^{-1}h\in G_{x}\iff h\in gG_{x}.}"></span> In other words, <span class="texhtml"><i>f</i>(<i>g</i>) = <i>f</i>(<i>h</i>)</span> <i>if and only if</i> <span class="texhtml"><i>g</i></span> and <span class="texhtml"><i>h</i></span> lie in the same <a href="/wiki/Coset" title="Coset">coset</a> for the stabilizer subgroup <span class="texhtml"><i>G</i><sub><i>x</i></sub></span>. Thus, the <a href="/wiki/Fiber_(mathematics)" title="Fiber (mathematics)">fiber</a> <span class="texhtml"><i>f</i><span style="padding-left:0.12em;"><sup>−1</sup></span>({<i>y</i>})</span> of <span class="texhtml"><i>f</i></span> over any <span class="texhtml"><i>y</i></span> in <span class="texhtml"><i>G</i>⋅<i>x</i></span> is contained in such a coset, and every such coset also occurs as a fiber. Therefore <span class="texhtml"><i>f</i></span> induces a <em>bijection</em> between the set <span class="texhtml"><i>G</i> / <i>G</i><sub><i>x</i></sub></span> of cosets for the stabilizer subgroup and the orbit <span class="texhtml"><i>G</i>⋅<i>x</i></span>, which sends <span class="texhtml"><i>gG</i><sub><i>x</i></sub> ↦ <i>g</i>⋅<i>x</i></span>.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> This result is known as the <i>orbit-stabilizer theorem</i>. </p><p>If <span class="texhtml"><i>G</i></span> is finite then the orbit-stabilizer theorem, together with <a href="/wiki/Lagrange%27s_theorem_(group_theory)" title="Lagrange's theorem (group theory)">Lagrange's theorem</a>, gives <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |G\cdot x|=[G\,:\,G_{x}]=|G|/|G_{x}|,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>G</mi> <mo>⋅<!-- ⋅ --></mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mo stretchy="false">[</mo> <mi>G</mi> <mspace width="thinmathspace" /> <mo>:</mo> <mspace width="thinmathspace" /> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |G\cdot x|=[G\,:\,G_{x}]=|G|/|G_{x}|,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb2cf9bb1f43b44e6798feefb9854929e9dcdc33" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.38ex; height:2.843ex;" alt="{\displaystyle |G\cdot x|=[G\,:\,G_{x}]=|G|/|G_{x}|,}"></span> in other words the length of the orbit of <span class="texhtml"><i>x</i></span> times the order of its stabilizer is the <a href="/wiki/Order_(group_theory)" title="Order (group theory)">order of the group</a>. In particular that implies that the orbit length is a divisor of the group order. </p> <dl><dd><b>Example:</b> Let <span class="texhtml"><i>G</i></span> be a group of prime order <span class="texhtml"><i>p</i></span> acting on a set <span class="texhtml"><i>X</i></span> with <span class="texhtml"><i>k</i></span> elements. Since each orbit has either <span class="texhtml">1</span> or <span class="texhtml"><i>p</i></span> elements, there are at least <span class="texhtml"><i>k</i> mod <i>p</i></span> orbits of length <span class="texhtml">1</span> which are <span class="texhtml"><i>G</i></span>-invariant elements. More specifically, <span class="texhtml"><i>k</i></span> and the number of <span class="texhtml"><i>G</i></span>-invariant elements are congruent modulo <span class="texhtml"><i>p</i></span>.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup></dd></dl> <p>This result is especially useful since it can be employed for counting arguments (typically in situations where <span class="texhtml"><i>X</i></span> is finite as well). </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Labeled_cube_graph.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Labeled_cube_graph.png/220px-Labeled_cube_graph.png" decoding="async" width="220" height="198" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Labeled_cube_graph.png/330px-Labeled_cube_graph.png 1.5x, //upload.wikimedia.org/wikipedia/commons/a/a4/Labeled_cube_graph.png 2x" data-file-width="400" data-file-height="360" /></a><figcaption>Cubical graph with vertices labeled</figcaption></figure> <dl><dd><b>Example:</b> We can use the orbit-stabilizer theorem to count the automorphisms of a <a href="/wiki/Graph_(discrete_mathematics)" title="Graph (discrete mathematics)">graph</a>. Consider the <a href="/wiki/Cubical_graph" class="mw-redirect" title="Cubical graph">cubical graph</a> as pictured, and let <span class="texhtml"><i>G</i></span> denote its <a href="/wiki/Graph_automorphism" title="Graph automorphism">automorphism</a> group. Then <span class="texhtml"><i>G</i></span> acts on the set of vertices <span class="texhtml">{1, 2, ..., 8}</span>, and this action is transitive as can be seen by composing rotations about the center of the cube. Thus, by the orbit-stabilizer theorem, <span class="texhtml">|<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>G</i></span>| = |<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>G</i> ⋅ 1</span>| |<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>G</i><sub>1</sub></span>| = 8 |<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>G</i><sub>1</sub></span>|</span>. Applying the theorem now to the stabilizer <span class="texhtml"><i>G</i><sub>1</sub></span>, we can obtain <span class="texhtml">|<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>G</i><sub>1</sub></span>| = |<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;">(<i>G</i><sub>1</sub>) ⋅ 2</span>| |<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;">(<i>G</i><sub>1</sub>)<sub>2</sub></span>|</span>. Any element of <span class="texhtml"><i>G</i></span> that fixes 1 must send 2 to either 2, 4, or 5. As an example of such automorphisms consider the rotation around the diagonal axis through 1 and 7 by <span class="texhtml">2<i>π</i>/3</span>, which permutes 2, 4, 5 and 3, 6, 8, and fixes 1 and 7. Thus, <span class="texhtml">|<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;">(<i>G</i><sub>1</sub>) ⋅ 2</span>| = 3</span>. Applying the theorem a third time gives <span class="texhtml">|<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;">(<i>G</i><sub>1</sub>)<sub>2</sub></span>| = |<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;">((<i>G</i><sub>1</sub>)<sub>2</sub>) ⋅ 3</span>| |<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;">((<i>G</i><sub>1</sub>)<sub>2</sub>)<sub>3</sub></span>|</span>. Any element of <span class="texhtml"><i>G</i></span> that fixes 1 and 2 must send 3 to either 3 or 6. Reflecting the cube at the plane through 1, 2, 7 and 8 is such an automorphism sending 3 to 6, thus <span class="texhtml">|<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;">((<i>G</i><sub>1</sub>)<sub>2</sub>) ⋅ 3</span>| = 2</span>. One also sees that <span class="texhtml">((<i>G</i><sub>1</sub>)<sub>2</sub>)<sub>3</sub></span> consists only of the identity automorphism, as any element of <span class="texhtml"><i>G</i></span> fixing 1, 2 and 3 must also fix all other vertices, since they are determined by their adjacency to 1, 2 and 3. Combining the preceding calculations, we can now obtain <span class="texhtml">|<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;">G</span>| = 8 ⋅ 3 ⋅ 2 ⋅ 1 = 48</span>.</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Burnside's_lemma"><span id="Burnside.27s_lemma"></span>Burnside's lemma</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_action&action=edit&section=15" title="Edit section: Burnside's lemma"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A result closely related to the orbit-stabilizer theorem is <a href="/wiki/Burnside%27s_lemma" title="Burnside's lemma">Burnside's lemma</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |X/G|={\frac {1}{|G|}}\sum _{g\in G}|X^{g}|,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </mfrac> </mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> <mo>∈<!-- ∈ --></mo> <mi>G</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |X/G|={\frac {1}{|G|}}\sum _{g\in G}|X^{g}|,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e179e15955324945461f18a84260256e5deb0d3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:22.406ex; height:6.676ex;" alt="{\displaystyle |X/G|={\frac {1}{|G|}}\sum _{g\in G}|X^{g}|,}"></span> where <span class="texhtml"><i>X</i><sup><i>g</i></sup></span> is the set of points fixed by <span class="texhtml"><i>g</i></span>. This result is mainly of use when <span class="texhtml"><i>G</i></span> and <span class="texhtml"><i>X</i></span> are finite, when it can be interpreted as follows: the number of orbits is equal to the average number of points fixed per group element. </p><p>Fixing a group <span class="texhtml"><i>G</i></span>, the set of formal differences of finite <span class="texhtml"><i>G</i></span>-sets forms a ring called the <a href="/wiki/Burnside_ring" title="Burnside ring">Burnside ring</a> of <span class="texhtml"><i>G</i></span>, where addition corresponds to <a href="/wiki/Disjoint_union" title="Disjoint union">disjoint union</a>, and multiplication to <a href="/wiki/Cartesian_product" title="Cartesian product">Cartesian product</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Examples_2">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_action&action=edit&section=16" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The <i><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="trivial"></span><span class="vanchor-text">trivial</span></span></i> action of any group <span class="texhtml"><i>G</i></span> on any set <span class="texhtml"><i>X</i></span> is defined by <span class="texhtml"><i>g</i>⋅<i>x</i> = <i>x</i></span> for all <span class="texhtml"><i>g</i></span> in <span class="texhtml"><i>G</i></span> and all <span class="texhtml"><i>x</i></span> in <span class="texhtml"><i>X</i></span>; that is, every group element induces the <a href="/wiki/Identity_function" title="Identity function">identity permutation</a> on <span class="texhtml"><i>X</i></span>.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup></li> <li>In every group <span class="texhtml"><i>G</i></span>, left multiplication is an action of <span class="texhtml"><i>G</i></span> on <span class="texhtml"><i>G</i></span>: <span class="texhtml"><i>g</i>⋅<i>x</i> = <i>gx</i></span> for all <span class="texhtml"><i>g</i></span>, <span class="texhtml"><i>x</i></span> in <span class="texhtml"><i>G</i></span>. This action is free and transitive (regular), and forms the basis of a rapid proof of <a href="/wiki/Cayley%27s_theorem" title="Cayley's theorem">Cayley's theorem</a> – that every group is isomorphic to a subgroup of the symmetric group of permutations of the set <span class="texhtml"><i>G</i></span>.</li> <li>In every group <span class="texhtml"><i>G</i></span> with subgroup <span class="texhtml"><i>H</i></span>, left multiplication is an action of <span class="texhtml"><i>G</i></span> on the set of cosets <span class="texhtml"><i>G</i> / <i>H</i></span>: <span class="texhtml"><i>g</i>⋅<i>aH</i> = <i>gaH</i></span> for all <span class="texhtml"><i>g</i></span>, <span class="texhtml"><i>a</i></span> in <span class="texhtml"><i>G</i></span>. In particular if <span class="texhtml"><i>H</i></span> contains no nontrivial <a href="/wiki/Normal_subgroups" class="mw-redirect" title="Normal subgroups">normal subgroups</a> of <span class="texhtml"><i>G</i></span> this induces an isomorphism from <span class="texhtml"><i>G</i></span> to a subgroup of the permutation group of <a href="/wiki/Degree_of_a_permutation_group" class="mw-redirect" title="Degree of a permutation group">degree</a> <span class="texhtml">[<i>G</i> : <i>H</i>]</span>.</li> <li>In every group <span class="texhtml"><i>G</i></span>, <a href="/wiki/Inner_automorphism" title="Inner automorphism">conjugation</a> is an action of <span class="texhtml"><i>G</i></span> on <span class="texhtml"><i>G</i></span>: <span class="texhtml"><i>g</i>⋅<i>x</i> = <i>gxg</i><sup>−1</sup></span>. An exponential notation is commonly used for the right-action variant: <span class="texhtml"><i>x<sup>g</sup></i> = <i>g</i><sup>−1</sup><i>xg</i></span>; it satisfies (<span class="texhtml"><i>x</i><sup><i>g</i></sup>)<sup><i>h</i></sup> = <i>x</i><sup><i>gh</i></sup></span>.</li> <li>In every group <span class="texhtml"><i>G</i></span> with subgroup <span class="texhtml"><i>H</i></span>, conjugation is an action of <span class="texhtml"><i>G</i></span> on conjugates of <span class="texhtml"><i>H</i></span>: <span class="texhtml"><i>g</i>⋅<i>K</i> = <i>gKg</i><sup>−1</sup></span> for all <span class="texhtml"><i>g</i></span> in <span class="texhtml"><i>G</i></span> and <span class="texhtml"><i>K</i></span> conjugates of <span class="texhtml"><i>H</i></span>.</li> <li>An action of <span class="texhtml"><b>Z</b></span> on a set <span class="texhtml"><i>X</i></span> uniquely determines and is determined by an <a href="/wiki/Automorphism" title="Automorphism">automorphism</a> of <span class="texhtml"><i>X</i></span>, given by the action of 1. Similarly, an action of <span class="texhtml"><b>Z</b> / 2<b>Z</b></span> on <span class="texhtml"><i>X</i></span> is equivalent to the data of an <a href="/wiki/Involution_(mathematics)" title="Involution (mathematics)">involution</a> of <span class="texhtml"><i>X</i></span>.</li> <li>The symmetric group <span class="texhtml">S<sub><i>n</i></sub></span> and its subgroups act on the set <span class="texhtml">{1, ..., <i>n</i>}</span> by permuting its elements</li> <li>The <a href="/wiki/Symmetry_group" title="Symmetry group">symmetry group</a> of a polyhedron acts on the set of vertices of that polyhedron. It also acts on the set of faces or the set of edges of the polyhedron.</li> <li>The symmetry group of any geometrical object acts on the set of points of that object.</li> <li>For a <a href="/wiki/Coordinate_space" class="mw-redirect" title="Coordinate space">coordinate space</a> <span class="texhtml"><i>V</i></span> over a field <span class="texhtml"><i>F</i></span> with group of units <span class="texhtml"><i>F</i>*</span>, the mapping <span class="texhtml"><i>F</i>* × <i>V</i> → <i>V</i></span> given by <span class="texhtml"><i>a</i> × (<i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, ..., <i>x</i><sub><i>n</i></sub>) ↦ (<i>ax</i><sub>1</sub>, <i>ax</i><sub>2</sub>, ..., <i>ax</i><sub><i>n</i></sub>)</span> is a group action called <a href="/wiki/Scalar_multiplication" title="Scalar multiplication">scalar multiplication</a>.</li> <li>The automorphism group of a vector space (or <a href="/wiki/Graph_theory" title="Graph theory">graph</a>, or group, or ring ...) acts on the vector space (or set of vertices of the graph, or group, or ring ...).</li> <li>The general linear group <span class="texhtml">GL(<i>n</i>, <i>K</i>)</span> and its subgroups, particularly its <a href="/wiki/Lie_subgroup" class="mw-redirect" title="Lie subgroup">Lie subgroups</a> (including the special linear group <span class="texhtml">SL(<i>n</i>, <i>K</i>)</span>, <a href="/wiki/Orthogonal_group" title="Orthogonal group">orthogonal group</a> <span class="texhtml">O(<i>n</i>, <i>K</i>)</span>, special orthogonal group <span class="texhtml">SO(<i>n</i>, <i>K</i>)</span>, and <a href="/wiki/Symplectic_group" title="Symplectic group">symplectic group</a> <span class="texhtml">Sp(<i>n</i>, <i>K</i>)</span>) are <a href="/wiki/Lie_group" title="Lie group">Lie groups</a> that act on the vector space <span class="texhtml"><i>K</i><sup><i>n</i></sup></span>. The group operations are given by multiplying the matrices from the groups with the vectors from <span class="texhtml"><i>K</i><sup><i>n</i></sup></span>.</li> <li>The general linear group <span class="texhtml">GL(<i>n</i>, <b>Z</b>)</span> acts on <span class="texhtml"><b>Z</b><sup><i>n</i></sup></span> by natural matrix action. The orbits of its action are classified by the <a href="/wiki/Greatest_common_divisor" title="Greatest common divisor">greatest common divisor</a> of coordinates of the vector in <span class="texhtml"><b>Z</b><sup><i>n</i></sup></span>.</li> <li>The <a href="/wiki/Affine_group" title="Affine group">affine group</a> acts <a href="#Notable_properties_of_actions">transitively</a> on the points of an <a href="/wiki/Affine_space" title="Affine space">affine space</a>, and the subgroup V of the affine group (that is, a vector space) has transitive and free (that is, <i>regular</i>) action on these points;<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> indeed this can be used to give a definition of an <a href="/wiki/Affine_space#Definition" title="Affine space">affine space</a>.</li> <li>The <a href="/wiki/Projective_linear_group" title="Projective linear group">projective linear group</a> <span class="texhtml">PGL(<i>n</i> + 1, <i>K</i>)</span> and its subgroups, particularly its Lie subgroups, which are Lie groups that act on the <a href="/wiki/Projective_space" title="Projective space">projective space</a> <span class="texhtml"><b>P</b><sup>n</sup>(<i>K</i>)</span>. This is a quotient of the action of the general linear group on projective space. Particularly notable is <span class="texhtml">PGL(2, <i>K</i>)</span>, the symmetries of the projective line, which is sharply 3-transitive, preserving the <a href="/wiki/Cross_ratio" class="mw-redirect" title="Cross ratio">cross ratio</a>; the <a href="/wiki/M%C3%B6bius_group" class="mw-redirect" title="Möbius group">Möbius group</a> <span class="texhtml">PGL(2, <b>C</b>)</span> is of particular interest.</li> <li>The <a href="/wiki/Isometry" title="Isometry">isometries</a> of the plane act on the set of 2D images and patterns, such as <a href="/wiki/Wallpaper_group" title="Wallpaper group">wallpaper patterns</a>. The definition can be made more precise by specifying what is meant by image or pattern, for example, a function of position with values in a set of colors. Isometries are in fact one example of affine group (action).<sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Accuracy_dispute#Disputed_statement" title="Wikipedia:Accuracy dispute"><span title="The isometries of a space are a subgroup of the affine group of that space, but not an affine group in themselves (March 2015)">dubious</span></a> – <a href="/wiki/Talk:Group_action#Dubious" title="Talk:Group action">discuss</a></i>]</sup></li> <li>The sets acted on by a group <span class="texhtml"><i>G</i></span> comprise the <a href="/wiki/Category_(mathematics)" title="Category (mathematics)">category</a> of <span class="texhtml"><i>G</i></span>-sets in which the objects are <span class="texhtml"><i>G</i></span>-sets and the <a href="/wiki/Morphism" title="Morphism">morphisms</a> are <span class="texhtml"><i>G</i></span>-set homomorphisms: functions <span class="texhtml"><i>f</i> : <i>X</i> → <i>Y</i></span> such that <span class="texhtml"><i>g</i>⋅(<i>f</i>(<i>x</i>)) = <i>f</i>(<i>g</i>⋅<i>x</i>)</span> for every <span class="texhtml"><i>g</i></span> in <span class="texhtml"><i>G</i></span>.</li> <li>The <a href="/wiki/Galois_group" title="Galois group">Galois group</a> of a <a href="/wiki/Field_extension" title="Field extension">field extension</a> <span class="texhtml"><i>L</i> / <i>K</i></span> acts on the field <span class="texhtml"><i>L</i></span> but has only a trivial action on elements of the subfield <span class="texhtml"><i>K</i></span>. Subgroups of <span class="texhtml">Gal(<i>L</i> / <i>K</i>)</span> correspond to subfields of <span class="texhtml"><i>L</i></span> that contain <span class="texhtml"><i>K</i></span>, that is, intermediate field extensions between <span class="texhtml"><i>L</i></span> and <span class="texhtml"><i>K</i></span>.</li> <li>The additive group of the <a href="/wiki/Real_number" title="Real number">real numbers</a> <span class="texhtml">(<b>R</b>, +)</span> acts on the <a href="/wiki/Phase_space" title="Phase space">phase space</a> of "<a href="/wiki/Well-behaved" class="mw-redirect" title="Well-behaved">well-behaved</a>" systems in <a href="/wiki/Classical_mechanics" title="Classical mechanics">classical mechanics</a> (and in more general <a href="/wiki/Dynamical_systems" class="mw-redirect" title="Dynamical systems">dynamical systems</a>) by <a href="/wiki/Time_translation" class="mw-redirect" title="Time translation">time translation</a>: if <span class="texhtml"><i>t</i></span> is in <span class="texhtml"><b>R</b></span> and <span class="texhtml"><i>x</i></span> is in the phase space, then <span class="texhtml"><i>x</i></span> describes a state of the system, and <span class="texhtml"><i>t</i> + <i>x</i></span> is defined to be the state of the system <span class="texhtml"><i>t</i></span> seconds later if <span class="texhtml"><i>t</i></span> is positive or <span class="texhtml">−<i>t</i></span> seconds ago if <span class="texhtml"><i>t</i></span> is negative.</li> <li>The additive group of the real numbers <span class="texhtml">(<b>R</b>, +)</span> acts on the set of real functions of a real variable in various ways, with <span class="texhtml">(<i>t</i>⋅<i>f</i>)(<i>x</i>)</span> equal to, for example, <span class="texhtml"><i>f</i>(<i>x</i> + <i>t</i>)</span>, <span class="texhtml"><i>f</i>(<i>x</i>) + <i>t</i></span>, <span class="texhtml"><i>f</i>(<i>xe<sup>t</sup></i>)</span>, <span class="texhtml"><i>f</i>(<i>x</i>)<i>e</i><sup><i>t</i></sup></span>, <span class="texhtml"><i>f</i>(<i>x</i> + <i>t</i>)<i>e<sup>t</sup></i></span>, or <span class="texhtml"><i>f</i>(<i>xe</i><sup><i>t</i></sup>) + <i>t</i></span>, but not <span class="texhtml"><i>f</i>(<i>xe<sup>t</sup></i> + <i>t</i>)</span>.</li> <li>Given a group action of <span class="texhtml"><i>G</i></span> on <span class="texhtml"><i>X</i></span>, we can define an induced action of <span class="texhtml"><i>G</i></span> on the <a href="/wiki/Power_set" title="Power set">power set</a> of <span class="texhtml"><i>X</i></span>, by setting <span class="texhtml"><i>g</i>⋅<i>U</i> = {<i>g</i>⋅<i>u</i> : <i>u</i> ∈ <i>U</i>}</span> for every subset <span class="texhtml"><i>U</i></span> of <span class="texhtml"><i>X</i></span> and every <span class="texhtml"><i>g</i></span> in <span class="texhtml"><i>G</i></span>. This is useful, for instance, in studying the action of the large <a href="/wiki/Mathieu_group" title="Mathieu group">Mathieu group</a> on a 24-set and in studying symmetry in certain models of <a href="/wiki/Finite_geometry" title="Finite geometry">finite geometries</a>.</li> <li>The <a href="/wiki/Quaternion" title="Quaternion">quaternions</a> with <a href="/wiki/Norm_of_a_quaternion" class="mw-redirect" title="Norm of a quaternion">norm</a> 1 (the <a href="/wiki/Versor" title="Versor">versors</a>), as a multiplicative group, act on <span class="texhtml"><b>R</b><sup>3</sup></span>: for any such quaternion <span class="texhtml"><i>z</i> = cos <i>α</i>/2 + <b>v</b> sin <i>α</i>/2</span>, the mapping <span class="texhtml"><i>f</i>(<b>x</b>) = <i>z</i><b>x</b><i>z</i><sup>*</sup></span> is a counterclockwise rotation through an angle <span class="texhtml"><i>α</i></span> about an axis given by a unit vector <span class="texhtml"><b>v</b></span>; <span class="texhtml"><i>z</i></span> is the same rotation; see <a href="/wiki/Quaternions_and_spatial_rotation" title="Quaternions and spatial rotation">quaternions and spatial rotation</a>. This is not a faithful action because the quaternion <span class="texhtml">−1</span> leaves all points where they were, as does the quaternion <span class="texhtml">1</span>.</li> <li>Given left <span class="texhtml"><i>G</i></span>-sets <span class="texhtml"><i>X</i></span>, <span class="texhtml"><i>Y</i></span>, there is a left <span class="texhtml"><i>G</i></span>-set <span class="texhtml"><i>Y</i><span style="padding-left:0.12em;"><sup><i>X</i></sup></span></span> whose elements are <span class="texhtml"><i>G</i></span>-equivariant maps <span class="texhtml"><i>α</i> : <i>X</i> × <i>G</i> → <i>Y</i></span>, and with left <span class="texhtml"><i>G</i></span>-action given by <span class="texhtml"><i>g</i>⋅<i>α</i> = <i>α</i> ∘ (id<sub><i>X</i></sub> × –<i>g</i>)</span> (where "<span class="texhtml">–<i>g</i></span>" indicates right multiplication by <span class="texhtml"><i>g</i></span>). This <span class="texhtml"><i>G</i></span>-set has the property that its fixed points correspond to equivariant maps <span class="texhtml"><i>X</i> → <i>Y</i></span>; more generally, it is an <a href="/wiki/Exponential_object" title="Exponential object">exponential object</a> in the category of <span class="texhtml"><i>G</i></span>-sets.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Group_actions_and_groupoids">Group actions and groupoids</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_action&action=edit&section=17" title="Edit section: Group actions and groupoids"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Groupoid#Group_action" title="Groupoid">Groupoid § Group action</a></div> <p>The notion of group action can be encoded by the <i>action <a href="/wiki/Groupoid" title="Groupoid">groupoid</a></i> <span class="texhtml"><i>G</i>′ = <i>G</i> ⋉ <i>X</i></span> associated to the group action. The stabilizers of the action are the vertex groups of the groupoid and the orbits of the action are its components. </p> <div class="mw-heading mw-heading2"><h2 id="Morphisms_and_isomorphisms_between_G-sets">Morphisms and isomorphisms between <i>G</i>-sets</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_action&action=edit&section=18" title="Edit section: Morphisms and isomorphisms between G-sets"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="texhtml"><i>X</i></span> and <span class="texhtml"><i>Y</i></span> are two <span class="texhtml"><i>G</i></span>-sets, a <i>morphism</i> from <span class="texhtml"><i>X</i></span> to <span class="texhtml"><i>Y</i></span> is a function <span class="texhtml"><i>f</i> : <i>X</i> → <i>Y</i></span> such that <span class="texhtml"><i>f</i>(<i>g</i>⋅<i>x</i>) = <i>g</i>⋅<i>f</i>(<i>x</i>)</span> for all <span class="texhtml"><i>g</i></span> in <span class="texhtml"><i>G</i></span> and all <span class="texhtml"><i>x</i></span> in <span class="texhtml"><i>X</i></span>. Morphisms of <span class="texhtml"><i>G</i></span>-sets are also called <i><a href="/wiki/Equivariant_map" title="Equivariant map">equivariant maps</a></i> or <span class="texhtml"><i>G</i></span>-<i>maps</i>. </p><p>The composition of two morphisms is again a morphism. If a morphism <span class="texhtml"><i>f</i></span> is bijective, then its inverse is also a morphism. In this case <span class="texhtml"><i>f</i></span> is called an <i><a href="/wiki/Isomorphism" title="Isomorphism">isomorphism</a></i>, and the two <span class="texhtml"><i>G</i></span>-sets <span class="texhtml"><i>X</i></span> and <span class="texhtml"><i>Y</i></span> are called <i>isomorphic</i>; for all practical purposes, isomorphic <span class="texhtml"><i>G</i></span>-sets are indistinguishable. </p><p>Some example isomorphisms: </p> <ul><li>Every regular <span class="texhtml"><i>G</i></span> action is isomorphic to the action of <span class="texhtml"><i>G</i></span> on <span class="texhtml"><i>G</i></span> given by left multiplication.</li> <li>Every free <span class="texhtml"><i>G</i></span> action is isomorphic to <span class="texhtml"><i>G</i> × <i>S</i></span>, where <span class="texhtml"><i>S</i></span> is some set and <span class="texhtml"><i>G</i></span> acts on <span class="texhtml"><i>G</i> × <i>S</i></span> by left multiplication on the first coordinate. (<span class="texhtml"><i>S</i></span> can be taken to be the set of orbits <span class="texhtml"><i>X</i> / <i>G</i></span>.)</li> <li>Every transitive <span class="texhtml"><i>G</i></span> action is isomorphic to left multiplication by <span class="texhtml"><i>G</i></span> on the set of left cosets of some subgroup <span class="texhtml"><i>H</i></span> of <span class="texhtml"><i>G</i></span>. (<span class="texhtml"><i>H</i></span> can be taken to be the stabilizer group of any element of the original <span class="texhtml"><i>G</i></span>-set.)</li></ul> <p>With this notion of morphism, the collection of all <span class="texhtml"><i>G</i></span>-sets forms a <a href="/wiki/Category_theory" title="Category theory">category</a>; this category is a <a href="/wiki/Grothendieck_topos" class="mw-redirect" title="Grothendieck topos">Grothendieck topos</a> (in fact, assuming a classical <a href="/wiki/Metalogic" title="Metalogic">metalogic</a>, this <a href="/wiki/Topos" title="Topos">topos</a> will even be Boolean). </p> <div class="mw-heading mw-heading2"><h2 id="Variants_and_generalizations">Variants and generalizations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_action&action=edit&section=19" title="Edit section: Variants and generalizations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>We can also consider actions of <a href="/wiki/Monoid" title="Monoid">monoids</a> on sets, by using the same two axioms as above. This does not define bijective maps and equivalence relations however. See <a href="/wiki/Semigroup_action" title="Semigroup action">semigroup action</a>. </p><p>Instead of actions on sets, we can define actions of groups and monoids on objects of an arbitrary category: start with an object <span class="texhtml"><i>X</i></span> of some category, and then define an action on <span class="texhtml"><i>X</i></span> as a monoid homomorphism into the monoid of <a href="/wiki/Endomorphisms" class="mw-redirect" title="Endomorphisms">endomorphisms</a> of <span class="texhtml"><i>X</i></span>. If <span class="texhtml"><i>X</i></span> has an underlying set, then all definitions and facts stated above can be carried over. For example, if we take the category of vector spaces, we obtain <a href="/wiki/Group_representation" title="Group representation">group representations</a> in this fashion. </p><p>We can view a group <span class="texhtml"><i>G</i></span> as a category with a single object in which every morphism is <a href="/wiki/Inverse_element" title="Inverse element">invertible</a>.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> A (left) group action is then nothing but a (covariant) <a href="/wiki/Functor" title="Functor">functor</a> from <span class="texhtml"><i>G</i></span> to the <a href="/wiki/Category_of_sets" title="Category of sets">category of sets</a>, and a group representation is a functor from <span class="texhtml"><i>G</i></span> to the <a href="/wiki/Category_of_vector_spaces" class="mw-redirect" title="Category of vector spaces">category of vector spaces</a>.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> A morphism between <span class="texhtml"><i>G</i></span>-sets is then a <a href="/wiki/Natural_transformation" title="Natural transformation">natural transformation</a> between the group action functors.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> In analogy, an action of a <a href="/wiki/Groupoid" title="Groupoid">groupoid</a> is a functor from the groupoid to the category of sets or to some other category. </p><p>In addition to <a href="/wiki/Continuous_group_action" title="Continuous group action">continuous actions</a> of topological groups on topological spaces, one also often considers <a href="/wiki/Lie_group_action" title="Lie group action">smooth actions</a> of Lie groups on <a href="/wiki/Manifold" title="Manifold">smooth manifolds</a>, regular actions of <a href="/wiki/Algebraic_group" title="Algebraic group">algebraic groups</a> on <a href="/wiki/Algebraic_variety" title="Algebraic variety">algebraic varieties</a>, and <a href="/wiki/Group-scheme_action" title="Group-scheme action">actions</a> of <a href="/wiki/Group_scheme" title="Group scheme">group schemes</a> on <a href="/wiki/Scheme_(mathematics)" title="Scheme (mathematics)">schemes</a>. All of these are examples of <a href="/wiki/Group_object" title="Group object">group objects</a> acting on objects of their respective category. </p> <div class="mw-heading mw-heading2"><h2 id="Gallery">Gallery</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_action&action=edit&section=20" title="Edit section: Gallery"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul class="gallery mw-gallery-traditional"> <li class="gallerybox" style="width: 235px"> <div class="thumb" style="width: 230px; height: 210px;"><span typeof="mw:File"><a href="/wiki/File:Octahedral-group-action.png" class="mw-file-description" title="Orbit of a fundamental spherical triangle (marked in red) under action of the full octahedral group."><img alt="Orbit of a fundamental spherical triangle (marked in red) under action of the full octahedral group." src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Octahedral-group-action.png/200px-Octahedral-group-action.png" decoding="async" width="200" height="160" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Octahedral-group-action.png/300px-Octahedral-group-action.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Octahedral-group-action.png/400px-Octahedral-group-action.png 2x" data-file-width="1280" data-file-height="1024" /></a></span></div> <div class="gallerytext">Orbit of a fundamental spherical triangle (marked in red) under action of the full octahedral group.</div> </li> <li class="gallerybox" style="width: 235px"> <div class="thumb" style="width: 230px; height: 210px;"><span typeof="mw:File"><a href="/wiki/File:Icosahedral-group-action.png" class="mw-file-description" title="Orbit of a fundamental spherical triangle (marked in red) under action of the full icosahedral group."><img alt="Orbit of a fundamental spherical triangle (marked in red) under action of the full icosahedral group." src="//upload.wikimedia.org/wikipedia/commons/thumb/5/59/Icosahedral-group-action.png/200px-Icosahedral-group-action.png" decoding="async" width="200" height="160" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/59/Icosahedral-group-action.png/300px-Icosahedral-group-action.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/59/Icosahedral-group-action.png/400px-Icosahedral-group-action.png 2x" data-file-width="1280" data-file-height="1024" /></a></span></div> <div class="gallerytext">Orbit of a fundamental spherical triangle (marked in red) under action of the full icosahedral group.</div> </li> </ul> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_action&action=edit&section=21" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Gain_graph" title="Gain graph">Gain graph</a></li> <li><a href="/wiki/Group_with_operators" title="Group with operators">Group with operators</a></li> <li><a href="/wiki/Measurable_group_action" class="mw-redirect" title="Measurable group action">Measurable group action</a></li> <li><a href="/wiki/Monoid_action" class="mw-redirect" title="Monoid action">Monoid action</a></li> <li><a href="/wiki/Young%E2%80%93Deruyts_development" title="Young–Deruyts development">Young–Deruyts development</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_action&action=edit&section=22" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> </div> <div class="mw-heading mw-heading2"><h2 id="Citations">Citations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_action&action=edit&section=23" title="Edit section: Citations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFEie_&_Chang2010" class="citation book cs1">Eie & Chang (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=jozIZ0qrkk8C&pg=PA144&dq=%22group+action%22"><i>A Course on Abstract Algebra</i></a>. p. 144.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Course+on+Abstract+Algebra&rft.pages=144&rft.date=2010&rft.au=Eie+%26+Chang&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DjozIZ0qrkk8C%26pg%3DPA144%26dq%3D%2522group%2Baction%2522&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+action" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">This is done, for example, by <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmith2008" class="citation book cs1">Smith (2008). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=PQUAQh04lrUC&pg=PA253&dq=%22group+action%22"><i>Introduction to abstract algebra</i></a>. p. 253.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+abstract+algebra&rft.pages=253&rft.date=2008&rft.au=Smith&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DPQUAQh04lrUC%26pg%3DPA253%26dq%3D%2522group%2Baction%2522&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+action" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://proofwiki.org/wiki/Definition:Right_Group_Action_Axioms">"Definition:Right Group Action Axioms"</a>. <i>Proof Wiki</i><span class="reference-accessdate">. Retrieved <span class="nowrap">19 December</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Proof+Wiki&rft.atitle=Definition%3ARight+Group+Action+Axioms&rft_id=https%3A%2F%2Fproofwiki.org%2Fwiki%2FDefinition%3ARight_Group_Action_Axioms&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+action" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEThurston1997Definition_3.5.1(iv)-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEThurston1997Definition_3.5.1(iv)_4-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFThurston1997">Thurston 1997</a>, Definition 3.5.1(iv).</span> </li> <li id="cite_note-FOOTNOTEKapovich2009p._73-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEKapovich2009p._73_5-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFKapovich2009">Kapovich 2009</a>, p. 73.</span> </li> <li id="cite_note-FOOTNOTEThurston1980176-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEThurston1980176_6-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFThurston1980">Thurston 1980</a>, p. 176.</span> </li> <li id="cite_note-FOOTNOTEHatcher2002p._72-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEHatcher2002p._72_7-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFHatcher2002">Hatcher 2002</a>, p. 72.</span> </li> <li id="cite_note-FOOTNOTEMaskit1988II.A.1,_II.A.2-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEMaskit1988II.A.1,_II.A.2_8-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFMaskit1988">Maskit 1988</a>, II.A.1, II.A.2.</span> </li> <li id="cite_note-FOOTNOTEtom_Dieck1987-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEtom_Dieck1987_9-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFtom_Dieck1987">tom Dieck 1987</a>.</span> </li> <li id="cite_note-Procesi-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-Procesi_10-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFProcesi2007" class="citation book cs1">Procesi, Claudio (2007). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Sl8OAGYRz_AC&q=%22little+group%22+action&pg=PA5"><i>Lie Groups: An Approach through Invariants and Representations</i></a>. Springer Science & Business Media. p. 5. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780387289298" title="Special:BookSources/9780387289298"><bdi>9780387289298</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">23 February</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Lie+Groups%3A+An+Approach+through+Invariants+and+Representations&rft.pages=5&rft.pub=Springer+Science+%26+Business+Media&rft.date=2007&rft.isbn=9780387289298&rft.aulast=Procesi&rft.aufirst=Claudio&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DSl8OAGYRz_AC%26q%3D%2522little%2Bgroup%2522%2Baction%26pg%3DPA5&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+action" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">M. Artin, <i>Algebra</i>, Proposition 6.8.4 on p. 179</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCarter2009" class="citation book cs1">Carter, Nathan (2009). <i>Visual Group Theory</i> (1st ed.). The Mathematical Association of America. p. 200. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0883857571" title="Special:BookSources/978-0883857571"><bdi>978-0883857571</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Visual+Group+Theory&rft.pages=200&rft.edition=1st&rft.pub=The+Mathematical+Association+of+America&rft.date=2009&rft.isbn=978-0883857571&rft.aulast=Carter&rft.aufirst=Nathan&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+action" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEie_&_Chang2010" class="citation book cs1">Eie & Chang (2010). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=jozIZ0qrkk8C&pg=PA144&dq=%22trivial+action%22"><i>A Course on Abstract Algebra</i></a>. p. 145.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Course+on+Abstract+Algebra&rft.pages=145&rft.date=2010&rft.au=Eie+%26+Chang&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DjozIZ0qrkk8C%26pg%3DPA144%26dq%3D%2522trivial%2Baction%2522&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+action" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReid2005" class="citation book cs1">Reid, Miles (2005). <i>Geometry and topology</i>. Cambridge, UK New York: Cambridge University Press. p. 170. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780521613255" title="Special:BookSources/9780521613255"><bdi>9780521613255</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Geometry+and+topology&rft.place=Cambridge%2C+UK+New+York&rft.pages=170&rft.pub=Cambridge+University+Press&rft.date=2005&rft.isbn=9780521613255&rft.aulast=Reid&rft.aufirst=Miles&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+action" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><a href="#CITEREFPerrone2024">Perrone (2024)</a>, pp. 7–9</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><a href="#CITEREFPerrone2024">Perrone (2024)</a>, pp. 36–39</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><a href="#CITEREFPerrone2024">Perrone (2024)</a>, pp. 69–71</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_action&action=edit&section=24" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAschbacher2000" class="citation book cs1"><a href="/wiki/Michael_Aschbacher" title="Michael Aschbacher">Aschbacher, Michael</a> (2000). <i>Finite Group Theory</i>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-78675-1" title="Special:BookSources/978-0-521-78675-1"><bdi>978-0-521-78675-1</bdi></a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1777008">1777008</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Finite+Group+Theory&rft.pub=Cambridge+University+Press&rft.date=2000&rft.isbn=978-0-521-78675-1&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1777008%23id-name%3DMR&rft.aulast=Aschbacher&rft.aufirst=Michael&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+action" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDummitRichard_Foote2003" class="citation book cs1">Dummit, David; Richard Foote (2003). <i>Abstract Algebra</i> (3rd ed.). Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-471-43334-9" title="Special:BookSources/0-471-43334-9"><bdi>0-471-43334-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Abstract+Algebra&rft.edition=3rd&rft.pub=Wiley&rft.date=2003&rft.isbn=0-471-43334-9&rft.aulast=Dummit&rft.aufirst=David&rft.au=Richard+Foote&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+action" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEieChang2010" class="citation book cs1">Eie, Minking; Chang, Shou-Te (2010). <i>A Course on Abstract Algebra</i>. World Scientific. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-981-4271-88-2" title="Special:BookSources/978-981-4271-88-2"><bdi>978-981-4271-88-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Course+on+Abstract+Algebra&rft.pub=World+Scientific&rft.date=2010&rft.isbn=978-981-4271-88-2&rft.aulast=Eie&rft.aufirst=Minking&rft.au=Chang%2C+Shou-Te&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+action" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHatcher2002" class="citation cs2"><a href="/wiki/Allen_Hatcher" title="Allen Hatcher">Hatcher, Allen</a> (2002), <a rel="nofollow" class="external text" href="http://pi.math.cornell.edu/~hatcher/AT/ATpage.html"><i>Algebraic Topology</i></a>, Cambridge University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-521-79540-1" title="Special:BookSources/978-0-521-79540-1"><bdi>978-0-521-79540-1</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1867354">1867354</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algebraic+Topology&rft.pub=Cambridge+University+Press&rft.date=2002&rft.isbn=978-0-521-79540-1&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1867354%23id-name%3DMR&rft.aulast=Hatcher&rft.aufirst=Allen&rft_id=http%3A%2F%2Fpi.math.cornell.edu%2F~hatcher%2FAT%2FATpage.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+action" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRotman1995" class="citation book cs1">Rotman, Joseph (1995). <i>An Introduction to the Theory of Groups</i>. Graduate Texts in Mathematics <b>148</b> (4th ed.). Springer-Verlag. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-387-94285-8" title="Special:BookSources/0-387-94285-8"><bdi>0-387-94285-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=An+Introduction+to+the+Theory+of+Groups&rft.edition=4th&rft.pub=Springer-Verlag&rft.date=1995&rft.isbn=0-387-94285-8&rft.aulast=Rotman&rft.aufirst=Joseph&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+action" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmith2008" class="citation book cs1">Smith, Jonathan D.H. (2008). <i>Introduction to abstract algebra</i>. Textbooks in mathematics. CRC Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4200-6371-4" title="Special:BookSources/978-1-4200-6371-4"><bdi>978-1-4200-6371-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+abstract+algebra&rft.series=Textbooks+in+mathematics&rft.pub=CRC+Press&rft.date=2008&rft.isbn=978-1-4200-6371-4&rft.aulast=Smith&rft.aufirst=Jonathan+D.H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+action" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKapovich2009" class="citation cs2">Kapovich, Michael (2009), <i>Hyperbolic manifolds and discrete groups</i>, Modern Birkhäuser Classics, Birkhäuser, pp. xxvii+467, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8176-4912-8" title="Special:BookSources/978-0-8176-4912-8"><bdi>978-0-8176-4912-8</bdi></a>, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:1180.57001">1180.57001</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Hyperbolic+manifolds+and+discrete+groups&rft.series=Modern+Birkh%C3%A4user+Classics&rft.pages=xxvii%2B467&rft.pub=Birkh%C3%A4user&rft.date=2009&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A1180.57001%23id-name%3DZbl&rft.isbn=978-0-8176-4912-8&rft.aulast=Kapovich&rft.aufirst=Michael&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+action" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaskit1988" class="citation cs2">Maskit, Bernard (1988), <i>Kleinian groups</i>, Grundlehren der Mathematischen Wissenschaften, vol. 287, Springer-Verlag, pp. XIII+326, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:0627.30039">0627.30039</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Kleinian+groups&rft.series=Grundlehren+der+Mathematischen+Wissenschaften&rft.pages=XIII%2B326&rft.pub=Springer-Verlag&rft.date=1988&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0627.30039%23id-name%3DZbl&rft.aulast=Maskit&rft.aufirst=Bernard&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+action" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPerrone2024" class="citation cs2">Perrone, Paolo (2024), <i>Starting Category Theory</i>, World Scientific, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2F9789811286018_0005">10.1142/9789811286018_0005</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-981-12-8600-1" title="Special:BookSources/978-981-12-8600-1"><bdi>978-981-12-8600-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Starting+Category+Theory&rft.pub=World+Scientific&rft.date=2024&rft_id=info%3Adoi%2F10.1142%2F9789811286018_0005&rft.isbn=978-981-12-8600-1&rft.aulast=Perrone&rft.aufirst=Paolo&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+action" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThurston1980" class="citation cs2">Thurston, William (1980), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200727020107/http://library.msri.org/books/gt3m/"><i>The geometry and topology of three-manifolds</i></a>, Princeton lecture notes, p. 175, archived from <a rel="nofollow" class="external text" href="http://library.msri.org/books/gt3m/">the original</a> on 2020-07-27<span class="reference-accessdate">, retrieved <span class="nowrap">2016-02-08</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+geometry+and+topology+of+three-manifolds&rft.series=Princeton+lecture+notes&rft.pages=175&rft.date=1980&rft.aulast=Thurston&rft.aufirst=William&rft_id=http%3A%2F%2Flibrary.msri.org%2Fbooks%2Fgt3m%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+action" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThurston1997" class="citation cs2">Thurston, William P. (1997), <i>Three-dimensional geometry and topology. Vol. 1.</i>, Princeton Mathematical Series, vol. 35, Princeton University Press, pp. x+311, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:0873.57001">0873.57001</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Three-dimensional+geometry+and+topology.+Vol.+1.&rft.series=Princeton+Mathematical+Series&rft.pages=x%2B311&rft.pub=Princeton+University+Press&rft.date=1997&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0873.57001%23id-name%3DZbl&rft.aulast=Thurston&rft.aufirst=William+P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+action" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFtom_Dieck1987" class="citation cs2">tom Dieck, Tammo (1987), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=azcQhi6XeioC"><i>Transformation groups</i></a>, de Gruyter Studies in Mathematics, vol. 8, Berlin: Walter de Gruyter & Co., p. 29, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1515%2F9783110858372.312">10.1515/9783110858372.312</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-11-009745-0" title="Special:BookSources/978-3-11-009745-0"><bdi>978-3-11-009745-0</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0889050">0889050</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Transformation+groups&rft.place=Berlin&rft.series=de+Gruyter+Studies+in+Mathematics&rft.pages=29&rft.pub=Walter+de+Gruyter+%26+Co.&rft.date=1987&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D889050%23id-name%3DMR&rft_id=info%3Adoi%2F10.1515%2F9783110858372.312&rft.isbn=978-3-11-009745-0&rft.aulast=tom+Dieck&rft.aufirst=Tammo&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DazcQhi6XeioC&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+action" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Group_action&action=edit&section=25" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Action_of_a_group_on_a_manifold">"Action of a group on a manifold"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Action+of+a+group+on+a+manifold&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=EMS+Press&rft.date=2001&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DAction_of_a_group_on_a_manifold&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+action" class="Z3988"></span></li> <li><span class="citation mathworld" id="Reference-Mathworld-Group_Action"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/GroupAction.html">"Group Action"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Group+Action&rft.au=Weisstein%2C+Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FGroupAction.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AGroup+action" class="Z3988"></span></span></li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q288465#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85057471">United States</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007543475605171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.canary‐54459f6c5c‐fw256 Cached time: 20241127005307 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.376 seconds Real time usage: 1.679 seconds Preprocessor visited node count: 27115/1000000 Post‐expand include size: 172518/2097152 bytes Template argument size: 43605/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 8/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 114562/5000000 bytes Lua time usage: 0.689/10.000 seconds Lua memory usage: 7633863/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1369.904 1 -total 40.45% 554.132 503 Template:Math 12.41% 170.070 2 Template:Reflist 12.04% 164.937 11 Template:Cite_book 8.53% 116.822 1 Template:Group_theory_sidebar 8.37% 114.635 1 Template:Sidebar_with_collapsible_lists 7.43% 101.760 516 Template:Main_other 6.22% 85.199 1 Template:Short_description 6.21% 85.112 1 Template:Citation_needed 4.47% 61.287 1 Template:Authority_control --> <!-- Saved in parser cache with key enwiki:pcache:idhash:12781-0!canonical and timestamp 20241127005307 and revision id 1256994680. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Group_action&oldid=1256994680#Orbits_and_stabilizers">https://en.wikipedia.org/w/index.php?title=Group_action&oldid=1256994680#Orbits_and_stabilizers</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Group_theory" title="Category:Group theory">Group theory</a></li><li><a href="/wiki/Category:Group_actions_(mathematics)" title="Category:Group actions (mathematics)">Group actions (mathematics)</a></li><li><a href="/wiki/Category:Representation_theory_of_groups" title="Category:Representation theory of groups">Representation theory of groups</a></li><li><a href="/wiki/Category:Symmetry" title="Category:Symmetry">Symmetry</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_May_2023" title="Category:Articles with unsourced statements from May 2023">Articles with unsourced statements from May 2023</a></li><li><a href="/wiki/Category:All_accuracy_disputes" title="Category:All accuracy disputes">All accuracy disputes</a></li><li><a href="/wiki/Category:Articles_with_disputed_statements_from_March_2015" title="Category:Articles with disputed statements from March 2015">Articles with disputed statements from March 2015</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 12 November 2024, at 16:58<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Group_action&mobileaction=toggle_view_mobile#Orbits_and_stabilizers" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-57488d5c7d-sj6fv","wgBackendResponseTime":175,"wgPageParseReport":{"limitreport":{"cputime":"1.376","walltime":"1.679","ppvisitednodes":{"value":27115,"limit":1000000},"postexpandincludesize":{"value":172518,"limit":2097152},"templateargumentsize":{"value":43605,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":8,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":114562,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1369.904 1 -total"," 40.45% 554.132 503 Template:Math"," 12.41% 170.070 2 Template:Reflist"," 12.04% 164.937 11 Template:Cite_book"," 8.53% 116.822 1 Template:Group_theory_sidebar"," 8.37% 114.635 1 Template:Sidebar_with_collapsible_lists"," 7.43% 101.760 516 Template:Main_other"," 6.22% 85.199 1 Template:Short_description"," 6.21% 85.112 1 Template:Citation_needed"," 4.47% 61.287 1 Template:Authority_control"]},"scribunto":{"limitreport-timeusage":{"value":"0.689","limit":"10.000"},"limitreport-memusage":{"value":7633863,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAschbacher2000\"] = 1,\n [\"CITEREFCarter2009\"] = 1,\n [\"CITEREFDummitRichard_Foote2003\"] = 1,\n [\"CITEREFEieChang2010\"] = 1,\n [\"CITEREFEie_\u0026amp;_Chang2010\"] = 2,\n [\"CITEREFHatcher2002\"] = 1,\n [\"CITEREFKapovich2009\"] = 1,\n [\"CITEREFMaskit1988\"] = 1,\n [\"CITEREFPerrone2024\"] = 1,\n [\"CITEREFProcesi2007\"] = 1,\n [\"CITEREFReid2005\"] = 1,\n [\"CITEREFRotman1995\"] = 1,\n [\"CITEREFSmith2008\"] = 2,\n [\"CITEREFThurston1980\"] = 1,\n [\"CITEREFThurston1997\"] = 1,\n [\"CITEREFtom_Dieck1987\"] = 1,\n}\ntemplate_list = table#1 {\n [\"About\"] = 1,\n [\"Abs\"] = 13,\n [\"Authority control\"] = 1,\n [\"Citation\"] = 7,\n [\"Citation needed\"] = 1,\n [\"Cite book\"] = 11,\n [\"Cite web\"] = 1,\n [\"Dubious\"] = 1,\n [\"Em\"] = 4,\n [\"Google books\"] = 3,\n [\"Group theory sidebar\"] = 1,\n [\"Harvp\"] = 3,\n [\"I sup\"] = 2,\n [\"Main\"] = 4,\n [\"Math\"] = 503,\n [\"MathWorld\"] = 1,\n [\"Mset\"] = 8,\n [\"Mvar\"] = 41,\n [\"Notelist\"] = 1,\n [\"Reflist\"] = 1,\n [\"Sfn\"] = 6,\n [\"Short description\"] = 1,\n [\"Springer\"] = 1,\n [\"Sub\"] = 1,\n [\"Visible anchor\"] = 16,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-api-int.codfw.canary-54459f6c5c-fw256","timestamp":"20241127005307","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Group action","url":"https:\/\/en.wikipedia.org\/wiki\/Group_action#Orbits_and_stabilizers","sameAs":"http:\/\/www.wikidata.org\/entity\/Q288465","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q288465","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-11-02T15:49:34Z","dateModified":"2024-11-12T16:58:18Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/5\/5f\/Cyclic_group.svg","headline":"operation of the elements of a group as transformations or automorphisms (mathematics)"}</script> </body> </html>