CINXE.COM

Trials and Tribulations of MicroRNA Therapeutics

<!DOCTYPE html> <html lang="en" xmlns:og="http://ogp.me/ns#" xmlns:fb="https://www.facebook.com/2008/fbml"> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <meta content="mdpi" name="sso-service" /> <meta content="width=device-width, initial-scale=1.0" name="viewport" /> <title>Trials and Tribulations of MicroRNA Therapeutics</title><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/font-awesome.min.css?eb190a3a77e5e1ee?1739526160"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery.multiselect.css?f56c135cbf4d1483?1739526160"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/chosen.min.css?d7ca5ca9441ef9e1?1739526160"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/main2.css?6398b1425402cd8f?1739526160"> <link rel="mask-icon" href="https://pub.mdpi-res.com/img/mask-icon-128.svg?c1c7eca266cd7013?1739526160" color="#4f5671"> <link rel="apple-touch-icon" sizes="180x180" href="https://pub.mdpi-res.com/icon/apple-touch-icon-180x180.png?1739526160"> <link rel="apple-touch-icon" sizes="152x152" href="https://pub.mdpi-res.com/icon/apple-touch-icon-152x152.png?1739526160"> <link rel="apple-touch-icon" sizes="144x144" href="https://pub.mdpi-res.com/icon/apple-touch-icon-144x144.png?1739526160"> <link rel="apple-touch-icon" sizes="120x120" href="https://pub.mdpi-res.com/icon/apple-touch-icon-120x120.png?1739526160"> <link rel="apple-touch-icon" sizes="114x114" href="https://pub.mdpi-res.com/icon/apple-touch-icon-114x114.png?1739526160"> <link rel="apple-touch-icon" sizes="76x76" href="https://pub.mdpi-res.com/icon/apple-touch-icon-76x76.png?1739526160"> <link rel="apple-touch-icon" sizes="72x72" href="https://pub.mdpi-res.com/icon/apple-touch-icon-72x72.png?1739526160"> <link rel="apple-touch-icon" sizes="57x57" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1739526160"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1739526160"> <link rel="apple-touch-icon-precomposed" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1739526160"> <link rel="manifest" href="/manifest.json"> <meta name="theme-color" content="#ffffff"> <meta name="application-name" content="&nbsp;"/> <link rel="apple-touch-startup-image" href="https://pub.mdpi-res.com/img/journals/ijms-logo-sq.png?41930e44070e4940"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/img/journals/ijms-logo-sq.png?41930e44070e4940"> <meta name="msapplication-TileImage" content="https://pub.mdpi-res.com/img/journals/ijms-logo-sq.png?41930e44070e4940"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery-ui-1.10.4.custom.min.css?80647d88647bf347?1739526160"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/magnific-popup.min.css?04d343e036f8eecd?1739526160"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/xml2html/article-html.css?230b005b39af4260?1739526160"> <style> h2, #abstract .related_suggestion_title { } .batch_articles a { color: #000; } a, .batch_articles .authors a, a:focus, a:hover, a:active, .batch_articles a:focus, .batch_articles a:hover, li.side-menu-li a { } span.label a { color: #fff; } #main-content a.title-link:hover, #main-content a.title-link:focus, #main-content div.generic-item a.title-link:hover, #main-content div.generic-item a.title-link:focus { } #main-content #middle-column .generic-item.article-item a.title-link:hover, #main-content #middle-column .generic-item.article-item a.title-link:focus { } .art-authors a.toEncode { color: #333; font-weight: 700; } #main-content #middle-column ul li::before { } .accordion-navigation.active a.accordion__title, .accordion-navigation.active a.accordion__title::after { } .accordion-navigation li:hover::before, .accordion-navigation li:hover a, .accordion-navigation li:focus a { } .relative-size-container .relative-size-image .relative-size { } .middle-column__help__fixed a:hover i, } input[type="checkbox"]:checked:after { } input[type="checkbox"]:not(:disabled):hover:before { } #main-content .bolded-text { } #main-content .hypothesis-count-container { } #main-content .hypothesis-count-container:before { } .full-size-menu ul li.menu-item .dropdown-wrapper { } .full-size-menu ul li.menu-item > a.open::after { } #title-story .title-story-orbit .orbit-caption { #background: url('/img/design/000000_background.png') !important; background: url('/img/design/ffffff_background.png') !important; color: rgb(51, 51, 51) !important; } #main-content .content__container__orbit { background-color: #000 !important; } #main-content .content__container__journal { color: #fff; } .html-article-menu .row span { } .html-article-menu .row span.active { } .accordion-navigation__journal .side-menu-li.active::before, .accordion-navigation__journal .side-menu-li.active a { color: rgba(64,16,59,0.75) !important; font-weight: 700; } .accordion-navigation__journal .side-menu-li:hover::before , .accordion-navigation__journal .side-menu-li:hover a { color: rgba(64,16,59,0.75) !important; } .side-menu-ul li.active a, .side-menu-ul li.active, .side-menu-ul li.active::before { color: rgba(64,16,59,0.75) !important; } .side-menu-ul li.active a { } .result-selected, .active-result.highlighted, .active-result:hover, .result-selected, .active-result.highlighted, .active-result:focus { } .search-container.search-container__default-scheme { } nav.tab-bar .open-small-search.active:after { } .search-container.search-container__default-scheme .custom-accordion-for-small-screen-link::after { color: #fff; } @media only screen and (max-width: 50em) { #main-content .content__container.journal-info { color: #fff; } #main-content .content__container.journal-info a { color: #fff; } } .button.button--color { } .button.button--color:hover, .button.button--color:focus { } .button.button--color-journal { position: relative; background-color: rgba(64,16,59,0.75); border-color: #fff; color: #fff !important; } .button.button--color-journal:hover::before { content: ''; position: absolute; top: 0; left: 0; height: 100%; width: 100%; background-color: #ffffff; opacity: 0.2; } .button.button--color-journal:visited, .button.button--color-journal:hover, .button.button--color-journal:focus { background-color: rgba(64,16,59,0.75); border-color: #fff; color: #fff !important; } .button.button--color path { } .button.button--color:hover path { fill: #fff; } #main-content #search-refinements .ui-slider-horizontal .ui-slider-range { } .breadcrumb__element:last-of-type a { } #main-header { } #full-size-menu .top-bar, #full-size-menu li.menu-item span.user-email { } .top-bar-section li:not(.has-form) a:not(.button) { } #full-size-menu li.menu-item .dropdown-wrapper li a:hover { } #full-size-menu li.menu-item a:hover, #full-size-menu li.menu.item a:focus, nav.tab-bar a:hover { } #full-size-menu li.menu.item a:active, #full-size-menu li.menu.item a.active { } #full-size-menu li.menu-item a.open-mega-menu.active, #full-size-menu li.menu-item div.mega-menu, a.open-mega-menu.active { } #full-size-menu li.menu-item div.mega-menu li, #full-size-menu li.menu-item div.mega-menu a { border-color: #9a9a9a; } div.type-section h2 { font-size: 20px; line-height: 26px; font-weight: 300; } div.type-section h3 { margin-left: 15px; margin-bottom: 0px; font-weight: 300; } .journal-tabs .tab-title.active a { } </style> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/slick.css?f38b2db10e01b157?1739526160"> <meta name="title" content="Trials and Tribulations of MicroRNA Therapeutics"> <meta name="description" content="The discovery of the link between microRNAs (miRNAs) and a myriad of human diseases, particularly various cancer types, has generated significant interest in exploring their potential as a novel class of drugs. This has led to substantial investments in interdisciplinary research fields such as biology, chemistry, and medical science for the development of miRNA-based therapies. Furthermore, the recent global success of SARS-CoV-2 mRNA vaccines against the COVID-19 pandemic has further revitalized interest in RNA-based immunotherapies, including miRNA-based approaches to cancer treatment. Consequently, RNA therapeutics have emerged as highly adaptable and modular options for cancer therapy. Moreover, advancements in RNA chemistry and delivery methods have been pivotal in shaping the landscape of RNA-based immunotherapy, including miRNA-based approaches. Consequently, the biotechnology and pharmaceutical industry has witnessed a resurgence of interest in incorporating RNA-based immunotherapies and miRNA therapeutics into their development programs. Despite substantial progress in preclinical research, the field of miRNA-based therapeutics remains in its early stages, with only a few progressing to clinical development, none reaching phase III clinical trials or being approved by the US Food and Drug Administration (FDA), and several facing termination due to toxicity issues. These setbacks highlight existing challenges that must be addressed for the broad clinical application of miRNA-based therapeutics. Key challenges include establishing miRNA sensitivity, specificity, and selectivity towards their intended targets, mitigating immunogenic reactions and off-target effects, developing enhanced methods for targeted delivery, and determining optimal dosing for therapeutic efficacy while minimizing side effects. Additionally, the limited understanding of the precise functions of miRNAs limits their clinical utilization. Moreover, for miRNAs to be viable for cancer treatment, they must be technically and economically feasible for the widespread adoption of RNA therapies. As a result, a thorough risk evaluation of miRNA therapeutics is crucial to minimize off-target effects, prevent overdosing, and address various other issues. Nevertheless, the therapeutic potential of miRNAs for various diseases is evident, and future investigations are essential to determine their applicability in clinical settings." > <link rel="image_src" href="https://pub.mdpi-res.com/img/journals/ijms-logo.png?41930e44070e4940" > <meta name="dc.title" content="Trials and Tribulations of MicroRNA Therapeutics"> <meta name="dc.creator" content="Attila A. Seyhan"> <meta name="dc.type" content="Review"> <meta name="dc.source" content="International Journal of Molecular Sciences 2024, Vol. 25, Page 1469"> <meta name="dc.date" content="2024-01-25"> <meta name ="dc.identifier" content="10.3390/ijms25031469"> <meta name="dc.publisher" content="Multidisciplinary Digital Publishing Institute"> <meta name="dc.rights" content="http://creativecommons.org/licenses/by/3.0/"> <meta name="dc.format" content="application/pdf" > <meta name="dc.language" content="en" > <meta name="dc.description" content="The discovery of the link between microRNAs (miRNAs) and a myriad of human diseases, particularly various cancer types, has generated significant interest in exploring their potential as a novel class of drugs. This has led to substantial investments in interdisciplinary research fields such as biology, chemistry, and medical science for the development of miRNA-based therapies. Furthermore, the recent global success of SARS-CoV-2 mRNA vaccines against the COVID-19 pandemic has further revitalized interest in RNA-based immunotherapies, including miRNA-based approaches to cancer treatment. Consequently, RNA therapeutics have emerged as highly adaptable and modular options for cancer therapy. Moreover, advancements in RNA chemistry and delivery methods have been pivotal in shaping the landscape of RNA-based immunotherapy, including miRNA-based approaches. Consequently, the biotechnology and pharmaceutical industry has witnessed a resurgence of interest in incorporating RNA-based immunotherapies and miRNA therapeutics into their development programs. Despite substantial progress in preclinical research, the field of miRNA-based therapeutics remains in its early stages, with only a few progressing to clinical development, none reaching phase III clinical trials or being approved by the US Food and Drug Administration (FDA), and several facing termination due to toxicity issues. These setbacks highlight existing challenges that must be addressed for the broad clinical application of miRNA-based therapeutics. Key challenges include establishing miRNA sensitivity, specificity, and selectivity towards their intended targets, mitigating immunogenic reactions and off-target effects, developing enhanced methods for targeted delivery, and determining optimal dosing for therapeutic efficacy while minimizing side effects. Additionally, the limited understanding of the precise functions of miRNAs limits their clinical utilization. Moreover, for miRNAs to be viable for cancer treatment, they must be technically and economically feasible for the widespread adoption of RNA therapies. As a result, a thorough risk evaluation of miRNA therapeutics is crucial to minimize off-target effects, prevent overdosing, and address various other issues. Nevertheless, the therapeutic potential of miRNAs for various diseases is evident, and future investigations are essential to determine their applicability in clinical settings." > <meta name="dc.subject" content="microRNAs" > <meta name="dc.subject" content="miRNAs" > <meta name="dc.subject" content="post-transcriptional gene regulation" > <meta name="dc.subject" content="miRNA therapeutics" > <meta name="dc.subject" content="miRNA mimics" > <meta name="dc.subject" content="antimirs" > <meta name="dc.subject" content="antagomirs" > <meta name ="prism.issn" content="1422-0067"> <meta name ="prism.publicationName" content="International Journal of Molecular Sciences"> <meta name ="prism.publicationDate" content="2024-01-25"> <meta name ="prism.volume" content="25"> <meta name ="prism.number" content="3"> <meta name ="prism.section" content="Review" > <meta name ="prism.startingPage" content="1469" > <meta name="citation_issn" content="1422-0067"> <meta name="citation_journal_title" content="International Journal of Molecular Sciences"> <meta name="citation_publisher" content="Multidisciplinary Digital Publishing Institute"> <meta name="citation_title" content="Trials and Tribulations of MicroRNA Therapeutics"> <meta name="citation_publication_date" content="2024/1"> <meta name="citation_online_date" content="2024/01/25"> <meta name="citation_volume" content="25"> <meta name="citation_issue" content="3"> <meta name="citation_firstpage" content="1469"> <meta name="citation_author" content="Seyhan, Attila A."> <meta name="citation_doi" content="10.3390/ijms25031469"> <meta name="citation_id" content="mdpi-ijms25031469"> <meta name="citation_abstract_html_url" content="https://www.mdpi.com/1422-0067/25/3/1469"> <meta name="citation_pdf_url" content="https://www.mdpi.com/1422-0067/25/3/1469/pdf?version=1706171112"> <link rel="alternate" type="application/pdf" title="PDF Full-Text" href="https://www.mdpi.com/1422-0067/25/3/1469/pdf?version=1706171112"> <meta name="fulltext_pdf" content="https://www.mdpi.com/1422-0067/25/3/1469/pdf?version=1706171112"> <meta name="citation_fulltext_html_url" content="https://www.mdpi.com/1422-0067/25/3/1469/htm"> <link rel="alternate" type="text/html" title="HTML Full-Text" href="https://www.mdpi.com/1422-0067/25/3/1469/htm"> <meta name="fulltext_html" content="https://www.mdpi.com/1422-0067/25/3/1469/htm"> <link rel="alternate" type="text/xml" title="XML Full-Text" href="https://www.mdpi.com/1422-0067/25/3/1469/xml"> <meta name="fulltext_xml" content="https://www.mdpi.com/1422-0067/25/3/1469/xml"> <meta name="citation_xml_url" content="https://www.mdpi.com/1422-0067/25/3/1469/xml"> <meta name="twitter:card" content="summary" /> <meta name="twitter:site" content="@MDPIOpenAccess" /> <meta name="twitter:image" content="https://pub.mdpi-res.com/img/journals/ijms-logo-social.png?41930e44070e4940" /> <meta property="fb:app_id" content="131189377574"/> <meta property="og:site_name" content="MDPI"/> <meta property="og:type" content="article"/> <meta property="og:url" content="https://www.mdpi.com/1422-0067/25/3/1469" /> <meta property="og:title" content="Trials and Tribulations of MicroRNA Therapeutics" /> <meta property="og:description" content="The discovery of the link between microRNAs (miRNAs) and a myriad of human diseases, particularly various cancer types, has generated significant interest in exploring their potential as a novel class of drugs. This has led to substantial investments in interdisciplinary research fields such as biology, chemistry, and medical science for the development of miRNA-based therapies. Furthermore, the recent global success of SARS-CoV-2 mRNA vaccines against the COVID-19 pandemic has further revitalized interest in RNA-based immunotherapies, including miRNA-based approaches to cancer treatment. Consequently, RNA therapeutics have emerged as highly adaptable and modular options for cancer therapy. Moreover, advancements in RNA chemistry and delivery methods have been pivotal in shaping the landscape of RNA-based immunotherapy, including miRNA-based approaches. Consequently, the biotechnology and pharmaceutical industry has witnessed a resurgence of interest in incorporating RNA-based immunotherapies and miRNA therapeutics into their development programs. Despite substantial progress in preclinical research, the field of miRNA-based therapeutics remains in its early stages, with only a few progressing to clinical development, none reaching phase III clinical trials or being approved by the US Food and Drug Administration (FDA), and several facing termination due to toxicity issues. These setbacks highlight existing challenges that must be addressed for the broad clinical application of miRNA-based therapeutics. Key challenges include establishing miRNA sensitivity, specificity, and selectivity towards their intended targets, mitigating immunogenic reactions and off-target effects, developing enhanced methods for targeted delivery, and determining optimal dosing for therapeutic efficacy while minimizing side effects. Additionally, the limited understanding of the precise functions of miRNAs limits their clinical utilization. Moreover, for miRNAs to be viable for cancer treatment, they must be technically and economically feasible for the widespread adoption of RNA therapies. As a result, a thorough risk evaluation of miRNA therapeutics is crucial to minimize off-target effects, prevent overdosing, and address various other issues. Nevertheless, the therapeutic potential of miRNAs for various diseases is evident, and future investigations are essential to determine their applicability in clinical settings." /> <meta property="og:image" content="https://pub.mdpi-res.com/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g001-550.jpg?1706171210" /> <link rel="alternate" type="application/rss+xml" title="MDPI Publishing - Latest articles" href="https://www.mdpi.com/rss"> <meta name="google-site-verification" content="PxTlsg7z2S00aHroktQd57fxygEjMiNHydKn3txhvwY"> <meta name="facebook-domain-verification" content="mcoq8dtq6sb2hf7z29j8w515jjoof7" /> <script id="Cookiebot" data-cfasync="false" src="https://consent.cookiebot.com/uc.js" data-cbid="51491ddd-fe7a-4425-ab39-69c78c55829f" type="text/javascript" async></script> <!--[if lt IE 9]> <script>var browserIe8 = true;</script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/ie8foundationfix.css?50273beac949cbf0?1739526160"> <script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.6.2/html5shiv.js"></script> <script src="//s3.amazonaws.com/nwapi/nwmatcher/nwmatcher-1.2.5-min.js"></script> <script src="//html5base.googlecode.com/svn-history/r38/trunk/js/selectivizr-1.0.3b.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/respond.js/1.1.0/respond.min.js"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8patch.js?9e1d3c689a0471df?1739526160"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/rem.min.js?94b62787dcd6d2f2?1739526160"></script> <![endif]--> <script type="text/plain" data-cookieconsent="statistics"> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-WPK7SW5'); </script> <script type="text/plain" data-cookieconsent="statistics"> _linkedin_partner_id = "2846186"; window._linkedin_data_partner_ids = window._linkedin_data_partner_ids || []; window._linkedin_data_partner_ids.push(_linkedin_partner_id); </script><script type="text/javascript"> (function(){var s = document.getElementsByTagName("script")[0]; var b = document.createElement("script"); b.type = "text/javascript";b.async = true; b.src = "https://snap.licdn.com/li.lms-analytics/insight.min.js"; s.parentNode.insertBefore(b, s);})(); </script> <script type="text/plain" data-cookieconsent="statistics" data-cfasync="false" src="//script.crazyegg.com/pages/scripts/0116/4951.js" async="async" ></script> </head> <body> <div class="direction direction_right" id="small_right" style="border-right-width: 0px; padding:0;"> <i class="fa fa-caret-right fa-2x"></i> </div> <div class="big_direction direction_right" id="big_right" style="border-right-width: 0px;"> <div style="text-align: right;"> Next Article in Journal<br> <div><a href="/1422-0067/25/3/1471">Androgen and Estrogen &beta; Receptor Expression Enhances Efficacy of Antihormonal Treatments in Triple-Negative Breast Cancer Cell Lines</a></div> Next Article in Special Issue<br> <div><a href="/1422-0067/25/3/1561">Orchestrating Cellular Balance: ncRNAs and RNA Interactions at the Dominant of Autophagy Regulation in Cancer</a></div> </div> </div> <div class="direction" id="small_left" style="border-left-width: 0px"> <i class="fa fa-caret-left fa-2x"></i> </div> <div class="big_direction" id="big_left" style="border-left-width: 0px;"> <div> Previous Article in Journal<br> <div><a href="/1422-0067/25/3/1467">Long-Term Cryopreservation May Cause Genomic Instability and the Premature Senescence of Cells</a></div> Previous Article in Special Issue<br> <div><a href="/1422-0067/25/3/1407">RNA Profile of Cell Bodies and Exosomes Released by Tumorigenic and Non-Tumorigenic Thyroid Cells</a></div> </div> </div> <div style="clear: both;"></div> <div id="menuModal" class="reveal-modal reveal-modal-new reveal-modal-menu" aria-hidden="true" data-reveal role="dialog"> <div class="menu-container"> <div class="UI_NavMenu"> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Journals</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about/journals">Active Journals</a> <a href="/about/journalfinder">Find a Journal</a> <a href="/about/journals/proposal">Journal Proposal</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <a href="/topics"> <h2>Topics</h2> </a> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Information</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; max-width: 200px; float: left;"> <a href="/authors">For Authors</a> <a href="/reviewers">For Reviewers</a> <a href="/editors">For Editors</a> <a href="/librarians">For Librarians</a> <a href="/publishing_services">For Publishers</a> <a href="/societies">For Societies</a> <a href="/conference_organizers">For Conference Organizers</a> </div> <div style="width: 100%; max-width: 250px; float: left;"> <a href="/openaccess">Open Access Policy</a> <a href="/ioap">Institutional Open Access Program</a> <a href="/special_issues_guidelines">Special Issues Guidelines</a> <a href="/editorial_process">Editorial Process</a> <a href="/ethics">Research and Publication Ethics</a> <a href="/apc">Article Processing Charges</a> <a href="/awards">Awards</a> <a href="/testimonials">Testimonials</a> </div> </div> </div> </div> <a href="/authors/english"> <h2>Author Services</h2> </a> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Initiatives</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer">Sciforum</a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer">MDPI Books</a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer">Preprints.org</a> <a href="https://www.scilit.com" target="_blank" rel="noopener noreferrer">Scilit</a> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer">SciProfiles</a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer">Encyclopedia</a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer">JAMS</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>About</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about">Overview</a> <a href="/about/contact">Contact</a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer">Careers</a> <a href="/about/announcements">News</a> <a href="/about/press">Press</a> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer">Blog</a> </div> </div> </div> </div> </div> <div class="menu-container__buttons"> <a class="button UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> </div> </div> </div> <div id="captchaModal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-label="Captcha" aria-hidden="true" role="dialog"></div> <div id="actionDisabledModal" class="reveal-modal" data-reveal aria-labelledby="actionDisableModalTitle" aria-hidden="true" role="dialog" style="width: 300px;"> <h2 id="actionDisableModalTitle">Notice</h2> <form action="/email/captcha" method="post" id="emailCaptchaForm"> <div class="row"> <div id="js-action-disabled-modal-text" class="small-12 columns"> </div> <div id="js-action-disabled-modal-submit" class="small-12 columns" style="margin-top: 10px; display: none;"> You can make submissions to other journals <a href="https://susy.mdpi.com/user/manuscripts/upload">here</a>. </div> </div> </form> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="rssNotificationModal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="rssNotificationModalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="rssNotificationModalTitle">Notice</h2> <p> You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader. </p> </div> </div> <div class="row"> <div class="small-12 columns"> <a class="button button--color js-rss-notification-confirm">Continue</a> <a class="button button--grey" onclick="$(this).closest('.reveal-modal').find('.close-reveal-modal').click(); return false;">Cancel</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="drop-article-label-openaccess" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to <a href="https://www.mdpi.com/openaccess">https://www.mdpi.com/openaccess</a>. </p> </div> <div id="drop-article-label-feature" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications. </p> <p> Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers. </p> </div> <div id="drop-article-label-choice" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal. <div style="margin-top: -10px;"> <div id="drop-article-label-choice-journal-link" style="display: none; margin-top: -10px; padding-top: 10px;"> </div> </div> </p> </div> <div id="drop-article-label-resubmission" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Original Submission Date Received: <span id="drop-article-label-resubmission-date"></span>. </p> </div> <div id="container"> <noscript> <div id="no-javascript"> You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled. </div> </noscript> <div class="fixed"> <nav class="tab-bar show-for-medium-down"> <div class="row full-width collapse"> <div class="medium-3 small-4 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1739526160" style="width: 64px;" title="MDPI Open Access Journals"> </a> </div> <div class="medium-3 small-4 columns right-aligned"> <div class="show-for-medium-down"> <a href="#" style="display: none;"> <i class="material-icons" onclick="$('#menuModal').foundation('reveal', 'close'); return false;">clear</i> </a> <a class="js-toggle-desktop-layout-link" title="Toggle desktop layout" style="display: none;" href="/toggle_desktop_layout_cookie"> <i class="material-icons">zoom_out_map</i> </a> <a href="#" class="js-open-small-search open-small-search"> <i class="material-icons show-for-small only">search</i> </a> <a title="MDPI main page" class="js-open-menu" data-reveal-id="menuModal" href="#"> <i class="material-icons">menu</i> </a> </div> </div> </div> </nav> </div> <section class="main-section"> <header> <div class="full-size-menu show-for-large-up"> <div class="row full-width"> <div class="large-1 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1739526160" title="MDPI Open Access Journals"> </a> </div> <div class="large-8 columns text-right UI_NavMenu"> <ul> <li class="menu-item"> <a href="/about/journals" data-dropdown="journals-dropdown" aria-controls="journals-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Journals</a> <ul id="journals-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about/journals"> Active Journals </a> </li> <li> <a href="/about/journalfinder"> Find a Journal </a> </li> <li> <a href="/about/journals/proposal"> Journal Proposal </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/topics">Topics</a> </li> <li class="menu-item"> <a href="/authors" data-dropdown="information-dropdown" aria-controls="information-dropdown" aria-expanded="false" data-options="is_hover:true; hover_timeout:200">Information</a> <ul id="information-dropdown" class="f-dropdown dropdown-wrapper" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-5 columns right-border"> <ul> <li> <a href="/authors">For Authors</a> </li> <li> <a href="/reviewers">For Reviewers</a> </li> <li> <a href="/editors">For Editors</a> </li> <li> <a href="/librarians">For Librarians</a> </li> <li> <a href="/publishing_services">For Publishers</a> </li> <li> <a href="/societies">For Societies</a> </li> <li> <a href="/conference_organizers">For Conference Organizers</a> </li> </ul> </div> <div class="small-7 columns"> <ul> <li> <a href="/openaccess">Open Access Policy</a> </li> <li> <a href="/ioap">Institutional Open Access Program</a> </li> <li> <a href="/special_issues_guidelines">Special Issues Guidelines</a> </li> <li> <a href="/editorial_process">Editorial Process</a> </li> <li> <a href="/ethics">Research and Publication Ethics</a> </li> <li> <a href="/apc">Article Processing Charges</a> </li> <li> <a href="/awards">Awards</a> </li> <li> <a href="/testimonials">Testimonials</a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/authors/english">Author Services</a> </li> <li class="menu-item"> <a href="/about/initiatives" data-dropdown="initiatives-dropdown" aria-controls="initiatives-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Initiatives</a> <ul id="initiatives-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> </li> <li> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> </li> <li> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> </li> <li> <a href="https://www.scilit.com" target="_blank" rel="noopener noreferrer"> Scilit </a> </li> <li> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer"> SciProfiles </a> </li> <li> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> </li> <li> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/about" data-dropdown="about-dropdown" aria-controls="about-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">About</a> <ul id="about-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about"> Overview </a> </li> <li> <a href="/about/contact"> Contact </a> </li> <li> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Careers </a> </li> <li> <a href="/about/announcements"> News </a> </li> <li> <a href="/about/press"> Press </a> </li> <li> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer"> Blog </a> </li> </ul> </div> </div> </li> </ul> </li> </ul> </div> <div class="large-3 columns text-right full-size-menu__buttons"> <div> <a class="button button--default-inversed UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> <a class="button button--default js-journal-active-only-link js-journal-active-only-submit-link UC_NavSubmitButton" href=" https://susy.mdpi.com/user/manuscripts/upload?journal=ijms " data-disabledmessage="new submissions are not possible.">Submit</a> </div> </div> </div> </div> <div class="header-divider">&nbsp;</div> <div class="search-container hide-for-small-down row search-container__homepage-scheme"> <form id="basic_search" style="background-color: inherit !important;" class="large-12 medium-12 columns " action="/search" method="get"> <div class="row search-container__main-elements"> <div class="large-2 medium-2 small-12 columns text-right1 small-only-text-left"> <div class="show-for-medium-up"> <div class="search-input-label">&nbsp;</div> </div> <span class="search-container__title">Search<span class="hide-for-medium"> for Articles</span><span class="hide-for-small">:</span></span> </div> <div class="custom-accordion-for-small-screen-content"> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Title / Keyword</div> </div> <input type="text" placeholder="Title / Keyword" id="q" tabindex="1" name="q" value="" /> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Author / Affiliation / Email</div> </div> <input type="text" id="authors" placeholder="Author / Affiliation / Email" tabindex="2" name="authors" value="" /> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Journal</div> </div> <select id="journal" tabindex="3" name="journal" class="chosen-select"> <option value="">All Journals</option> <option value="acoustics" > Acoustics </option> <option value="amh" > Acta Microbiologica Hellenica (AMH) </option> <option value="actuators" > Actuators </option> <option value="adhesives" > Adhesives </option> <option value="admsci" > Administrative Sciences </option> <option value="adolescents" > Adolescents </option> <option value="arm" > Advances in Respiratory Medicine (ARM) </option> <option value="aerobiology" > Aerobiology </option> <option value="aerospace" > Aerospace </option> <option value="agriculture" > Agriculture </option> <option value="agriengineering" > AgriEngineering </option> <option value="agrochemicals" > Agrochemicals </option> <option value="agronomy" > Agronomy </option> <option value="ai" > AI </option> <option value="aisens" > AI Sensors </option> <option value="air" > Air </option> <option value="algorithms" > Algorithms </option> <option value="allergies" > Allergies </option> <option value="alloys" > Alloys </option> <option value="analytica" > Analytica </option> <option value="analytics" > Analytics </option> <option value="anatomia" > Anatomia </option> <option value="anesthres" > Anesthesia Research </option> <option value="animals" > Animals </option> <option value="antibiotics" > Antibiotics </option> <option value="antibodies" > Antibodies </option> <option value="antioxidants" > Antioxidants </option> <option value="applbiosci" > Applied Biosciences </option> <option value="applmech" > Applied Mechanics </option> <option value="applmicrobiol" > Applied Microbiology </option> <option value="applnano" > Applied Nano </option> <option value="applsci" > Applied Sciences </option> <option value="asi" > Applied System Innovation (ASI) </option> <option value="appliedchem" > AppliedChem </option> <option value="appliedmath" > AppliedMath </option> <option value="aquacj" > Aquaculture Journal </option> <option value="architecture" > Architecture </option> <option value="arthropoda" > Arthropoda </option> <option value="arts" > Arts </option> <option value="astronomy" > Astronomy </option> <option value="atmosphere" > Atmosphere </option> <option value="atoms" > Atoms </option> <option value="audiolres" > Audiology Research </option> <option value="automation" > Automation </option> <option value="axioms" > Axioms </option> <option value="bacteria" > Bacteria </option> <option value="batteries" > Batteries </option> <option value="behavsci" > Behavioral Sciences </option> <option value="beverages" > Beverages </option> <option value="BDCC" > Big Data and Cognitive Computing (BDCC) </option> <option value="biochem" > BioChem </option> <option value="bioengineering" > Bioengineering </option> <option value="biologics" > Biologics </option> <option value="biology" > Biology </option> <option value="blsf" > Biology and Life Sciences Forum </option> <option value="biomass" > Biomass </option> <option value="biomechanics" > Biomechanics </option> <option value="biomed" > BioMed </option> <option value="biomedicines" > Biomedicines </option> <option value="biomedinformatics" > BioMedInformatics </option> <option value="biomimetics" > Biomimetics </option> <option value="biomolecules" > Biomolecules </option> <option value="biophysica" > Biophysica </option> <option value="biosensors" > Biosensors </option> <option value="biosphere" > Biosphere </option> <option value="biotech" > BioTech </option> <option value="birds" > Birds </option> <option value="blockchains" > Blockchains </option> <option value="brainsci" > Brain Sciences </option> <option value="buildings" > Buildings </option> <option value="businesses" > Businesses </option> <option value="carbon" > C (Journal of Carbon Research) </option> <option value="cancers" > Cancers </option> <option value="cardiogenetics" > Cardiogenetics </option> <option value="catalysts" > Catalysts </option> <option value="cells" > Cells </option> <option value="ceramics" > Ceramics </option> <option value="challenges" > Challenges </option> <option value="ChemEngineering" > ChemEngineering </option> <option value="chemistry" > Chemistry </option> <option value="chemproc" > Chemistry Proceedings </option> <option value="chemosensors" > Chemosensors </option> <option value="children" > Children </option> <option value="chips" > Chips </option> <option value="civileng" > CivilEng </option> <option value="cleantechnol" > Clean Technologies (Clean Technol.) </option> <option value="climate" > Climate </option> <option value="ctn" > Clinical and Translational Neuroscience (CTN) </option> <option value="clinbioenerg" > Clinical Bioenergetics </option> <option value="clinpract" > Clinics and Practice </option> <option value="clockssleep" > Clocks &amp; Sleep </option> <option value="coasts" > Coasts </option> <option value="coatings" > Coatings </option> <option value="colloids" > Colloids and Interfaces </option> <option value="colorants" > Colorants </option> <option value="commodities" > Commodities </option> <option value="complications" > Complications </option> <option value="compounds" > Compounds </option> <option value="computation" > Computation </option> <option value="csmf" > Computer Sciences &amp; Mathematics Forum </option> <option value="computers" > Computers </option> <option value="condensedmatter" > Condensed Matter </option> <option value="conservation" > Conservation </option> <option value="constrmater" > Construction Materials </option> <option value="cmd" > Corrosion and Materials Degradation (CMD) </option> <option value="cosmetics" > Cosmetics </option> <option value="covid" > COVID </option> <option value="cmtr" > Craniomaxillofacial Trauma &amp; Reconstruction (CMTR) </option> <option value="crops" > Crops </option> <option value="cryo" > Cryo </option> <option value="cryptography" > Cryptography </option> <option value="crystals" > Crystals </option> <option value="cimb" > Current Issues in Molecular Biology (CIMB) </option> <option value="curroncol" > Current Oncology </option> <option value="dairy" > Dairy </option> <option value="data" > Data </option> <option value="dentistry" > Dentistry Journal </option> <option value="dermato" > Dermato </option> <option value="dermatopathology" > Dermatopathology </option> <option value="designs" > Designs </option> <option value="diabetology" > Diabetology </option> <option value="diagnostics" > Diagnostics </option> <option value="dietetics" > Dietetics </option> <option value="digital" > Digital </option> <option value="disabilities" > Disabilities </option> <option value="diseases" > Diseases </option> <option value="diversity" > Diversity </option> <option value="dna" > DNA </option> <option value="drones" > Drones </option> <option value="ddc" > Drugs and Drug Candidates (DDC) </option> <option value="dynamics" > Dynamics </option> <option value="earth" > Earth </option> <option value="ecologies" > Ecologies </option> <option value="econometrics" > Econometrics </option> <option value="economies" > Economies </option> <option value="education" > Education Sciences </option> <option value="electricity" > Electricity </option> <option value="electrochem" > Electrochem </option> <option value="electronicmat" > Electronic Materials </option> <option value="electronics" > Electronics </option> <option value="ecm" > Emergency Care and Medicine </option> <option value="encyclopedia" > Encyclopedia </option> <option value="endocrines" > Endocrines </option> <option value="energies" > Energies </option> <option value="esa" > Energy Storage and Applications (ESA) </option> <option value="eng" > Eng </option> <option value="engproc" > Engineering Proceedings </option> <option value="entropy" > Entropy </option> <option value="eesp" > Environmental and Earth Sciences Proceedings </option> <option value="environments" > Environments </option> <option value="epidemiologia" > Epidemiologia </option> <option value="epigenomes" > Epigenomes </option> <option value="ebj" > European Burn Journal (EBJ) </option> <option value="ejihpe" > European Journal of Investigation in Health, Psychology and Education (EJIHPE) </option> <option value="fermentation" > Fermentation </option> <option value="fibers" > Fibers </option> <option value="fintech" > FinTech </option> <option value="fire" > Fire </option> <option value="fishes" > Fishes </option> <option value="fluids" > Fluids </option> <option value="foods" > Foods </option> <option value="forecasting" > Forecasting </option> <option value="forensicsci" > Forensic Sciences </option> <option value="forests" > Forests </option> <option value="fossstud" > Fossil Studies </option> <option value="foundations" > Foundations </option> <option value="fractalfract" > Fractal and Fractional (Fractal Fract) </option> <option value="fuels" > Fuels </option> <option value="future" > Future </option> <option value="futureinternet" > Future Internet </option> <option value="futurepharmacol" > Future Pharmacology </option> <option value="futuretransp" > Future Transportation </option> <option value="galaxies" > Galaxies </option> <option value="games" > Games </option> <option value="gases" > Gases </option> <option value="gastroent" > Gastroenterology Insights </option> <option value="gastrointestdisord" > Gastrointestinal Disorders </option> <option value="gastronomy" > Gastronomy </option> <option value="gels" > Gels </option> <option value="genealogy" > Genealogy </option> <option value="genes" > Genes </option> <option value="geographies" > Geographies </option> <option value="geohazards" > GeoHazards </option> <option value="geomatics" > Geomatics </option> <option value="geometry" > Geometry </option> <option value="geosciences" > Geosciences </option> <option value="geotechnics" > Geotechnics </option> <option value="geriatrics" > Geriatrics </option> <option value="glacies" > Glacies </option> <option value="gucdd" > Gout, Urate, and Crystal Deposition Disease (GUCDD) </option> <option value="grasses" > Grasses </option> <option value="greenhealth" > Green Health </option> <option value="hardware" > Hardware </option> <option value="healthcare" > Healthcare </option> <option value="hearts" > Hearts </option> <option value="hemato" > Hemato </option> <option value="hematolrep" > Hematology Reports </option> <option value="heritage" > Heritage </option> <option value="histories" > Histories </option> <option value="horticulturae" > Horticulturae </option> <option value="hospitals" > Hospitals </option> <option value="humanities" > Humanities </option> <option value="humans" > Humans </option> <option value="hydrobiology" > Hydrobiology </option> <option value="hydrogen" > Hydrogen </option> <option value="hydrology" > Hydrology </option> <option value="hygiene" > Hygiene </option> <option value="immuno" > Immuno </option> <option value="idr" > Infectious Disease Reports </option> <option value="informatics" > Informatics </option> <option value="information" > Information </option> <option value="infrastructures" > Infrastructures </option> <option value="inorganics" > Inorganics </option> <option value="insects" > Insects </option> <option value="instruments" > Instruments </option> <option value="iic" > Intelligent Infrastructure and Construction </option> <option value="ijerph" > International Journal of Environmental Research and Public Health (IJERPH) </option> <option value="ijfs" > International Journal of Financial Studies (IJFS) </option> <option value="ijms" selected='selected'> International Journal of Molecular Sciences (IJMS) </option> <option value="IJNS" > International Journal of Neonatal Screening (IJNS) </option> <option value="ijom" > International Journal of Orofacial Myology and Myofunctional Therapy (IJOM) </option> <option value="ijpb" > International Journal of Plant Biology (IJPB) </option> <option value="ijt" > International Journal of Topology </option> <option value="ijtm" > International Journal of Translational Medicine (IJTM) </option> <option value="ijtpp" > International Journal of Turbomachinery, Propulsion and Power (IJTPP) </option> <option value="ime" > International Medical Education (IME) </option> <option value="inventions" > Inventions </option> <option value="IoT" > IoT </option> <option value="ijgi" > ISPRS International Journal of Geo-Information (IJGI) </option> <option value="J" > J </option> <option value="jal" > Journal of Ageing and Longevity (JAL) </option> <option value="jcdd" > Journal of Cardiovascular Development and Disease (JCDD) </option> <option value="jcto" > Journal of Clinical &amp; Translational Ophthalmology (JCTO) </option> <option value="jcm" > Journal of Clinical Medicine (JCM) </option> <option value="jcs" > Journal of Composites Science (J. Compos. Sci.) </option> <option value="jcp" > Journal of Cybersecurity and Privacy (JCP) </option> <option value="jdad" > Journal of Dementia and Alzheimer&#039;s Disease (JDAD) </option> <option value="jdb" > Journal of Developmental Biology (JDB) </option> <option value="jeta" > Journal of Experimental and Theoretical Analyses (JETA) </option> <option value="jemr" > Journal of Eye Movement Research (JEMR) </option> <option value="jfb" > Journal of Functional Biomaterials (JFB) </option> <option value="jfmk" > Journal of Functional Morphology and Kinesiology (JFMK) </option> <option value="jof" > Journal of Fungi (JoF) </option> <option value="jimaging" > Journal of Imaging (J. Imaging) </option> <option value="jintelligence" > Journal of Intelligence (J. Intell.) </option> <option value="jlpea" > Journal of Low Power Electronics and Applications (JLPEA) </option> <option value="jmmp" > Journal of Manufacturing and Materials Processing (JMMP) </option> <option value="jmse" > Journal of Marine Science and Engineering (JMSE) </option> <option value="jmahp" > Journal of Market Access &amp; Health Policy (JMAHP) </option> <option value="jmms" > Journal of Mind and Medical Sciences (JMMS) </option> <option value="jmp" > Journal of Molecular Pathology (JMP) </option> <option value="jnt" > Journal of Nanotheranostics (JNT) </option> <option value="jne" > Journal of Nuclear Engineering (JNE) </option> <option value="ohbm" > Journal of Otorhinolaryngology, Hearing and Balance Medicine (JOHBM) </option> <option value="jop" > Journal of Parks </option> <option value="jpm" > Journal of Personalized Medicine (JPM) </option> <option value="jpbi" > Journal of Pharmaceutical and BioTech Industry (JPBI) </option> <option value="jor" > Journal of Respiration (JoR) </option> <option value="jrfm" > Journal of Risk and Financial Management (JRFM) </option> <option value="jsan" > Journal of Sensor and Actuator Networks (JSAN) </option> <option value="joma" > Journal of the Oman Medical Association (JOMA) </option> <option value="jtaer" > Journal of Theoretical and Applied Electronic Commerce Research (JTAER) </option> <option value="jvd" > Journal of Vascular Diseases (JVD) </option> <option value="jox" > Journal of Xenobiotics (JoX) </option> <option value="jzbg" > Journal of Zoological and Botanical Gardens (JZBG) </option> <option value="journalmedia" > Journalism and Media </option> <option value="kidneydial" > Kidney and Dialysis </option> <option value="kinasesphosphatases" > Kinases and Phosphatases </option> <option value="knowledge" > Knowledge </option> <option value="labmed" > LabMed </option> <option value="laboratories" > Laboratories </option> <option value="land" > Land </option> <option value="languages" > Languages </option> <option value="laws" > Laws </option> <option value="life" > Life </option> <option value="limnolrev" > Limnological Review </option> <option value="lipidology" > Lipidology </option> <option value="liquids" > Liquids </option> <option value="literature" > Literature </option> <option value="livers" > Livers </option> <option value="logics" > Logics </option> <option value="logistics" > Logistics </option> <option value="lubricants" > Lubricants </option> <option value="lymphatics" > Lymphatics </option> <option value="make" > Machine Learning and Knowledge Extraction (MAKE) </option> <option value="machines" > Machines </option> <option value="macromol" > Macromol </option> <option value="magnetism" > Magnetism </option> <option value="magnetochemistry" > Magnetochemistry </option> <option value="marinedrugs" > Marine Drugs </option> <option value="materials" > Materials </option> <option value="materproc" > Materials Proceedings </option> <option value="mca" > Mathematical and Computational Applications (MCA) </option> <option value="mathematics" > Mathematics </option> <option value="medsci" > Medical Sciences </option> <option value="msf" > Medical Sciences Forum </option> <option value="medicina" > Medicina </option> <option value="medicines" > Medicines </option> <option value="membranes" > Membranes </option> <option value="merits" > Merits </option> <option value="metabolites" > Metabolites </option> <option value="metals" > Metals </option> <option value="meteorology" > Meteorology </option> <option value="methane" > Methane </option> <option value="mps" > Methods and Protocols (MPs) </option> <option value="metrics" > Metrics </option> <option value="metrology" > Metrology </option> <option value="micro" > Micro </option> <option value="microbiolres" > Microbiology Research </option> <option value="micromachines" > Micromachines </option> <option value="microorganisms" > Microorganisms </option> <option value="microplastics" > Microplastics </option> <option value="microwave" > Microwave </option> <option value="minerals" > Minerals </option> <option value="mining" > Mining </option> <option value="modelling" > Modelling </option> <option value="mmphys" > Modern Mathematical Physics </option> <option value="molbank" > Molbank </option> <option value="molecules" > Molecules </option> <option value="mti" > Multimodal Technologies and Interaction (MTI) </option> <option value="muscles" > Muscles </option> <option value="nanoenergyadv" > Nanoenergy Advances </option> <option value="nanomanufacturing" > Nanomanufacturing </option> <option value="nanomaterials" > Nanomaterials </option> <option value="ndt" > NDT </option> <option value="network" > Network </option> <option value="neuroglia" > Neuroglia </option> <option value="neurolint" > Neurology International </option> <option value="neurosci" > NeuroSci </option> <option value="nitrogen" > Nitrogen </option> <option value="ncrna" > Non-Coding RNA (ncRNA) </option> <option value="nursrep" > Nursing Reports </option> <option value="nutraceuticals" > Nutraceuticals </option> <option value="nutrients" > Nutrients </option> <option value="obesities" > Obesities </option> <option value="oceans" > Oceans </option> <option value="onco" > Onco </option> <option value="optics" > Optics </option> <option value="oral" > Oral </option> <option value="organics" > Organics </option> <option value="organoids" > Organoids </option> <option value="osteology" > Osteology </option> <option value="oxygen" > Oxygen </option> <option value="parasitologia" > Parasitologia </option> <option value="particles" > Particles </option> <option value="pathogens" > Pathogens </option> <option value="pathophysiology" > Pathophysiology </option> <option value="pediatrrep" > Pediatric Reports </option> <option value="pets" > Pets </option> <option value="pharmaceuticals" > Pharmaceuticals </option> <option value="pharmaceutics" > Pharmaceutics </option> <option value="pharmacoepidemiology" > Pharmacoepidemiology </option> <option value="pharmacy" > Pharmacy </option> <option value="philosophies" > Philosophies </option> <option value="photochem" > Photochem </option> <option value="photonics" > Photonics </option> <option value="phycology" > Phycology </option> <option value="physchem" > Physchem </option> <option value="psf" > Physical Sciences Forum </option> <option value="physics" > Physics </option> <option value="physiologia" > Physiologia </option> <option value="plants" > Plants </option> <option value="plasma" > Plasma </option> <option value="platforms" > Platforms </option> <option value="pollutants" > Pollutants </option> <option value="polymers" > Polymers </option> <option value="polysaccharides" > Polysaccharides </option> <option value="populations" > Populations </option> <option value="poultry" > Poultry </option> <option value="powders" > Powders </option> <option value="proceedings" > Proceedings </option> <option value="processes" > Processes </option> <option value="prosthesis" > Prosthesis </option> <option value="proteomes" > Proteomes </option> <option value="psychiatryint" > Psychiatry International </option> <option value="psychoactives" > Psychoactives </option> <option value="psycholint" > Psychology International </option> <option value="publications" > Publications </option> <option value="qubs" > Quantum Beam Science (QuBS) </option> <option value="quantumrep" > Quantum Reports </option> <option value="quaternary" > Quaternary </option> <option value="radiation" > Radiation </option> <option value="reactions" > Reactions </option> <option value="realestate" > Real Estate </option> <option value="receptors" > Receptors </option> <option value="recycling" > Recycling </option> <option value="rsee" > Regional Science and Environmental Economics (RSEE) </option> <option value="religions" > Religions </option> <option value="remotesensing" > Remote Sensing </option> <option value="reports" > Reports </option> <option value="reprodmed" > Reproductive Medicine (Reprod. Med.) </option> <option value="resources" > Resources </option> <option value="rheumato" > Rheumato </option> <option value="risks" > Risks </option> <option value="robotics" > Robotics </option> <option value="ruminants" > Ruminants </option> <option value="safety" > Safety </option> <option value="sci" > Sci </option> <option value="scipharm" > Scientia Pharmaceutica (Sci. Pharm.) </option> <option value="sclerosis" > Sclerosis </option> <option value="seeds" > Seeds </option> <option value="sensors" > Sensors </option> <option value="separations" > Separations </option> <option value="sexes" > Sexes </option> <option value="signals" > Signals </option> <option value="sinusitis" > Sinusitis </option> <option value="smartcities" > Smart Cities </option> <option value="socsci" > Social Sciences </option> <option value="siuj" > Société Internationale d’Urologie Journal (SIUJ) </option> <option value="societies" > Societies </option> <option value="software" > Software </option> <option value="soilsystems" > Soil Systems </option> <option value="solar" > Solar </option> <option value="solids" > Solids </option> <option value="spectroscj" > Spectroscopy Journal </option> <option value="sports" > Sports </option> <option value="standards" > Standards </option> <option value="stats" > Stats </option> <option value="stresses" > Stresses </option> <option value="surfaces" > Surfaces </option> <option value="surgeries" > Surgeries </option> <option value="std" > Surgical Techniques Development </option> <option value="sustainability" > Sustainability </option> <option value="suschem" > Sustainable Chemistry </option> <option value="symmetry" > Symmetry </option> <option value="synbio" > SynBio </option> <option value="systems" > Systems </option> <option value="targets" > Targets </option> <option value="taxonomy" > Taxonomy </option> <option value="technologies" > Technologies </option> <option value="telecom" > Telecom </option> <option value="textiles" > Textiles </option> <option value="thalassrep" > Thalassemia Reports </option> <option value="therapeutics" > Therapeutics </option> <option value="thermo" > Thermo </option> <option value="timespace" > Time and Space </option> <option value="tomography" > Tomography </option> <option value="tourismhosp" > Tourism and Hospitality </option> <option value="toxics" > Toxics </option> <option value="toxins" > Toxins </option> <option value="transplantology" > Transplantology </option> <option value="traumacare" > Trauma Care </option> <option value="higheredu" > Trends in Higher Education </option> <option value="tropicalmed" > Tropical Medicine and Infectious Disease (TropicalMed) </option> <option value="universe" > Universe </option> <option value="urbansci" > Urban Science </option> <option value="uro" > Uro </option> <option value="vaccines" > Vaccines </option> <option value="vehicles" > Vehicles </option> <option value="venereology" > Venereology </option> <option value="vetsci" > Veterinary Sciences </option> <option value="vibration" > Vibration </option> <option value="virtualworlds" > Virtual Worlds </option> <option value="viruses" > Viruses </option> <option value="vision" > Vision </option> <option value="waste" > Waste </option> <option value="water" > Water </option> <option value="wild" > Wild </option> <option value="wind" > Wind </option> <option value="women" > Women </option> <option value="world" > World </option> <option value="wevj" > World Electric Vehicle Journal (WEVJ) </option> <option value="youth" > Youth </option> <option value="zoonoticdis" > Zoonotic Diseases </option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Article Type</div> </div> <select id="article_type" tabindex="4" name="article_type" class="chosen-select"> <option value="">All Article Types</option> <option value="research-article">Article</option> <option value="review-article">Review</option> <option value="rapid-communication">Communication</option> <option value="editorial">Editorial</option> <option value="abstract">Abstract</option> <option value="book-review">Book Review</option> <option value="brief-communication">Brief Communication</option> <option value="brief-report">Brief Report</option> <option value="case-report">Case Report</option> <option value="clinicopathological-challenge">Clinicopathological Challenge</option> <option value="article-commentary">Comment</option> <option value="commentary">Commentary</option> <option value="concept-paper">Concept Paper</option> <option value="conference-report">Conference Report</option> <option value="correction">Correction</option> <option value="creative">Creative</option> <option value="data-descriptor">Data Descriptor</option> <option value="discussion">Discussion</option> <option value="Entry">Entry</option> <option value="essay">Essay</option> <option value="expression-of-concern">Expression of Concern</option> <option value="extended-abstract">Extended Abstract</option> <option value="field-guide">Field Guide</option> <option value="giants-in-urology">Giants in Urology</option> <option value="guidelines">Guidelines</option> <option value="hypothesis">Hypothesis</option> <option value="interesting-image">Interesting Images</option> <option value="letter">Letter</option> <option value="books-received">New Book Received</option> <option value="obituary">Obituary</option> <option value="opinion">Opinion</option> <option value="perspective">Perspective</option> <option value="proceedings">Proceeding Paper</option> <option value="project-report">Project Report</option> <option value="protocol">Protocol</option> <option value="registered-report">Registered Report</option> <option value="reply">Reply</option> <option value="retraction">Retraction</option> <option value="note">Short Note</option> <option value="study-protocol">Study Protocol</option> <option value="systematic_review">Systematic Review</option> <option value="technical-note">Technical Note</option> <option value="tutorial">Tutorial</option> <option value="urology-around-the-world">Urology around the World</option> <option value="viewpoint">Viewpoint</option> </select> </div> <div class="large-1 medium-1 small-6 end columns small-push-6 medium-reset-order large-reset-order js-search-collapsed-button-container"> <div class="search-input-label">&nbsp;</div> <input type="submit" id="search" value="Search" class="button button--dark button--full-width searchButton1 US_SearchButton" tabindex="12"> </div> <div class="large-1 medium-1 small-6 end columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-collapsed-link-container"> <div class="search-input-label">&nbsp;</div> <a class="main-search-clear search-container__link" href="#" onclick="openAdvanced(''); return false;">Advanced<span class="show-for-small-only"> Search</span></a> </div> </div> </div> <div class="search-container__advanced" style="margin-top: 0; padding-top: 0px; background-color: inherit; color: inherit;"> <div class="row"> <div class="large-2 medium-2 columns show-for-medium-up">&nbsp;</div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Section</div> </div> <select id="section" tabindex="5" name="section" class="chosen-select"> <option value=""></option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Special Issue</div> </div> <select id="special_issue" tabindex="6" name="special_issue" class="chosen-select"> <option value=""></option> </select> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Volume</div> <input type="text" id="volume" tabindex="7" name="volume" placeholder="..." value="25" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Issue</div> <input type="text" id="issue" tabindex="8" name="issue" placeholder="..." value="3" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Number</div> <input type="text" id="number" tabindex="9" name="number" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Page</div> <input type="text" id="page" tabindex="10" name="page" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 columns small-push-6 medium-reset order large-reset-order medium-reset-order js-search-expanded-button-container"></div> <div class="large-1 medium-1 small-6 columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-expanded-link-container"></div> </div> </div> </form> <form id="advanced-search" class="large-12 medium-12 columns"> <div class="search-container__advanced"> <div id="advanced-search-template" class="row advanced-search-row"> <div class="large-2 medium-2 small-12 columns show-for-medium-up">&nbsp;</div> <div class="large-2 medium-2 small-3 columns connector-div"> <div class="search-input-label"><span class="show-for-medium-up">Logical Operator</span><span class="show-for-small">Operator</span></div> <select class="connector"> <option value="and">AND</option> <option value="or">OR</option> </select> </div> <div class="large-3 medium-3 small-6 columns search-text-div"> <div class="search-input-label">Search Text</div> <input type="text" class="search-text" placeholder="Search text"> </div> <div class="large-2 medium-2 small-6 large-offset-0 medium-offset-0 small-offset-3 columns search-field-div"> <div class="search-input-label">Search Type</div> <select class="search-field"> <option value="all">All fields</option> <option value="title">Title</option> <option value="abstract">Abstract</option> <option value="keywords">Keywords</option> <option value="authors">Authors</option> <option value="affiliations">Affiliations</option> <option value="doi">Doi</option> <option value="full_text">Full Text</option> <option value="references">References</option> </select> </div> <div class="large-1 medium-1 small-3 columns"> <div class="search-input-label">&nbsp;</div> <div class="search-action-div"> <div class="search-plus"> <i class="material-icons">add_circle_outline</i> </div> </div> <div class="search-action-div"> <div class="search-minus"> <i class="material-icons">remove_circle_outline</i> </div> </div> </div> <div class="large-1 medium-1 small-6 large-offset-0 medium-offset-0 small-offset-3 end columns"> <div class="search-input-label">&nbsp;</div> <input class="advanced-search-button button button--dark search-submit" type="submit" value="Search"> </div> <div class="large-1 medium-1 small-6 end columns show-for-medium-up"></div> </div> </div> </form> </div> <div class="header-divider">&nbsp;</div> <div class="breadcrumb row full-row"> <div class="breadcrumb__element"> <a href="/about/journals">Journals</a> </div> <div class="breadcrumb__element"> <a href="/journal/ijms">IJMS</a> </div> <div class="breadcrumb__element"> <a href="/1422-0067/25">Volume 25</a> </div> <div class="breadcrumb__element"> <a href="/1422-0067/25/3">Issue 3</a> </div> <div class="breadcrumb__element"> <a href="#">10.3390/ijms25031469</a> </div> </div> </header> <div id="main-content" class=""> <div class="row full-width row-fixed-left-column"> <div id="left-column" class="content__column large-3 medium-3 small-12 columns"> <div class="content__container"> <a href="/journal/ijms"> <img src="https://pub.mdpi-res.com/img/journals/ijms-logo.png?41930e44070e4940" alt="ijms-logo" title="International Journal of Molecular Sciences" style="max-height: 60px; margin: 0 0 0 0;"> </a> <div class="generic-item no-border"> <a class="button button--color button--full-width js-journal-active-only-link js-journal-active-only-submit-link UC_ArticleSubmitButton" href="https://susy.mdpi.com/user/manuscripts/upload?form%5Bjournal_id%5D%3D2" data-disabledmessage="creating new submissions is not possible."> Submit to this Journal </a> <a class="button button--color button--full-width js-journal-active-only-link UC_ArticleReviewButton" href="https://susy.mdpi.com/volunteer/journals/review" data-disabledmessage="volunteering as journal reviewer is not possible."> Review for this Journal </a> <a class="button button--color-inversed button--color-journal button--full-width js-journal-active-only-link UC_ArticleEditIssueButton" href="/journalproposal/sendproposalspecialissue/ijms" data-path="/1422-0067/25/3/1469" data-disabledmessage="proposing new special issue is not possible."> Propose a Special Issue </a> </div> <div class="generic-item link-article-menu show-for-small"> <a href="#" class="link-article-menu show-for-small"> <span class="closed">&#9658;</span> <span class="open" style="display: none;">&#9660;</span> Article Menu </a> </div> <div class="hide-small-down-initially UI_ArticleMenu"> <div class="generic-item"> <h2>Article Menu</h2> </div> <ul class="accordion accordion__menu" data-accordion data-options="multi_expand:true;toggleable: true"> <li class="accordion-navigation"> <a href="#academic_editors" class="accordion__title">Academic Editor</a> <div id="academic_editors" class="content active"> <div class="academic-editor-container " title="1. Faculty of Life Sciences &amp; Medicine, School of Cancer &amp; Pharmaceutical Sciences, King&#039;s College London, London SE1 9RT, UK 2. Medway NHS Foundation Trust, Windmill Road, Kent, Gillingham ME7 5NY, UK 3. Kent Medway Medical School, University of Kent, Kent , Canterbury CT2 7LX, UK 4. AELIA Organization, 9(th)Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece"> <div class="sciprofiles-link" style="display: inline-block"><a class="sciprofiles-link__link" href="https://sciprofiles.com/profile/554800?utm_source=mdpi.com&amp;utm_medium=website&amp;utm_campaign=avatar_name" target="_blank" rel="noopener noreferrer"><img class="sciprofiles-link__image" src="/profiles/554800/thumb/Stergios_Boussios.jpg" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Stergios Boussios</span></a></div> </div> </div> </li> <li class="accordion-direct-link"> <a href="/1422-0067/25/3/1469/scifeed_display" data-reveal-id="scifeed-modal" data-reveal-ajax="true">Subscribe SciFeed</a> </li> <li class="accordion-direct-link js-article-similarity-container" style="display: none"> <a href="#" class="js-similarity-related-articles">Recommended Articles</a> </li> <li class="accordion-direct-link"> <a href="/article/1326201/author-biographies" data-reveal-id="author-biographies-modal" data-reveal-ajax="true">Author Biographies</a> </li> <li class="accordion-navigation"> <a href="#related" class="accordion__title">Related Info Links</a> <div id="related" class="content UI_ArticleMenu_RelatedLinks"> <ul> <li class="li-link"> <a href="http://www.ncbi.nlm.nih.gov/sites/entrez/38338746" target="_blank" rel="noopener noreferrer">PubMed/Medline</a> </li> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Trials%20and%20Tribulations%20of%20MicroRNA%20Therapeutics" target="_blank" rel="noopener noreferrer">Google Scholar</a> </li> </ul> </div> </li> <li class="accordion-navigation"> <a href="#authors" class="accordion__title">More by Author Links</a> <div id="authors" class="content UI_ArticleMenu_AuthorsLinks"> <ul class="side-menu-ul"> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on DOAJ</a> </li> <div id="AuthorDOAJExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href='http://doaj.org/search/articles?source=%7B%22query%22%3A%7B%22query_string%22%3A%7B%22query%22%3A%22%5C%22Attila%20A.%20Seyhan%5C%22%22%2C%22default_operator%22%3A%22AND%22%2C%22default_field%22%3A%22bibjson.author.name%22%7D%7D%7D' target="_blank" rel="noopener noreferrer">Seyhan, A. A.</a> <li> </li> </ul> </div> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on Google Scholar</a> </li> <div id="AuthorGoogleExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href="https://scholar.google.com/scholar?q=Attila%20A.%20Seyhan" target="_blank" rel="noopener noreferrer">Seyhan, A. A.</a> <li> </li> </ul> </div> <li> <a class="expand" onclick='$(this).closest("li").next("div").toggle(); return false;'>on PubMed</a> </li> <div id="AuthorPubMedExpand" style="display:none;"> <ul class="submenu"> <li class="li-link"> <a href="http://www.pubmed.gov/?cmd=Search&amp;term=Attila%20A.%20Seyhan" target="_blank" rel="noopener noreferrer">Seyhan, A. A.</a> <li> </li> </ul> </div> </ul> </div> </li> </ul> <span style="display:none" id="scifeed_hidden_flag"></span> <span style="display:none" id="scifeed_subscribe_url">/ajax/scifeed/subscribe</span> </div> </div> <div class="content__container responsive-moving-container large medium active hidden" data-id="article-counters"> <div id="counts-wrapper" class="row generic-item no-border" data-equalizer> <div id="js-counts-wrapper__views" class="small-12 hide columns count-div-container"> <a href="#metrics" > <div class="count-div" data-equalizer-watch> <span class="name">Article Views</span> <span class="count view-number"></span> </div> </a> </div> <div id="js-counts-wrapper__citations" class="small-12 columns hide count-div-container"> <a href="#metrics" > <div class="count-div" data-equalizer-watch> <span class="name">Citations</span> <span class="count citations-number Var_ArticleMaxCitations">-</span> </div> </a> </div> </div> </div> <div class="content__container"> <div class="hide-small-down-initially"> <ul class="accordion accordion__menu" data-accordion data-options="multi_expand:true;toggleable: true"> <li class="accordion-navigation"> <a href="#table_of_contents" class="accordion__title">Table of Contents</a> <div id="table_of_contents" class="content active"> <div class="menu-caption" id="html-quick-links-title"></div> </div> </li> </ul> </div> </div> <!-- PubGrade code --> <div id="pbgrd-sky"></div> <script src="https://cdn.pbgrd.com/core-mdpi.js"></script> <style>.content__container { min-width: 300px; }</style> <!-- PubGrade code --> </div> <div id="middle-column" class="content__column large-9 medium-9 small-12 columns end middle-bordered"> <div class="middle-column__help"> <div class="middle-column__help__fixed show-for-medium-up"> <span id="js-altmetrics-donut" href="#" target="_blank" rel="noopener noreferrer" style="display: none;"> <span data-badge-type='donut' class='altmetric-embed' data-doi='10.3390/ijms25031469'></span> <span>Altmetric</span> </span> <a href="#" class="UA_ShareButton" data-reveal-id="main-share-modal" title="Share"> <i class="material-icons">share</i> <span>Share</span> </a> <a href="#" data-reveal-id="main-help-modal" title="Help"> <i class="material-icons">announcement</i> <span>Help</span> </a> <a href="javascript:void(0);" data-reveal-id="cite-modal" data-counterslink = "https://www.mdpi.com/1422-0067/25/3/1469/cite" > <i class="material-icons">format_quote</i> <span>Cite</span> </a> <a href="https://sciprofiles.com/discussion-groups/public/10.3390/ijms25031469?utm_source=mpdi.com&utm_medium=publication&utm_campaign=discuss_in_sciprofiles" target="_blank" rel="noopener noreferrer" title="Discuss in Sciprofiles"> <i class="material-icons">question_answer</i> <span>Discuss in SciProfiles</span> </a> </div> <div id="main-help-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Need Help?</h2> </div> <div class="small-6 columns"> <h3>Support</h3> <p> Find support for a specific problem in the support section of our website. </p> <a target="_blank" href="/about/contactform" class="button button--color button--full-width"> Get Support </a> </div> <div class="small-6 columns"> <h3>Feedback</h3> <p> Please let us know what you think of our products and services. </p> <a target="_blank" href="/feedback/send" class="button button--color button--full-width"> Give Feedback </a> </div> <div class="small-6 columns end"> <h3>Information</h3> <p> Visit our dedicated information section to learn more about MDPI. </p> <a target="_blank" href="/authors" class="button button--color button--full-width"> Get Information </a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> <div class="middle-column__main "> <div class="page-highlight"> <style type="text/css"> img.review-status { width: 30px; } </style> <div id="jmolModal" class="reveal-modal" data-reveal aria-labelledby="Captcha" aria-hidden="true" role="dialog"> <h2>JSmol Viewer</h2> <div class="row"> <div class="small-12 columns text-center"> <iframe style="width: 520px; height: 520px;" frameborder="0" id="jsmol-content"></iframe> <div class="content"></div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div itemscope itemtype="http://schema.org/ScholarlyArticle" id="abstract" class="abstract_div"> <div class="js-check-update-container"></div> <div class="html-content__container content__container content__container__combined-for-large__first" style="overflow: auto; position: inherit;"> <div class='html-profile-nav'> <div class='top-bar'> <div class='nav-sidebar-btn show-for-large-up' data-status='opened' > <i class='material-icons'>first_page</i> </div> <a id="js-button-download" class="button button--color-inversed" style="display: none;" href="/1422-0067/25/3/1469/pdf?version=1706171112" data-name="Trials and Tribulations of MicroRNA Therapeutics" data-journal="ijms"> <i class="material-icons custom-download"></i> Download PDF </a> <div class='nav-btn'> <i class='material-icons'>settings</i> </div> <a href="/1422-0067/25/3/1469/reprints" id="js-button-reprints" class="button button--color-inversed"> Order Article Reprints </a> </div> <div class='html-article-menu'> <div class='html-first-step row'> <div class='html-font-family large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'> Font Type: </div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option"><i style='font-family:Arial, Arial, Helvetica, sans-serif;' data-fontfamily='Arial, Arial, Helvetica, sans-serif'>Arial</i></span> <span class="html-article-menu-option"><i style='font-family:Georgia1, Georgia, serif;' data-fontfamily='Georgia1, Georgia, serif'>Georgia</i></span> <span class="html-article-menu-option"><i style='font-family:Verdana, Verdana, Geneva, sans-serif;' data-fontfamily='Verdana, Verdana, Geneva, sans-serif' >Verdana</i></span> </div> </div> </div> <div class='html-font-resize large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'>Font Size:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-percent="100">Aa</span> <span class="html-article-menu-option a2" data-percent="120">Aa</span> <span class="html-article-menu-option a3" data-percent="160">Aa</span> </div> </div> </div> </div> <div class='row'> <div class='html-line-space large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns' >Line Spacing:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-line-height="1.5em"> <i class="fa">&#xf034;</i> </span> <span class="html-article-menu-option a2" data-line-height="1.8em"> <i class="fa">&#xf034;</i> </span> <span class="html-article-menu-option a3" data-line-height="2.1em"> <i class="fa">&#xf034;</i> </span> </div> </div> </div> <div class='html-column-width large-6 medium-6 small-12 columns'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns' >Column Width:</div> <div class='large-8 medium-8 small-12 columns'> <span class="html-article-menu-option a1" data-column-width="20%"> <i class="fa">&#xf035;</i> </span> <span class="html-article-menu-option a2" data-column-width="10%"> <i class="fa">&#xf035;</i> </span> <span class="html-article-menu-option a3" data-column-width="0%"> <i class="fa">&#xf035;</i> </span> </div> </div> </div> </div> <div class='row'> <div class='html-font-bg large-6 medium-6 small-12 columns end'> <div class='row'> <div class='html-font-label large-4 medium-4 small-12 columns'>Background:</div> <div class='large-8 medium-8 small-12 columns'> <div class="html-article-menu-option html-nav-bg html-nav-bright" data-bg="bright"> <i class="fa fa-file-text"></i> </div> <div class="html-article-menu-option html-nav-bg html-nav-dark" data-bg="dark"> <i class="fa fa-file-text-o"></i> </div> <div class="html-article-menu-option html-nav-bg html-nav-creme" data-bg="creme"> <i class="fa fa-file-text"></i> </div> </div> </div> </div> </div> </div> </div> <article ><div class='html-article-content'> <span itemprop="publisher" content="Multidisciplinary Digital Publishing Institute"></span><span itemprop="url" content="https://www.mdpi.com/1422-0067/25/3/1469"></span> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label articletype">Review</span></div> <h1 class="title hypothesis_container" itemprop="name"> Trials and Tribulations of MicroRNA Therapeutics </h1> <div class="art-authors hypothesis_container"> by <span class="inlineblock "><div class='profile-card-drop' data-dropdown='profile-card-drop12269434' data-options='is_hover:true, hover_timeout:5000'> Attila A. Seyhan</div><div id="profile-card-drop12269434" data-dropdown-content class="f-dropdown content profile-card-content" aria-hidden="true" tabindex="-1"><div class="profile-card__title"><div class="sciprofiles-link" style="display: inline-block"><div class="sciprofiles-link__link"><img class="sciprofiles-link__image" src="/profiles/1561541/thumb/Attila_Seyhan.png" style="width: auto; height: 16px; border-radius: 50%;"><span class="sciprofiles-link__name">Attila A. Seyhan</span></div></div></div><div class="profile-card__buttons" style="margin-bottom: 10px;"><a href="https://sciprofiles.com/profile/1561541?utm_source=mdpi.com&amp;utm_medium=website&amp;utm_campaign=avatar_name" class="button button--color-inversed" target="_blank"> SciProfiles </a><a href="https://scilit.com/scholars?q=Attila%20A.%20Seyhan" class="button button--color-inversed" target="_blank"> Scilit </a><a href="https://www.preprints.org/search?search1=Attila%20A.%20Seyhan&field1=authors" class="button button--color-inversed" target="_blank"> Preprints.org </a><a href="https://scholar.google.com/scholar?q=Attila%20A.%20Seyhan" class="button button--color-inversed" target="_blank" rels="noopener noreferrer"> Google Scholar </a></div><div class="profile-card__biography"><div class="js-profile-card__biography-item js-default-open"> Dr. Attila A. Seyhan is the director of translational oncology operations at the Legorreta Cancer at [...] </div><div class="js-profile-card__biography-item js-default-closed" style="display: none;"> Dr. Attila A. Seyhan is the director of translational oncology operations at the Legorreta Cancer Center at Brown University, the joint program in cancer biology and the Lifespan health system, Warren Alpert Medical School, Brown University. He is also an Associate Professor (adj.) at the Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University. Previously, he was an Associate Professor at the Translational Research Institute for Metabolism and Diabetes at Florida Hospital, and an Adjunct Associate Professor at Sanford Burnham Prebys Medical Discovery Institute. He has served as a research affiliate in the Department of Chemical Engineering at the Massachusetts Institute of Technology in Boston. He earned his Ph.D. in biological sciences from Michigan Technological University on a NATO Science Fellowship and a BS degree in biology from Hacettepe University. He has won several awards (a doctoral fellowship from NATO, the Young Investigator Award at the Symposium on RNA Biology III, Pfizer Excellence Awards for contributions towards Biomarkers of Lupus Disease Study). In addition to academia, he has served in leading roles as senior principal scientist at Pfizer Pharmaceuticals, principal scientist and head of functional genomics at Wyeth Pharmaceuticals, senior scientist II at Open Biosystems/Thermo Fisher, Dharmacon/GE Healthcare, and SomaGenics, Inc. </div><div><a href="#" class='js-profile-card__biography-item js-default-open'>Read more</a><a href="#" class='js-profile-card__biography-item js-default-closed' style="display: none;">Read less</a></div></div></div><sup> 1,2,3,4</sup><span style="display: inline; margin-left: 5px;"></span><a class="toEncode emailCaptcha visibility-hidden" data-author-id="12269434" href="/cdn-cgi/l/email-protection#97b8f4f9f3baf4f0feb8fbb8f2faf6fefbbae7e5f8e3f2f4e3fef8f9b4a7a7a6a2a1a6a6a2a7afa7f3a7a7a4f2a6a5a7a3a6afa7aea7a7a7f1a5a6a7a4a6a4a7f2a6a1a7f1a3f1a7a3a7a2a6a3"><sup><i class="fa fa-envelope-o"></i></sup></a><a href="https://orcid.org/0000-0003-1276-8466" target="_blank" rel="noopener noreferrer"><img src="https://pub.mdpi-res.com/img/design/orcid.png?0465bc3812adeb52?1739526160" title="ORCID" style="position: relative; width: 13px; margin-left: 3px; max-width: 13px !important; height: auto; top: -5px;"></a></span> </div> <div class="nrm"></div> <span style="display:block; height:6px;"></span> <div></div> <div style="margin: 5px 0 15px 0;" class="hypothesis_container"> <div class="art-affiliations"> <div class="affiliation "> <div class="affiliation-item"><sup>1</sup></div> <div class="affiliation-name ">Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA</div> </div> <div class="affiliation "> <div class="affiliation-item"><sup>2</sup></div> <div class="affiliation-name ">Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA</div> </div> <div class="affiliation "> <div class="affiliation-item"><sup>3</sup></div> <div class="affiliation-name ">Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA</div> </div> <div class="affiliation "> <div class="affiliation-item"><sup>4</sup></div> <div class="affiliation-name ">Legorreta Cancer Center, Brown University, Providence, RI 02912, USA</div> </div> </div> </div> <div class="bib-identity" style="margin-bottom: 10px;"> <em>Int. J. Mol. Sci.</em> <b>2024</b>, <em>25</em>(3), 1469; <a href="https://doi.org/10.3390/ijms25031469">https://doi.org/10.3390/ijms25031469</a> </div> <div class="pubhistory" style="font-weight: bold; padding-bottom: 10px;"> <span style="display: inline-block">Submission received: 22 December 2023</span> / <span style="display: inline-block">Revised: 15 January 2024</span> / <span style="display: inline-block">Accepted: 17 January 2024</span> / <span style="display: inline-block">Published: 25 January 2024</span> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/ijms/special_issues/EH1GI44AJ4 ">Exosomes and Non-Coding RNA Research in Health and Disease</a>)<br/> </div> <div class="highlight-box1"> <div class="download"> <a class="button button--color-inversed button--drop-down" data-dropdown="drop-download-1326201" aria-controls="drop-supplementary-1326201" aria-expanded="false"> Download <i class="material-icons">keyboard_arrow_down</i> </a> <div id="drop-download-1326201" class="f-dropdown label__btn__dropdown label__btn__dropdown--button" data-dropdown-content aria-hidden="true" tabindex="-1"> <a class="UD_ArticlePDF" href="/1422-0067/25/3/1469/pdf?version=1706171112" data-name="Trials and Tribulations of MicroRNA Therapeutics" data-journal="ijms">Download PDF</a> <br/> <a id="js-pdf-with-cover-access-captcha" href="#" data-target="/1422-0067/25/3/1469/pdf-with-cover" class="accessCaptcha">Download PDF with Cover</a> <br/> <a id="js-xml-access-captcha" href="#" data-target="/1422-0067/25/3/1469/xml" class="accessCaptcha">Download XML</a> <br/> <a href="/1422-0067/25/3/1469/epub" id="epub_link">Download Epub</a> <br/> </div> <div class="js-browse-figures" style="display: inline-block;"> <a href="#" class="button button--color-inversed margin-bottom-10 openpopupgallery UI_BrowseArticleFigures" data-target='article-popup' data-counterslink = "https://www.mdpi.com/1422-0067/25/3/1469/browse" >Browse Figures</a> </div> <div id="article-popup" class="popupgallery" style="display: inline; line-height: 200%"> <a href="https://pub.mdpi-res.com/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g001.png?1706171208" title=" <strong>Figure 1</strong><br/> &lt;p&gt;Illustration of miRNA biogenesis, processing, and mechanisms of translational suppression or degradation of target RNA. miRNAs are a class of small, single-stranded non-coding RNAs that function as a guide molecule in RNA silencing and hence modulate the expression of most mRNAs. The miRNA: target–mRNA interaction usually occurs at the 5′ end of the miRNA (i.e., ‘seed’ region). However, recent evidence suggests that there is a special class of target mRNAs which bind the miRNA not only through the ‘seed’ region, but also through a second region of complementarity at the 3′ end of the miRNA. The extended complementarity forces the miRNA out of Ago2, where it becomes accessible to enzymatic degradation. This phenomenon is referred to as the target-directed miRNA degradation mechanism (TDMD). Created with &lt;a href=&quot;http://BioRender.com&quot; target=&quot;_blank&quot;&gt;BioRender.com&lt;/a&gt; (accessed on 16 January 2024).&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g002.png?1706171210" title=" <strong>Figure 2</strong><br/> &lt;p&gt;Schematic overview of miRNA therapeutic strategies to regulate the function of oncogenic and tumor suppressor miRNAs involved in cancer. (&lt;b&gt;Top Panel&lt;/b&gt;): The strategy of miRNA therapeutics is based on restoring the balance of oncogenic miRNAs and tumor suppressor miRNAs. This involves downregulating the expression of oncomir RNAs (oncomirs) or upregulating the expression of tumor suppressor miRNAs. (&lt;b&gt;Bottom panel&lt;/b&gt;): Therapeutic manipulations involving miRNAs can target the expression or function of pathologically significant miRNAs through various approaches. These methods include miRNA inhibitors (antagomirs or antimirs) that degrade or block the function of endogenous miRNAs, synthetic miRNA mimics that replicate endogenous miRNA functions, miRNAs expressed via viral vectors, small-molecule inhibitors that disrupt miRNA biogenesis, or miRNA sponges that functionally inhibit endogenous miRNAs by diverting them from their mRNA targets. Moreover, combining miRNAs with chemotherapies, immunotherapies, other traditional drugs or therapies, or siRNAs represents an additional strategy to counter drug resistance. Created with &lt;a href=&quot;http://BioRender.com&quot; target=&quot;_blank&quot;&gt;BioRender.com&lt;/a&gt; (accessed on 16 January 2024).&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g003.png?1706171212" title=" <strong>Figure 3</strong><br/> &lt;p&gt;Diagram depicting various mechanisms employed by small-molecule inhibitors to target and inhibit specific miRNAs. “--|&quot;represent the inhibition or blockage of a process. Created with &lt;a href=&quot;http://BioRender.com&quot; target=&quot;_blank&quot;&gt;BioRender.com&lt;/a&gt; (accessed on 16 January 2024).&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g004.png?1706171215" title=" <strong>Figure 4</strong><br/> &lt;p&gt;Examples of miRNA delivery systems. miRNA therapeutics can be administered orally or intranasally or through venous (intravenously) or muscle (intramuscularly) or skin (subcutaneously) injections, or via cell-/tissue-directed approaches, or adoptive cell transfer, or the implantation of 3D matrices that release miRNA therapeutics, or other extracorporeal miRNA delivery strategies. Other modes of delivery of miRNA therapeutics include vector based and non-vector-based delivery systems including (&lt;b&gt;A&lt;/b&gt;) adeno-associated virus (&lt;b&gt;B&lt;/b&gt;) Lentivirus; (&lt;b&gt;C&lt;/b&gt;) bacterial nanocells; (&lt;b&gt;D&lt;/b&gt;) bacteriophages; liposomes, including monovalent and multivalent lipids such as (&lt;b&gt;E&lt;/b&gt;) cationic lipid-based ligand-targeted nanoparticles; (&lt;b&gt;F&lt;/b&gt;) natural polymer-based nanoparticles; (&lt;b&gt;G&lt;/b&gt;) polymer-based nanoparticles (natural, green and synthetic, blue) conjugated with polyethylene glycol (PEG); (&lt;b&gt;H&lt;/b&gt;) extracellular vesicles or exosomes; (&lt;b&gt;I&lt;/b&gt;) gold nanoparticles [&lt;a href=&quot;#B224-ijms-25-01469&quot; class=&quot;html-bibr&quot;&gt;224&lt;/a&gt;]; (&lt;b&gt;J&lt;/b&gt;) carbon nanotubes; (&lt;b&gt;K&lt;/b&gt;) quantum dot nanoparticles; (&lt;b&gt;L&lt;/b&gt;) core–shell magnetic nanoparticles; (&lt;b&gt;M&lt;/b&gt;) mesoporous silica nananoparticles and others such as polymeric micelles, and mesoporous silica nanoparticles are the examples of nanocarriers as drug-delivery systems. Moreover, there have been efforts to improve the serum stability, pharmacokinetics, and tissue specificity by targeted delivery of miRNA mimics, miRNA inhibitors, and other nucleic acid therapeutics through the incorporation of various chemical modifications and/or conjugation of these RNA and nucleic acid therapeutics to biomolecules to facilitate receptor-mediated uptake such as N-acetylgalactosamine (GalNAc), 2′-O-methyl nucleotide, phosphorothioate, cholesterol, locked nucleic acid (LNA), and aptamer moieties. Created with &lt;a href=&quot;http://BioRender.com&quot; target=&quot;_blank&quot;&gt;BioRender.com&lt;/a&gt; (accessed on 16 January 2024).&lt;/p&gt; "> </a> <a href="https://pub.mdpi-res.com/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g005.png?1706171217" title=" <strong>Figure 5</strong><br/> &lt;p&gt;Illustration of the miRNA-based drug discovery and development process beginning from target identification and miRNA discovery to FDA-approved miRNA therapeutics on the market. In the traditional drug development process, the timeline from target identification and drug discovery to phase 1–3 human clinical trials and, ultimately, FDA approval, followed by phase 4 studies, can go on for several years. Conversely, RNA-based and, more specifically, miRNA-based drug discovery and development can potentially mitigate attrition rates, time constraints, and costs. The initial phase in developing miRNA therapeutics involves systematically selecting potential miRNA candidates by analyzing patient samples and validating their relevance to a particular disease of interest through tissue culture and in vivo models. Various publicly available genomic and proteomic databases from diverse healthy and diseased tissues can aid in identifying promising miRNA candidates when combined with biological validation. The next step often involves modifying miRNA therapeutics and optimizing delivery systems suitable for in vivo applications. A major concern with miRNA therapeutics is their susceptibility to degradation by nucleases and endosomal escape. To improve the stability of miRNA therapeutics, chemical modifications such as adding a 2′-O-methyl group, 2-F group, locked nucleic acids (LNAs), or peptide nucleic acids (PNAs) as well as a phosphorothioate group considerably enhance stability. Various encapsulation methods such as lipid nanoparticles, neutral lipid emulsions, or dendrimer complexes equipped with a targeting moiety have been employed for improved delivery to target tissue and disease sites. Yet, challenges remain in transitioning these delivery systems into clinical applications due to potential immune activation effects and the lack of precise targeting for disease sites. Successful translation of lead miRNAs into clinical studies requires rigorous disease-specific in vivo testing using rodent and non-human primate models. Rigorous evaluation of toxicity data and target engagement is crucial to avert early setbacks in clinical trials. Created with &lt;a href=&quot;http://BioRender.com&quot; target=&quot;_blank&quot;&gt;BioRender.com&lt;/a&gt; (accessed on 16 January 2024).&lt;/p&gt; "> </a> </div> <a class="button button--color-inversed" href="/1422-0067/25/3/1469/review_report">Review&nbsp;Reports</a> <a class="button button--color-inversed" href="/1422-0067/25/3/1469/notes">Versions&nbsp;Notes</a> </div> </div> <div class="responsive-moving-container small hidden" data-id="article-counters" style="margin-top: 15px;"></div> <div class="html-dynamic"> <section> <div class="art-abstract art-abstract-new in-tab hypothesis_container"> <p> <div><section class="html-abstract" id="html-abstract"> <h2 id="html-abstract-title">Abstract</h2><b>:</b> <div class="html-p">The discovery of the link between microRNAs (miRNAs) and a myriad of human diseases, particularly various cancer types, has generated significant interest in exploring their potential as a novel class of drugs. This has led to substantial investments in interdisciplinary research fields such as biology, chemistry, and medical science for the development of miRNA-based therapies. Furthermore, the recent global success of SARS-CoV-2 mRNA vaccines against the COVID-19 pandemic has further revitalized interest in RNA-based immunotherapies, including miRNA-based approaches to cancer treatment. Consequently, RNA therapeutics have emerged as highly adaptable and modular options for cancer therapy. Moreover, advancements in RNA chemistry and delivery methods have been pivotal in shaping the landscape of RNA-based immunotherapy, including miRNA-based approaches. Consequently, the biotechnology and pharmaceutical industry has witnessed a resurgence of interest in incorporating RNA-based immunotherapies and miRNA therapeutics into their development programs. Despite substantial progress in preclinical research, the field of miRNA-based therapeutics remains in its early stages, with only a few progressing to clinical development, none reaching phase III clinical trials or being approved by the US Food and Drug Administration (FDA), and several facing termination due to toxicity issues. These setbacks highlight existing challenges that must be addressed for the broad clinical application of miRNA-based therapeutics. Key challenges include establishing miRNA sensitivity, specificity, and selectivity towards their intended targets, mitigating immunogenic reactions and off-target effects, developing enhanced methods for targeted delivery, and determining optimal dosing for therapeutic efficacy while minimizing side effects. Additionally, the limited understanding of the precise functions of miRNAs limits their clinical utilization. Moreover, for miRNAs to be viable for cancer treatment, they must be technically and economically feasible for the widespread adoption of RNA therapies. As a result, a thorough risk evaluation of miRNA therapeutics is crucial to minimize off-target effects, prevent overdosing, and address various other issues. Nevertheless, the therapeutic potential of miRNAs for various diseases is evident, and future investigations are essential to determine their applicability in clinical settings.</div> </section> <div id="html-keywords"> <div class="html-gwd-group"><div id="html-keywords-title">Keywords: </div><a href="/search?q=microRNAs">microRNAs</a>; <a href="/search?q=miRNAs">miRNAs</a>; <a href="/search?q=post-transcriptional+gene+regulation">post-transcriptional gene regulation</a>; <a href="/search?q=miRNA+therapeutics">miRNA therapeutics</a>; <a href="/search?q=miRNA+mimics">miRNA mimics</a>; <a href="/search?q=antimirs">antimirs</a>; <a href="/search?q=antagomirs">antagomirs</a></div> <div> </div> </div> </div> </p> </div> </section> </div> <div class="hypothesis_container"> <ul class="menu html-nav" data-prev-node="#html-quick-links-title"> </ul> <div class="html-body"> <section id='sec1-ijms-25-01469' type='intro'><h2 data-nested='1'> 1. Introduction</h2><div class='html-p'>While most of the research in oncology predominantly centers around the ever-changing aspects of proteins and the RNA molecules responsible for coding those proteins, it is important to note that these coding sequences account for only about 2% of the genome (<a href='https://www.genomicseducation.hee.nhs.uk/genotes/knowledge-hub/non-coding-dna/' target='_blank' rel="noopener noreferrer">https://www.genomicseducation.hee.nhs.uk/genotes/knowledge-hub/non-coding-dna/</a>) (accessed on 20 December 2023) [<a href="#B1-ijms-25-01469" class="html-bibr">1</a>,<a href="#B2-ijms-25-01469" class="html-bibr">2</a>,<a href="#B3-ijms-25-01469" class="html-bibr">3</a>]. However, the remaining 98% of the genome, which includes non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), plays pivotal roles in numerous biological processes during normal physiological processes, as well as in the onset and development of various diseases, including various types of human cancers [<a href="#B4-ijms-25-01469" class="html-bibr">4</a>]. This emphasizes the significance of miRNAs and other non-coding RNAs in the initiation and progression of tumors.</div><div class='html-p'>In addition, miRNAs play key functions in the modulating expression of numerous genes both at the transcriptional [<a href="#B5-ijms-25-01469" class="html-bibr">5</a>,<a href="#B6-ijms-25-01469" class="html-bibr">6</a>,<a href="#B7-ijms-25-01469" class="html-bibr">7</a>] and post-transcriptional [<a href="#B8-ijms-25-01469" class="html-bibr">8</a>,<a href="#B9-ijms-25-01469" class="html-bibr">9</a>,<a href="#B10-ijms-25-01469" class="html-bibr">10</a>,<a href="#B11-ijms-25-01469" class="html-bibr">11</a>] levels, and exhibit tissue-specific [<a href="#B12-ijms-25-01469" class="html-bibr">12</a>,<a href="#B13-ijms-25-01469" class="html-bibr">13</a>] and developmental expression patterns [<a href="#B14-ijms-25-01469" class="html-bibr">14</a>,<a href="#B15-ijms-25-01469" class="html-bibr">15</a>,<a href="#B16-ijms-25-01469" class="html-bibr">16</a>], showcasing their significance in a diverse range of biological processes within cells and organisms. Altered expression of miRNAs has emerged as an additional molecular mechanism implicated in the pathogenesis of numerous diseases [<a href="#B17-ijms-25-01469" class="html-bibr">17</a>,<a href="#B18-ijms-25-01469" class="html-bibr">18</a>,<a href="#B19-ijms-25-01469" class="html-bibr">19</a>], spanning innate immunity [<a href="#B20-ijms-25-01469" class="html-bibr">20</a>], autoimmunity and autoimmune diseases [<a href="#B21-ijms-25-01469" class="html-bibr">21</a>], viral infections [<a href="#B22-ijms-25-01469" class="html-bibr">22</a>,<a href="#B23-ijms-25-01469" class="html-bibr">23</a>,<a href="#B24-ijms-25-01469" class="html-bibr">24</a>,<a href="#B25-ijms-25-01469" class="html-bibr">25</a>], acute hepatitis [<a href="#B26-ijms-25-01469" class="html-bibr">26</a>], depression [<a href="#B27-ijms-25-01469" class="html-bibr">27</a>], anxiety [<a href="#B28-ijms-25-01469" class="html-bibr">28</a>], Alzheimer’s disease [<a href="#B29-ijms-25-01469" class="html-bibr">29</a>], Huntington’s disease [<a href="#B30-ijms-25-01469" class="html-bibr">30</a>], metabolic and cardiovascular diseases [<a href="#B31-ijms-25-01469" class="html-bibr">31</a>,<a href="#B32-ijms-25-01469" class="html-bibr">32</a>,<a href="#B33-ijms-25-01469" class="html-bibr">33</a>,<a href="#B34-ijms-25-01469" class="html-bibr">34</a>], diabetes [<a href="#B8-ijms-25-01469" class="html-bibr">8</a>,<a href="#B33-ijms-25-01469" class="html-bibr">33</a>,<a href="#B34-ijms-25-01469" class="html-bibr">34</a>,<a href="#B35-ijms-25-01469" class="html-bibr">35</a>,<a href="#B36-ijms-25-01469" class="html-bibr">36</a>,<a href="#B37-ijms-25-01469" class="html-bibr">37</a>,<a href="#B38-ijms-25-01469" class="html-bibr">38</a>], and many types of cancers [<a href="#B12-ijms-25-01469" class="html-bibr">12</a>,<a href="#B39-ijms-25-01469" class="html-bibr">39</a>,<a href="#B40-ijms-25-01469" class="html-bibr">40</a>,<a href="#B41-ijms-25-01469" class="html-bibr">41</a>,<a href="#B42-ijms-25-01469" class="html-bibr">42</a>,<a href="#B43-ijms-25-01469" class="html-bibr">43</a>,<a href="#B44-ijms-25-01469" class="html-bibr">44</a>,<a href="#B45-ijms-25-01469" class="html-bibr">45</a>,<a href="#B46-ijms-25-01469" class="html-bibr">46</a>,<a href="#B47-ijms-25-01469" class="html-bibr">47</a>,<a href="#B48-ijms-25-01469" class="html-bibr">48</a>,<a href="#B49-ijms-25-01469" class="html-bibr">49</a>,<a href="#B50-ijms-25-01469" class="html-bibr">50</a>,<a href="#B51-ijms-25-01469" class="html-bibr">51</a>,<a href="#B52-ijms-25-01469" class="html-bibr">52</a>,<a href="#B53-ijms-25-01469" class="html-bibr">53</a>,<a href="#B54-ijms-25-01469" class="html-bibr">54</a>,<a href="#B55-ijms-25-01469" class="html-bibr">55</a>,<a href="#B56-ijms-25-01469" class="html-bibr">56</a>,<a href="#B57-ijms-25-01469" class="html-bibr">57</a>,<a href="#B58-ijms-25-01469" class="html-bibr">58</a>,<a href="#B59-ijms-25-01469" class="html-bibr">59</a>,<a href="#B60-ijms-25-01469" class="html-bibr">60</a>,<a href="#B61-ijms-25-01469" class="html-bibr">61</a>,<a href="#B62-ijms-25-01469" class="html-bibr">62</a>,<a href="#B63-ijms-25-01469" class="html-bibr">63</a>,<a href="#B64-ijms-25-01469" class="html-bibr">64</a>,<a href="#B65-ijms-25-01469" class="html-bibr">65</a>,<a href="#B66-ijms-25-01469" class="html-bibr">66</a>,<a href="#B67-ijms-25-01469" class="html-bibr">67</a>,<a href="#B68-ijms-25-01469" class="html-bibr">68</a>,<a href="#B69-ijms-25-01469" class="html-bibr">69</a>]. Consequently, these miRNAs can serve as indicators for the presence of a pathological condition, as well as provide insights into its stage, progression, or genetic associations.</div><div class='html-p'>More recently, there is emerging evidence suggesting that diet-derived exogenous miRNAs (or “xenomiRs”) can enter the circulatory system and tissues, potentially influencing gene expression and biological functions [<a href="#B70-ijms-25-01469" class="html-bibr">70</a>,<a href="#B71-ijms-25-01469" class="html-bibr">71</a>,<a href="#B72-ijms-25-01469" class="html-bibr">72</a>,<a href="#B73-ijms-25-01469" class="html-bibr">73</a>,<a href="#B74-ijms-25-01469" class="html-bibr">74</a>,<a href="#B75-ijms-25-01469" class="html-bibr">75</a>].</div><div class='html-p'>The absorption of miRNAs by gastric and intestinal cells, along with their potential impact on the gut microbiota and their potential immunomodulatory effects suggests the potential for cross-species or cross-kingdom communication via miRNAs [<a href="#B75-ijms-25-01469" class="html-bibr">75</a>]. Because of these observations, one potential method of administering miRNAs is orally.</div><div class='html-p'>miRNAs are often associated with extracellular vesicles (EVs), RNA-binding proteins, lipoproteins, or lipid derivatives, along with nanoparticles.</div><div class='html-p'>These protective elements shield miRNAs against the harsh gastrointestinal environment, which encompasses salivary and pancreatic RNases, the low pH of the stomach, digestive enzymes, peristaltic activity, and microbial enzymes. This protective shield presumably aids in the absorption of miRNAs from the digestive tract [<a href="#B75-ijms-25-01469" class="html-bibr">75</a>].</div><div class='html-p'>However, there is ongoing debate surrounding the absorption, stability, and physiological impact of these food-derived miRNAs. Conflicting findings exist regarding the bioavailability and the functional role of plant food-contained miRNAs in human systems [<a href="#B76-ijms-25-01469" class="html-bibr">76</a>,<a href="#B77-ijms-25-01469" class="html-bibr">77</a>].</div><div class='html-p'>Ongoing research continues to uncover new insights into the molecular mechanisms that drive the dysregulation of miRNA biogenesis and aberrant expression in cancer.</div><div class='html-p'>For example, it is widely recognized that various factors such as genetic deletions or amplifications, epigenetic methylation of miRNA genomic loci, and modifications affecting the regulation of primary miRNAs (pri-miRNA) by transcription factors, alongside components involved in the miRNA biogenesis pathway frequently lead to alterations in miRNA expression and function across numerous cancer types [<a href="#B56-ijms-25-01469" class="html-bibr">56</a>,<a href="#B78-ijms-25-01469" class="html-bibr">78</a>,<a href="#B79-ijms-25-01469" class="html-bibr">79</a>].</div><div class='html-p'>Moreover, other contributing factors, such as oncogenic drivers like mutations occurring in the <span class='html-italic'>KRAS</span> gene, also have an impact on the overall miRNA biogenesis and effector function, thereby contributing to broader miRNA dysregulation [<a href="#B80-ijms-25-01469" class="html-bibr">80</a>].</div><div class='html-p'>As a result, the dysregulation of miRNAs has attracted substantial interest from both academia and industry, standing as a pivotal research domain. This focus extends to comprehending disease biology and exploring their potential applications as diagnostic, prognostic, and predictive biomarkers [<a href="#B68-ijms-25-01469" class="html-bibr">68</a>]. Additionally, there is a growing interest in exploring miRNAs as potential drug targets or therapeutic agents [<a href="#B81-ijms-25-01469" class="html-bibr">81</a>].</div><div class='html-p'>miRNAs are widely recognized as potent genetic regulators that influence diverse biological and developmental processes, while also holding a pivotal role in the pathogenesis of various diseases. This potency stems from a single miRNA’s ability to regulate entire cellular pathways by interacting with numerous target genes [<a href="#B77-ijms-25-01469" class="html-bibr">77</a>].</div><div class='html-p'>Because of this, miRNAs have emerged as a novel class of therapeutic agents with the potential to restore disrupted cellular functions, particularly in various malignancies, including cancer. However, the very potency of miRNAs can be a double-edged sword. Their far-reaching effects, while beneficial, can also lead to off-target effects in non-targeted tissues, a concern documented in recent clinical trials [<a href="#B82-ijms-25-01469" class="html-bibr">82</a>,<a href="#B83-ijms-25-01469" class="html-bibr">83</a>,<a href="#B84-ijms-25-01469" class="html-bibr">84</a>]. Managing these off-target effects represents a significant challenge to be addressed. Take, for instance, MRX34, a miR-34a mimic encapsulated within a liposome-formulated nanoparticle (NOV40) that was evaluated in a first-in-human phase 1 study in patients with advanced solid tumors, including melanoma NSCLC, hepatocellular carcinoma, and renal carcinoma.</div><div class='html-p'>Despite MRX34 demonstrating significant efficacy, with three patients achieving prolonged confirmed partial responses and 14 patients maintaining stable disease (median duration, 136 days) [<a href="#B85-ijms-25-01469" class="html-bibr">85</a>], the clinical trial faced termination due to serious immune-mediated adverse events, leading to the deaths of four patients (NCT01829971) [<a href="#B82-ijms-25-01469" class="html-bibr">82</a>,<a href="#B83-ijms-25-01469" class="html-bibr">83</a>,<a href="#B84-ijms-25-01469" class="html-bibr">84</a>]. Nevertheless, the dose-dependent modulation of disease-associated target genes serves as evidence supporting the concept of miRNA-based cancer therapy.</div><div class='html-p'>This review discusses the dysregulation of miRNA expression in cancer and the potential of miRNAs as therapeutics. It also further discusses the primary challenges and strategies required to overcome obstacles and fully exploit the therapeutic potential of miRNAs.</div></section><section id='sec2-ijms-25-01469' type=''><h2 data-nested='1'> 2. miRNAs</h2><div class='html-p'>Following the discovery of lin-4 as the first miRNA in 1993 in <span class='html-italic'>Caenorhabditis elegans</span> [<a href="#B85-ijms-25-01469" class="html-bibr">85</a>,<a href="#B86-ijms-25-01469" class="html-bibr">86</a>], it became evident that miRNAs are widespread in the animal and plant kingdoms, some of which exhibit high levels of conservation across species [<a href="#B87-ijms-25-01469" class="html-bibr">87</a>,<a href="#B88-ijms-25-01469" class="html-bibr">88</a>,<a href="#B89-ijms-25-01469" class="html-bibr">89</a>].</div><div class='html-p'>miRNAs, short non-coding RNA molecules typically about 22 nucleotides long, are naturally encoded in the genomes of diverse species [<a href="#B87-ijms-25-01469" class="html-bibr">87</a>,<a href="#B88-ijms-25-01469" class="html-bibr">88</a>,<a href="#B89-ijms-25-01469" class="html-bibr">89</a>,<a href="#B90-ijms-25-01469" class="html-bibr">90</a>].</div><div class='html-p'>They play pivotal roles in regulating gene expression at both transcriptional [<a href="#B5-ijms-25-01469" class="html-bibr">5</a>,<a href="#B6-ijms-25-01469" class="html-bibr">6</a>,<a href="#B7-ijms-25-01469" class="html-bibr">7</a>] and post-transcriptional [<a href="#B8-ijms-25-01469" class="html-bibr">8</a>,<a href="#B9-ijms-25-01469" class="html-bibr">9</a>,<a href="#B10-ijms-25-01469" class="html-bibr">10</a>,<a href="#B11-ijms-25-01469" class="html-bibr">11</a>,<a href="#B91-ijms-25-01469" class="html-bibr">91</a>] levels of their target mRNAs [<a href="#B8-ijms-25-01469" class="html-bibr">8</a>,<a href="#B10-ijms-25-01469" class="html-bibr">10</a>], influencing mRNA stability and translation [<a href="#B92-ijms-25-01469" class="html-bibr">92</a>] across a wide array of biological processes [<a href="#B93-ijms-25-01469" class="html-bibr">93</a>], impacting activities such as cell differentiation, proliferation, angiogenesis, and apoptosis.</div><div class='html-p'>Additionally, miRNAs demonstrate distinct expression patterns in various tissues [<a href="#B12-ijms-25-01469" class="html-bibr">12</a>,<a href="#B13-ijms-25-01469" class="html-bibr">13</a>] and during different developmental stages [<a href="#B14-ijms-25-01469" class="html-bibr">14</a>,<a href="#B15-ijms-25-01469" class="html-bibr">15</a>,<a href="#B16-ijms-25-01469" class="html-bibr">16</a>].</div><div class='html-p'>There are currently estimated to be more than 2588 mature human miRNAs present in human cells [<a href="#B94-ijms-25-01469" class="html-bibr">94</a>], each with a unique temporal and tissue-dependent expression pattern. These miRNAs are estimated to control over 60% of human gene expression, showcasing their significant regulatory roles in diverse physiological processes. Because a single microRNA can regulate multiple genes, many miRNAs can contribute to the development of many human diseases when they become dysfunctional [<a href="#B2-ijms-25-01469" class="html-bibr">2</a>,<a href="#B8-ijms-25-01469" class="html-bibr">8</a>,<a href="#B18-ijms-25-01469" class="html-bibr">18</a>,<a href="#B20-ijms-25-01469" class="html-bibr">20</a>,<a href="#B21-ijms-25-01469" class="html-bibr">21</a>,<a href="#B22-ijms-25-01469" class="html-bibr">22</a>,<a href="#B23-ijms-25-01469" class="html-bibr">23</a>,<a href="#B24-ijms-25-01469" class="html-bibr">24</a>,<a href="#B25-ijms-25-01469" class="html-bibr">25</a>,<a href="#B26-ijms-25-01469" class="html-bibr">26</a>,<a href="#B28-ijms-25-01469" class="html-bibr">28</a>,<a href="#B30-ijms-25-01469" class="html-bibr">30</a>,<a href="#B31-ijms-25-01469" class="html-bibr">31</a>,<a href="#B32-ijms-25-01469" class="html-bibr">32</a>,<a href="#B33-ijms-25-01469" class="html-bibr">33</a>,<a href="#B34-ijms-25-01469" class="html-bibr">34</a>,<a href="#B35-ijms-25-01469" class="html-bibr">35</a>,<a href="#B37-ijms-25-01469" class="html-bibr">37</a>,<a href="#B66-ijms-25-01469" class="html-bibr">66</a>,<a href="#B95-ijms-25-01469" class="html-bibr">95</a>,<a href="#B96-ijms-25-01469" class="html-bibr">96</a>,<a href="#B97-ijms-25-01469" class="html-bibr">97</a>] including many types of cancer [<a href="#B39-ijms-25-01469" class="html-bibr">39</a>,<a href="#B41-ijms-25-01469" class="html-bibr">41</a>,<a href="#B42-ijms-25-01469" class="html-bibr">42</a>,<a href="#B43-ijms-25-01469" class="html-bibr">43</a>,<a href="#B44-ijms-25-01469" class="html-bibr">44</a>,<a href="#B47-ijms-25-01469" class="html-bibr">47</a>,<a href="#B50-ijms-25-01469" class="html-bibr">50</a>,<a href="#B51-ijms-25-01469" class="html-bibr">51</a>,<a href="#B53-ijms-25-01469" class="html-bibr">53</a>,<a href="#B55-ijms-25-01469" class="html-bibr">55</a>,<a href="#B56-ijms-25-01469" class="html-bibr">56</a>,<a href="#B57-ijms-25-01469" class="html-bibr">57</a>,<a href="#B58-ijms-25-01469" class="html-bibr">58</a>,<a href="#B59-ijms-25-01469" class="html-bibr">59</a>,<a href="#B60-ijms-25-01469" class="html-bibr">60</a>,<a href="#B61-ijms-25-01469" class="html-bibr">61</a>,<a href="#B62-ijms-25-01469" class="html-bibr">62</a>,<a href="#B63-ijms-25-01469" class="html-bibr">63</a>,<a href="#B64-ijms-25-01469" class="html-bibr">64</a>,<a href="#B65-ijms-25-01469" class="html-bibr">65</a>,<a href="#B66-ijms-25-01469" class="html-bibr">66</a>,<a href="#B67-ijms-25-01469" class="html-bibr">67</a>,<a href="#B69-ijms-25-01469" class="html-bibr">69</a>,<a href="#B98-ijms-25-01469" class="html-bibr">98</a>,<a href="#B99-ijms-25-01469" class="html-bibr">99</a>,<a href="#B100-ijms-25-01469" class="html-bibr">100</a>,<a href="#B101-ijms-25-01469" class="html-bibr">101</a>,<a href="#B102-ijms-25-01469" class="html-bibr">102</a>,<a href="#B103-ijms-25-01469" class="html-bibr">103</a>].</div><div class='html-p'>However, determining the precise relevance of individual miRNAs has been challenging, despite their evident significance as regulatory molecules [<a href="#B104-ijms-25-01469" class="html-bibr">104</a>]. Studies investigating miRNA functions through either suppression or overexpression of specific miRNAs have generated data that sometimes conflict with findings from loss-of-function models [<a href="#B104-ijms-25-01469" class="html-bibr">104</a>]. For example, studies in <span class='html-italic'>Caenorhabditis elegans</span> involving systematic miRNA deletions suggest that fewer than 10% of the miRNAs are individually essential for normal development or viability [<a href="#B105-ijms-25-01469" class="html-bibr">105</a>] and this trend appears consistent in mice as well [<a href="#B96-ijms-25-01469" class="html-bibr">96</a>].</div><div class='html-p'>As illustrated in <a href="#ijms-25-01469-f001" class="html-fig">Figure 1</a>, miRNAs are primarily transcribed from DNA sequences into primary miRNAs (pri-miRNAs), which undergo an initial processing step by Drosha within the nucleus to yield precursor miRNAs (pre-miRNAs) [<a href="#B8-ijms-25-01469" class="html-bibr">8</a>,<a href="#B68-ijms-25-01469" class="html-bibr">68</a>,<a href="#B106-ijms-25-01469" class="html-bibr">106</a>]. It is important to note that up to 40% of miRNA genes might be located within either the introns or exons of other genes [<a href="#B107-ijms-25-01469" class="html-bibr">107</a>]. After their transportation from the nucleus to the cytoplasm by exportin 5 (XPO5), pre-miRNAs undergo additional processing by endoribonuclease Dicer, leading to the formation of miRNA duplexes characterized by distinct 3′ overhangs of 2 nucleotides. Subsequently, these miRNA duplexes are loaded onto the Argonaute (AGO) protein, which retains one miRNA strand while discarding the other [<a href="#B10-ijms-25-01469" class="html-bibr">10</a>]. The AGO-miRNA complex, along with co-factors like GW182 (TNRC6A), forms the RNA-induced silencing complex (RISC) [<a href="#B91-ijms-25-01469" class="html-bibr">91</a>] responsible for cognate mRNA degradation and hence inhibition of translation through interaction with complementary mRNA sequences, typically located within the 3′-untranslated region (3′-UTR) of mRNAs (<a href="#ijms-25-01469-f001" class="html-fig">Figure 1</a>) [<a href="#B108-ijms-25-01469" class="html-bibr">108</a>,<a href="#B109-ijms-25-01469" class="html-bibr">109</a>,<a href="#B110-ijms-25-01469" class="html-bibr">110</a>,<a href="#B111-ijms-25-01469" class="html-bibr">111</a>].</div><div class='html-p'>The interaction between miRNA and target mRNA typically takes place at the 5′ end of the miRNA, referred to as the ‘seed’ region. Yet, recent evidence points to a unique group of target mRNAs that bind the miRNA, not just through the seed but also via a complementary region at the 3′ end of miRNAs. This extended complementarity displaces the miRNA from Ago2, rendering it vulnerable to enzymatic degradation. This process is referred to as the target-directed miRNA degradation mechanism (TDMD) [<a href="#B112-ijms-25-01469" class="html-bibr">112</a>,<a href="#B113-ijms-25-01469" class="html-bibr">113</a>].</div><div class='html-p'>miRNAs are regarded as master regulators of the genome because of their capability to bind to and modify the expression of numerous protein-coding RNAs [<a href="#B114-ijms-25-01469" class="html-bibr">114</a>]. Because of this, a single miRNA can potentially regulate distinct mRNAs (anywhere from 10 to 100 protein-coding RNAs) due to their ability to bind to target mRNAs even when the pairing is not perfect [<a href="#B55-ijms-25-01469" class="html-bibr">55</a>,<a href="#B115-ijms-25-01469" class="html-bibr">115</a>]. As a result, a single miRNA can regulate a range of targets involved in similar cellular processes and pathways, thereby amplifying the cellular response potentially making miRNAs powerful therapeutics to restore perturbed cell functions seen in disease phenotypes. Conversely, a specific messenger RNA can become the target of many miRNAs, whether concurrently or in a context-dependent manner [<a href="#B116-ijms-25-01469" class="html-bibr">116</a>], leading to a collaborative repression effect [<a href="#B117-ijms-25-01469" class="html-bibr">117</a>,<a href="#B118-ijms-25-01469" class="html-bibr">118</a>]. Bioinformatic analyses indicate that a single miRNA can potentially bind to as many as 200 distinct gene targets with various functions, such as transcription factors, receptors, and more (<a href='https://bitesizebio.com/24926/mysterious-mirna-identifying-mirnas-and-their-targets/' target='_blank' rel="noopener noreferrer">https://bitesizebio.com/24926/mysterious-mirna-identifying-mirnas-and-their-targets/</a>) (accessed on 20 December 2023).</div></section><section id='sec3-ijms-25-01469' type=''><h2 data-nested='1'> 3. miRNAs’ Role in Cancer</h2><div class='html-p'>Cancer, a complex and heterogeneous disease, is characterized by a sequence of genetic and genomic abnormalities that promote tumorigenesis [<a href="#B119-ijms-25-01469" class="html-bibr">119</a>]. These alterations in the genome influence gene function, frequently resulting from genomic aberrations such as chromosomal translocations, amplifications, deletions, insertions, single-nucleotide mutations, or epigenetic modifications. These genetic and epigenetic alterations often result in the activation of oncogenes and the suppression of tumor suppressor genes [<a href="#B120-ijms-25-01469" class="html-bibr">120</a>]. In addition, miRNAs have been identified as additional genomic regulators that also play a crucial role in various aspects of organismal development, normal physiological processes, and the development of disease, including many types of cancers [<a href="#B68-ijms-25-01469" class="html-bibr">68</a>]. It has been shown that miRNAs play a pivotal in all the known processes involved in cancer, such as proliferation, survival, metastasis, and apoptosis [<a href="#B114-ijms-25-01469" class="html-bibr">114</a>]. Data suggest that dysregulation of miRNA function, either through its loss or gain, contributes to cancer development by either upregulating or silencing specific target genes. As a consequence, utilizing miRNAs either as miRNA mimics or antagomirs could present a potent therapeutic strategy to interfere with key molecular pathways associated with cancer as such miRNAs have the capacity to regulate all the recognized hallmarks of cancer, either acting as tumor suppressors or promoting oncogenic processes. Several of these cancer hallmarks influenced by miRNAs are discussed in detail in the literature [<a href="#B65-ijms-25-01469" class="html-bibr">65</a>,<a href="#B66-ijms-25-01469" class="html-bibr">66</a>].</div><div class='html-p'>It is widely accepted that alterations in miRNA genes and their expression are influenced by genetic deletions or amplifications, epigenetic methylation of miRNA gene locations, and modifications affecting pri-miRNA regulation by transcription factors as well as factors involved in miRNA biogenesis, often alter miRNA expression and function across various cancer types [<a href="#B66-ijms-25-01469" class="html-bibr">66</a>].</div><div class='html-p'>In addition, changes in the miRNA biogenesis process can also impact the availability of target mRNAs, including those associated with the development of cancer [<a href="#B121-ijms-25-01469" class="html-bibr">121</a>]. When miRNAs or the machinery involved in miRNA processing are altered or dysregulated this often leads to the loss of normal homeostatic state, leading to malignant transformation, including various types of cancer [<a href="#B51-ijms-25-01469" class="html-bibr">51</a>,<a href="#B52-ijms-25-01469" class="html-bibr">52</a>,<a href="#B56-ijms-25-01469" class="html-bibr">56</a>,<a href="#B65-ijms-25-01469" class="html-bibr">65</a>,<a href="#B66-ijms-25-01469" class="html-bibr">66</a>,<a href="#B67-ijms-25-01469" class="html-bibr">67</a>,<a href="#B122-ijms-25-01469" class="html-bibr">122</a>].</div><div class='html-p'>Due to their pivotal role in regulating the expression of numerous genes implicated in cellular responses to environmental stressors like hypoxia, oxidative stress, DNA damage, and nutrient deprivation, miRNAs can serve either as oncogenes (oncomirs) or tumor suppressors (onco-suppressor miRs). This is supported by recent findings that have identified miRNAs with oncogenic and tumor-suppressing roles in a range of neoplastic malignancies, and the dysregulation of miRNA expression is closely linked to the initiation, progression, and metastasis of cancer [<a href="#B43-ijms-25-01469" class="html-bibr">43</a>,<a href="#B45-ijms-25-01469" class="html-bibr">45</a>,<a href="#B103-ijms-25-01469" class="html-bibr">103</a>].</div><div class='html-p'>Moreover, dysregulated circulating miRNAs have demonstrated associations with disease origin, progression, treatment response, and patient survival [<a href="#B123-ijms-25-01469" class="html-bibr">123</a>,<a href="#B124-ijms-25-01469" class="html-bibr">124</a>]. For example, the distinctive tissue specificity of miRNAs [<a href="#B13-ijms-25-01469" class="html-bibr">13</a>], crucial for the maintenance of normal cells and tissues [<a href="#B40-ijms-25-01469" class="html-bibr">40</a>], renders them promising candidates for potential biomarkers in diagnosing cancers of unknown primary [<a href="#B125-ijms-25-01469" class="html-bibr">125</a>,<a href="#B126-ijms-25-01469" class="html-bibr">126</a>].</div><div class='html-p'>Furthermore, with the frequent genetic and epigenetic changes identified in particular miRNAs and the elements involved in miRNA biogenesis across diverse cancer types, oncogenic and tumor suppressor miRNAs have emerged as promising candidates as miRNA-based therapeutics.</div></section><section id='sec4-ijms-25-01469' type=''><h2 data-nested='1'> 4. RNA Therapeutics</h2><div class='html-p'>As detailed in the literature [<a href="#B127-ijms-25-01469" class="html-bibr">127</a>,<a href="#B128-ijms-25-01469" class="html-bibr">128</a>], over the past few years, more than 50 siRNA-based drugs have progressed into phase I–III clinical trials. Of those, around 15 programs based on siRNA therapeutics are currently being investigated in phase I, II, and III trials for the treatment of different cancer types [<a href="#B128-ijms-25-01469" class="html-bibr">128</a>].</div><div class='html-p'>Two siRNA-based drugs, Patisiran and Givosiran (both developed by Alnylam Pharmaceuticals (Cambridge, MA, USA)), obtained approval from the Food and Drug Administration (FDA, Washington, DC, USA) in 2018 and 2019. Patisiran was approved for hereditary transthyretin-mediated amyloidosis, while Givosiran gained approval for acute hepatic porphyria [<a href="#B129-ijms-25-01469" class="html-bibr">129</a>,<a href="#B130-ijms-25-01469" class="html-bibr">130</a>].</div><div class='html-p'>The first example of an FDA-approved RNA-based drug, a siRNA-based therapy developed by Alnylam Pharmaceuticals, is Patisiran, sold under the brand name Onpattro™ for the treatment of polyneuropathy of hereditary transthyretin-mediated amyloidosis in adults. Based on the completion of a successful phase III APOLLO trial, Onpattro™ was approved by the US FDA in August 2018. Onpattro™ contains patisaran, which comprises a siRNA targeting transthyretin (TTR) mRNA conjugated with a lipid complex which leads to a decrease in TTR protein levels in the liver, thus resulting in a reduction in amyloid deposits. Patisiran targets and binds to a genetically conserved sequence found in the 3′UTR of both mutant and wild-type TTR mRNA [<a href="#B131-ijms-25-01469" class="html-bibr">131</a>]. Findings from the APOLLO trial, a placebo (77 patients)-controlled phase III trial which enrolled 225 patients showed that 51% of patients receiving Onpattro™ (148 patients, once every three weeks (0.3 mg/kg body weight)) experienced an enhanced quality of life (measured using the Norfolk Quality of Life Diabetic Neuropathy (QoL-DN)), as compared to only 10% of patients in the control group, which received a placebo drug [<a href="#B131-ijms-25-01469" class="html-bibr">131</a>,<a href="#B132-ijms-25-01469" class="html-bibr">132</a>].</div><div class='html-p'>During the COVID-19 pandemic, mRNA technology became instrumental, notably in the development of highly effective mRNA vaccines. These vaccines have played a crucial role in controlling the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).</div><div class='html-p'>The groundbreaking science behind mRNA vaccines earned Katalin Karikó and Drew Weissman the prestigious 2023 Nobel Prize in Physiology or Medicine for their pioneering work on nucleoside base modifications, enabling the development of these impactful COVID-19 vaccines.</div><div class='html-p'>The evolution of cap analogs has vastly improved mRNA translation, while advancements in purification, packaging, and delivery methods have revolutionized medicine. Visionaries like Katalin Karikó, Drew Weissman, Edward Darzynkiewicz, Robert Rhodes, Ugur Sahin, and Ozlem Tureci made pivotal early contributions to mRNA research, deserving recognition for their pioneering efforts. This narrative around mRNA charts a remarkable journey showcasing breakthroughs in a field holding immense promise for the future of medicine.</div><div class='html-p'>Consequently, the success of mRNA vaccines has paved the way for integrating mRNA-based technology into personalized neoantigen vaccines, seamlessly incorporating them into the standard oncological workflow [<a href="#B133-ijms-25-01469" class="html-bibr">133</a>,<a href="#B134-ijms-25-01469" class="html-bibr">134</a>]. These mRNA-based vaccines can be tailored and manufactured as individualized vaccines with multiple neoantigens [<a href="#B135-ijms-25-01469" class="html-bibr">135</a>], and can effectively stimulate antigen-presenting cells [<a href="#B136-ijms-25-01469" class="html-bibr">136</a>,<a href="#B137-ijms-25-01469" class="html-bibr">137</a>,<a href="#B138-ijms-25-01469" class="html-bibr">138</a>,<a href="#B139-ijms-25-01469" class="html-bibr">139</a>] and be delivered using clinical-stage delivery formulations [<a href="#B140-ijms-25-01469" class="html-bibr">140</a>]. The studies and insights from the mRNA-based COVID-19 vaccines highlight the promise of RNA therapeutics as an innovative class of treatments.</div><div class='html-p'>However, the effectiveness of miRNA and other nucleic acid-based therapies hinges on a reliable delivery method with minimal adverse events and drug- or treatment-related toxicity.</div><div class='html-p'>Delivering miRNA therapeutics to cells poses challenges, requiring precise targeting of diseased cells while sparing healthy ones. In contrast to mRNA COVID-19 vaccines, which are taken up by scavenging immune cells such as dendritic cells and other professional antigen-presenting cells, thus inducing a specific immune response through the processing and expression of the translated mRNA molecules [<a href="#B141-ijms-25-01469" class="html-bibr">141</a>], miRNA therapeutics must effectively bypass immune recognition to reach their target cells without triggering an immune response.</div></section><section id='sec5-ijms-25-01469' type=''><h2 data-nested='1'> 5. miRNA Therapeutics</h2><div class='html-p'>The discovery of the link between miRNAs and human diseases in 2002 sparked a strong interest in their potential as a new class of therapies. Consequently, interdisciplinary fields encompassing biology, chemistry, and medical science have made significant investments in the development of miRNA-based therapies.</div><div class='html-p'>As illustrated in <a href="#ijms-25-01469-f002" class="html-fig">Figure 2</a> and <a href="#ijms-25-01469-t001" class="html-table">Table 1</a> and <a href="#ijms-25-01469-t002" class="html-table">Table 2</a>, and discussed in the literature in detail [<a href="#B77-ijms-25-01469" class="html-bibr">77</a>,<a href="#B121-ijms-25-01469" class="html-bibr">121</a>,<a href="#B127-ijms-25-01469" class="html-bibr">127</a>], there are only a few miRNA therapeutics that have entered clinical trials with none of them entering phase III or being approved by the FDA and several of them having been terminated due to toxicity. Despite considerable advancements in preclinical research, the field of miRNA-based diagnostic [<a href="#B68-ijms-25-01469" class="html-bibr">68</a>] and therapeutic applications is still in its early stages. Only a few of these miRNA-based therapies have progressed to clinical development. Given this situation, several efforts in the biotechnology and pharmaceutical industry have integrated miRNAs into their development pipelines focusing on the development of two categories of miRNA drugs, miRNA mimics and inhibitors (antagomirs or antimirs) (<a href="#ijms-25-01469-f002" class="html-fig">Figure 2</a>, <a href="#ijms-25-01469-t001" class="html-table">Table 1</a> and <a href="#ijms-25-01469-t003" class="html-table">Table 3</a>) [<a href="#B77-ijms-25-01469" class="html-bibr">77</a>,<a href="#B142-ijms-25-01469" class="html-bibr">142</a>]. As a result, the number of miRNA-based therapeutics being tested in clinical trials for various genetic, metabolic, and oncological conditions is continually increasing conditions [<a href="#B143-ijms-25-01469" class="html-bibr">143</a>,<a href="#B144-ijms-25-01469" class="html-bibr">144</a>,<a href="#B145-ijms-25-01469" class="html-bibr">145</a>].</div><div class='html-p'>miRNA therapeutics are a type of RNA-based therapeutic that targets and modulates the activity of specific endogenous miRNAs in the body. Because miRNAs play a critical role in regulating gene expression under normal health and pathological conditions, by targeting and manipulating specific miRNAs, miRNA therapeutics aim to treat various diseases by restoring (miRNA mimics) or correcting miRNA expression patterns (antagomir).</div><div class='html-p'>As discussed in the literature [<a href="#B175-ijms-25-01469" class="html-bibr">175</a>], the journey of discovering and developing miRNA therapeutics begins with target identification and miRNA discovery through the analysis of patient samples. This process involves in silico miRNA validation by pairing genomic databases with biological validation and in silico miRNA target identification. Further steps include validating miRNA relevance to a specific disease using tissue culture and in vivo models.</div><div class='html-p'>To improve the stability of miRNAs, various chemical modifications are applied to miRNAs, such as 2′-O-methyl, 2′-F, LNA, PS, and PNA, among others.</div><div class='html-p'>Additionally, conjugation with different biomolecules and optimizing delivery systems, such as ligand-targeted lipid nanoparticles are used to achieve precise delivery of RNA molecules to targeted tissues or cells for in vivo applications.</div><div class='html-p'>The subsequent stages encompass ADME and preclinical PK and PD studies, efficacy, and toxicity testing in relevant in vivo models, GMP manufacturing, scale-up studies, IND filing, and thorough evaluation of dosage, safety, and efficacy in Phase I-III human clinical trials. This intricate and resource-intensive process culminates in safety and efficacy assessments leading to FDA approval.</div><div class='html-p'>miRNA-based therapeutic programs for cancer are predominantly conducted by a few biopharmaceutical companies, including Santaris Pharma (Hersholm, Denmark), Roche Pharmaceuticals (Singapore), Regulus therapeutics (San Diego, CA, USA), Mirna Therapeutics Inc. (Carlsbad, CA, USA), miRagen Therapeutics (Boulder, CO, USA), and EnGeneIC (Sydney, Australia).</div><div class='html-p'>Immune evasion and chemotherapy resistance is a challenge in cancer therapy and this resistance can be mediated by numerous factors including miRNAs induced by tumor microenvironment stimuli, like hypoxia or cell–cell communication [<a href="#B176-ijms-25-01469" class="html-bibr">176</a>]. For example, hypoxia has been shown to influence miRNA expression in cancer and stromal cells in the tumor microenvironment (TME) via downregulation of factors involved in miRNA biogenesis or modulation of transcription factors that control miRNA expression. Accordingly, many hypoxia-regulated miRNAs and their role in tumor progression have been reported.</div><div class='html-p'>These hypoxia-regulated miRNAs, such as miR-26a, miR-181b, miR-210, miR-301a, miR-424, and miR-519c, have been associated with responses to chemotherapy or radiotherapy across various cancers [<a href="#B177-ijms-25-01469" class="html-bibr">177</a>,<a href="#B178-ijms-25-01469" class="html-bibr">178</a>,<a href="#B179-ijms-25-01469" class="html-bibr">179</a>,<a href="#B180-ijms-25-01469" class="html-bibr">180</a>].</div><div class='html-p'>Therefore, targeting these miRNAs therapeutically presents a potential strategy to resensitize hypoxic tumors to chemotherapy and other treatments. For instance, within the hypoxic microenvironment of pancreatic cancer, HIF-1α induces resistance to gemcitabine.</div><div class='html-p'>A recent study has demonstrated that administering miR-519c, which exhibits decreased levels in pancreatic cancer, inhibited HIF1-α within gemcitabine-resistant pancreatic cancer cells under hypoxic conditions [<a href="#B181-ijms-25-01469" class="html-bibr">181</a>].</div><div class='html-p'>Additionally, a redox-sensitive nanoplatform was employed to simultaneously administer miR-519c and gemcitabine [<a href="#B181-ijms-25-01469" class="html-bibr">181</a>]. This approach effectively suppressed the expression of HIF-1α and genes responsible for glucose uptake and cancer cell metabolism, thus inhibiting the growth of orthotopic desmoplastic pancreatic cancer in NSG mice and reversing the chemotherapy resistance induced by hypoxia [<a href="#B181-ijms-25-01469" class="html-bibr">181</a>].</div><div class='html-p'>Likewise, the tumor suppressor miR-34a has been demonstrated to decrease the expression of over 30 oncogenes spanning various oncogenic pathways and genes involved in tumor immune evasion; however, its expression is often lost or reduced in numerous malignancies [<a href="#B82-ijms-25-01469" class="html-bibr">82</a>].</div><div class='html-p'>However, if miRNAs are to be used for the treatment of a cancer, miRNAs must be delivered to the target tissue, not trigger an immune response, and be economically feasible so that wide-spread adoption of these nano therapies can be realized. While some clinical progress has been achieved, several trials have faced termination, primarily due to serious adverse events and drug induced toxicity. These setbacks underscore the existing challenges that must be addressed before miRNA-based therapies can find broad clinical application.</div><section id='sec5dot1-ijms-25-01469' type=''><h4 class='html-italic' data-nested='2'> 5.1. Examples of miRNA Therapeutics in Clinical Trials</h4><div class='html-p'>As illustrated in <a href="#ijms-25-01469-f002" class="html-fig">Figure 2</a>, and <a href="#ijms-25-01469-t001" class="html-table">Table 1</a> and <a href="#ijms-25-01469-t002" class="html-table">Table 2</a>, and discussed in detail in the literature [<a href="#B145-ijms-25-01469" class="html-bibr">145</a>,<a href="#B182-ijms-25-01469" class="html-bibr">182</a>], there are several miRNA-based therapeutics being tested both in preclinical studies (<a href="#ijms-25-01469-t001" class="html-table">Table 1</a>) or in human clinical trials (<a href="#ijms-25-01469-t002" class="html-table">Table 2</a>).</div><div class='html-p'>Miravirsen: Miravirsen (SPC3649), the pioneering miRNA therapeutic to enter clinical trials, is a 15-mer LNA-PS-modified ASO antagomir targeting miR-122. Developed by Santaris Pharma and Roche Pharmaceuticals, it is aimed at targeting hepatitis C virus (HCV) infections.</div><div class='html-p'>miR-122 has been shown to play a role in HCV replication [<a href="#B165-ijms-25-01469" class="html-bibr">165</a>]. Phase II clinical trials were conducted to evaluate the safety and antiviral efficacy of Miravirsen in patients with chronic HCV infection.</div><div class='html-p'>Miravirsen demonstrated significant efficacy in reducing viremia among HCV patients [<a href="#B168-ijms-25-01469" class="html-bibr">168</a>,<a href="#B169-ijms-25-01469" class="html-bibr">169</a>,<a href="#B183-ijms-25-01469" class="html-bibr">183</a>], leading to several phase II clinical trials (NCT01200420, NCT01872936, NCT02031133, NCT02508090). However, the trial was terminated due to severe side effects [<a href="#B145-ijms-25-01469" class="html-bibr">145</a>,<a href="#B184-ijms-25-01469" class="html-bibr">184</a>].</div><div class='html-p'>RG-012: RG012 is an anti-miR-21 therapy developed by Regulus Therapeutics for the management of Alport syndrome (fibrotic kidney disease). miR-21 has been shown to be upregulated in Alport syndrome. Preclinical studies have indicated that administering an anti-miR-21 significantly mitigated kidney failure by reducing the progression rate of renal fibrosis. Based on these robust preclinical data, RG-012 has been granted orphan drug status in the US and Europe. However, some sequence-independent side effects have been reported in relation to phosphorothioate-modified oligonucleotides [<a href="#B185-ijms-25-01469" class="html-bibr">185</a>].</div><div class='html-p'>RG-101: RG-101, an antagomir of miR-122 developed by Regulus Therapeutics, is an N-acetyl-d-galactosamine(GalNAc)-conjugated synthetic RNA oligonucleotide that targets and inhibits miR-122, which is involved in HCV replication for patients with HCV. In addition to its essential role in HCV replication, miR-122, a liver-specific miRNA, has relevant functions in liver metabolism [<a href="#B186-ijms-25-01469" class="html-bibr">186</a>]. miR-122 also acts as an essential host factor for HCV replication.</div><div class='html-p'>Clinical trials were conducted to evaluate RG-101’s safety and efficacy as a potential treatment for chronic HCV infection. Although RG-101 showed considerable efficacy and a significant decrease in viral loads among chronic HCV patients [<a href="#B169-ijms-25-01469" class="html-bibr">169</a>], the trial was terminated due to some serious adverse events of severe hyperbilirubinemia [<a href="#B169-ijms-25-01469" class="html-bibr">169</a>].</div><div class='html-p'>MRG-201: MRG-201 is a synthetic RNA oligonucleotide that targets and activates miR-29, which has been shown to inhibit fibrosis. Clinical trials have been conducted to assess MRG-201’s safety and efficacy in treating fibrotic disorders such as hypertrophic scars and idiopathic pulmonary fibrosis.</div><div class='html-p'>MRX34: MRX34, developed by miRNA Therapeutics Inc. is a synthetic miRNA mimic designed to mimic the activity of a tumor suppressor miR-34a encapsulated into a liposome-formulated nanoparticle (NOV40) for the treatment of advanced solid tumors including melanoma, NSCLC, hepatocellular carcinoma, and renal carcinoma.</div><div class='html-p'>miR-34a, a natural tumor-suppressor miRNA, is often expressed at diminished levels in various tumor types. MRX34, recognized as a first-in-class miRNA mimic therapeutic, is designed for treating several cancers including non-small cell lung cancer, hepatocellular carcinoma, colon cancer, ovarian cancer, cervical cancer, and more. This formulation underwent evaluation in a phase I clinical trial [<a href="#B82-ijms-25-01469" class="html-bibr">82</a>]. While MRX34 showed promising activity, the trial concluded with only three patients achieving sustained confirmed partial responses and 14 patients maintaining stable disease (median duration of 136 days) [<a href="#B182-ijms-25-01469" class="html-bibr">182</a>]. Unfortunately, due to severe immune-mediated adverse events leading to the deaths of four patients, the trial was terminated (NCT01829971) [<a href="#B82-ijms-25-01469" class="html-bibr">82</a>,<a href="#B83-ijms-25-01469" class="html-bibr">83</a>,<a href="#B84-ijms-25-01469" class="html-bibr">84</a>]. After this, MiRNA Therapeutics ceased operations in 2017 and agreed to merge with Synlogic Inc. (Cambridge, MA, USA).</div><div class='html-p'>Cobomarsen (MRG-106): MRG-106 (Cobomarsen), an LNA-based antagomir of miR-155 was developed by Miragen Therapeutics (Viridian Therapeutics Inc., Waltham, MA, USA) that aimed to inhibit the activity of miR-155 [<a href="#B171-ijms-25-01469" class="html-bibr">171</a>,<a href="#B187-ijms-25-01469" class="html-bibr">187</a>] in several lymphoma subtypes, as well as in diffuse large B-cell lymphoma [<a href="#B101-ijms-25-01469" class="html-bibr">101</a>] where miR-155 is upregulated. Phase II clinical trials are being conducted to assess its effectiveness in treating certain cancers and immune disorders including cutaneous T-cell lymphoma (CTCL), chronic lymphocytic leukemia, diffuse large B-cell lymphoma, and mycosis fungoides (NCT03837457), and adult T-cell leukemia/lymphoma (NCT02580552, NCT03713320). While the phase I trial was completed, two of the phase II studies were terminated. The study was prematurely terminated due to business reasons, not due to safety concerns or lack of efficacy (<a href='https://classic.clinicaltrials.gov/ct2/show/NCT03713320' target='_blank' rel="noopener noreferrer">https://classic.clinicaltrials.gov/ct2/show/NCT03713320</a>) (accessed on 20 December 2023).</div><div class='html-p'>MRG-107: MRG-107, an antagomir of miR-155 developed by Miragen Therapeutics (Viridian Therapeutics Inc.), aimed to inhibit the activity of miR-155. miR-155 plays significant roles in immune mechanisms and inflammation processes within amyotrophic lateral sclerosis (ALS), where its levels are elevated in the spinal cords of ALS patients. In preclinical models of ALS, inhibition of miR-155 has reduced ALS symptoms and extended survival [<a href="#B145-ijms-25-01469" class="html-bibr">145</a>].</div><div class='html-p'>MRG-110: MRG-110 is a synthetic antagomir of miRNA-92a developed by MiRagen Therapeutics in collaboration with Servier to treat ischemic conditions such as heart failure [<a href="#B154-ijms-25-01469" class="html-bibr">154</a>].</div><div class='html-p'>MRG-110 was designed to inhibit miR-92a and stimulate the growth of new blood vessels. MRG-110 is being investigated to assess its potential to improve wound healing by enhancing blood circulation within the wound site. A phase I human clinical trial to test the safety, tolerability, pharmacokinetics, and pharmacodynamics of MRG-110 following intradermal injection in healthy volunteers was recently completed (NCT03603431).</div><div class='html-p'>Remlarsen (MRG-201): Remlarsen (MRG-201), an LNA RNA mimic of miR-29 developed by MiRagen Therapeutics, is intended for keloid disorder. Remlarsen reduces the expression of collagen and other proteins involved in scar formation, exhibiting inhibitory effects on fibrosis [<a href="#B161-ijms-25-01469" class="html-bibr">161</a>].</div><div class='html-p'>miR-29 family members are typically downregulated in fibrotic diseases [<a href="#B188-ijms-25-01469" class="html-bibr">188</a>]. A phase II clinical trial (NCT03601052) is currently underway to evaluate Remlarsen’s safety and efficacy, such as if it can limit the formation of fibrous scar tissue in certain fibrotic disorders like hypertrophic scars and idiopathic pulmonary fibrosis. This evaluation involves administering Remlarsen through intradermal injection at the location of an excisional wound [<a href="#B161-ijms-25-01469" class="html-bibr">161</a>].</div><div class='html-p'>TargomiRs: The MesomiR 1 trial (NCT02369198) tested the safety and efficacy of miR-15/16 encapsulated in nonliving bacterial minicells (nanoparticles, referred to as TangomiRs) in patients with recurrent malignant pleural mesothelioma (MPM).</div><div class='html-p'>TangomiRs were developed by EnGeneIC to deliver miR16 mimics encapsulated in TargomiRs composed of bacterial minicells with an anti-EGFR bispecific antibody to target EGFR-expressing cancer cells. TargomiRs were evaluated as 2nd- or 3rd-line treatment for patients with recurrent malignant MPM and non-small-cell lung cancer (NSCLC) (NCT02369198) [<a href="#B157-ijms-25-01469" class="html-bibr">157</a>]. miR-15/16 are implicated as tumor suppressors in MPM.</div><div class='html-p'>Although variable response rates were observed, with 5% of the patients exhibiting a partial response, 68% exhibiting stable disease, and 27% displaying progressive disease following low-dose systemic administration of TargomiRs, dose-dependent toxicities emerged, such as anaphylaxis, inflammation, and cardiac events [<a href="#B127-ijms-25-01469" class="html-bibr">127</a>,<a href="#B157-ijms-25-01469" class="html-bibr">157</a>].</div><div class='html-p'>MGN-1374: MGN-1374, an 8-mer LNA ASO developed by miRagen Therapeutics, is designed to specifically target the seed region of the miR-15 family and is currently in the preclinical phase for the control of postmyocardial infarction remodeling.</div><div class='html-p'>RGLS4326: RGLS4326 is a chemically modified, single-stranded, 9-mer ASO that possesses full complementarity to the seed sequence of miR-17. RGLS4326 is specifically developed to inhibit the pathological functions of the miR-17 family in autosomal dominant polycystic kidney disease (ADPKD) [<a href="#B189-ijms-25-01469" class="html-bibr">189</a>], one of the most frequent monogenic disorders, caused by mutations in the PKD1 or PKD2 gene and for which therapeutic options are limited. A phase I clinical trial of RGLS4326 was recently completed (NCT04536688).</div><div class='html-p'>Additionally, <a href="#ijms-25-01469-t001" class="html-table">Table 1</a> highlights several miRNA-based drugs currently under preclinical investigation, targeting various diseases such as peripheral arterial disease, chronic heart failure, and amyotrophic lateral sclerosis (ALS), among others.</div><div class='html-p'>Moreover, miRNA therapeutics in combination with chemotherapeutic agents have also been explored to overcome cancer therapy resistance [<a href="#B142-ijms-25-01469" class="html-bibr">142</a>]. Studies indicate that combining therapeutic miRNAs with chemotherapy can decrease the required drug doses for cancer treatment [<a href="#B190-ijms-25-01469" class="html-bibr">190</a>,<a href="#B191-ijms-25-01469" class="html-bibr">191</a>]. For example, miR-3622b-5p, when paired with cisplatin, not only enhances apoptosis but also sensitizes ovarian tumor organoids to cisplatin [<a href="#B192-ijms-25-01469" class="html-bibr">192</a>], suggesting the potential of miRNAs in combination with chemotherapy to address cancer treatment and counteract drug resistance.</div></section><section id='sec5dot2-ijms-25-01469' type=''><h4 class='html-italic' data-nested='2'> 5.2. Small-Molecule Modulators of miRNA Expression</h4><div class='html-p'>Because altered levels of miRNA expression are associated with many cancers, restoring the function of tumor suppressor miRNAs by overexpressing or introducing of miRNA mimics to restore to their relatively normal physiological levels or function or by inhibiting overexpressed oncogenic miRNAs by miRNA inhibitors (antagomirs) or miRNA sponges represents two major strategies for miRNA therapeutics in cancer [<a href="#B121-ijms-25-01469" class="html-bibr">121</a>,<a href="#B193-ijms-25-01469" class="html-bibr">193</a>] (<a href="#ijms-25-01469-f002" class="html-fig">Figure 2</a>).</div><div class='html-p'>The function of repressed miRNAs can also be restored to their relatively normal physiological levels by using some small molecules that can transcriptionally activate the expression of miRNA genes leading to the expression of endogenous miRNAs and restoring the expression of tumor-suppressive miRNAs. Conversely, overexpressed oncogenic miRNAs can also be suppressed by small-molecule inhibitors.</div><div class='html-p'>As illustrated in <a href="#ijms-25-01469-f003" class="html-fig">Figure 3</a> and discussed in the literature [<a href="#B121-ijms-25-01469" class="html-bibr">121</a>], because nucleic acid-based therapeutics have poor cell-permeability for drug delivery, in recent years small-molecule drugs in the regulation of miRNA expression have been explored since they can cross the cell membrane by free diffusion and can modulate the expression of miRNAs and also traditional drug development can be applied for the development of novel miRNA inhibitors (or activators) [<a href="#B194-ijms-25-01469" class="html-bibr">194</a>]. Various small-molecule inhibitors of various miRNAs with various chemical structures and different mechanisms of action that interferes with entire miRNA biogenesis process, including processing, maturation, and function, have been described in the literature [<a href="#B121-ijms-25-01469" class="html-bibr">121</a>] (<a href="#ijms-25-01469-f003" class="html-fig">Figure 3</a>). For example, as discussed in the literature [<a href="#B121-ijms-25-01469" class="html-bibr">121</a>], reduced expression of tumor suppressor miRNAs can be reactivated to their normal physiological levels by some small molecule compounds, such as hypomethylating agents [<a href="#B195-ijms-25-01469" class="html-bibr">195</a>]. Two hypomethylating agents, decitabine or 5-azacytidine used for the treatment of myelodysplastic syndrome have been shown to upregulate the expression of many miRNAs [<a href="#B105-ijms-25-01469" class="html-bibr">105</a>].</div><div class='html-p'>Similarly, enoxacin was shown to activate the expression of several miRNAs in vitro [<a href="#B196-ijms-25-01469" class="html-bibr">196</a>] and to suppress tumor growth by promoting miR 24 expression in vivo [<a href="#B196-ijms-25-01469" class="html-bibr">196</a>] suggesting that small-molecule compounds can potentially restore miRNA expression and function to a more physiological setting.</div><div class='html-p'>For example, miR-21, a tumor-associated miRNA (oncomir) has been shown to be upregulated in many cancers (e.g., breast cancer, colon cancer, ovarian cancer, pancreatic cancer, thyroid cancer, and others) and to exhibit high expression in cancer which is closely associated with tumorigenesis [<a href="#B197-ijms-25-01469" class="html-bibr">197</a>,<a href="#B198-ijms-25-01469" class="html-bibr">198</a>,<a href="#B199-ijms-25-01469" class="html-bibr">199</a>,<a href="#B200-ijms-25-01469" class="html-bibr">200</a>]. Trypaflavine (TPF), a small-molecule inhibitor of miR-21 [<a href="#B201-ijms-25-01469" class="html-bibr">201</a>], has been shown to inhibit RISC formation by disrupting the interaction between miR-21 and the AGO2 protein, consequently resulting in the suppression of miR-21 expression levels. Likewise, streptomycin has been shown to inhibit the cleavage of pre-miR-21 by Dicer [<a href="#B202-ijms-25-01469" class="html-bibr">202</a>]. Similarly, small-molecule compound AC1MMYR2 has been shown to blockade the cleavage of pre-miR-21 to generate mature miR-21 [<a href="#B203-ijms-25-01469" class="html-bibr">203</a>]. Furthermore, diazobenzene, azobenzene, and estradiol have been shown to inhibit the transcription of the miR-21 [<a href="#B204-ijms-25-01469" class="html-bibr">204</a>,<a href="#B205-ijms-25-01469" class="html-bibr">205</a>], while, polylysine has been shown to inhibit the maturation process of pre-miR-21 by inhibiting Dicer [<a href="#B201-ijms-25-01469" class="html-bibr">201</a>]. Similarly, arylamide derivatives have been shown to inhibit miR-21 maturation [<a href="#B206-ijms-25-01469" class="html-bibr">206</a>]. 4-benzoylamino-N-(prop-2-yn-1-yl)benzamides has been shown to increase the expression of PDCD4, the functional target of miR-21 [<a href="#B207-ijms-25-01469" class="html-bibr">207</a>].</div><div class='html-p'>As for other miRNAs, kanamycin A has been shown to inhibit let-7 expression by attaching to pre-let-7 and disrupting the Dicer function [<a href="#B208-ijms-25-01469" class="html-bibr">208</a>].</div><div class='html-p'>Additionally, small-molecule inhibitors such as NSC 158959 and NSC 5476 have been implicated in potentially inhibiting miR-122 gene transcription [<a href="#B209-ijms-25-01469" class="html-bibr">209</a>]. Crucially, mir-122 represents a liver-specific miRNA, constituting approximately 72% of the total miRNA content within the adult liver. It stands out as one of the initial miRNAs displaying high levels of tissue-specific expression [<a href="#B210-ijms-25-01469" class="html-bibr">210</a>]. miR-122 plays a pivotal role in regulating cholesterol and fatty acid metabolism within the adult liver, positioning it as a promising therapeutic target for metabolic diseases [<a href="#B211-ijms-25-01469" class="html-bibr">211</a>]. Additionally, miR-122 is instrumental in the progression of diverse liver conditions, encompassing acute and chronic liver injury, liver tumors, hepatitis C virus (HCV) infection, liver cirrhosis, and alcoholic hepatitis [<a href="#B212-ijms-25-01469" class="html-bibr">212</a>]. Furthermore, research has demonstrated that miR-122 plays a crucial part in the onset and progression of acute and chronic liver injuries, liver tumors, hepatitis C virus (HCV) infections, liver cirrhosis, and alcoholic hepatitis [<a href="#B212-ijms-25-01469" class="html-bibr">212</a>].</div><div class='html-p'>As for miR-96, benzimidazole has been shown to selectively inhibit biogenesis of miR-96, upregulating a protein target (FOXO1) and inducing apoptosis in cancer cells [<a href="#B213-ijms-25-01469" class="html-bibr">213</a>].</div><div class='html-p'>miR-1, found in high levels within skeletal muscle, contributes to regulating the creation of the skeletal muscle cells and the overall development of muscles and is associated with heart development [<a href="#B214-ijms-25-01469" class="html-bibr">214</a>,<a href="#B215-ijms-25-01469" class="html-bibr">215</a>]. A number of small-molecule inhibitors targeting miR-1 have been discovered via photocycloadducts of acetylenes combined with a basic structure of 2-methoxy-1,4-naphthalenequinone through a photocyclization reaction [<a href="#B216-ijms-25-01469" class="html-bibr">216</a>]. For instance, 2-methoxy-1,4-naphthalenequinone was identified for its selective inhibitory impact on miR-1 expression in cells. However, the precise mechanism by which 2-methoxy-1,4-naphthalenequinone exerts its inhibitory function on miR-1 expression remains to be fully understood.</div><div class='html-p'>Furthermore, arsenic has been demonstrated to inhibit the transcription of the miR-27a gene [<a href="#B217-ijms-25-01469" class="html-bibr">217</a>]. On the other hand, trioxide, neomycin, amikacin, and tobramycin were found to exert their inhibitory action by targeting Dicer, consequently impeding the maturation process of miR-27a [<a href="#B218-ijms-25-01469" class="html-bibr">218</a>].</div><div class='html-p'>Likewise, 5″-azido-neomycin B has been shown to inhibit miR-525 by binding to the processing site of Drosha to disrupt the production of pre-miR-525 [<a href="#B219-ijms-25-01469" class="html-bibr">219</a>].</div><div class='html-p'>N-substituted oligoglycines, a particular peptoid ligand with the apical loop of pri-miR-21, have been shown to suppress the processing of pri-miR-21 by Drosha by binding to pri-miR-21 [<a href="#B220-ijms-25-01469" class="html-bibr">220</a>].</div></section></section><section id='sec6-ijms-25-01469' type=''><h2 data-nested='1'> 6. Advances in the Delivery of miRNA Therapeutics</h2><div class='html-p'>While a handful of phase 1 and 2 clinical trials have explored miRNA-based therapeutics, there are currently no miRNA-based therapeutics undergoing phase III human clinical trials. This is partly attributed to challenges associated with precisely delivering miRNAs to specific cell types, tissues, and organs.</div><div class='html-p'>While several approaches, such as antibodies, nanoparticles, or ligands, have been documented to enhance the effectiveness of miRNAs and decrease off-target effects (like immunotoxicity [<a href="#B221-ijms-25-01469" class="html-bibr">221</a>]) when directing miRNAs to specific cells of interest, limitations and challenges persist in the field of miRNA therapeutics.</div><div class='html-p'>As illustrated in <a href="#ijms-25-01469-f004" class="html-fig">Figure 4</a> and discussed in detail in the literature [<a href="#B77-ijms-25-01469" class="html-bibr">77</a>,<a href="#B84-ijms-25-01469" class="html-bibr">84</a>,<a href="#B222-ijms-25-01469" class="html-bibr">222</a>,<a href="#B223-ijms-25-01469" class="html-bibr">223</a>], there are various strategies being explored as mechanisms to deliver miRNA therapeutics (mimics and antagomirs) to the indented tissue and to improve pharmacokinetic mechanisms, and avoid off-target effects.</div><div class='html-p'>These methods include both vector and non-vector approaches, ranging from lipid-based nanoparticles, polymeric vectors, dendrimer-based vectors, cell-derived membrane vesicles, 3D scaffold-based delivery systems, to various biodegradable and biocompatible nanoparticles derived from polymers and metals [<a href="#B77-ijms-25-01469" class="html-bibr">77</a>].</div><div class='html-p'>Other strategies for the delivery of RNA-based therapeutics, as discussed in the literature [<a href="#B225-ijms-25-01469" class="html-bibr">225</a>], include adeno-associated virus, lentivirus, bacterial nanocells [<a href="#B226-ijms-25-01469" class="html-bibr">226</a>], bacteriophages, cationic lipid-based liposomes (including monovalent and multivalent lipids), natural polymer-based nanoparticles, polymer based nanoparticles conjugated with polyethylene glycol (PEG), extracellular vesicles (EVs) or exosomes, nanocomplex-forming functionalized metals such as gold nanoparticles, and carbon nanotubes, polymeric micelles, and mesoporous silica nanoparticles [<a href="#B145-ijms-25-01469" class="html-bibr">145</a>], and many others that are engineered to contain biomolecule conjugates for improved stability and pharmacokinetics and target delivery to the intended cell or tissue type [<a href="#B84-ijms-25-01469" class="html-bibr">84</a>,<a href="#B223-ijms-25-01469" class="html-bibr">223</a>,<a href="#B225-ijms-25-01469" class="html-bibr">225</a>,<a href="#B227-ijms-25-01469" class="html-bibr">227</a>,<a href="#B228-ijms-25-01469" class="html-bibr">228</a>]. A recent study showcased the increased antitumor effectiveness of STING agonists through the covalent attachment of cyclic dinucleotides (CDN) to polymer nanoparticle (poly(β-amino ester) formulation for intravenous delivery [<a href="#B229-ijms-25-01469" class="html-bibr">229</a>].</div><div class='html-p'>Non-pathogenic recombinant viral vectors, such as retroviruses and lentiviruses (which pose a genomic integration risk), adenoviruses, and adeno-associated viruses (which remain transiently stable in an episomal form within the host cell’s nucleus) [<a href="#B230-ijms-25-01469" class="html-bibr">230</a>,<a href="#B231-ijms-25-01469" class="html-bibr">231</a>], are under investigation for their capacity to encode the desired RNA transgene. These vectors are being explored for intracellular delivery of miRNA-based therapeutics, making them a significant area of interest [<a href="#B232-ijms-25-01469" class="html-bibr">232</a>].</div><div class='html-p'>A phase II trial is currently testing an adeno-associated viral vector for the delivery of the miRNA drug AMT-130 for the treatment of Huntington’s disease (ClinicalTrials.gov identifier NCT04120493) [<a href="#B146-ijms-25-01469" class="html-bibr">146</a>,<a href="#B147-ijms-25-01469" class="html-bibr">147</a>,<a href="#B148-ijms-25-01469" class="html-bibr">148</a>]. Despite their potential for the delivery and expression of miRNAs, there are various side effects with the use of viral vectors such as immunogenicity and transgene-related immune responses [<a href="#B233-ijms-25-01469" class="html-bibr">233</a>].</div><div class='html-p'>The packaging of the negatively charged nucleic acids in liposome nanoparticles masks their negative charge and also protects against serum nuclease degradation [<a href="#B228-ijms-25-01469" class="html-bibr">228</a>,<a href="#B234-ijms-25-01469" class="html-bibr">234</a>]. Delivery of miRNAs using liposome nanoparticles has already been applied in several clinical studies, such as MRX34 (NCT01829971, NCT02862145) [<a href="#B82-ijms-25-01469" class="html-bibr">82</a>,<a href="#B83-ijms-25-01469" class="html-bibr">83</a>].</div><div class='html-p'>Likewise, bacterial minicells loaded with miRNAs were employed to deliver miR-16 mimics during a phase 1 trial involving patients with recurrent malignant pleural mesothelioma (MesomiR 1, NCT02369198) [<a href="#B156-ijms-25-01469" class="html-bibr">156</a>,<a href="#B157-ijms-25-01469" class="html-bibr">157</a>]. However, the study also reported several side effects including dose-limiting toxicities, decreased lymphocyte counts, or cardiac events [<a href="#B157-ijms-25-01469" class="html-bibr">157</a>].</div><div class='html-p'>Extracellular vesicles (EVs), including exosomes, are under exploration as potential drug delivery systems, capable of delivering specific genetic cargo for cellular transfer within the body [<a href="#B235-ijms-25-01469" class="html-bibr">235</a>]. For example, EVs derived from mesenchymal stromal cells obtained from human adipose tissue were modified to carry miR-125b. This modification resulted in the inhibition of human hepatocarcinoma cell proliferation [<a href="#B236-ijms-25-01469" class="html-bibr">236</a>].</div><div class='html-p'>In addition, different modalities of drug delivery systems have been explored for the delivery of miRNA-based drugs such as core–shell magnetic nanoparticles, quantum dot nanocrystals, polymeric micelles, and mesoporous silica nanoparticles are among the other examples of nanocarriers as drug-delivery systems to improve the therapeutic effectiveness and specificity, and tissue targeting of miRNA and other nucleic acid therapeutics [<a href="#B145-ijms-25-01469" class="html-bibr">145</a>].</div><div class='html-p'>An encouraging strategy involves the covalent conjugation of miRNAs, along with other nucleic acid-based drugs and biomolecules, to lipids, peptides, or sugars. These compounds function through receptor-mediated endocytosis mechanisms [<a href="#B228-ijms-25-01469" class="html-bibr">228</a>].</div><div class='html-p'>Likewise, a lipophilic cholesterol conjugate was employed to deliver an miR-29-based mimic (remlarsen/MRG-201) to human skin fibroblasts, irrespective of cell type via skin injection in a phase II trial for keloid disorder. The aim was to suppress the expression of extracellular matrix and fibroplasia within the skin (NCT02603224, NCT03601052) [<a href="#B161-ijms-25-01469" class="html-bibr">161</a>].</div><div class='html-p'>Another approach involves the coupling of aptamer conjugates to specific miRNA therapeutics using a straightforward sticky-end annealing method [<a href="#B237-ijms-25-01469" class="html-bibr">237</a>]. This method serves as a strategy for delivering miRNAs to targeted cell types.</div><div class='html-p'>Aptamers are single-stranded nucleic acids that are developed as high-affinity ligands specific to cell surface receptors to facilitate the delivery of therapeutic cargo including miRNAs through receptor-mediated transport [<a href="#B228-ijms-25-01469" class="html-bibr">228</a>,<a href="#B237-ijms-25-01469" class="html-bibr">237</a>]. In ongoing preclinical investigations, researchers are currently investigating aptamer-linked miRNAs, such as the Aptamer-miR-34c conjugate (known as GL21.T-miR-34c) in non-small-cell lung cancer cells [<a href="#B238-ijms-25-01469" class="html-bibr">238</a>].</div><div class='html-p'>Additional efforts have been made to enhance the serum stability, pharmacokinetics, and tissue specificity of miRNA mimics, miRNA inhibitors, and other nucleic acid therapeutics by incorporating various chemical modifications to miRNA and nucleic acid therapeutics or attaching various biomolecule conjugates to these therapeutic miRNAs to facilitate receptor-mediated uptake such as N-acetylgalactosamine (GalNAc), 2′-O-methyl nucleotide, phosphorothioate, cholesterol, locked nucleic acid (LNA), and aptamer moieties are also shown as examples [<a href="#B77-ijms-25-01469" class="html-bibr">77</a>,<a href="#B84-ijms-25-01469" class="html-bibr">84</a>,<a href="#B153-ijms-25-01469" class="html-bibr">153</a>,<a href="#B223-ijms-25-01469" class="html-bibr">223</a>,<a href="#B239-ijms-25-01469" class="html-bibr">239</a>].</div><div class='html-p'>For example, biomolecule conjugates, such as N-acetylgalactosamine (GalNAc), have been investigated in clinical trials. GalNAc facilitates the targeted delivery of nucleic acid therapeutics through endocytosis by activating liver cell-specific asialoglycoprotein receptors [<a href="#B240-ijms-25-01469" class="html-bibr">240</a>,<a href="#B241-ijms-25-01469" class="html-bibr">241</a>]. GalNAc linked to a miR-122 inhibitor (RG-101) and a miR-103/107 inhibitor (RG-125/AZD4076) are in clinical trials for chronic HCV [EU Clinical Trials Register (clinicaltrialsregister.eu) EudraCT numbers 2015-001535-21, 2015-004702-42, 2016-002069-77] and steatohepatitis (NCT02612662, NCT02826525), respectively [<a href="#B152-ijms-25-01469" class="html-bibr">152</a>,<a href="#B153-ijms-25-01469" class="html-bibr">153</a>,<a href="#B241-ijms-25-01469" class="html-bibr">241</a>]. However, due to reported side effects such as cases of jaundice, the clinical trial for RG-101 was halted, and investigations into the cause of these effects are ongoing [<a href="#B150-ijms-25-01469" class="html-bibr">150</a>,<a href="#B169-ijms-25-01469" class="html-bibr">169</a>,<a href="#B170-ijms-25-01469" class="html-bibr">170</a>].</div><div class='html-p'>Recent preclinical investigations have also explored other examples of GalNAc-conjugated LNA, anti-miR-122 antisense oligonucleotides, or nano-carrier vehicles in combination with cell type-specific biomolecule conjugates or miR-155 inhibitors by gold nanoparticles formulated with antagomir and AS1411 aptamer [<a href="#B242-ijms-25-01469" class="html-bibr">242</a>,<a href="#B243-ijms-25-01469" class="html-bibr">243</a>].</div><div class='html-p'>In addition, the 3D matrices for delivering nucleic acid-based therapeutics and conventional drugs are currently undergoing optimization with diverse design features. This encompasses various application routes, such as edible or injectable carriers [<a href="#B77-ijms-25-01469" class="html-bibr">77</a>,<a href="#B244-ijms-25-01469" class="html-bibr">244</a>,<a href="#B245-ijms-25-01469" class="html-bibr">245</a>,<a href="#B246-ijms-25-01469" class="html-bibr">246</a>].</div><div class='html-p'>One potential method of administering miRNAs is orally [<a href="#B75-ijms-25-01469" class="html-bibr">75</a>]. Data demonstrate that miRNAs are commonly associated with EVs, lipoproteins, or lipid derivatives, and RNA-binding proteins. These associations, along with the use of nanoparticles, shield miRNAs from the harsh conditions in the gastrointestinal tract. This includes protection against salivary and pancreatic RNases, the stomach’s acidic pH, digestive enzymes, peristaltic activity, and microbial enzymes. This safeguarding mechanism is thought to aid in the absorption of miRNAs from the digestive tract [<a href="#B75-ijms-25-01469" class="html-bibr">75</a>]. However, there is ongoing debate surrounding the absorption, stability, and physiological impact of these edible or food-derived miRNAs.</div></section><section id='sec7-ijms-25-01469' type=''><h2 data-nested='1'> 7. Progress in Chemical Modifications of miRNAs for Improved Stability and Cellular Uptake</h2><div class='html-p'>As depicted in <a href="#ijms-25-01469-f004" class="html-fig">Figure 4</a> and discussed in the literature [<a href="#B77-ijms-25-01469" class="html-bibr">77</a>], the combination of various chemical modifications, conjugation of various types of biomolecules, or the utilization of carriers increases stability and improves precise delivery of RNA molecules to targeted tissue or cells (i.e., disease site).</div><div class='html-p'>Moreover, a range of chemical alterations to nucleobases, ribose sugars, or the phosphate backbone can conceal the negative charge of miRNAs and other nucleic acids. This modification enhances their adherence to the cell surface, subsequently aiding in cellular uptake [<a href="#B190-ijms-25-01469" class="html-bibr">190</a>,<a href="#B216-ijms-25-01469" class="html-bibr">216</a>] and bolstering their stability as well.</div><div class='html-p'>In addition, a range of chemical modifications to nucleobases, ribose sugar, or the phosphate backbone can mask the negative charge of the miRNAs and other nucleic acids. This modification, the adhesion of miRNAs to the cell surface, subsequently aids in cellular uptake [<a href="#B228-ijms-25-01469" class="html-bibr">228</a>,<a href="#B247-ijms-25-01469" class="html-bibr">247</a>] and bolsters their stability as well.</div><div class='html-p'>One frequently utilized form of nucleic acid modification is locked nucleic acid (LNA) bases [<a href="#B247-ijms-25-01469" class="html-bibr">247</a>], which involves the insertion of methylene bridges. These methylene bridges decrease the flexibility of the ribose ring, resulting in a locked conformation of the modified nucleotides [<a href="#B248-ijms-25-01469" class="html-bibr">248</a>,<a href="#B249-ijms-25-01469" class="html-bibr">249</a>]. LNA-modified RNA-based therapeutics are more resistant to ribonucleases and exhibit improved cellular uptake, primarily through an endocytosis mechanism that remains not fully understood [<a href="#B250-ijms-25-01469" class="html-bibr">250</a>]. Furthermore, the locked conformation significantly boosts the ability of LNA-based RNA therapeutics to form stable duplexes, enabling them to bind and effectively inhibit the function of the targeted miRNA. Consequently, LNA-modified RNAs are frequently employed in single-stranded antagomirs, such as antisense oligonucleotides (ASOs) [<a href="#B247-ijms-25-01469" class="html-bibr">247</a>,<a href="#B250-ijms-25-01469" class="html-bibr">250</a>]. Due to these benefits, LNA-modified oligonucleotides have emerged as one of the primary approaches for inhibitory therapeutics targeting both miRNA and mRNA. This alteration enhances the stability of the oligonucleotide and facilitates its uptake into endosomes.</div><div class='html-p'>As discussed in the literature [<a href="#B251-ijms-25-01469" class="html-bibr">251</a>], the cellular uptake of LNA-modified oligonucleotides and other naked oligonucleotides is primarily mediated through endocytosis. Multiple pathways and cellular proteins, including clathrin, dynamin, and caveolar-dependent endocytosis are involved in this process. Notably, clathrin-independent endocytosis is also a mechanism, and studies have demonstrated that the antisense activity in hepatocytes can be hindered by the adaptor protein AP2M1, but not by clathrin and caveolin.</div><div class='html-p'>Phosphorothioate modifications involve the introduction of a sulfur atom into the oligonucleotide’s phosphodiester backbone. Phosphorothioate modifications enhances the stability of the oligonucleotide and facilitates its uptake into endosomes, particularly via stabilin receptors located on cell surfaces (such as those of kidney cells) [<a href="#B252-ijms-25-01469" class="html-bibr">252</a>,<a href="#B253-ijms-25-01469" class="html-bibr">253</a>]. This approach was applied for the specific delivery of synthetic miR-21–anti-miR (RG-012/lademirsen/SAR339375) into the kidney in a clinical study of Alport syndrome (NCT03373786, NCT02855268) [<a href="#B149-ijms-25-01469" class="html-bibr">149</a>]. However, specific sequence-independent effects have been reported in connection with phosphorothioate-modified oligonucleotides [<a href="#B185-ijms-25-01469" class="html-bibr">185</a>].</div><div class='html-p'>Another type of modification is a pH low-insertion peptide (pHLIP)-modified antimir that has been shown to inhibit the oncomir miR-155 in lymphoma [<a href="#B175-ijms-25-01469" class="html-bibr">175</a>,<a href="#B254-ijms-25-01469" class="html-bibr">254</a>]. pHLIP is a small peptide that forms a transmembrane α-helix under acidic conditions such as in a tumor microenvironment [<a href="#B255-ijms-25-01469" class="html-bibr">255</a>].</div><div class='html-p'>Likewise, a recent study has introduced a fully modified miR-34a (FM-miR-34a) designed to address concerns regarding miR-34a stability, non-specific delivery, and associated delivery-related toxicity [<a href="#B69-ijms-25-01469" class="html-bibr">69</a>]. FM-miR-34a exhibited potent suppression of proliferation and invasion, resulting in a prolonged inhibition of its target genes for more than 120 h after the in vivo administration of FM-miR-34a conjugated to folate (FM-FolamiR-34a).</div><div class='html-p'>This treatment resulted in the inhibition of tumor growth, leading to complete cures in some mice [<a href="#B69-ijms-25-01469" class="html-bibr">69</a>]. There were no notable changes observed in the body weight of mice during the study, suggesting that FM-FolamiR-34 is safe. These findings hold promise for reinvigorating miR-34a as a potent anti-cancer treatment, offering a compelling basis for clinical trials.</div></section><section id='sec8-ijms-25-01469' type=''><h2 data-nested='1'> 8. Progress in Predicting and Validating miRNA Targets</h2><div class='html-p'>As discussed recently in detail by Diener et al. [<a href="#B77-ijms-25-01469" class="html-bibr">77</a>], the significant challenges for miRNA-based therapeutic approaches stem from their pleiotropic effects in regulatory networks [<a href="#B256-ijms-25-01469" class="html-bibr">256</a>]. Because of this, a comprehensive functional characterization of individual candidate miRNAs is essential before considering them for therapeutic purposes. This characterization involves overcoming several issues that must be addressed such as confirming the authenticity of a miRNA as a true miRNA, enhancing miRNA target prediction algorithms, and implementing experimental strategies that enable efficient validation of a large number of miRNA targets.</div><div class='html-p'>As discussed in the literature [<a href="#B182-ijms-25-01469" class="html-bibr">182</a>], the mechanistic functions of candidate miRNAs can be evaluated through bioinformatic analysis and/or in vitro experiments before progressing to testing in preclinical animal models. In addition, multiple databases and algorithms have been developed and are available for predicting their targets associated with each miRNA [<a href="#B108-ijms-25-01469" class="html-bibr">108</a>,<a href="#B257-ijms-25-01469" class="html-bibr">257</a>]. To enhance the predictive accuracy of miRNA target prediction, it is common practice to employ multiple distinct algorithms simultaneously to predict miRNA-binding sites in protein-coding genes and relevant biological pathways and networks. As discussed in detail in the literature [<a href="#B77-ijms-25-01469" class="html-bibr">77</a>], several computational tools are available for predicting miRNA–gene interactions [<a href="#B258-ijms-25-01469" class="html-bibr">258</a>]. Initially, target predictors for individual miRNAs, such as TargetScan [<a href="#B259-ijms-25-01469" class="html-bibr">259</a>] or miRanda [<a href="#B260-ijms-25-01469" class="html-bibr">260</a>] were developed. An example algorithms is TargetScan [<a href="#B108-ijms-25-01469" class="html-bibr">108</a>], which predicts miRNA targets based on seed regions that are essential for mRNA binding. TargetScan encompasses nearly all miRNA sequences documented in miRBase to date. These tools suggest target genes, forming the foundation for modeling the impact of miRNAs on genes and aiding in the selection of optimal targets for validation. However, they may lack specificity or sensitivity in predicting actual targets. Subsequently, more comprehensive analysis tools were created to model the mutual influence of miRNAs on genes and pathways, utilizing predicted and validated targets along with expression data and/or sequencing information [<a href="#B261-ijms-25-01469" class="html-bibr">261</a>]. For instance, miRTarVis [<a href="#B262-ijms-25-01469" class="html-bibr">262</a>] generates coexpression networks of paired miRNA and mRNA data, MIENTURNET [<a href="#B263-ijms-25-01469" class="html-bibr">263</a>] constructs interaction networks with enrichment analysis, miRViz [<a href="#B264-ijms-25-01469" class="html-bibr">264</a>] visualizes networks across multiple species, miRNet [<a href="#B265-ijms-25-01469" class="html-bibr">265</a>] supports statistical analysis and aids in the exploration of miRNA–target interaction networks, miTALOS [<a href="#B266-ijms-25-01469" class="html-bibr">266</a>] assesses miRNA function in a tissue-specific manner, and miRTrail [<a href="#B267-ijms-25-01469" class="html-bibr">267</a>] integrates miRNA and gene expression data for analysis. To enhance the specificity of target predictions beforehand, pathway databases can be incorporated. Because miRNA target genes can orchestrate entire pathways, integrating information on which putative target genes are enriched in functional biochemical networks significantly improves the validation rates of target predictors [<a href="#B268-ijms-25-01469" class="html-bibr">268</a>]. Lastly, tools for the systematic analysis of miRNAs concerning target genes or vice versa, for incorporating both validated and predicted targets, target pathways, and other information have been developed. An example is miRTargetLink2 [<a href="#B269-ijms-25-01469" class="html-bibr">269</a>], which utilizes miRNA gene associations from databases like miRPathDB2 [<a href="#B270-ijms-25-01469" class="html-bibr">270</a>] or mirDIP [<a href="#B271-ijms-25-01469" class="html-bibr">271</a>]. To enhance the specificity of functional effects of target predictions, these tools often utilize internet resources such as existing application programming interfaces to web services and online tools for in silico pathway analysis of miRNAs and target genes present in the interaction graph [<a href="#B272-ijms-25-01469" class="html-bibr">272</a>]. A recent publication offers an overview of miRNA target analysis tools [<a href="#B258-ijms-25-01469" class="html-bibr">258</a>].</div><div class='html-p'>Likewise, advances in high-throughput screens and bioinformatic tools for target prediction have significantly facilitated the study of miRNAs and prediction of their putative targets and biological pathways. For example, bioinformatics tools such as KEGG and ingenuity pathway analysis not only predict potential biological pathways but, in some instances, also identify disease states that may be influenced by miRNAs.</div><div class='html-p'>Furthermore, mechanistic modeling that simulates miRNA-mediated pathways has been investigated in recent works. Analyzing the function of miRNAs in gene regulatory networks can be aided by mathematical modeling. A comprehensive overview of the most recent developments, employing various mathematical modeling approaches to offer quantitative insights into the function of miRNAs in the regulation of gene expression, is discussed in recent reviews [<a href="#B273-ijms-25-01469" class="html-bibr">273</a>,<a href="#B274-ijms-25-01469" class="html-bibr">274</a>].</div><div class='html-p'>Additionally, several computational tools are available to calculate the free energy between RNA sequences of interest [<a href="#B275-ijms-25-01469" class="html-bibr">275</a>]. For instance, a lower free energy, usually around −20 or lower, indicates a stronger binding [<a href="#B275-ijms-25-01469" class="html-bibr">275</a>]. Thus, the integration of clinical research databases with miRNA bioinformatics platforms could enhance the identification and evaluation of potential therapeutic candidates.</div><div class='html-p'>As for the preclinical models, various human cell lines and induced-pluripotent stem (IPS) cells have been used to investigate the mechanisms, toxicity, and potential therapeutic efficacy of miRNA candidates as well as epigenetic manipulation of target transcripts [<a href="#B182-ijms-25-01469" class="html-bibr">182</a>]. For example, use of IPS cells enable modulation of biological pathways across various stem cell lineages derived from easily accessible skin tissue sources [<a href="#B276-ijms-25-01469" class="html-bibr">276</a>,<a href="#B277-ijms-25-01469" class="html-bibr">277</a>]. Furthermore, the availability of various animal models through academic laboratories or commercially has facilitated efficient validation of findings from in vitro miRNA studies. Other animal models including nonhuman primate models have also been successfully used for the preclinical safety and toxicology testing of miRNA therapeutics supporting the initiation of several human miRNA therapeutic clinical trials.</div><div class='html-p'>Like other drug classes, the development of miRNA-based drugs must go through a sequence of developmental stages, spanning from discovery to preclinical studies, toxicology assessment, pre-IND, and multiple phases of human clinical trials prior to approval by regulatory agencies before market entry (<a href="#ijms-25-01469-f005" class="html-fig">Figure 5</a>) [<a href="#B142-ijms-25-01469" class="html-bibr">142</a>].</div><div class='html-p'>In the conventional process of drug development, the duration from identifying a drug target to drug discovery, lead development, preclinical and phase 1–3 human clinical trials, FDA approval, and subsequent phase 4 studies usually spans a number of years. However, the escalating costs and time required in this process have become unsustainable, urging the imperative to hasten drug discovery and development while curbing associated expenses and timeframes.</div><div class='html-p'>Conversely, leveraging RNA-based methodologies, particularly miRNA-based approaches, holds promise for expediting both the discovery and development of drugs, potentially mitigating attrition rates, reducing time constraints, and cutting costs.</div></section><section id='sec9-ijms-25-01469' type=''><h2 data-nested='1'> 9. Progress in Preclinical Validation of miRNA Therapeutics</h2><div class='html-p'>As discussed in the literature [<a href="#B77-ijms-25-01469" class="html-bibr">77</a>,<a href="#B182-ijms-25-01469" class="html-bibr">182</a>], single miRNAs can not only regulate an entire pathway and multitude of mRNA targets but also each mRNA may also be targeted by multiple miRNAs [<a href="#B278-ijms-25-01469" class="html-bibr">278</a>]. It has been suggested that the broad regulatory reach of miRNAs emerges from their ability to bind to target mRNAs even without perfect pairing. This characteristic enables a single miRNA to regulate multiple targets involved in similar cellular processes, amplifying the cellular response. While a single miRNA might inhibit numerous genes, its impact on each gene tends to be moderate [<a href="#B115-ijms-25-01469" class="html-bibr">115</a>], and multiple miRNAs can regulate the expression of a single gene [<a href="#B116-ijms-25-01469" class="html-bibr">116</a>,<a href="#B278-ijms-25-01469" class="html-bibr">278</a>], further amplifying the cellular response. Because a single miRNA has the potential to bind to as many as 200 target mRNAs, each with diverse functions, including transcription factors, receptors and many others, consequently, entire signaling pathways can be regulated by a single miRNA [<a href="#B116-ijms-25-01469" class="html-bibr">116</a>] or miRNA clusters [<a href="#B279-ijms-25-01469" class="html-bibr">279</a>]. However, the role of miRNAs in the regulation of multiple genes and their extensive effects within regulatory networks pose significant challenges for miRNA therapeutics [<a href="#B280-ijms-25-01469" class="html-bibr">280</a>]. Therefore, the successful development of miRNA-based therapeutics requires a comprehensive functional characterization and validation of the molecular effects of each miRNA prior to their application as therapeutics [<a href="#B77-ijms-25-01469" class="html-bibr">77</a>,<a href="#B182-ijms-25-01469" class="html-bibr">182</a>].</div><div class='html-p'>As summarized in <a href="#ijms-25-01469-f005" class="html-fig">Figure 5</a>, the functional characterization of each miRNA requires several essential steps, including confirming its disease relevance authenticity as a genuine miRNA, improving miRNA target prediction algorithms, and experimentally validating their impact on intended targets in relevant preclinical models [<a href="#B77-ijms-25-01469" class="html-bibr">77</a>].</div></section><section id='sec10-ijms-25-01469' type=''><h2 data-nested='1'> 10. Off-Target Effects of miRNA Therapeutics</h2><div class='html-p'>Among the challenges inherent in miRNA-based therapeutics, off-target effects and associated toxicities emerge due to the ability of each miRNA to regulate the expression of multiple genes and are one of the main challenges associated with miRNA therapeutics. Thus, further research is essential for the development of miRNAs as effective cancer therapeutics. Moreover, several miRNAs exhibit dysregulation not just within cancer cells but also in other cells within the TME, potentially leading to opposing functions.</div><div class='html-p'>Additionally, depending on the route of administration and the mechanism enabling intracellular delivery, miRNA therapeutics might not be confined exclusively to the targeted tissue or cells, potentially resulting in systemic side effects [<a href="#B77-ijms-25-01469" class="html-bibr">77</a>].</div><div class='html-p'>For instance, MRX34, a synthetic miR-34a mimic acting as a tumor suppressor [<a href="#B263-ijms-25-01469" class="html-bibr">263</a>], was administered systemically using a liposomal amphoteric (pH-dependent) delivery method, which takes advantage of the low-pH environment of the TME [<a href="#B264-ijms-25-01469" class="html-bibr">264</a>]. This approach aimed to treat various solid tumors and hematologic malignancies (NCT01829971) but was terminated early due to severe immune-related adverse effects that resulted in the death of four patients [<a href="#B82-ijms-25-01469" class="html-bibr">82</a>,<a href="#B83-ijms-25-01469" class="html-bibr">83</a>].</div><div class='html-p'>Previous animal studies, however, demonstrated that a miR-34a mimic was not only taken up by tumor tissue but also by bone marrow and spleen [<a href="#B281-ijms-25-01469" class="html-bibr">281</a>,<a href="#B282-ijms-25-01469" class="html-bibr">282</a>], which are involved in the generation and preservation of immune cells. Supporting these preclinical observations, the clinical testing of the miR-34a mimic demonstrated a dose-dependent change in several target genes in white blood cells [<a href="#B83-ijms-25-01469" class="html-bibr">83</a>]. As a result, the miR-34a mimic, aside from its role as a tumor suppressor, also affects immune cells by modulating calcium or chemokine signaling, such as the CXCL10/CXCL11/CXCR3-axis in CD4+, CD8+ T cells, and M1 macrophages [<a href="#B283-ijms-25-01469" class="html-bibr">283</a>,<a href="#B284-ijms-25-01469" class="html-bibr">284</a>].</div><div class='html-p'>Despite the lack of a direct causal link between patient death and the function of miR-34a in immune cells, the miR-34a function in immune cells has not been yet established. However, the serious and deadly adverse effects of miR-34a mimic MRX34 underscores the need for a priori risk assessment of miRNA therapeutics, specifically their potential off-target effects in other unintended tissues, highlighting the need for the development of more precise tissue target delivery systems.</div></section><section id='sec11-ijms-25-01469' type=''><h2 data-nested='1'> 11. Challenges and Future Perspectives</h2><div class='html-p'>In addition to their potential utility as biomarkers [<a href="#B68-ijms-25-01469" class="html-bibr">68</a>], miRNA mimics and inhibitors provide significant potential as therapeutics. Given that many miRNAs function as oncomirs or tumor suppressors, restoring dysregulated miRNA levels to those of healthy tissues might aid in maintaining the naturally occurring anti-tumor regulatory mechanisms.</div><div class='html-p'>While many new immunotherapeutic such as antibodies, recombinant proteins, cell therapies, and small molecules have shown their success in the treatment of various types of cancers [<a href="#B285-ijms-25-01469" class="html-bibr">285</a>], because of the global success of mRNA vaccines as modulators of immune stimulation for tackling the COVID-19 pandemic, there has been a resurgence of RNA-based cancer immunotherapies [<a href="#B225-ijms-25-01469" class="html-bibr">225</a>].</div><div class='html-p'>Moreover, further improvements in RNA chemistry and delivery methods are opening up new opportunities for RNA-based therapeutics. Although, drug development, including RNA-based drugs, often requires many years and substantial costs before approval by the FDA or other regulatory agencies (<a href="#ijms-25-01469-f005" class="html-fig">Figure 5</a>), the global threat of the COVID-19 pandemic has catalyzed the extremely rapid development of a new class of mRNA-based vaccines. These mRNA vaccines, whether developed by BioNTech in partnership with Pfizer or Moderna, have shown to deliver on their promise, i.e., they can be developed extremely quickly, can be manufactured under GMP-compliant manufacturing processes, and can be scaled for rapid availability of large numbers of doses, are safe and are active at a relatively low dose range [<a href="#B140-ijms-25-01469" class="html-bibr">140</a>,<a href="#B225-ijms-25-01469" class="html-bibr">225</a>,<a href="#B286-ijms-25-01469" class="html-bibr">286</a>,<a href="#B287-ijms-25-01469" class="html-bibr">287</a>]. Because of this, many companies are now leveraging the experience gained from the COVID-19 vaccine development to develop RNA-based therapies for cancer and, potentially, for other diseases. This has, of course, reignited the potential of miRNAs as both diagnostics and therapeutics.</div><div class='html-p'>The approval of numerous antisense, small interfering RNA (siRNA), and mRNA-based therapeutics and mRNA vaccines has affirmed their potential and paved the way for their application in new medical indications.</div><div class='html-p'>The field of RNA-based therapies encompasses a diverse spectrum of research areas, spanning RNA engineering and chemistry, which involves different modifications to enhance stability and pharmacokinetics and minimize nonspecific adverse effects and advancements in delivery technologies.</div><div class='html-p'>Furthermore, novel RNA constructs including those self-amplifying RNAs, circular RNAs, siRNAs, as well as gene editing [Cas9 mRNA, single guide RNA (sgRNA)] all hold promise for next-generation cancer therapy.</div><div class='html-p'>However, despite this potential over many years, there are several challenges including sensitivity, specificity, selectivity, toxicity immunogenicity, and delivery, among many others, which are a significant barrier to exploiting the full potential of miRNAs as therapeutics.</div><div class='html-p'>In addition, the development of novel and improved targeted delivery systems is vital for the effective delivery of miRNAs to the targeted tissue or cells. The delivery method must be target-specific, and capable of delivering the miRNA therapeutics to the targeted tissue or cells (i.e., disease site) [<a href="#B142-ijms-25-01469" class="html-bibr">142</a>].</div><div class='html-p'>As illustrated in <a href="#ijms-25-01469-f004" class="html-fig">Figure 4</a>, the future of RNA-based therapies hinges on targeted delivery mechanisms. These encompass lipid and polymer nanoparticles, cellular or extracellular vesicle packaging, hybrid systems, and viral vectors, all aiming to enhance the therapeutic effectiveness of these therapies while reducing potential side effects.</div><div class='html-p'>In addition, there are other challenges that need to be addressed with regard to the sensitivity, specificity, selectivity, toxicity, and clinical applicability of miRNAs as therapeutics and therapeutic targets. Because each miRNA regulates more than one gene, sometimes a single miRNA can potentially regulate multiple cellular pathways via interacting with multiple targets. This phenomenon is referred to as “too many targets for miRNA effect” (TMTME) [<a href="#B128-ijms-25-01469" class="html-bibr">128</a>]. Likewise, each mRNA is regulated by more than one miRNA [<a href="#B77-ijms-25-01469" class="html-bibr">77</a>]. While these characteristics of miRNAs position them as a potent therapeutic class, they also pose a significant challenge in managing adverse effects observed in clinical trials [<a href="#B77-ijms-25-01469" class="html-bibr">77</a>]. Because of this, Zhang et al. [<a href="#B128-ijms-25-01469" class="html-bibr">128</a>] proposed that adverse events observed in terminated clinical trials involving miRNA therapeutics could be attributed to the broad-ranging effects of miRNAs.</div><div class='html-p'>Moreover, the type of miRNAs can vary throughout the course and stages of cancer, making target prediction more complex. Yet, this variation could be advantageous in associating specific miRNAs with particular cancer stages. Therefore, novel approaches for predicting miRNA targets may be necessary to validate these predictions.</div><div class='html-p'>Additional issues that need to be resolved include immunogenic reactions. Although viral delivery systems undoubtedly enhance cellular uptake and expression of miRNAs, they are associated with various side effects, including immunogenicity [<a href="#B233-ijms-25-01469" class="html-bibr">233</a>]. To address this issue, there needs to be a better understanding of the prevalence of immunogenic reactions resulting from viral transfer systems. Specifically, it is crucial to clarify the extent to which immunogenic reactions occur due to viral transfer systems.</div><div class='html-p'>In addition to viral transfer systems, it is essential to investigate whether modifications to miRNAs, such as LNA miRNAs and artificial miRNAs (amiRNAs) [<a href="#B288-ijms-25-01469" class="html-bibr">288</a>], or the use of miRNA-interfering molecules like small cell-permeable molecules, various delivery systems including biodegradable 3D matrices, functionalized metals as carriers, biomolecule conjugates including aptamers, can lead to severe immunogenic reactions. Therefore, exploring the possibility of reducing immunogenic reactions by masking reactive components should be considered. An overview of the extent to which immunogenic reactions occur was provided in a recent study [<a href="#B77-ijms-25-01469" class="html-bibr">77</a>].</div><div class='html-p'>Moreover, as summarized in <a href="#ijms-25-01469-t003" class="html-table">Table 3</a> and discussed in detail in the literature [<a href="#B77-ijms-25-01469" class="html-bibr">77</a>], there are many other key outstanding questions that must be addressed before miRNA therapeutics can become widely adopted as novel therapeutics in the clinic.</div><div class='html-p'>These findings emphasize the need for further investigation in developing miRNAs as both novel therapeutics and therapeutic targets for cancer.</div></section><section id='sec12-ijms-25-01469' type='conclusions'><h2 data-nested='1'> 12. Conclusions</h2><div class='html-p'>Because many miRNAs are abnormally expressed in many cancers acting as oncogenes or a tumor suppressors [<a href="#B98-ijms-25-01469" class="html-bibr">98</a>,<a href="#B289-ijms-25-01469" class="html-bibr">289</a>,<a href="#B290-ijms-25-01469" class="html-bibr">290</a>,<a href="#B291-ijms-25-01469" class="html-bibr">291</a>], they have emerged as potential biomarkers [<a href="#B68-ijms-25-01469" class="html-bibr">68</a>], therapeutic targets, and therapeutics [<a href="#B81-ijms-25-01469" class="html-bibr">81</a>]. However, there are many outstanding issues and challenges with respect to sensitivity, specificity, selectivity, and associated off-targeting effects of miRNA therapeutics since each miRNA appears to regulate more than one target and each target is regulated more than one miRNA leading to undesired toxicity hence limiting their use as therapeutics.</div><div class='html-p'>Currently, the majority of the miRNA therapeutics are still in preclinical or early phases of human clinical trials; as such, it is awaited to see how other miRNA therapeutics perform in human clinical trials in terms of toxicity or side effects. Notably, a few recent clinical trials using miRNA therapeutics have reported some serious adverse events. For example, MRX34, a microRNA liposomal injection developed by Mirna Therapeutics, Inc. evaluated in a phase 1 clinical trial for its efficacy against melanoma, was withdrawn (NCT02862145) or terminated (NCT01829971) [<a href="#B82-ijms-25-01469" class="html-bibr">82</a>,<a href="#B83-ijms-25-01469" class="html-bibr">83</a>,<a href="#B84-ijms-25-01469" class="html-bibr">84</a>] due to serious adverse events. As a result, numerous challenges must be addressed to bring therapeutic miRNAs into clinical practice. These include establishing miRNA specificity, sensitivity, and selectivity to their intended targets, reducing immunogenic reactions and adverse events, determining optimal dosing for the desired therapeutic effect while minimizing side effects [<a href="#B77-ijms-25-01469" class="html-bibr">77</a>], and developing improved methods for targeted delivery.</div><div class='html-p'>Despite these significant challenges, the potential of miRNAs as a therapeutic approach for various diseases is clear. Further research will be necessary to establish whether miRNAs can effectively serve as therapeutics or therapeutic targets for clinical applications.</div></section> </div> <div class="html-back"> <section class='html-notes'><h2>Funding</h2><div class='html-p'>This research received no external funding.</div></section><section class='html-notes'><h2 >Institutional Review Board Statement</h2><div class='html-p'>This article does not involve any studies conducted on human participants or animals by any of the authors.</div></section><section class='html-notes'><h2 >Informed Consent Statement</h2><div class='html-p'>Not applicable.</div></section><section class='html-notes'><h2 >Data Availability Statement</h2><div class='html-p'>The data presented in this study are openly available in <a href='https://seer.cancer.gov' target='_blank' rel="noopener noreferrer">https://seer.cancer.gov</a>, https://pubmed.ncbi.nlm.nih.gov/, <a href='https://clinicaltrials.gov/' target='_blank' rel="noopener noreferrer">https://clinicaltrials.gov/</a>, and <a href='https://www.genomicseducation.hee.nhs.uk/genotes/knowledge-hub/non-coding-dna' target='_blank' rel="noopener noreferrer">https://www.genomicseducation.hee.nhs.uk/genotes/knowledge-hub/non-coding-dna</a>, all accessed on 26 July 2023.</div></section><section id='html-ack' class='html-ack'><h2 >Acknowledgments</h2><div class='html-p'>The author extends gratitude to the Legorreta Cancer Center at Brown University for fostering an intellectually stimulating and collaborative atmosphere, and for providing essential resources that facilitated the preparation of this review article.</div></section><section class='html-notes'><h2 >Conflicts of Interest</h2><div class='html-p'>The author declares that the research was conducted without any commercial or financial relationships that could be perceived as potential conflicts of interest.</div></section><section id='html-glossary'><h2 >Abbreviations</h2><table class='html-array_table'><tbody ><tr ><td align='left' valign='middle' class='html-align-left' >AGO</td><td align='left' valign='middle' class='html-align-left' >Argonaute</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >AGO2</td><td align='left' valign='middle' class='html-align-left' >Argonaute RISC Catalytic Component 2</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >ALS</td><td align='left' valign='middle' class='html-align-left' >Amyotrophic lateral sclerosis</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >ASO</td><td align='left' valign='middle' class='html-align-left' >Antisense oligonucleotides</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >CLL</td><td align='left' valign='middle' class='html-align-left' >Chronic lymphocytic leukemia</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >CTCL</td><td align='left' valign='middle' class='html-align-left' >Cutaneous T-cell lymphoma</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >ATLL</td><td align='left' valign='middle' class='html-align-left' >Adult T-cell leukemia/lymphoma</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >COVID-19</td><td align='left' valign='middle' class='html-align-left' >Coronavirus disease 2019</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >DICER1</td><td align='left' valign='middle' class='html-align-left' >Dicer 1, Ribonuclease III</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >DLBCL</td><td align='left' valign='middle' class='html-align-left' >Diffuse large B-cell lymphoma</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >EGFR</td><td align='left' valign='middle' class='html-align-left' >Epidermal growth factor receptor</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >DGCR8</td><td align='left' valign='middle' class='html-align-left' >DiGeorge syndrome critical region 8</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >DROSHA</td><td align='left' valign='middle' class='html-align-left' >Drosha Ribonuclease III</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >EVs</td><td align='left' valign='middle' class='html-align-left' >Extracellular vesicles</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >GalNAc</td><td align='left' valign='middle' class='html-align-left' >N-acetylgalactosamine</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >HCV</td><td align='left' valign='middle' class='html-align-left' >Hepatitis C virus</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >KEGG</td><td align='left' valign='middle' class='html-align-left' >Kyoto Encyclopedia of Genes and Genomes</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >LNA</td><td align='left' valign='middle' class='html-align-left' >Locked nucleic acid</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >MF</td><td align='left' valign='middle' class='html-align-left' >Mycosis fungoides</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >mRNA</td><td align='left' valign='middle' class='html-align-left' >messenger RNA</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >miRNA</td><td align='left' valign='middle' class='html-align-left' >microRNA</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >ncRNAs</td><td align='left' valign='middle' class='html-align-left' >non-coding RNAs</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >P-bodies</td><td align='left' valign='middle' class='html-align-left' >Processing bodies</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >PNA</td><td align='left' valign='middle' class='html-align-left' >Peptide nucleic acid</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >pre-miRNA</td><td align='left' valign='middle' class='html-align-left' >precursor microRNA</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >pri-miRNA</td><td align='left' valign='middle' class='html-align-left' >primary microRNA</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >RNA Pol II</td><td align='left' valign='middle' class='html-align-left' >RNA polymerase II</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >SARS-CoV-2</td><td align='left' valign='middle' class='html-align-left' >Severe acute respiratory syndrome coronavirus 2</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >sgRNA</td><td align='left' valign='middle' class='html-align-left' >Single guide RNA</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >siRNA</td><td align='left' valign='middle' class='html-align-left' >Small interfering RNA</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >TDMD</td><td align='left' valign='middle' class='html-align-left' >Target-directed miRNA degradation mechanism</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >TME</td><td align='left' valign='middle' class='html-align-left' >Tumor microenvironment</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >TRBP</td><td align='left' valign='middle' class='html-align-left' >The TAR RNA-binding protein</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >TTR</td><td align='left' valign='middle' class='html-align-left' >Transthyretin</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >UTR</td><td align='left' valign='middle' class='html-align-left' >Untranslated region</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >XenomiRs</td><td align='left' valign='middle' class='html-align-left' >Exogenous miRNAs</td></tr><tr ><td align='left' valign='middle' class='html-align-left' >XPO5</td><td align='left' valign='middle' class='html-align-left' >Exportin 5</td></tr></tbody></table></section><section id='html-references_list'><h2>References</h2><ol class='html-xxx'><li id='B1-ijms-25-01469' class='html-x' data-content='1.'>Rands, C.M.; Meader, S.; Ponting, C.P.; Lunter, G. 8.2% of the Human genome is constrained: Variation in rates of turnover across functional element classes in the human lineage. <span class='html-italic'>PLoS Genet.</span> <b>2014</b>, <span class='html-italic'>10</span>, e1004525. [<a href="https://scholar.google.com/scholar_lookup?title=8.2%25+of+the+Human+genome+is+constrained:+Variation+in+rates+of+turnover+across+functional+element+classes+in+the+human+lineage&author=Rands,+C.M.&author=Meader,+S.&author=Ponting,+C.P.&author=Lunter,+G.&publication_year=2014&journal=PLoS+Genet.&volume=10&pages=e1004525&doi=10.1371/journal.pgen.1004525" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1371/journal.pgen.1004525" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B2-ijms-25-01469' class='html-x' data-content='2.'>Dunham, I.; Kundaje, A.; Aldred, S.F.; Collins, P.J.; Davis, C.A.; Doyle, F.; Epstein, C.B.; Frietze, S.; Harrow, J.; Kaul, R.; et al. An integrated encyclopedia of DNA elements in the human genome. <span class='html-italic'>Nature</span> <b>2012</b>, <span class='html-italic'>489</span>, 57–74. [<a href="https://scholar.google.com/scholar_lookup?title=An+integrated+encyclopedia+of+DNA+elements+in+the+human+genome&author=Dunham,+I.&author=Kundaje,+A.&author=Aldred,+S.F.&author=Collins,+P.J.&author=Davis,+C.A.&author=Doyle,+F.&author=Epstein,+C.B.&author=Frietze,+S.&author=Harrow,+J.&author=Kaul,+R.&publication_year=2012&journal=Nature&volume=489&pages=57%E2%80%9374" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B3-ijms-25-01469' class='html-x' data-content='3.'>Halldorsson, B.V.; Eggertsson, H.P.; Moore, K.H.S.; Hauswedell, H.; Eiriksson, O.; Ulfarsson, M.O.; Palsson, G.; Hardarson, M.T.; Oddsson, A.; Jensson, B.O.; et al. The sequences of 150,119 genomes in the UK Biobank. <span class='html-italic'>Nature</span> <b>2022</b>, <span class='html-italic'>607</span>, 732–740. [<a href="https://scholar.google.com/scholar_lookup?title=The+sequences+of+150,119+genomes+in+the+UK+Biobank&author=Halldorsson,+B.V.&author=Eggertsson,+H.P.&author=Moore,+K.H.S.&author=Hauswedell,+H.&author=Eiriksson,+O.&author=Ulfarsson,+M.O.&author=Palsson,+G.&author=Hardarson,+M.T.&author=Oddsson,+A.&author=Jensson,+B.O.&publication_year=2022&journal=Nature&volume=607&pages=732%E2%80%93740&doi=10.1038/s41586-022-04965-x" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41586-022-04965-x" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B4-ijms-25-01469' class='html-x' data-content='4.'>Statello, L.; Guo, C.-J.; Chen, L.-L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. <span class='html-italic'>Nat. Rev. Mol. Cell Biol.</span> <b>2021</b>, <span class='html-italic'>22</span>, 96–118. [<a href="https://scholar.google.com/scholar_lookup?title=Gene+regulation+by+long+non-coding+RNAs+and+its+biological+functions&author=Statello,+L.&author=Guo,+C.-J.&author=Chen,+L.-L.&author=Huarte,+M.&publication_year=2021&journal=Nat.+Rev.+Mol.+Cell+Biol.&volume=22&pages=96%E2%80%93118&doi=10.1038/s41580-020-00315-9" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41580-020-00315-9" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B5-ijms-25-01469' class='html-x' data-content='5.'>Khraiwesh, B.; Arif, M.A.; Seumel, G.I.; Ossowski, S.; Weigel, D.; Reski, R.; Frank, W. Transcriptional control of gene expression by microRNAs. <span class='html-italic'>Cell</span> <b>2010</b>, <span class='html-italic'>140</span>, 111–122. [<a href="https://scholar.google.com/scholar_lookup?title=Transcriptional+control+of+gene+expression+by+microRNAs&author=Khraiwesh,+B.&author=Arif,+M.A.&author=Seumel,+G.I.&author=Ossowski,+S.&author=Weigel,+D.&author=Reski,+R.&author=Frank,+W.&publication_year=2010&journal=Cell&volume=140&pages=111%E2%80%93122&doi=10.1016/j.cell.2009.12.023" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.cell.2009.12.023" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B6-ijms-25-01469' class='html-x' data-content='6.'>Samad, A.F.A.; Sajad, M.; Nazaruddin, N.; Fauzi, I.A.; Murad, A.M.A.; Zainal, Z.; Ismail, I. MicroRNA and Transcription Factor: Key Players in Plant Regulatory Network. <span class='html-italic'>Front. Plant Sci.</span> <b>2017</b>, <span class='html-italic'>8</span>, 565. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNA+and+Transcription+Factor:+Key+Players+in+Plant+Regulatory+Network&author=Samad,+A.F.A.&author=Sajad,+M.&author=Nazaruddin,+N.&author=Fauzi,+I.A.&author=Murad,+A.M.A.&author=Zainal,+Z.&author=Ismail,+I.&publication_year=2017&journal=Front.+Plant+Sci.&volume=8&pages=565&doi=10.3389/fpls.2017.00565&pmid=28446918" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3389/fpls.2017.00565" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/28446918" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B7-ijms-25-01469' class='html-x' data-content='7.'>Tong, Z.; Cui, Q.; Wang, J.; Zhou, Y. TransmiR v2.0: An updated transcription factor-microRNA regulation database. <span class='html-italic'>Nucleic Acids Res.</span> <b>2018</b>, <span class='html-italic'>47</span>, D253–D258. [<a href="https://scholar.google.com/scholar_lookup?title=TransmiR+v2.0:+An+updated+transcription+factor-microRNA+regulation+database&author=Tong,+Z.&author=Cui,+Q.&author=Wang,+J.&author=Zhou,+Y.&publication_year=2018&journal=Nucleic+Acids+Res.&volume=47&pages=D253%E2%80%93D258&doi=10.1093/nar/gky1023&pmid=30371815" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1093/nar/gky1023" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/30371815" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B8-ijms-25-01469' class='html-x' data-content='8.'>Seyhan, A.A. microRNAs with different functions and roles in disease development and as potential biomarkers of diabetes: Progress and challenges. <span class='html-italic'>Mol. Biosyst.</span> <b>2015</b>, <span class='html-italic'>11</span>, 1217–1234. [<a href="https://scholar.google.com/scholar_lookup?title=microRNAs+with+different+functions+and+roles+in+disease+development+and+as+potential+biomarkers+of+diabetes:+Progress+and+challenges&author=Seyhan,+A.A.&publication_year=2015&journal=Mol.+Biosyst.&volume=11&pages=1217%E2%80%931234&doi=10.1039/C5MB00064E&pmid=25765998" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/C5MB00064E" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/25765998" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B9-ijms-25-01469' class='html-x' data-content='9.'>Chen, P.Y.; Meister, G. microRNA-guided posttranscriptional gene regulation. <span class='html-italic'>Biol. Chem.</span> <b>2005</b>, <span class='html-italic'>386</span>, 1205–1218. [<a href="https://scholar.google.com/scholar_lookup?title=microRNA-guided+posttranscriptional+gene+regulation&author=Chen,+P.Y.&author=Meister,+G.&publication_year=2005&journal=Biol.+Chem.&volume=386&pages=1205%E2%80%931218&doi=10.1515/BC.2005.139&pmid=16336116" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1515/BC.2005.139" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/16336116" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B10-ijms-25-01469' class='html-xx' data-content='10.'>Catalanotto, C.; Cogoni, C.; Zardo, G. MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. <span class='html-italic'>Int. J. Mol. Sci.</span> <b>2016</b>, <span class='html-italic'>17</span>, 1712. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNA+in+Control+of+Gene+Expression:+An+Overview+of+Nuclear+Functions&author=Catalanotto,+C.&author=Cogoni,+C.&author=Zardo,+G.&publication_year=2016&journal=Int.+J.+Mol.+Sci.&volume=17&pages=1712&doi=10.3390/ijms17101712&pmid=27754357" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/ijms17101712" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/27754357" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B11-ijms-25-01469' class='html-xx' data-content='11.'>O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. <span class='html-italic'>Front. Endocrinol.</span> <b>2018</b>, <span class='html-italic'>9</span>, 402. [<a href="https://scholar.google.com/scholar_lookup?title=Overview+of+MicroRNA+Biogenesis,+Mechanisms+of+Actions,+and+Circulation&author=O%E2%80%99Brien,+J.&author=Hayder,+H.&author=Zayed,+Y.&author=Peng,+C.&publication_year=2018&journal=Front.+Endocrinol.&volume=9&pages=402&doi=10.3389/fendo.2018.00402&pmid=30123182" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3389/fendo.2018.00402" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/30123182" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B12-ijms-25-01469' class='html-xx' data-content='12.'>Wang, H.; Meng, Q.; Qian, J.; Li, M.; Gu, C.; Yang, Y. Review: RNA-based diagnostic markers discovery and therapeutic targets development in cancer. <span class='html-italic'>Pharmacol. Ther.</span> <b>2022</b>, <span class='html-italic'>234</span>, 108123. [<a href="https://scholar.google.com/scholar_lookup?title=Review:+RNA-based+diagnostic+markers+discovery+and+therapeutic+targets+development+in+cancer&author=Wang,+H.&author=Meng,+Q.&author=Qian,+J.&author=Li,+M.&author=Gu,+C.&author=Yang,+Y.&publication_year=2022&journal=Pharmacol.+Ther.&volume=234&pages=108123&doi=10.1016/j.pharmthera.2022.108123" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.pharmthera.2022.108123" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B13-ijms-25-01469' class='html-xx' data-content='13.'>Guo, Z.; Maki, M.; Ding, R.; Yang, Y.; Zhang, B.; Xiong, L. Genome-wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues. <span class='html-italic'>Sci. Rep.</span> <b>2014</b>, <span class='html-italic'>4</span>, 5150. [<a href="https://scholar.google.com/scholar_lookup?title=Genome-wide+survey+of+tissue-specific+microRNA+and+transcription+factor+regulatory+networks+in+12+tissues&author=Guo,+Z.&author=Maki,+M.&author=Ding,+R.&author=Yang,+Y.&author=Zhang,+B.&author=Xiong,+L.&publication_year=2014&journal=Sci.+Rep.&volume=4&pages=5150&doi=10.1038/srep05150&pmid=24889152" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/srep05150" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/24889152" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B14-ijms-25-01469' class='html-xx' data-content='14.'>Wienholds, E.; Kloosterman, W.P.; Miska, E.; Alvarez-Saavedra, E.; Berezikov, E.; de Bruijn, E.; Horvitz, H.R.; Kauppinen, S.; Plasterk, R.H. MicroRNA expression in zebrafish embryonic development. <span class='html-italic'>Science</span> <b>2005</b>, <span class='html-italic'>309</span>, 310–311. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNA+expression+in+zebrafish+embryonic+development&author=Wienholds,+E.&author=Kloosterman,+W.P.&author=Miska,+E.&author=Alvarez-Saavedra,+E.&author=Berezikov,+E.&author=de+Bruijn,+E.&author=Horvitz,+H.R.&author=Kauppinen,+S.&author=Plasterk,+R.H.&publication_year=2005&journal=Science&volume=309&pages=310%E2%80%93311&doi=10.1126/science.1114519&pmid=15919954" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1126/science.1114519" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/15919954" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B15-ijms-25-01469' class='html-xx' data-content='15.'>Aboobaker, A.A.; Tomancak, P.; Patel, N.; Rubin, G.M.; Lai, E.C. Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. <span class='html-italic'>Proc. Natl. Acad. Sci. USA</span> <b>2005</b>, <span class='html-italic'>102</span>, 18017–18022. [<a href="https://scholar.google.com/scholar_lookup?title=Drosophila+microRNAs+exhibit+diverse+spatial+expression+patterns+during+embryonic+development&author=Aboobaker,+A.A.&author=Tomancak,+P.&author=Patel,+N.&author=Rubin,+G.M.&author=Lai,+E.C.&publication_year=2005&journal=Proc.+Natl.+Acad.+Sci.+USA&volume=102&pages=18017%E2%80%9318022&doi=10.1073/pnas.0508823102" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1073/pnas.0508823102" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B16-ijms-25-01469' class='html-xx' data-content='16.'>Walker, J.C.; Harland, R.M. Expression of microRNAs during embryonic development of <span class='html-italic'>Xenopus tropicalis</span>. <span class='html-italic'>Gene Expr. Patterns</span> <b>2008</b>, <span class='html-italic'>8</span>, 452–456. [<a href="https://scholar.google.com/scholar_lookup?title=Expression+of+microRNAs+during+embryonic+development+of+Xenopus+tropicalis&author=Walker,+J.C.&author=Harland,+R.M.&publication_year=2008&journal=Gene+Expr.+Patterns&volume=8&pages=452%E2%80%93456&doi=10.1016/j.gep.2008.03.002" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.gep.2008.03.002" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B17-ijms-25-01469' class='html-xx' data-content='17.'>Li, Y.; Kowdley, K.V. MicroRNAs in Common Human Diseases. <span class='html-italic'>Genom. Proteom. Bioinform.</span> <b>2012</b>, <span class='html-italic'>10</span>, 246–253. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNAs+in+Common+Human+Diseases&author=Li,+Y.&author=Kowdley,+K.V.&publication_year=2012&journal=Genom.+Proteom.+Bioinform.&volume=10&pages=246%E2%80%93253&doi=10.1016/j.gpb.2012.07.005" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.gpb.2012.07.005" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B18-ijms-25-01469' class='html-xx' data-content='18.'>De Guire, V.; Robitaille, R.; Tetreault, N.; Guerin, R.; Menard, C.; Bambace, N.; Sapieha, P. Circulating miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: Promises and challenges. <span class='html-italic'>Clin. Biochem.</span> <b>2013</b>, <span class='html-italic'>46</span>, 846–860. [<a href="https://scholar.google.com/scholar_lookup?title=Circulating+miRNAs+as+sensitive+and+specific+biomarkers+for+the+diagnosis+and+monitoring+of+human+diseases:+Promises+and+challenges&author=De+Guire,+V.&author=Robitaille,+R.&author=Tetreault,+N.&author=Guerin,+R.&author=Menard,+C.&author=Bambace,+N.&author=Sapieha,+P.&publication_year=2013&journal=Clin.+Biochem.&volume=46&pages=846%E2%80%93860&doi=10.1016/j.clinbiochem.2013.03.015" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.clinbiochem.2013.03.015" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B19-ijms-25-01469' class='html-xx' data-content='19.'>Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. <span class='html-italic'>Cells</span> <b>2020</b>, <span class='html-italic'>9</span>, 276. [<a href="https://scholar.google.com/scholar_lookup?title=miRNAs+as+Biomarkers+in+Disease:+Latest+Findings+Regarding+Their+Role+in+Diagnosis+and+Prognosis&author=Condrat,+C.E.&author=Thompson,+D.C.&author=Barbu,+M.G.&author=Bugnar,+O.L.&author=Boboc,+A.&author=Cretoiu,+D.&author=Suciu,+N.&author=Cretoiu,+S.M.&author=Voinea,+S.C.&publication_year=2020&journal=Cells&volume=9&pages=276&doi=10.3390/cells9020276&pmid=31979244" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/cells9020276" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/31979244" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B20-ijms-25-01469' class='html-xx' data-content='20.'>Gareev, I.; de Jesus Encarnacion Ramirez, M.; Goncharov, E.; Ivliev, D.; Shumadalova, A.; Ilyasova, T.; Wang, C. MiRNAs and lncRNAs in the regulation of innate immune signaling. <span class='html-italic'>Noncoding RNA Res.</span> <b>2023</b>, <span class='html-italic'>8</span>, 534–541. [<a href="https://scholar.google.com/scholar_lookup?title=MiRNAs+and+lncRNAs+in+the+regulation+of+innate+immune+signaling&author=Gareev,+I.&author=de+Jesus+Encarnacion+Ramirez,+M.&author=Goncharov,+E.&author=Ivliev,+D.&author=Shumadalova,+A.&author=Ilyasova,+T.&author=Wang,+C.&publication_year=2023&journal=Noncoding+RNA+Res.&volume=8&pages=534%E2%80%93541&doi=10.1016/j.ncrna.2023.07.002&pmid=37564295" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.ncrna.2023.07.002" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/37564295" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B21-ijms-25-01469' class='html-xx' data-content='21.'>Pauley, K.M.; Cha, S.; Chan, E.K. MicroRNA in autoimmunity and autoimmune diseases. <span class='html-italic'>J. Autoimmun.</span> <b>2009</b>, <span class='html-italic'>32</span>, 189–194. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNA+in+autoimmunity+and+autoimmune+diseases&author=Pauley,+K.M.&author=Cha,+S.&author=Chan,+E.K.&publication_year=2009&journal=J.+Autoimmun.&volume=32&pages=189%E2%80%93194&doi=10.1016/j.jaut.2009.02.012" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jaut.2009.02.012" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B22-ijms-25-01469' class='html-xx' data-content='22.'>Sullivan, C.S.; Ganem, D. MicroRNAs and viral infection. <span class='html-italic'>Mol. Cell</span> <b>2005</b>, <span class='html-italic'>20</span>, 3–7. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNAs+and+viral+infection&author=Sullivan,+C.S.&author=Ganem,+D.&publication_year=2005&journal=Mol.+Cell&volume=20&pages=3%E2%80%937&doi=10.1016/j.molcel.2005.09.012" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.molcel.2005.09.012" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B23-ijms-25-01469' class='html-xx' data-content='23.'>Skalsky, R.L.; Cullen, B.R. Viruses, microRNAs, and host interactions. <span class='html-italic'>Annu. Rev. Microbiol.</span> <b>2010</b>, <span class='html-italic'>64</span>, 123–141. [<a href="https://scholar.google.com/scholar_lookup?title=Viruses,+microRNAs,+and+host+interactions&author=Skalsky,+R.L.&author=Cullen,+B.R.&publication_year=2010&journal=Annu.+Rev.+Microbiol.&volume=64&pages=123%E2%80%93141&doi=10.1146/annurev.micro.112408.134243" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1146/annurev.micro.112408.134243" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B24-ijms-25-01469' class='html-xx' data-content='24.'>Barbu, M.G.; Condrat, C.E.; Thompson, D.C.; Bugnar, O.L.; Cretoiu, D.; Toader, O.D.; Suciu, N.; Voinea, S.C. MicroRNA Involvement in Signaling Pathways During Viral Infection. <span class='html-italic'>Front. Cell Dev. Biol.</span> <b>2020</b>, <span class='html-italic'>8</span>, 143. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNA+Involvement+in+Signaling+Pathways+During+Viral+Infection&author=Barbu,+M.G.&author=Condrat,+C.E.&author=Thompson,+D.C.&author=Bugnar,+O.L.&author=Cretoiu,+D.&author=Toader,+O.D.&author=Suciu,+N.&author=Voinea,+S.C.&publication_year=2020&journal=Front.+Cell+Dev.+Biol.&volume=8&pages=143&doi=10.3389/fcell.2020.00143" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3389/fcell.2020.00143" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B25-ijms-25-01469' class='html-xx' data-content='25.'>Abu-Izneid, T.; AlHajri, N.; Ibrahim, A.M.; Javed, M.N.; Salem, K.M.; Pottoo, F.H.; Kamal, M.A. Micro-RNAs in the regulation of immune response against SARS CoV-2 and other viral infections. <span class='html-italic'>J. Adv. Res.</span> <b>2021</b>, <span class='html-italic'>30</span>, 133–145. [<a href="https://scholar.google.com/scholar_lookup?title=Micro-RNAs+in+the+regulation+of+immune+response+against+SARS+CoV-2+and+other+viral+infections&author=Abu-Izneid,+T.&author=AlHajri,+N.&author=Ibrahim,+A.M.&author=Javed,+M.N.&author=Salem,+K.M.&author=Pottoo,+F.H.&author=Kamal,+M.A.&publication_year=2021&journal=J.+Adv.+Res.&volume=30&pages=133%E2%80%93145&doi=10.1016/j.jare.2020.11.013" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jare.2020.11.013" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B26-ijms-25-01469' class='html-xx' data-content='26.'>Elfimova, N.; Schlattjan, M.; Sowa, J.P.; Dienes, H.P.; Canbay, A.; Odenthal, M. Circulating microRNAs: Promising candidates serving as novel biomarkers of acute hepatitis. <span class='html-italic'>Front. Physiol.</span> <b>2012</b>, <span class='html-italic'>3</span>, 476. [<a href="https://scholar.google.com/scholar_lookup?title=Circulating+microRNAs:+Promising+candidates+serving+as+novel+biomarkers+of+acute+hepatitis&author=Elfimova,+N.&author=Schlattjan,+M.&author=Sowa,+J.P.&author=Dienes,+H.P.&author=Canbay,+A.&author=Odenthal,+M.&publication_year=2012&journal=Front.+Physiol.&volume=3&pages=476&doi=10.3389/fphys.2012.00476&pmid=23267332" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3389/fphys.2012.00476" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/23267332" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B27-ijms-25-01469' class='html-xx' data-content='27.'>Li, Y.J.; Xu, M.; Gao, Z.H.; Wang, Y.Q.; Yue, Z.; Zhang, Y.X.; Li, X.X.; Zhang, C.; Xie, S.Y.; Wang, P.Y. Alterations of serum levels of BDNF-related miRNAs in patients with depression. <span class='html-italic'>PLoS ONE</span> <b>2013</b>, <span class='html-italic'>8</span>, e63648. [<a href="https://scholar.google.com/scholar_lookup?title=Alterations+of+serum+levels+of+BDNF-related+miRNAs+in+patients+with+depression&author=Li,+Y.J.&author=Xu,+M.&author=Gao,+Z.H.&author=Wang,+Y.Q.&author=Yue,+Z.&author=Zhang,+Y.X.&author=Li,+X.X.&author=Zhang,+C.&author=Xie,+S.Y.&author=Wang,+P.Y.&publication_year=2013&journal=PLoS+ONE&volume=8&pages=e63648&doi=10.1371/journal.pone.0063648&pmid=23704927" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1371/journal.pone.0063648" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/23704927" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B28-ijms-25-01469' class='html-xx' data-content='28.'>Scott, K.A.; Hoban, A.E.; Clarke, G.; Moloney, G.M.; Dinan, T.G.; Cryan, J.F. Thinking small: Towards microRNA-based therapeutics for anxiety disorders. <span class='html-italic'>Expert. Opin. Investig. Drugs</span> <b>2015</b>, <span class='html-italic'>24</span>, 529–542. [<a href="https://scholar.google.com/scholar_lookup?title=Thinking+small:+Towards+microRNA-based+therapeutics+for+anxiety+disorders&author=Scott,+K.A.&author=Hoban,+A.E.&author=Clarke,+G.&author=Moloney,+G.M.&author=Dinan,+T.G.&author=Cryan,+J.F.&publication_year=2015&journal=Expert.+Opin.+Investig.+Drugs&volume=24&pages=529%E2%80%93542&doi=10.1517/13543784.2014.997873&pmid=25566796" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1517/13543784.2014.997873" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/25566796" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B29-ijms-25-01469' class='html-xx' data-content='29.'>Liu, W.; Liu, C.; Zhu, J.; Shu, P.; Yin, B.; Gong, Y.; Qiang, B.; Yuan, J.; Peng, X. MicroRNA-16 targets amyloid precursor protein to potentially modulate Alzheimer’s-associated pathogenesis in SAMP8 mice. <span class='html-italic'>Neurobiol. Aging</span> <b>2012</b>, <span class='html-italic'>33</span>, 522–534. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNA-16+targets+amyloid+precursor+protein+to+potentially+modulate+Alzheimer%E2%80%99s-associated+pathogenesis+in+SAMP8+mice&author=Liu,+W.&author=Liu,+C.&author=Zhu,+J.&author=Shu,+P.&author=Yin,+B.&author=Gong,+Y.&author=Qiang,+B.&author=Yuan,+J.&author=Peng,+X.&publication_year=2012&journal=Neurobiol.+Aging&volume=33&pages=522%E2%80%93534&doi=10.1016/j.neurobiolaging.2010.04.034&pmid=20619502" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.neurobiolaging.2010.04.034" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/20619502" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B30-ijms-25-01469' class='html-xx' data-content='30.'>Weir, D.W.; Sturrock, A.; Leavitt, B.R. Development of biomarkers for Huntington’s disease. <span class='html-italic'>Lancet Neurol.</span> <b>2011</b>, <span class='html-italic'>10</span>, 573–590. [<a href="https://scholar.google.com/scholar_lookup?title=Development+of+biomarkers+for+Huntington%E2%80%99s+disease&author=Weir,+D.W.&author=Sturrock,+A.&author=Leavitt,+B.R.&publication_year=2011&journal=Lancet+Neurol.&volume=10&pages=573%E2%80%93590&doi=10.1016/S1474-4422(11)70070-9&pmid=21601164" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/S1474-4422(11)70070-9" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/21601164" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B31-ijms-25-01469' class='html-xx' data-content='31.'>Wang, R.; Li, N.; Zhang, Y.; Ran, Y.; Pu, J. Circulating microRNAs are promising novel biomarkers of acute myocardial infarction. <span class='html-italic'>Intern. Med.</span> <b>2011</b>, <span class='html-italic'>50</span>, 1789–1795. [<a href="https://scholar.google.com/scholar_lookup?title=Circulating+microRNAs+are+promising+novel+biomarkers+of+acute+myocardial+infarction&author=Wang,+R.&author=Li,+N.&author=Zhang,+Y.&author=Ran,+Y.&author=Pu,+J.&publication_year=2011&journal=Intern.+Med.&volume=50&pages=1789%E2%80%931795&doi=10.2169/internalmedicine.50.5129" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.2169/internalmedicine.50.5129" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B32-ijms-25-01469' class='html-xx' data-content='32.'>Recchioni, R.; Marcheselli, F.; Olivieri, F.; Ricci, S.; Procopio, A.D.; Antonicelli, R. Conventional and novel diagnostic biomarkers of acute myocardial infarction: A promising role for circulating microRNAs. <span class='html-italic'>Biomarkers</span> <b>2013</b>, <span class='html-italic'>18</span>, 547–558. [<a href="https://scholar.google.com/scholar_lookup?title=Conventional+and+novel+diagnostic+biomarkers+of+acute+myocardial+infarction:+A+promising+role+for+circulating+microRNAs&author=Recchioni,+R.&author=Marcheselli,+F.&author=Olivieri,+F.&author=Ricci,+S.&author=Procopio,+A.D.&author=Antonicelli,+R.&publication_year=2013&journal=Biomarkers&volume=18&pages=547%E2%80%93558&doi=10.3109/1354750X.2013.833294" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3109/1354750X.2013.833294" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B33-ijms-25-01469' class='html-xx' data-content='33.'>Nunez Lopez, Y.O.; Coen, P.M.; Goodpaster, B.H.; Seyhan, A.A. Gastric bypass surgery with exercise alters plasma microRNAs that predict improvements in cardiometabolic risk. <span class='html-italic'>Int. J. Obes.</span> <b>2017</b>, <span class='html-italic'>41</span>, 1121–1130. [<a href="https://scholar.google.com/scholar_lookup?title=Gastric+bypass+surgery+with+exercise+alters+plasma+microRNAs+that+predict+improvements+in+cardiometabolic+risk&author=Nunez+Lopez,+Y.O.&author=Coen,+P.M.&author=Goodpaster,+B.H.&author=Seyhan,+A.A.&publication_year=2017&journal=Int.+J.+Obes.&volume=41&pages=1121%E2%80%931130&doi=10.1038/ijo.2017.84" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/ijo.2017.84" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B34-ijms-25-01469' class='html-xx' data-content='34.'>Nunez Lopez, Y.O.; Garufi, G.; Pasarica, M.; Seyhan, A.A. Elevated and Correlated Expressions of miR-24, miR-30d, miR-146a, and SFRP-4 in Human Abdominal Adipose Tissue Play a Role in Adiposity and Insulin Resistance. <span class='html-italic'>Int. J. Endocrinol.</span> <b>2018</b>, <span class='html-italic'>2018</span>, 7351902. [<a href="https://scholar.google.com/scholar_lookup?title=Elevated+and+Correlated+Expressions+of+miR-24,+miR-30d,+miR-146a,+and+SFRP-4+in+Human+Abdominal+Adipose+Tissue+Play+a+Role+in+Adiposity+and+Insulin+Resistance&author=Nunez+Lopez,+Y.O.&author=Garufi,+G.&author=Pasarica,+M.&author=Seyhan,+A.A.&publication_year=2018&journal=Int.+J.+Endocrinol.&volume=2018&pages=7351902&doi=10.1155/2018/7351902" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1155/2018/7351902" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B35-ijms-25-01469' class='html-xx' data-content='35.'>Wang, Q.; Wang, Y.; Minto, A.W.; Wang, J.; Shi, Q.; Li, X.; Quigg, R.J. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. <span class='html-italic'>FASEB J.</span> <b>2008</b>, <span class='html-italic'>22</span>, 4126–4135. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNA-377+is+up-regulated+and+can+lead+to+increased+fibronectin+production+in+diabetic+nephropathy&author=Wang,+Q.&author=Wang,+Y.&author=Minto,+A.W.&author=Wang,+J.&author=Shi,+Q.&author=Li,+X.&author=Quigg,+R.J.&publication_year=2008&journal=FASEB+J.&volume=22&pages=4126%E2%80%934135&doi=10.1096/fj.08-112326&pmid=18716028" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1096/fj.08-112326" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/18716028" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B36-ijms-25-01469' class='html-xx' data-content='36.'>Seyhan, A.A.; Nunez Lopez, Y.O.; Xie, H.; Yi, F.; Mathews, C.; Pasarica, M.; Pratley, R.E. Pancreas-enriched miRNAs are altered in the circulation of subjects with diabetes: A pilot cross-sectional study. <span class='html-italic'>Sci. Rep.</span> <b>2016</b>, <span class='html-italic'>6</span>, 31479. [<a href="https://scholar.google.com/scholar_lookup?title=Pancreas-enriched+miRNAs+are+altered+in+the+circulation+of+subjects+with+diabetes:+A+pilot+cross-sectional+study&author=Seyhan,+A.A.&author=Nunez+Lopez,+Y.O.&author=Xie,+H.&author=Yi,+F.&author=Mathews,+C.&author=Pasarica,+M.&author=Pratley,+R.E.&publication_year=2016&journal=Sci.+Rep.&volume=6&pages=31479&doi=10.1038/srep31479&pmid=27558530" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/srep31479" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/27558530" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B37-ijms-25-01469' class='html-xx' data-content='37.'>Nunez Lopez, Y.O.; Garufi, G.; Seyhan, A.A. Altered levels of circulating cytokines and microRNAs in lean and obese individuals with prediabetes and type 2 diabetes. <span class='html-italic'>Mol. Biosyst.</span> <b>2016</b>, <span class='html-italic'>13</span>, 106–121. [<a href="https://scholar.google.com/scholar_lookup?title=Altered+levels+of+circulating+cytokines+and+microRNAs+in+lean+and+obese+individuals+with+prediabetes+and+type+2+diabetes&author=Nunez+Lopez,+Y.O.&author=Garufi,+G.&author=Seyhan,+A.A.&publication_year=2016&journal=Mol.+Biosyst.&volume=13&pages=106%E2%80%93121&doi=10.1039/C6MB00596A&pmid=27869909" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/C6MB00596A" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/27869909" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B38-ijms-25-01469' class='html-xx' data-content='38.'>Nunez Lopez, Y.O.; Pittas, A.G.; Pratley, R.E.; Seyhan, A.A. Circulating levels of miR-7, miR-152 and miR-192 respond to vitamin D supplementation in adults with prediabetes and correlate with improvements in glycemic control. <span class='html-italic'>J. Nutr. Biochem.</span> <b>2017</b>, <span class='html-italic'>49</span>, 117–122. [<a href="https://scholar.google.com/scholar_lookup?title=Circulating+levels+of+miR-7,+miR-152+and+miR-192+respond+to+vitamin+D+supplementation+in+adults+with+prediabetes+and+correlate+with+improvements+in+glycemic+control&author=Nunez+Lopez,+Y.O.&author=Pittas,+A.G.&author=Pratley,+R.E.&author=Seyhan,+A.A.&publication_year=2017&journal=J.+Nutr.+Biochem.&volume=49&pages=117%E2%80%93122&doi=10.1016/j.jnutbio.2017.08.007" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jnutbio.2017.08.007" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B39-ijms-25-01469' class='html-xx' data-content='39.'>Kluiver, J.; Poppema, S.; de Jong, D.; Blokzijl, T.; Harms, G.; Jacobs, S.; Kroesen, B.J.; van den Berg, A. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. <span class='html-italic'>J. Pathol.</span> <b>2005</b>, <span class='html-italic'>207</span>, 243–249. [<a href="https://scholar.google.com/scholar_lookup?title=BIC+and+miR-155+are+highly+expressed+in+Hodgkin,+primary+mediastinal+and+diffuse+large+B+cell+lymphomas&author=Kluiver,+J.&author=Poppema,+S.&author=de+Jong,+D.&author=Blokzijl,+T.&author=Harms,+G.&author=Jacobs,+S.&author=Kroesen,+B.J.&author=van+den+Berg,+A.&publication_year=2005&journal=J.+Pathol.&volume=207&pages=243%E2%80%93249&doi=10.1002/path.1825&pmid=16041695" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/path.1825" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/16041695" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B40-ijms-25-01469' class='html-xx' data-content='40.'>Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; et al. MicroRNA expression profiles classify human cancers. <span class='html-italic'>Nature</span> <b>2005</b>, <span class='html-italic'>435</span>, 834–838. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNA+expression+profiles+classify+human+cancers&author=Lu,+J.&author=Getz,+G.&author=Miska,+E.A.&author=Alvarez-Saavedra,+E.&author=Lamb,+J.&author=Peck,+D.&author=Sweet-Cordero,+A.&author=Ebert,+B.L.&author=Mak,+R.H.&author=Ferrando,+A.A.&publication_year=2005&journal=Nature&volume=435&pages=834%E2%80%93838&doi=10.1038/nature03702&pmid=15944708" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/nature03702" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/15944708" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B41-ijms-25-01469' class='html-xx' data-content='41.'>Esquela-Kerscher, A.; Slack, F.J. Oncomirs—microRNAs with a role in cancer. <span class='html-italic'>Nat. Rev. Cancer</span> <b>2006</b>, <span class='html-italic'>6</span>, 259–269. [<a href="https://scholar.google.com/scholar_lookup?title=Oncomirs%E2%80%94microRNAs+with+a+role+in+cancer&author=Esquela-Kerscher,+A.&author=Slack,+F.J.&publication_year=2006&journal=Nat.+Rev.+Cancer&volume=6&pages=259%E2%80%93269&doi=10.1038/nrc1840" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/nrc1840" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B42-ijms-25-01469' class='html-xx' data-content='42.'>Lawler, S.; Chiocca, E.A. Emerging functions of microRNAs in glioblastoma. <span class='html-italic'>J. Neurooncol.</span> <b>2009</b>, <span class='html-italic'>92</span>, 297–306. [<a href="https://scholar.google.com/scholar_lookup?title=Emerging+functions+of+microRNAs+in+glioblastoma&author=Lawler,+S.&author=Chiocca,+E.A.&publication_year=2009&journal=J.+Neurooncol.&volume=92&pages=297%E2%80%93306&doi=10.1007/s11060-009-9843-2" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s11060-009-9843-2" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B43-ijms-25-01469' class='html-xx' data-content='43.'>Ventura, A.; Jacks, T. MicroRNAs and cancer: Short RNAs go a long way. <span class='html-italic'>Cell</span> <b>2009</b>, <span class='html-italic'>136</span>, 586–591. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNAs+and+cancer:+Short+RNAs+go+a+long+way&author=Ventura,+A.&author=Jacks,+T.&publication_year=2009&journal=Cell&volume=136&pages=586%E2%80%93591&doi=10.1016/j.cell.2009.02.005" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.cell.2009.02.005" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B44-ijms-25-01469' class='html-xx' data-content='44.'>Suzuki, H.; Maruyama, R.; Yamamoto, E.; Kai, M. Epigenetic alteration and microRNA dysregulation in cancer. <span class='html-italic'>Front. Genet.</span> <b>2013</b>, <span class='html-italic'>4</span>, 258. [<a href="https://scholar.google.com/scholar_lookup?title=Epigenetic+alteration+and+microRNA+dysregulation+in+cancer&author=Suzuki,+H.&author=Maruyama,+R.&author=Yamamoto,+E.&author=Kai,+M.&publication_year=2013&journal=Front.+Genet.&volume=4&pages=258&doi=10.3389/fgene.2013.00258" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3389/fgene.2013.00258" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B45-ijms-25-01469' class='html-xx' data-content='45.'>Di Leva, G.; Garofalo, M.; Croce, C.M. MicroRNAs in cancer. <span class='html-italic'>Annu. Rev. Pathol.</span> <b>2014</b>, <span class='html-italic'>9</span>, 287–314. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNAs+in+cancer&author=Di+Leva,+G.&author=Garofalo,+M.&author=Croce,+C.M.&publication_year=2014&journal=Annu.+Rev.+Pathol.&volume=9&pages=287%E2%80%93314&doi=10.1146/annurev-pathol-012513-104715" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1146/annurev-pathol-012513-104715" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B46-ijms-25-01469' class='html-xx' data-content='46.'>Hayes, J.; Peruzzi, P.P.; Lawler, S. MicroRNAs in cancer: Biomarkers, functions and therapy. <span class='html-italic'>Trends Mol. Med.</span> <b>2014</b>, <span class='html-italic'>20</span>, 460–469. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNAs+in+cancer:+Biomarkers,+functions+and+therapy&author=Hayes,+J.&author=Peruzzi,+P.P.&author=Lawler,+S.&publication_year=2014&journal=Trends+Mol.+Med.&volume=20&pages=460%E2%80%93469&doi=10.1016/j.molmed.2014.06.005" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.molmed.2014.06.005" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B47-ijms-25-01469' class='html-xx' data-content='47.'>Graveel, C.R.; Calderone, H.M.; Westerhuis, J.J.; Winn, M.E.; Sempere, L.F. Critical analysis of the potential for microRNA biomarkers in breast cancer management. <span class='html-italic'>Breast Cancer Dove Med. Press</span> <b>2015</b>, <span class='html-italic'>7</span>, 59–79. [<a href="https://scholar.google.com/scholar_lookup?title=Critical+analysis+of+the+potential+for+microRNA+biomarkers+in+breast+cancer+management&author=Graveel,+C.R.&author=Calderone,+H.M.&author=Westerhuis,+J.J.&author=Winn,+M.E.&author=Sempere,+L.F.&publication_year=2015&journal=Breast+Cancer+Dove+Med.+Press&volume=7&pages=59%E2%80%9379&pmid=25759599" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/25759599" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B48-ijms-25-01469' class='html-xx' data-content='48.'>Hata, A.; Lieberman, J. Dysregulation of microRNA biogenesis and gene silencing in cancer. <span class='html-italic'>Sci. Signal</span> <b>2015</b>, <span class='html-italic'>8</span>, re3. [<a href="https://scholar.google.com/scholar_lookup?title=Dysregulation+of+microRNA+biogenesis+and+gene+silencing+in+cancer&author=Hata,+A.&author=Lieberman,+J.&publication_year=2015&journal=Sci.+Signal&volume=8&pages=re3&doi=10.1126/scisignal.2005825&pmid=25783160" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1126/scisignal.2005825" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/25783160" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B49-ijms-25-01469' class='html-xx' data-content='49.'>Lin, S.; Gregory, R.I. MicroRNA biogenesis pathways in cancer. <span class='html-italic'>Nat. Rev. Cancer</span> <b>2015</b>, <span class='html-italic'>15</span>, 321–333. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNA+biogenesis+pathways+in+cancer&author=Lin,+S.&author=Gregory,+R.I.&publication_year=2015&journal=Nat.+Rev.+Cancer&volume=15&pages=321%E2%80%93333&doi=10.1038/nrc3932&pmid=25998712" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/nrc3932" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/25998712" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B50-ijms-25-01469' class='html-xx' data-content='50.'>Hata, A.; Kashima, R. Dysregulation of microRNA biogenesis machinery in cancer. <span class='html-italic'>Crit. Rev. Biochem. Mol. Biol.</span> <b>2016</b>, <span class='html-italic'>51</span>, 121–134. [<a href="https://scholar.google.com/scholar_lookup?title=Dysregulation+of+microRNA+biogenesis+machinery+in+cancer&author=Hata,+A.&author=Kashima,+R.&publication_year=2016&journal=Crit.+Rev.+Biochem.+Mol.+Biol.&volume=51&pages=121%E2%80%93134&doi=10.3109/10409238.2015.1117054&pmid=26628006" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3109/10409238.2015.1117054" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/26628006" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B51-ijms-25-01469' class='html-xx' data-content='51.'>Peng, Y.; Croce, C.M. The role of MicroRNAs in human cancer. <span class='html-italic'>Signal Transduct. Target. Ther.</span> <b>2016</b>, <span class='html-italic'>1</span>, 15004. [<a href="https://scholar.google.com/scholar_lookup?title=The+role+of+MicroRNAs+in+human+cancer&author=Peng,+Y.&author=Croce,+C.M.&publication_year=2016&journal=Signal+Transduct.+Target.+Ther.&volume=1&pages=15004&doi=10.1038/sigtrans.2015.4" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/sigtrans.2015.4" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B52-ijms-25-01469' class='html-xx' data-content='52.'>Lulla, A.R.; Slifker, M.J.; Zhou, Y.; Lev, A.; Einarson, M.B.; Dicker, D.T.; El-Deiry, W.S. miR-6883 Family miRNAs Target CDK4/6 to Induce G(1) Phase Cell-Cycle Arrest in Colon Cancer Cells. <span class='html-italic'>Cancer Res.</span> <b>2017</b>, <span class='html-italic'>77</span>, 6902–6913. [<a href="https://scholar.google.com/scholar_lookup?title=miR-6883+Family+miRNAs+Target+CDK4/6+to+Induce+G(1)+Phase+Cell-Cycle+Arrest+in+Colon+Cancer+Cells&author=Lulla,+A.R.&author=Slifker,+M.J.&author=Zhou,+Y.&author=Lev,+A.&author=Einarson,+M.B.&author=Dicker,+D.T.&author=El-Deiry,+W.S.&publication_year=2017&journal=Cancer+Res.&volume=77&pages=6902%E2%80%936913&doi=10.1158/0008-5472.CAN-17-1767&pmid=29061672" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1158/0008-5472.CAN-17-1767" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/29061672" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B53-ijms-25-01469' class='html-xx' data-content='53.'>Biswas, S. MicroRNAs as Therapeutic Agents: The Future of the Battle Against Cancer. <span class='html-italic'>Curr. Top. Med. Chem.</span> <b>2018</b>, <span class='html-italic'>18</span>, 2544–2554. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNAs+as+Therapeutic+Agents:+The+Future+of+the+Battle+Against+Cancer&author=Biswas,+S.&publication_year=2018&journal=Curr.+Top.+Med.+Chem.&volume=18&pages=2544%E2%80%932554&doi=10.2174/1568026619666181120121830&pmid=30457051" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.2174/1568026619666181120121830" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/30457051" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B54-ijms-25-01469' class='html-xx' data-content='54.'>Hu, W.; Tan, C.; He, Y.; Zhang, G.; Xu, Y.; Tang, J. Functional miRNAs in breast cancer drug resistance. <span class='html-italic'>Onco Targets Ther.</span> <b>2018</b>, <span class='html-italic'>11</span>, 1529–1541. [<a href="https://scholar.google.com/scholar_lookup?title=Functional+miRNAs+in+breast+cancer+drug+resistance&author=Hu,+W.&author=Tan,+C.&author=He,+Y.&author=Zhang,+G.&author=Xu,+Y.&author=Tang,+J.&publication_year=2018&journal=Onco+Targets+Ther.&volume=11&pages=1529%E2%80%931541&doi=10.2147/OTT.S152462&pmid=29593419" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.2147/OTT.S152462" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/29593419" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B55-ijms-25-01469' class='html-xx' data-content='55.'>Plotnikova, O.; Baranova, A.; Skoblov, M. Comprehensive Analysis of Human microRNA-mRNA Interactome. <span class='html-italic'>Front. Genet.</span> <b>2019</b>, <span class='html-italic'>10</span>, 933. [<a href="https://scholar.google.com/scholar_lookup?title=Comprehensive+Analysis+of+Human+microRNA-mRNA+Interactome&author=Plotnikova,+O.&author=Baranova,+A.&author=Skoblov,+M.&publication_year=2019&journal=Front.+Genet.&volume=10&pages=933&doi=10.3389/fgene.2019.00933" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3389/fgene.2019.00933" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B56-ijms-25-01469' class='html-xx' data-content='56.'>Ali Syeda, Z.; Langden, S.S.S.; Munkhzul, C.; Lee, M.; Song, S.J. Regulatory Mechanism of MicroRNA Expression in Cancer. <span class='html-italic'>Int. J. Mol. Sci.</span> <b>2020</b>, <span class='html-italic'>21</span>, 1723. [<a href="https://scholar.google.com/scholar_lookup?title=Regulatory+Mechanism+of+MicroRNA+Expression+in+Cancer&author=Ali+Syeda,+Z.&author=Langden,+S.S.S.&author=Munkhzul,+C.&author=Lee,+M.&author=Song,+S.J.&publication_year=2020&journal=Int.+J.+Mol.+Sci.&volume=21&pages=1723&doi=10.3390/ijms21051723" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/ijms21051723" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B57-ijms-25-01469' class='html-xx' data-content='57.'>Annese, T.; Tamma, R.; De Giorgis, M.; Ribatti, D. microRNAs Biogenesis, Functions and Role in Tumor Angiogenesis. <span class='html-italic'>Front. Oncol.</span> <b>2020</b>, <span class='html-italic'>10</span>, 581007. [<a href="https://scholar.google.com/scholar_lookup?title=microRNAs+Biogenesis,+Functions+and+Role+in+Tumor+Angiogenesis&author=Annese,+T.&author=Tamma,+R.&author=De+Giorgis,+M.&author=Ribatti,+D.&publication_year=2020&journal=Front.+Oncol.&volume=10&pages=581007&doi=10.3389/fonc.2020.581007" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3389/fonc.2020.581007" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B58-ijms-25-01469' class='html-xx' data-content='58.'>Cao, D.; Di, M.; Liang, J.; Shi, S.; Tan, Q.; Wang, Z. MicroRNA-183 in Cancer Progression. <span class='html-italic'>J. Cancer</span> <b>2020</b>, <span class='html-italic'>11</span>, 1315–1324. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNA-183+in+Cancer+Progression&author=Cao,+D.&author=Di,+M.&author=Liang,+J.&author=Shi,+S.&author=Tan,+Q.&author=Wang,+Z.&publication_year=2020&journal=J.+Cancer&volume=11&pages=1315%E2%80%931324&doi=10.7150/jca.39044" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.7150/jca.39044" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B59-ijms-25-01469' class='html-xx' data-content='59.'>Fathi, M.; Ghafouri-Fard, S.; Abak, A.; Taheri, M. Emerging roles of miRNAs in the development of pancreatic cancer. <span class='html-italic'>Biomed. Pharmacother.</span> <b>2021</b>, <span class='html-italic'>141</span>, 111914. [<a href="https://scholar.google.com/scholar_lookup?title=Emerging+roles+of+miRNAs+in+the+development+of+pancreatic+cancer&author=Fathi,+M.&author=Ghafouri-Fard,+S.&author=Abak,+A.&author=Taheri,+M.&publication_year=2021&journal=Biomed.+Pharmacother.&volume=141&pages=111914&doi=10.1016/j.biopha.2021.111914" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.biopha.2021.111914" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B60-ijms-25-01469' class='html-xx' data-content='60.'>Galka-Marciniak, P.; Urbanek-Trzeciak, M.O.; Nawrocka, P.M.; Kozlowski, P. A pan-cancer atlas of somatic mutations in miRNA biogenesis genes. <span class='html-italic'>Nucleic Acids Res.</span> <b>2021</b>, <span class='html-italic'>49</span>, 601–620. [<a href="https://scholar.google.com/scholar_lookup?title=A+pan-cancer+atlas+of+somatic+mutations+in+miRNA+biogenesis+genes&author=Galka-Marciniak,+P.&author=Urbanek-Trzeciak,+M.O.&author=Nawrocka,+P.M.&author=Kozlowski,+P.&publication_year=2021&journal=Nucleic+Acids+Res.&volume=49&pages=601%E2%80%93620&doi=10.1093/nar/gkaa1223" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1093/nar/gkaa1223" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B61-ijms-25-01469' class='html-xx' data-content='61.'>Inoue, J.; Inazawa, J. Cancer-associated miRNAs and their therapeutic potential. <span class='html-italic'>J. Hum. Genet.</span> <b>2021</b>, <span class='html-italic'>66</span>, 937–945. [<a href="https://scholar.google.com/scholar_lookup?title=Cancer-associated+miRNAs+and+their+therapeutic+potential&author=Inoue,+J.&author=Inazawa,+J.&publication_year=2021&journal=J.+Hum.+Genet.&volume=66&pages=937%E2%80%93945&doi=10.1038/s10038-021-00938-6&pmid=34088973" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s10038-021-00938-6" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/34088973" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B62-ijms-25-01469' class='html-xx' data-content='62.'>Pajares, M.J.; Alemany-Cosme, E.; Goni, S.; Bandres, E.; Palanca-Ballester, C.; Sandoval, J. Epigenetic Regulation of microRNAs in Cancer: Shortening the Distance from Bench to Bedside. <span class='html-italic'>Int. J. Mol. Sci.</span> <b>2021</b>, <span class='html-italic'>22</span>, 7350. [<a href="https://scholar.google.com/scholar_lookup?title=Epigenetic+Regulation+of+microRNAs+in+Cancer:+Shortening+the+Distance+from+Bench+to+Bedside&author=Pajares,+M.J.&author=Alemany-Cosme,+E.&author=Goni,+S.&author=Bandres,+E.&author=Palanca-Ballester,+C.&author=Sandoval,+J.&publication_year=2021&journal=Int.+J.+Mol.+Sci.&volume=22&pages=7350&doi=10.3390/ijms22147350" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/ijms22147350" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B63-ijms-25-01469' class='html-xx' data-content='63.'>Smolarz, B.; Durczyński, A.; Romanowicz, H.; Hogendorf, P. The Role of microRNA in Pancreatic Cancer. <span class='html-italic'>Biomedicines</span> <b>2021</b>, <span class='html-italic'>9</span>, 1322. [<a href="https://scholar.google.com/scholar_lookup?title=The+Role+of+microRNA+in+Pancreatic+Cancer&author=Smolarz,+B.&author=Durczy%C5%84ski,+A.&author=Romanowicz,+H.&author=Hogendorf,+P.&publication_year=2021&journal=Biomedicines&volume=9&pages=1322&doi=10.3390/biomedicines9101322" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/biomedicines9101322" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B64-ijms-25-01469' class='html-xx' data-content='64.'>Smolarz, B.; Durczyński, A.; Romanowicz, H.; Szyłło, K.; Hogendorf, P. miRNAs in Cancer (Review of Literature). <span class='html-italic'>Int. J. Mol. Sci.</span> <b>2022</b>, <span class='html-italic'>23</span>, 2805. [<a href="https://scholar.google.com/scholar_lookup?title=miRNAs+in+Cancer+(Review+of+Literature)&author=Smolarz,+B.&author=Durczy%C5%84ski,+A.&author=Romanowicz,+H.&author=Szy%C5%82%C5%82o,+K.&author=Hogendorf,+P.&publication_year=2022&journal=Int.+J.+Mol.+Sci.&volume=23&pages=2805&doi=10.3390/ijms23052805&pmid=35269947" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/ijms23052805" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/35269947" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B65-ijms-25-01469' class='html-xx' data-content='65.'>Menon, A.; Abd-Aziz, N.; Khalid, K.; Poh, C.L.; Naidu, R. miRNA: A Promising Therapeutic Target in Cancer. <span class='html-italic'>Int. J. Mol. Sci.</span> <b>2022</b>, <span class='html-italic'>23</span>, 11502. [<a href="https://scholar.google.com/scholar_lookup?title=miRNA:+A+Promising+Therapeutic+Target+in+Cancer&author=Menon,+A.&author=Abd-Aziz,+N.&author=Khalid,+K.&author=Poh,+C.L.&author=Naidu,+R.&publication_year=2022&journal=Int.+J.+Mol.+Sci.&volume=23&pages=11502&doi=10.3390/ijms231911502" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/ijms231911502" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B66-ijms-25-01469' class='html-xx' data-content='66.'>Raufi, A.G.; May, M.S.; Hadfield, M.J.; Seyhan, A.A.; El-Deiry, W.S. Advances in Liquid Biopsy Technology and Implications for Pancreatic Cancer. <span class='html-italic'>Int. J. Mol. Sci.</span> <b>2023</b>, <span class='html-italic'>24</span>, 4238. [<a href="https://scholar.google.com/scholar_lookup?title=Advances+in+Liquid+Biopsy+Technology+and+Implications+for+Pancreatic+Cancer&author=Raufi,+A.G.&author=May,+M.S.&author=Hadfield,+M.J.&author=Seyhan,+A.A.&author=El-Deiry,+W.S.&publication_year=2023&journal=Int.+J.+Mol.+Sci.&volume=24&pages=4238&doi=10.3390/ijms24044238" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/ijms24044238" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B67-ijms-25-01469' class='html-xx' data-content='67.'>Ricarte-Filho, J.C.; Casado-Medrano, V.; Reichenberger, E.; Spangler, Z.; Scheerer, M.; Isaza, A.; Baran, J.; Patel, T.; MacFarland, S.P.; Brodeur, G.M.; et al. DICER1 RNase IIIb domain mutations trigger widespread miRNA dysregulation and MAPK activation in pediatric thyroid cancer. <span class='html-italic'>Front. Endocrinol.</span> <b>2023</b>, <span class='html-italic'>14</span>, 1083382. [<a href="https://scholar.google.com/scholar_lookup?title=DICER1+RNase+IIIb+domain+mutations+trigger+widespread+miRNA+dysregulation+and+MAPK+activation+in+pediatric+thyroid+cancer&author=Ricarte-Filho,+J.C.&author=Casado-Medrano,+V.&author=Reichenberger,+E.&author=Spangler,+Z.&author=Scheerer,+M.&author=Isaza,+A.&author=Baran,+J.&author=Patel,+T.&author=MacFarland,+S.P.&author=Brodeur,+G.M.&publication_year=2023&journal=Front.+Endocrinol.&volume=14&pages=1083382&doi=10.3389/fendo.2023.1083382&pmid=36896180" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3389/fendo.2023.1083382" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/36896180" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B68-ijms-25-01469' class='html-xx' data-content='68.'>Seyhan, A.A. Circulating microRNAs as Potential Biomarkers in Pancreatic Cancer-Advances and Challenges. <span class='html-italic'>Int. J. Mol. Sci.</span> <b>2023</b>, <span class='html-italic'>24</span>, 13340. [<a href="https://scholar.google.com/scholar_lookup?title=Circulating+microRNAs+as+Potential+Biomarkers+in+Pancreatic+Cancer-Advances+and+Challenges&author=Seyhan,+A.A.&publication_year=2023&journal=Int.+J.+Mol.+Sci.&volume=24&pages=13340&doi=10.3390/ijms241713340" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/ijms241713340" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B69-ijms-25-01469' class='html-xx' data-content='69.'>Abdelaal, A.M.; Sohal, I.S.; Iyer, S.; Sudarshan, K.; Kothandaraman, H.; Lanman, N.A.; Low, P.S.; Kasinski, A.L. A first-in-class fully modified version of miR-34a with outstanding stability, activity, and anti-tumor efficacy. <span class='html-italic'>Oncogene</span> <b>2023</b>, <span class='html-italic'>42</span>, 2985–2999. [<a href="https://scholar.google.com/scholar_lookup?title=A+first-in-class+fully+modified+version+of+miR-34a+with+outstanding+stability,+activity,+and+anti-tumor+efficacy&author=Abdelaal,+A.M.&author=Sohal,+I.S.&author=Iyer,+S.&author=Sudarshan,+K.&author=Kothandaraman,+H.&author=Lanman,+N.A.&author=Low,+P.S.&author=Kasinski,+A.L.&publication_year=2023&journal=Oncogene&volume=42&pages=2985%E2%80%932999&doi=10.1038/s41388-023-02801-8" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41388-023-02801-8" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B70-ijms-25-01469' class='html-xx' data-content='70.'>Zhang, L.; Hou, D.; Chen, X.; Li, D.; Zhu, L.; Zhang, Y.; Li, J.; Bian, Z.; Liang, X.; Cai, X.; et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom regulation by microRNA. <span class='html-italic'>Cell Res.</span> <b>2012</b>, <span class='html-italic'>22</span>, 107–126. [<a href="https://scholar.google.com/scholar_lookup?title=Exogenous+plant+MIR168a+specifically+targets+mammalian+LDLRAP1:+Evidence+of+cross-kingdom+regulation+by+microRNA&author=Zhang,+L.&author=Hou,+D.&author=Chen,+X.&author=Li,+D.&author=Zhu,+L.&author=Zhang,+Y.&author=Li,+J.&author=Bian,+Z.&author=Liang,+X.&author=Cai,+X.&publication_year=2012&journal=Cell+Res.&volume=22&pages=107%E2%80%93126&doi=10.1038/cr.2011.158" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/cr.2011.158" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B71-ijms-25-01469' class='html-xx' data-content='71.'>Witwer, K.W. XenomiRs and miRNA homeostasis in health and disease: Evidence that diet and dietary miRNAs directly and indirectly influence circulating miRNA profiles. <span class='html-italic'>RNA Biol.</span> <b>2012</b>, <span class='html-italic'>9</span>, 1147–1154. [<a href="https://scholar.google.com/scholar_lookup?title=XenomiRs+and+miRNA+homeostasis+in+health+and+disease:+Evidence+that+diet+and+dietary+miRNAs+directly+and+indirectly+influence+circulating+miRNA+profiles&author=Witwer,+K.W.&publication_year=2012&journal=RNA+Biol.&volume=9&pages=1147%E2%80%931154&doi=10.4161/rna.21619" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.4161/rna.21619" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B72-ijms-25-01469' class='html-xx' data-content='72.'>Wagner, A.E.; Piegholdt, S.; Ferraro, M.; Pallauf, K.; Rimbach, G. Food derived microRNAs. <span class='html-italic'>Food Funct.</span> <b>2015</b>, <span class='html-italic'>6</span>, 714–718. [<a href="https://scholar.google.com/scholar_lookup?title=Food+derived+microRNAs&author=Wagner,+A.E.&author=Piegholdt,+S.&author=Ferraro,+M.&author=Pallauf,+K.&author=Rimbach,+G.&publication_year=2015&journal=Food+Funct.&volume=6&pages=714%E2%80%93718&doi=10.1039/C4FO01119H" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1039/C4FO01119H" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B73-ijms-25-01469' class='html-xx' data-content='73.'>Zhang, L.; Chen, T.; Yin, Y.; Zhang, C.Y.; Zhang, Y.L. Dietary microRNA-A Novel Functional Component of Food. <span class='html-italic'>Adv. Nutr.</span> <b>2019</b>, <span class='html-italic'>10</span>, 711–721. [<a href="https://scholar.google.com/scholar_lookup?title=Dietary+microRNA-A+Novel+Functional+Component+of+Food&author=Zhang,+L.&author=Chen,+T.&author=Yin,+Y.&author=Zhang,+C.Y.&author=Zhang,+Y.L.&publication_year=2019&journal=Adv.+Nutr.&volume=10&pages=711%E2%80%93721&doi=10.1093/advances/nmy127" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1093/advances/nmy127" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B74-ijms-25-01469' class='html-xx' data-content='74.'>Díez-Sainz, E.; Lorente-Cebrián, S.; Aranaz, P.; Riezu-Boj, J.I.; Martínez, J.A.; Milagro, F.I. Potential Mechanisms Linking Food-Derived MicroRNAs, Gut Microbiota and Intestinal Barrier Functions in the Context of Nutrition and Human Health. <span class='html-italic'>Front. Nutr.</span> <b>2021</b>, <span class='html-italic'>8</span>, 586564. [<a href="https://scholar.google.com/scholar_lookup?title=Potential+Mechanisms+Linking+Food-Derived+MicroRNAs,+Gut+Microbiota+and+Intestinal+Barrier+Functions+in+the+Context+of+Nutrition+and+Human+Health&author=D%C3%ADez-Sainz,+E.&author=Lorente-Cebri%C3%A1n,+S.&author=Aranaz,+P.&author=Riezu-Boj,+J.I.&author=Mart%C3%ADnez,+J.A.&author=Milagro,+F.I.&publication_year=2021&journal=Front.+Nutr.&volume=8&pages=586564&doi=10.3389/fnut.2021.586564" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3389/fnut.2021.586564" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B75-ijms-25-01469' class='html-xx' data-content='75.'>Cieślik, M.; Bryniarski, K.; Nazimek, K. Dietary and orally-delivered miRNAs: Are they functional and ready to modulate immunity? <span class='html-italic'>AIMS Allergy Immunol.</span> <b>2023</b>, <span class='html-italic'>7</span>, 104–131. [<a href="https://scholar.google.com/scholar_lookup?title=Dietary+and+orally-delivered+miRNAs:+Are+they+functional+and+ready+to+modulate+immunity?&author=Cie%C5%9Blik,+M.&author=Bryniarski,+K.&author=Nazimek,+K.&publication_year=2023&journal=AIMS+Allergy+Immunol.&volume=7&pages=104%E2%80%93131&doi=10.3934/Allergy.2023008" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3934/Allergy.2023008" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B76-ijms-25-01469' class='html-xx' data-content='76.'>Dickinson, B.; Zhang, Y.; Petrick, J.S.; Heck, G.; Ivashuta, S.; Marshall, W.S. Lack of detectable oral bioavailability of plant microRNAs after feeding in mice. <span class='html-italic'>Nat. Biotechnol.</span> <b>2013</b>, <span class='html-italic'>31</span>, 965–967. [<a href="https://scholar.google.com/scholar_lookup?title=Lack+of+detectable+oral+bioavailability+of+plant+microRNAs+after+feeding+in+mice&author=Dickinson,+B.&author=Zhang,+Y.&author=Petrick,+J.S.&author=Heck,+G.&author=Ivashuta,+S.&author=Marshall,+W.S.&publication_year=2013&journal=Nat.+Biotechnol.&volume=31&pages=965%E2%80%93967&doi=10.1038/nbt.2737&pmid=24213763" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/nbt.2737" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/24213763" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B77-ijms-25-01469' class='html-xx' data-content='77.'>Diener, C.; Keller, A.; Meese, E. Emerging concepts of miRNA therapeutics: From cells to clinic. <span class='html-italic'>Trends Genet.</span> <b>2022</b>, <span class='html-italic'>38</span>, 613–626. [<a href="https://scholar.google.com/scholar_lookup?title=Emerging+concepts+of+miRNA+therapeutics:+From+cells+to+clinic&author=Diener,+C.&author=Keller,+A.&author=Meese,+E.&publication_year=2022&journal=Trends+Genet.&volume=38&pages=613%E2%80%93626&doi=10.1016/j.tig.2022.02.006&pmid=35303998" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.tig.2022.02.006" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/35303998" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B78-ijms-25-01469' class='html-xx' data-content='78.'>Arif, K.M.T.; Elliott, E.K.; Haupt, L.M.; Griffiths, L.R. Regulatory Mechanisms of Epigenetic miRNA Relationships in Human Cancer and Potential as Therapeutic Targets. <span class='html-italic'>Cancers</span> <b>2020</b>, <span class='html-italic'>12</span>, 2922. [<a href="https://scholar.google.com/scholar_lookup?title=Regulatory+Mechanisms+of+Epigenetic+miRNA+Relationships+in+Human+Cancer+and+Potential+as+Therapeutic+Targets&author=Arif,+K.M.T.&author=Elliott,+E.K.&author=Haupt,+L.M.&author=Griffiths,+L.R.&publication_year=2020&journal=Cancers&volume=12&pages=2922&doi=10.3390/cancers12102922&pmid=33050637" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/cancers12102922" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/33050637" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B79-ijms-25-01469' class='html-xx' data-content='79.'>Machowska, M.; Galka-Marciniak, P.; Kozlowski, P. Consequences of genetic variants in miRNA genes. <span class='html-italic'>Comput. Struct. Biotechnol. J.</span> <b>2022</b>, <span class='html-italic'>20</span>, 6443–6457. [<a href="https://scholar.google.com/scholar_lookup?title=Consequences+of+genetic+variants+in+miRNA+genes&author=Machowska,+M.&author=Galka-Marciniak,+P.&author=Kozlowski,+P.&publication_year=2022&journal=Comput.+Struct.+Biotechnol.+J.&volume=20&pages=6443%E2%80%936457&doi=10.1016/j.csbj.2022.11.036&pmid=36467588" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.csbj.2022.11.036" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/36467588" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B80-ijms-25-01469' class='html-xx' data-content='80.'>Bortoletto, A.S.; Parchem, R.J. KRAS Hijacks the miRNA Regulatory Pathway in Cancer. <span class='html-italic'>Cancer Res.</span> <b>2023</b>, <span class='html-italic'>83</span>, 1563–1572. [<a href="https://scholar.google.com/scholar_lookup?title=KRAS+Hijacks+the+miRNA+Regulatory+Pathway+in+Cancer&author=Bortoletto,+A.S.&author=Parchem,+R.J.&publication_year=2023&journal=Cancer+Res.&volume=83&pages=1563%E2%80%931572&doi=10.1158/0008-5472.CAN-23-0296&pmid=36946612" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1158/0008-5472.CAN-23-0296" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/36946612" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B81-ijms-25-01469' class='html-xx' data-content='81.'>Li, L.J.; Leng, R.X.; Fan, Y.G.; Pan, H.F.; Ye, D.Q. Translation of noncoding RNAs: Focus on lncRNAs, pri-miRNAs, and circRNAs. <span class='html-italic'>Exp. Cell Res.</span> <b>2017</b>, <span class='html-italic'>361</span>, 1–8. [<a href="https://scholar.google.com/scholar_lookup?title=Translation+of+noncoding+RNAs:+Focus+on+lncRNAs,+pri-miRNAs,+and+circRNAs&author=Li,+L.J.&author=Leng,+R.X.&author=Fan,+Y.G.&author=Pan,+H.F.&author=Ye,+D.Q.&publication_year=2017&journal=Exp.+Cell+Res.&volume=361&pages=1%E2%80%938&doi=10.1016/j.yexcr.2017.10.010" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.yexcr.2017.10.010" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B82-ijms-25-01469' class='html-xx' data-content='82.'>Beg, M.S.; Brenner, A.J.; Sachdev, J.; Borad, M.; Kang, Y.K.; Stoudemire, J.; Smith, S.; Bader, A.G.; Kim, S.; Hong, D.S. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. <span class='html-italic'>Invest. New Drugs</span> <b>2017</b>, <span class='html-italic'>35</span>, 180–188. [<a href="https://scholar.google.com/scholar_lookup?title=Phase+I+study+of+MRX34,+a+liposomal+miR-34a+mimic,+administered+twice+weekly+in+patients+with+advanced+solid+tumors&author=Beg,+M.S.&author=Brenner,+A.J.&author=Sachdev,+J.&author=Borad,+M.&author=Kang,+Y.K.&author=Stoudemire,+J.&author=Smith,+S.&author=Bader,+A.G.&author=Kim,+S.&author=Hong,+D.S.&publication_year=2017&journal=Invest.+New+Drugs&volume=35&pages=180%E2%80%93188&doi=10.1007/s10637-016-0407-y&pmid=27917453" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s10637-016-0407-y" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/27917453" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B83-ijms-25-01469' class='html-xx' data-content='83.'>Hong, D.S.; Kang, Y.K.; Borad, M.; Sachdev, J.; Ejadi, S.; Lim, H.Y.; Brenner, A.J.; Park, K.; Lee, J.L.; Kim, T.Y.; et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. <span class='html-italic'>Br. J. Cancer</span> <b>2020</b>, <span class='html-italic'>122</span>, 1630–1637. [<a href="https://scholar.google.com/scholar_lookup?title=Phase+1+study+of+MRX34,+a+liposomal+miR-34a+mimic,+in+patients+with+advanced+solid+tumours&author=Hong,+D.S.&author=Kang,+Y.K.&author=Borad,+M.&author=Sachdev,+J.&author=Ejadi,+S.&author=Lim,+H.Y.&author=Brenner,+A.J.&author=Park,+K.&author=Lee,+J.L.&author=Kim,+T.Y.&publication_year=2020&journal=Br.+J.+Cancer&volume=122&pages=1630%E2%80%931637&doi=10.1038/s41416-020-0802-1&pmid=32238921" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41416-020-0802-1" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/32238921" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B84-ijms-25-01469' class='html-xx' data-content='84.'>Desantis, V.; Saltarella, I.; Lamanuzzi, A.; Melaccio, A.; Solimando, A.G.; Mariggiò, M.A.; Racanelli, V.; Paradiso, A.; Vacca, A.; Frassanito, M.A. MicroRNAs-Based Nano-Strategies as New Therapeutic Approach in Multiple Myeloma to Overcome Disease Progression and Drug Resistance. <span class='html-italic'>Int. J. Mol. Sci.</span> <b>2020</b>, <span class='html-italic'>21</span>, 3084. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNAs-Based+Nano-Strategies+as+New+Therapeutic+Approach+in+Multiple+Myeloma+to+Overcome+Disease+Progression+and+Drug+Resistance&author=Desantis,+V.&author=Saltarella,+I.&author=Lamanuzzi,+A.&author=Melaccio,+A.&author=Solimando,+A.G.&author=Mariggi%C3%B2,+M.A.&author=Racanelli,+V.&author=Paradiso,+A.&author=Vacca,+A.&author=Frassanito,+M.A.&publication_year=2020&journal=Int.+J.+Mol.+Sci.&volume=21&pages=3084&doi=10.3390/ijms21093084&pmid=32349317" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/ijms21093084" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/32349317" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B85-ijms-25-01469' class='html-xx' data-content='85.'>Lee, R.C.; Feinbaum, R.L.; Ambros, V. The <span class='html-italic'>C. elegans</span> heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. <span class='html-italic'>Cell</span> <b>1993</b>, <span class='html-italic'>75</span>, 843–854. [<a href="https://scholar.google.com/scholar_lookup?title=The+C.+elegans+heterochronic+gene+lin-4+encodes+small+RNAs+with+antisense+complementarity+to+lin-14&author=Lee,+R.C.&author=Feinbaum,+R.L.&author=Ambros,+V.&publication_year=1993&journal=Cell&volume=75&pages=843%E2%80%93854&doi=10.1016/0092-8674(93)90529-Y" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/0092-8674(93)90529-Y" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B86-ijms-25-01469' class='html-xx' data-content='86.'>Wightman, B.; Ha, I.; Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in <span class='html-italic'>C. elegans</span>. <span class='html-italic'>Cell</span> <b>1993</b>, <span class='html-italic'>75</span>, 855–862. [<a href="https://scholar.google.com/scholar_lookup?title=Posttranscriptional+regulation+of+the+heterochronic+gene+lin-14+by+lin-4+mediates+temporal+pattern+formation+in+C.+elegans&author=Wightman,+B.&author=Ha,+I.&author=Ruvkun,+G.&publication_year=1993&journal=Cell&volume=75&pages=855%E2%80%93862&doi=10.1016/0092-8674(93)90530-4" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/0092-8674(93)90530-4" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B87-ijms-25-01469' class='html-xx' data-content='87.'>Pasquinelli, A.E.; Reinhart, B.J.; Slack, F.; Martindale, M.Q.; Kuroda, M.I.; Maller, B.; Hayward, D.C.; Ball, E.E.; Degnan, B.; Müller, P.; et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. <span class='html-italic'>Nature</span> <b>2000</b>, <span class='html-italic'>408</span>, 86–89. [<a href="https://scholar.google.com/scholar_lookup?title=Conservation+of+the+sequence+and+temporal+expression+of+let-7+heterochronic+regulatory+RNA&author=Pasquinelli,+A.E.&author=Reinhart,+B.J.&author=Slack,+F.&author=Martindale,+M.Q.&author=Kuroda,+M.I.&author=Maller,+B.&author=Hayward,+D.C.&author=Ball,+E.E.&author=Degnan,+B.&author=M%C3%BCller,+P.&publication_year=2000&journal=Nature&volume=408&pages=86%E2%80%9389&doi=10.1038/35040556" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/35040556" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B88-ijms-25-01469' class='html-xx' data-content='88.'>Li, S.C.; Chan, W.C.; Hu, L.Y.; Lai, C.H.; Hsu, C.N.; Lin, W.C. Identification of homologous microRNAs in 56 animal genomes. <span class='html-italic'>Genomics</span> <b>2010</b>, <span class='html-italic'>96</span>, 1–9. [<a href="https://scholar.google.com/scholar_lookup?title=Identification+of+homologous+microRNAs+in+56+animal+genomes&author=Li,+S.C.&author=Chan,+W.C.&author=Hu,+L.Y.&author=Lai,+C.H.&author=Hsu,+C.N.&author=Lin,+W.C.&publication_year=2010&journal=Genomics&volume=96&pages=1%E2%80%939&doi=10.1016/j.ygeno.2010.03.009" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.ygeno.2010.03.009" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B89-ijms-25-01469' class='html-xx' data-content='89.'>Friedländer, M.R.; Lizano, E.; Houben, A.J.S.; Bezdan, D.; Báñez-Coronel, M.; Kudla, G.; Mateu-Huertas, E.; Kagerbauer, B.; González, J.; Chen, K.C.; et al. Evidence for the biogenesis of more than 1000 novel human microRNAs. <span class='html-italic'>Genome Biol.</span> <b>2014</b>, <span class='html-italic'>15</span>, R57. [<a href="https://scholar.google.com/scholar_lookup?title=Evidence+for+the+biogenesis+of+more+than+1000+novel+human+microRNAs&author=Friedl%C3%A4nder,+M.R.&author=Lizano,+E.&author=Houben,+A.J.S.&author=Bezdan,+D.&author=B%C3%A1%C3%B1ez-Coronel,+M.&author=Kudla,+G.&author=Mateu-Huertas,+E.&author=Kagerbauer,+B.&author=Gonz%C3%A1lez,+J.&author=Chen,+K.C.&publication_year=2014&journal=Genome+Biol.&volume=15&pages=R57&doi=10.1186/gb-2014-15-4-r57" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1186/gb-2014-15-4-r57" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B90-ijms-25-01469' class='html-xx' data-content='90.'>Griffiths-Jones, S.; Grocock, R.J.; van Dongen, S.; Bateman, A.; Enright, A.J. miRBase: microRNA sequences, targets and gene nomenclature. <span class='html-italic'>Nucleic Acids Res.</span> <b>2006</b>, <span class='html-italic'>34</span>, D140–D144. [<a href="https://scholar.google.com/scholar_lookup?title=miRBase:+microRNA+sequences,+targets+and+gene+nomenclature&author=Griffiths-Jones,+S.&author=Grocock,+R.J.&author=van+Dongen,+S.&author=Bateman,+A.&author=Enright,+A.J.&publication_year=2006&journal=Nucleic+Acids+Res.&volume=34&pages=D140%E2%80%93D144&doi=10.1093/nar/gkj112" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1093/nar/gkj112" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B91-ijms-25-01469' class='html-xx' data-content='91.'>Pu, M.; Chen, J.; Tao, Z.; Miao, L.; Qi, X.; Wang, Y.; Ren, J. Regulatory network of miRNA on its target: Coordination between transcriptional and post-transcriptional regulation of gene expression. <span class='html-italic'>Cell. Mol. Life Sci.</span> <b>2019</b>, <span class='html-italic'>76</span>, 441–451. [<a href="https://scholar.google.com/scholar_lookup?title=Regulatory+network+of+miRNA+on+its+target:+Coordination+between+transcriptional+and+post-transcriptional+regulation+of+gene+expression&author=Pu,+M.&author=Chen,+J.&author=Tao,+Z.&author=Miao,+L.&author=Qi,+X.&author=Wang,+Y.&author=Ren,+J.&publication_year=2019&journal=Cell.+Mol.+Life+Sci.&volume=76&pages=441%E2%80%93451&doi=10.1007/s00018-018-2940-7" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s00018-018-2940-7" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B92-ijms-25-01469' class='html-xx' data-content='92.'>van Rooij, E. The art of microRNA research. <span class='html-italic'>Circ. Res.</span> <b>2011</b>, <span class='html-italic'>108</span>, 219–234. [<a href="https://scholar.google.com/scholar_lookup?title=The+art+of+microRNA+research&author=van+Rooij,+E.&publication_year=2011&journal=Circ.+Res.&volume=108&pages=219%E2%80%93234&doi=10.1161/CIRCRESAHA.110.227496&pmid=21252150" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1161/CIRCRESAHA.110.227496" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/21252150" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B93-ijms-25-01469' class='html-xx' data-content='93.'>Friedman, R.C.; Farh, K.K.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. <span class='html-italic'>Genome Res.</span> <b>2009</b>, <span class='html-italic'>19</span>, 92–105. [<a href="https://scholar.google.com/scholar_lookup?title=Most+mammalian+mRNAs+are+conserved+targets+of+microRNAs&author=Friedman,+R.C.&author=Farh,+K.K.&author=Burge,+C.B.&author=Bartel,+D.P.&publication_year=2009&journal=Genome+Res.&volume=19&pages=92%E2%80%93105&doi=10.1101/gr.082701.108" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1101/gr.082701.108" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B94-ijms-25-01469' class='html-xx' data-content='94.'>de Rie, D.; Abugessaisa, I.; Alam, T.; Arner, E.; Arner, P.; Ashoor, H.; Åström, G.; Babina, M.; Bertin, N.; Burroughs, A.M.; et al. An integrated expression atlas of miRNAs and their promoters in human and mouse. <span class='html-italic'>Nat. Biotechnol.</span> <b>2017</b>, <span class='html-italic'>35</span>, 872–878. [<a href="https://scholar.google.com/scholar_lookup?title=An+integrated+expression+atlas+of+miRNAs+and+their+promoters+in+human+and+mouse&author=de+Rie,+D.&author=Abugessaisa,+I.&author=Alam,+T.&author=Arner,+E.&author=Arner,+P.&author=Ashoor,+H.&author=%C3%85str%C3%B6m,+G.&author=Babina,+M.&author=Bertin,+N.&author=Burroughs,+A.M.&publication_year=2017&journal=Nat.+Biotechnol.&volume=35&pages=872%E2%80%93878&doi=10.1038/nbt.3947" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/nbt.3947" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B95-ijms-25-01469' class='html-xx' data-content='95.'>Gambardella, S.; Rinaldi, F.; Lepore, S.M.; Viola, A.; Loro, E.; Angelini, C.; Vergani, L.; Novelli, G.; Botta, A. Overexpression of microRNA-206 in the skeletal muscle from myotonic dystrophy type 1 patients. <span class='html-italic'>J. Transl. Med.</span> <b>2010</b>, <span class='html-italic'>8</span>, 48. [<a href="https://scholar.google.com/scholar_lookup?title=Overexpression+of+microRNA-206+in+the+skeletal+muscle+from+myotonic+dystrophy+type+1+patients&author=Gambardella,+S.&author=Rinaldi,+F.&author=Lepore,+S.M.&author=Viola,+A.&author=Loro,+E.&author=Angelini,+C.&author=Vergani,+L.&author=Novelli,+G.&author=Botta,+A.&publication_year=2010&journal=J.+Transl.+Med.&volume=8&pages=48&doi=10.1186/1479-5876-8-48&pmid=20487562" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1186/1479-5876-8-48" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/20487562" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B96-ijms-25-01469' class='html-xx' data-content='96.'>Baer, C.; Claus, R.; Frenzel, L.P.; Zucknick, M.; Park, Y.J.; Gu, L.; Weichenhan, D.; Fischer, M.; Pallasch, C.P.; Herpel, E.; et al. Extensive promoter DNA hypermethylation and hypomethylation is associated with aberrant microRNA expression in chronic lymphocytic leukemia. <span class='html-italic'>Cancer Res.</span> <b>2012</b>, <span class='html-italic'>72</span>, 3775–3785. [<a href="https://scholar.google.com/scholar_lookup?title=Extensive+promoter+DNA+hypermethylation+and+hypomethylation+is+associated+with+aberrant+microRNA+expression+in+chronic+lymphocytic+leukemia&author=Baer,+C.&author=Claus,+R.&author=Frenzel,+L.P.&author=Zucknick,+M.&author=Park,+Y.J.&author=Gu,+L.&author=Weichenhan,+D.&author=Fischer,+M.&author=Pallasch,+C.P.&author=Herpel,+E.&publication_year=2012&journal=Cancer+Res.&volume=72&pages=3775%E2%80%933785&doi=10.1158/0008-5472.CAN-12-0803" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1158/0008-5472.CAN-12-0803" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B97-ijms-25-01469' class='html-xx' data-content='97.'>Achey, R.L.; Khanna, V.; Ostrom, Q.T.; Kruchko, C.; Barnholtz-Sloan, J.S. Incidence and survival trends in oligodendrogliomas and anaplastic oligodendrogliomas in the United States from 2000 to 2013: A CBTRUS Report. <span class='html-italic'>J. Neurooncol.</span> <b>2017</b>, <span class='html-italic'>133</span>, 17–25. [<a href="https://scholar.google.com/scholar_lookup?title=Incidence+and+survival+trends+in+oligodendrogliomas+and+anaplastic+oligodendrogliomas+in+the+United+States+from+2000+to+2013:+A+CBTRUS+Report&author=Achey,+R.L.&author=Khanna,+V.&author=Ostrom,+Q.T.&author=Kruchko,+C.&author=Barnholtz-Sloan,+J.S.&publication_year=2017&journal=J.+Neurooncol.&volume=133&pages=17%E2%80%9325&doi=10.1007/s11060-017-2414-z&pmid=28397028" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s11060-017-2414-z" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/28397028" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B98-ijms-25-01469' class='html-xx' data-content='98.'>Eder, M.; Scherr, M. MicroRNA and lung cancer. <span class='html-italic'>N. Engl. J. Med.</span> <b>2005</b>, <span class='html-italic'>352</span>, 2446–2448. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNA+and+lung+cancer&author=Eder,+M.&author=Scherr,+M.&publication_year=2005&journal=N.+Engl.+J.+Med.&volume=352&pages=2446%E2%80%932448&doi=10.1056/NEJMcibr051201" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1056/NEJMcibr051201" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B99-ijms-25-01469' class='html-xx' data-content='99.'>Brennan, C.W.; Verhaak, R.G.; McKenna, A.; Campos, B.; Noushmehr, H.; Salama, S.R.; Zheng, S.; Chakravarty, D.; Sanborn, J.Z.; Berman, S.H.; et al. The somatic genomic landscape of glioblastoma. <span class='html-italic'>Cell</span> <b>2013</b>, <span class='html-italic'>155</span>, 462–477. [<a href="https://scholar.google.com/scholar_lookup?title=The+somatic+genomic+landscape+of+glioblastoma&author=Brennan,+C.W.&author=Verhaak,+R.G.&author=McKenna,+A.&author=Campos,+B.&author=Noushmehr,+H.&author=Salama,+S.R.&author=Zheng,+S.&author=Chakravarty,+D.&author=Sanborn,+J.Z.&author=Berman,+S.H.&publication_year=2013&journal=Cell&volume=155&pages=462%E2%80%93477&doi=10.1016/j.cell.2013.09.034" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.cell.2013.09.034" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B100-ijms-25-01469' class='html-xxx' data-content='100.'>Allen, J.E.; Crowder, R.N.; El-Deiry, W.S. First-In-Class Small Molecule ONC201 Induces DR5 and Cell Death in Tumor but Not Normal Cells to Provide a Wide Therapeutic Index as an Anti-Cancer Agent. <span class='html-italic'>PLoS ONE</span> <b>2015</b>, <span class='html-italic'>10</span>, e0143082. [<a href="https://scholar.google.com/scholar_lookup?title=First-In-Class+Small+Molecule+ONC201+Induces+DR5+and+Cell+Death+in+Tumor+but+Not+Normal+Cells+to+Provide+a+Wide+Therapeutic+Index+as+an+Anti-Cancer+Agent&author=Allen,+J.E.&author=Crowder,+R.N.&author=El-Deiry,+W.S.&publication_year=2015&journal=PLoS+ONE&volume=10&pages=e0143082&doi=10.1371/journal.pone.0143082" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1371/journal.pone.0143082" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B101-ijms-25-01469' class='html-xxx' data-content='101.'>Bedewy, A.M.L.; Elmaghraby, S.M.; Shehata, A.A.; Kandil, N.S. Prognostic Value of miRNA-155 Expression in B-Cell Non-Hodgkin Lymphoma. <span class='html-italic'>Turk. J. Haematol.</span> <b>2017</b>, <span class='html-italic'>34</span>, 207–212. [<a href="https://scholar.google.com/scholar_lookup?title=Prognostic+Value+of+miRNA-155+Expression+in+B-Cell+Non-Hodgkin+Lymphoma&author=Bedewy,+A.M.L.&author=Elmaghraby,+S.M.&author=Shehata,+A.A.&author=Kandil,+N.S.&publication_year=2017&journal=Turk.+J.+Haematol.&volume=34&pages=207%E2%80%93212" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B102-ijms-25-01469' class='html-xxx' data-content='102.'>Kline, C.L.B.; Ralff, M.D.; Lulla, A.R.; Wagner, J.M.; Abbosh, P.H.; Dicker, D.T.; Allen, J.E.; El-Deiry, W.S. Role of Dopamine Receptors in the Anticancer Activity of ONC201. <span class='html-italic'>Neoplasia</span> <b>2018</b>, <span class='html-italic'>20</span>, 80–91. [<a href="https://scholar.google.com/scholar_lookup?title=Role+of+Dopamine+Receptors+in+the+Anticancer+Activity+of+ONC201&author=Kline,+C.L.B.&author=Ralff,+M.D.&author=Lulla,+A.R.&author=Wagner,+J.M.&author=Abbosh,+P.H.&author=Dicker,+D.T.&author=Allen,+J.E.&author=El-Deiry,+W.S.&publication_year=2018&journal=Neoplasia&volume=20&pages=80%E2%80%9391&doi=10.1016/j.neo.2017.10.002" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.neo.2017.10.002" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B103-ijms-25-01469' class='html-xxx' data-content='103.'>Lu, F.; Zhao, X.; Zhang, Z.; Xiong, M.; Wang, Y.; Sun, Y.; He, B.; Zhu, J. The diagnostic and prognostic value of the miR-17-92 cluster in hepatocellular carcinoma: A meta-analysis. <span class='html-italic'>Front. Genet.</span> <b>2022</b>, <span class='html-italic'>13</span>, 927079. [<a href="https://scholar.google.com/scholar_lookup?title=The+diagnostic+and+prognostic+value+of+the+miR-17-92+cluster+in+hepatocellular+carcinoma:+A+meta-analysis&author=Lu,+F.&author=Zhao,+X.&author=Zhang,+Z.&author=Xiong,+M.&author=Wang,+Y.&author=Sun,+Y.&author=He,+B.&author=Zhu,+J.&publication_year=2022&journal=Front.+Genet.&volume=13&pages=927079&doi=10.3389/fgene.2022.927079" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3389/fgene.2022.927079" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B104-ijms-25-01469' class='html-xxx' data-content='104.'>Vidigal, J.A.; Ventura, A. The biological functions of miRNAs: Lessons from in vivo studies. <span class='html-italic'>Trends Cell Biol.</span> <b>2015</b>, <span class='html-italic'>25</span>, 137–147. [<a href="https://scholar.google.com/scholar_lookup?title=The+biological+functions+of+miRNAs:+Lessons+from+in+vivo+studies&author=Vidigal,+J.A.&author=Ventura,+A.&publication_year=2015&journal=Trends+Cell+Biol.&volume=25&pages=137%E2%80%93147&doi=10.1016/j.tcb.2014.11.004" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.tcb.2014.11.004" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B105-ijms-25-01469' class='html-xxx' data-content='105.'>Lujambio, A.; Ropero, S.; Ballestar, E.; Fraga, M.F.; Cerrato, C.; Setien, F.; Casado, S.; Suarez-Gauthier, A.; Sanchez-Cespedes, M.; Git, A.; et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. <span class='html-italic'>Cancer Res.</span> <b>2007</b>, <span class='html-italic'>67</span>, 1424–1429. [<a href="https://scholar.google.com/scholar_lookup?title=Genetic+unmasking+of+an+epigenetically+silenced+microRNA+in+human+cancer+cells&author=Lujambio,+A.&author=Ropero,+S.&author=Ballestar,+E.&author=Fraga,+M.F.&author=Cerrato,+C.&author=Setien,+F.&author=Casado,+S.&author=Suarez-Gauthier,+A.&author=Sanchez-Cespedes,+M.&author=Git,+A.&publication_year=2007&journal=Cancer+Res.&volume=67&pages=1424%E2%80%931429&doi=10.1158/0008-5472.CAN-06-4218" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1158/0008-5472.CAN-06-4218" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B106-ijms-25-01469' class='html-xxx' data-content='106.'>O’Carroll, D.; Schaefer, A. General principals of miRNA biogenesis and regulation in the brain. <span class='html-italic'>Neuropsychopharmacology</span> <b>2013</b>, <span class='html-italic'>38</span>, 39–54. [<a href="https://scholar.google.com/scholar_lookup?title=General+principals+of+miRNA+biogenesis+and+regulation+in+the+brain&author=O%E2%80%99Carroll,+D.&author=Schaefer,+A.&publication_year=2013&journal=Neuropsychopharmacology&volume=38&pages=39%E2%80%9354&doi=10.1038/npp.2012.87" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/npp.2012.87" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B107-ijms-25-01469' class='html-xxx' data-content='107.'>Rodriguez, A.; Griffiths-Jones, S.; Ashurst, J.L.; Bradley, A. Identification of mammalian microRNA host genes and transcription units. <span class='html-italic'>Genome Res.</span> <b>2004</b>, <span class='html-italic'>14</span>, 1902–1910. [<a href="https://scholar.google.com/scholar_lookup?title=Identification+of+mammalian+microRNA+host+genes+and+transcription+units&author=Rodriguez,+A.&author=Griffiths-Jones,+S.&author=Ashurst,+J.L.&author=Bradley,+A.&publication_year=2004&journal=Genome+Res.&volume=14&pages=1902%E2%80%931910&doi=10.1101/gr.2722704&pmid=15364901" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1101/gr.2722704" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/15364901" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B108-ijms-25-01469' class='html-xxx' data-content='108.'>Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. <span class='html-italic'>Cell</span> <b>2009</b>, <span class='html-italic'>136</span>, 215–233. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNAs:+Target+recognition+and+regulatory+functions&author=Bartel,+D.P.&publication_year=2009&journal=Cell&volume=136&pages=215%E2%80%93233&doi=10.1016/j.cell.2009.01.002" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.cell.2009.01.002" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B109-ijms-25-01469' class='html-xxx' data-content='109.'>Iwasaki, S.; Kobayashi, M.; Yoda, M.; Sakaguchi, Y.; Katsuma, S.; Suzuki, T.; Tomari, Y. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. <span class='html-italic'>Mol. Cell</span> <b>2010</b>, <span class='html-italic'>39</span>, 292–299. [<a href="https://scholar.google.com/scholar_lookup?title=Hsc70/Hsp90+chaperone+machinery+mediates+ATP-dependent+RISC+loading+of+small+RNA+duplexes&author=Iwasaki,+S.&author=Kobayashi,+M.&author=Yoda,+M.&author=Sakaguchi,+Y.&author=Katsuma,+S.&author=Suzuki,+T.&author=Tomari,+Y.&publication_year=2010&journal=Mol.+Cell&volume=39&pages=292%E2%80%93299&doi=10.1016/j.molcel.2010.05.015&pmid=20605501" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.molcel.2010.05.015" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/20605501" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B110-ijms-25-01469' class='html-xxx' data-content='110.'>Shukla, G.C.; Singh, J.; Barik, S. MicroRNAs: Processing, Maturation, Target Recognition and Regulatory Functions. <span class='html-italic'>Mol. Cell Pharmacol.</span> <b>2011</b>, <span class='html-italic'>3</span>, 83–92. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNAs:+Processing,+Maturation,+Target+Recognition+and+Regulatory+Functions&author=Shukla,+G.C.&author=Singh,+J.&author=Barik,+S.&publication_year=2011&journal=Mol.+Cell+Pharmacol.&volume=3&pages=83%E2%80%9392&pmid=22468167" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/22468167" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B111-ijms-25-01469' class='html-xxx' data-content='111.'>Akgul, B.; Erdogan, I. Intracytoplasmic Re-localization of miRISC Complexes. <span class='html-italic'>Front. Genet.</span> <b>2018</b>, <span class='html-italic'>9</span>, 403. [<a href="https://scholar.google.com/scholar_lookup?title=Intracytoplasmic+Re-localization+of+miRISC+Complexes&author=Akgul,+B.&author=Erdogan,+I.&publication_year=2018&journal=Front.+Genet.&volume=9&pages=403&doi=10.3389/fgene.2018.00403" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3389/fgene.2018.00403" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B112-ijms-25-01469' class='html-xxx' data-content='112.'>Ghini, F.; Rubolino, C.; Climent, M.; Simeone, I.; Marzi, M.J.; Nicassio, F. Endogenous transcripts control miRNA levels and activity in mammalian cells by target-directed miRNA degradation. <span class='html-italic'>Nat. Commun.</span> <b>2018</b>, <span class='html-italic'>9</span>, 3119. [<a href="https://scholar.google.com/scholar_lookup?title=Endogenous+transcripts+control+miRNA+levels+and+activity+in+mammalian+cells+by+target-directed+miRNA+degradation&author=Ghini,+F.&author=Rubolino,+C.&author=Climent,+M.&author=Simeone,+I.&author=Marzi,+M.J.&author=Nicassio,+F.&publication_year=2018&journal=Nat.+Commun.&volume=9&pages=3119&doi=10.1038/s41467-018-05182-9&pmid=30087332" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41467-018-05182-9" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/30087332" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B113-ijms-25-01469' class='html-xxx' data-content='113.'>Sheu-Gruttadauria, J.; Pawlica, P.; Klum, S.M.; Wang, S.; Yario, T.A.; Schirle Oakdale, N.T.; Steitz, J.A.; MacRae, I.J. Structural Basis for Target-Directed MicroRNA Degradation. <span class='html-italic'>Mol. Cell</span> <b>2019</b>, <span class='html-italic'>75</span>, 1243–1255.e7. [<a href="https://scholar.google.com/scholar_lookup?title=Structural+Basis+for+Target-Directed+MicroRNA+Degradation&author=Sheu-Gruttadauria,+J.&author=Pawlica,+P.&author=Klum,+S.M.&author=Wang,+S.&author=Yario,+T.A.&author=Schirle+Oakdale,+N.T.&author=Steitz,+J.A.&author=MacRae,+I.J.&publication_year=2019&journal=Mol.+Cell&volume=75&pages=1243%E2%80%931255.e7&doi=10.1016/j.molcel.2019.06.019&pmid=31353209" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.molcel.2019.06.019" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/31353209" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B114-ijms-25-01469' class='html-xxx' data-content='114.'>Garofalo, M.; Croce, C.M. microRNAs: Master regulators as potential therapeutics in cancer. <span class='html-italic'>Annu. Rev. Pharmacol. Toxicol.</span> <b>2011</b>, <span class='html-italic'>51</span>, 25–43. [<a href="https://scholar.google.com/scholar_lookup?title=microRNAs:+Master+regulators+as+potential+therapeutics+in+cancer&author=Garofalo,+M.&author=Croce,+C.M.&publication_year=2011&journal=Annu.+Rev.+Pharmacol.+Toxicol.&volume=51&pages=25%E2%80%9343&doi=10.1146/annurev-pharmtox-010510-100517&pmid=20809797" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1146/annurev-pharmtox-010510-100517" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/20809797" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B115-ijms-25-01469' class='html-xxx' data-content='115.'>Selbach, M.; Schwanhäusser, B.; Thierfelder, N.; Fang, Z.; Khanin, R.; Rajewsky, N. Widespread changes in protein synthesis induced by microRNAs. <span class='html-italic'>Nature</span> <b>2008</b>, <span class='html-italic'>455</span>, 58–63. [<a href="https://scholar.google.com/scholar_lookup?title=Widespread+changes+in+protein+synthesis+induced+by+microRNAs&author=Selbach,+M.&author=Schwanh%C3%A4usser,+B.&author=Thierfelder,+N.&author=Fang,+Z.&author=Khanin,+R.&author=Rajewsky,+N.&publication_year=2008&journal=Nature&volume=455&pages=58%E2%80%9363&doi=10.1038/nature07228&pmid=18668040" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/nature07228" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/18668040" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B116-ijms-25-01469' class='html-xxx' data-content='116.'>Uhlmann, S.; Mannsperger, H.; Zhang, J.D.; Horvat, E.; Schmidt, C.; Küblbeck, M.; Henjes, F.; Ward, A.; Tschulena, U.; Zweig, K.; et al. Global microRNA level regulation of EGFR-driven cell-cycle protein network in breast cancer. <span class='html-italic'>Mol. Syst. Biol.</span> <b>2012</b>, <span class='html-italic'>8</span>, 570. [<a href="https://scholar.google.com/scholar_lookup?title=Global+microRNA+level+regulation+of+EGFR-driven+cell-cycle+protein+network+in+breast+cancer&author=Uhlmann,+S.&author=Mannsperger,+H.&author=Zhang,+J.D.&author=Horvat,+E.&author=Schmidt,+C.&author=K%C3%BCblbeck,+M.&author=Henjes,+F.&author=Ward,+A.&author=Tschulena,+U.&author=Zweig,+K.&publication_year=2012&journal=Mol.+Syst.+Biol.&volume=8&pages=570&doi=10.1038/msb.2011.100&pmid=22333974" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/msb.2011.100" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/22333974" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B117-ijms-25-01469' class='html-xxx' data-content='117.'>Grimson, A.; Farh, K.K.; Johnston, W.K.; Garrett-Engele, P.; Lim, L.P.; Bartel, D.P. MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. <span class='html-italic'>Mol. Cell</span> <b>2007</b>, <span class='html-italic'>27</span>, 91–105. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNA+targeting+specificity+in+mammals:+Determinants+beyond+seed+pairing&author=Grimson,+A.&author=Farh,+K.K.&author=Johnston,+W.K.&author=Garrett-Engele,+P.&author=Lim,+L.P.&author=Bartel,+D.P.&publication_year=2007&journal=Mol.+Cell&volume=27&pages=91%E2%80%93105&doi=10.1016/j.molcel.2007.06.017" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.molcel.2007.06.017" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B118-ijms-25-01469' class='html-xxx' data-content='118.'>Saetrom, P.; Heale, B.S.; Snøve, O., Jr.; Aagaard, L.; Alluin, J.; Rossi, J.J. Distance constraints between microRNA target sites dictate efficacy and cooperativity. <span class='html-italic'>Nucleic Acids Res.</span> <b>2007</b>, <span class='html-italic'>35</span>, 2333–2342. [<a href="https://scholar.google.com/scholar_lookup?title=Distance+constraints+between+microRNA+target+sites+dictate+efficacy+and+cooperativity&author=Saetrom,+P.&author=Heale,+B.S.&author=Sn%C3%B8ve,+O.,+Jr.&author=Aagaard,+L.&author=Alluin,+J.&author=Rossi,+J.J.&publication_year=2007&journal=Nucleic+Acids+Res.&volume=35&pages=2333%E2%80%932342&doi=10.1093/nar/gkm133" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1093/nar/gkm133" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B119-ijms-25-01469' class='html-xxx' data-content='119.'>Desterro, J.; Bak-Gordon, P.; Carmo-Fonseca, M. Targeting mRNA processing as an anticancer strategy. <span class='html-italic'>Nat. Rev. Drug Discov.</span> <b>2020</b>, <span class='html-italic'>19</span>, 112–129. [<a href="https://scholar.google.com/scholar_lookup?title=Targeting+mRNA+processing+as+an+anticancer+strategy&author=Desterro,+J.&author=Bak-Gordon,+P.&author=Carmo-Fonseca,+M.&publication_year=2020&journal=Nat.+Rev.+Drug+Discov.&volume=19&pages=112%E2%80%93129&doi=10.1038/s41573-019-0042-3" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41573-019-0042-3" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B120-ijms-25-01469' class='html-xxx' data-content='120.'>Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A., Jr.; Kinzler, K.W. Cancer genome landscapes. <span class='html-italic'>Science</span> <b>2013</b>, <span class='html-italic'>339</span>, 1546–1558. [<a href="https://scholar.google.com/scholar_lookup?title=Cancer+genome+landscapes&author=Vogelstein,+B.&author=Papadopoulos,+N.&author=Velculescu,+V.E.&author=Zhou,+S.&author=Diaz,+L.A.,+Jr.&author=Kinzler,+K.W.&publication_year=2013&journal=Science&volume=339&pages=1546%E2%80%931558&doi=10.1126/science.1235122" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1126/science.1235122" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B121-ijms-25-01469' class='html-xxx' data-content='121.'>Fu, Z.; Wang, L.; Li, S.; Chen, F.; Au-Yeung, K.K.; Shi, C. MicroRNA as an Important Target for Anticancer Drug Development. <span class='html-italic'>Front. Pharmacol.</span> <b>2021</b>, <span class='html-italic'>12</span>, 736323. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNA+as+an+Important+Target+for+Anticancer+Drug+Development&author=Fu,+Z.&author=Wang,+L.&author=Li,+S.&author=Chen,+F.&author=Au-Yeung,+K.K.&author=Shi,+C.&publication_year=2021&journal=Front.+Pharmacol.&volume=12&pages=736323&doi=10.3389/fphar.2021.736323" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3389/fphar.2021.736323" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B122-ijms-25-01469' class='html-xxx' data-content='122.'>Ding, J.; Cao, Y.; Qi, C.; Zong, Z. Dysregulated microRNAs participate in the crosstalk between colorectal cancer and atrial fibrillation. <span class='html-italic'>Hum. Cell</span> <b>2023</b>, <span class='html-italic'>36</span>, 1336–1342. [<a href="https://scholar.google.com/scholar_lookup?title=Dysregulated+microRNAs+participate+in+the+crosstalk+between+colorectal+cancer+and+atrial+fibrillation&author=Ding,+J.&author=Cao,+Y.&author=Qi,+C.&author=Zong,+Z.&publication_year=2023&journal=Hum.+Cell&volume=36&pages=1336%E2%80%931342&doi=10.1007/s13577-023-00899-2&pmid=36964414" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s13577-023-00899-2" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/36964414" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B123-ijms-25-01469' class='html-xxx' data-content='123.'>Wang, H.; Peng, R.; Wang, J.; Qin, Z.; Xue, L. Circulating microRNAs as potential cancer biomarkers: The advantage and disadvantage. <span class='html-italic'>Clin. Epigenet.</span> <b>2018</b>, <span class='html-italic'>10</span>, 59. [<a href="https://scholar.google.com/scholar_lookup?title=Circulating+microRNAs+as+potential+cancer+biomarkers:+The+advantage+and+disadvantage&author=Wang,+H.&author=Peng,+R.&author=Wang,+J.&author=Qin,+Z.&author=Xue,+L.&publication_year=2018&journal=Clin.+Epigenet.&volume=10&pages=59&doi=10.1186/s13148-018-0492-1" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1186/s13148-018-0492-1" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B124-ijms-25-01469' class='html-xxx' data-content='124.'>Zhang, L.; Zhang, Y.; Zhao, Y.; Wang, Y.; Ding, H.; Xue, S.; Li, P. Circulating miRNAs as biomarkers for early diagnosis of coronary artery disease. <span class='html-italic'>Expert. Opin. Ther. Pat.</span> <b>2018</b>, <span class='html-italic'>28</span>, 591–601. [<a href="https://scholar.google.com/scholar_lookup?title=Circulating+miRNAs+as+biomarkers+for+early+diagnosis+of+coronary+artery+disease&author=Zhang,+L.&author=Zhang,+Y.&author=Zhao,+Y.&author=Wang,+Y.&author=Ding,+H.&author=Xue,+S.&author=Li,+P.&publication_year=2018&journal=Expert.+Opin.+Ther.+Pat.&volume=28&pages=591%E2%80%93601&doi=10.1080/13543776.2018.1503650" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1080/13543776.2018.1503650" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B125-ijms-25-01469' class='html-xxx' data-content='125.'>Landgraf, P.; Rusu, M.; Sheridan, R.; Sewer, A.; Iovino, N.; Aravin, A.; Pfeffer, S.; Rice, A.; Kamphorst, A.O.; Landthaler, M.; et al. A mammalian microRNA expression atlas based on small RNA library sequencing. <span class='html-italic'>Cell</span> <b>2007</b>, <span class='html-italic'>129</span>, 1401–1414. [<a href="https://scholar.google.com/scholar_lookup?title=A+mammalian+microRNA+expression+atlas+based+on+small+RNA+library+sequencing&author=Landgraf,+P.&author=Rusu,+M.&author=Sheridan,+R.&author=Sewer,+A.&author=Iovino,+N.&author=Aravin,+A.&author=Pfeffer,+S.&author=Rice,+A.&author=Kamphorst,+A.O.&author=Landthaler,+M.&publication_year=2007&journal=Cell&volume=129&pages=1401%E2%80%931414&doi=10.1016/j.cell.2007.04.040" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.cell.2007.04.040" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B126-ijms-25-01469' class='html-xxx' data-content='126.'>Ludwig, N.; Leidinger, P.; Becker, K.; Backes, C.; Fehlmann, T.; Pallasch, C.; Rheinheimer, S.; Meder, B.; Stahler, C.; Meese, E.; et al. Distribution of miRNA expression across human tissues. <span class='html-italic'>Nucleic Acids Res.</span> <b>2016</b>, <span class='html-italic'>44</span>, 3865–3877. [<a href="https://scholar.google.com/scholar_lookup?title=Distribution+of+miRNA+expression+across+human+tissues&author=Ludwig,+N.&author=Leidinger,+P.&author=Becker,+K.&author=Backes,+C.&author=Fehlmann,+T.&author=Pallasch,+C.&author=Rheinheimer,+S.&author=Meder,+B.&author=Stahler,+C.&author=Meese,+E.&publication_year=2016&journal=Nucleic+Acids+Res.&volume=44&pages=3865%E2%80%933877&doi=10.1093/nar/gkw116&pmid=26921406" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1093/nar/gkw116" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/26921406" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B127-ijms-25-01469' class='html-xxx' data-content='127.'>Reda El Sayed, S.; Cristante, J.; Guyon, L.; Denis, J.; Chabre, O.; Cherradi, N. MicroRNA Therapeutics in Cancer: Current Advances and Challenges. <span class='html-italic'>Cancers</span> <b>2021</b>, <span class='html-italic'>13</span>, 2680. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNA+Therapeutics+in+Cancer:+Current+Advances+and+Challenges&author=Reda+El+Sayed,+S.&author=Cristante,+J.&author=Guyon,+L.&author=Denis,+J.&author=Chabre,+O.&author=Cherradi,+N.&publication_year=2021&journal=Cancers&volume=13&pages=2680&doi=10.3390/cancers13112680&pmid=34072348" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/cancers13112680" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/34072348" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B128-ijms-25-01469' class='html-xxx' data-content='128.'>Zhang, S.; Cheng, Z.; Wang, Y.; Han, T. The Risks of miRNA Therapeutics: In a Drug Target Perspective. <span class='html-italic'>Drug Des. Devel Ther.</span> <b>2021</b>, <span class='html-italic'>15</span>, 721–733. [<a href="https://scholar.google.com/scholar_lookup?title=The+Risks+of+miRNA+Therapeutics:+In+a+Drug+Target+Perspective&author=Zhang,+S.&author=Cheng,+Z.&author=Wang,+Y.&author=Han,+T.&publication_year=2021&journal=Drug+Des.+Devel+Ther.&volume=15&pages=721%E2%80%93733&doi=10.2147/DDDT.S288859" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.2147/DDDT.S288859" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B129-ijms-25-01469' class='html-xxx' data-content='129.'>Mullard, A. 2018 FDA drug approvals. <span class='html-italic'>Nat. Rev. Drug Discov.</span> <b>2019</b>, <span class='html-italic'>18</span>, 85–89. [<a href="https://scholar.google.com/scholar_lookup?title=2018+FDA+drug+approvals&author=Mullard,+A.&publication_year=2019&journal=Nat.+Rev.+Drug+Discov.&volume=18&pages=85%E2%80%9389&doi=10.1038/d41573-019-00014-x" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/d41573-019-00014-x" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B130-ijms-25-01469' class='html-xxx' data-content='130.'>Mullard, A. 2019 FDA drug approvals. <span class='html-italic'>Nat. Rev. Drug Discov.</span> <b>2020</b>, <span class='html-italic'>19</span>, 79–84. [<a href="https://scholar.google.com/scholar_lookup?title=2019+FDA+drug+approvals&author=Mullard,+A.&publication_year=2020&journal=Nat.+Rev.+Drug+Discov.&volume=19&pages=79%E2%80%9384&doi=10.1038/d41573-020-00001-7" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/d41573-020-00001-7" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B131-ijms-25-01469' class='html-xxx' data-content='131.'>Urits, I.; Swanson, D.; Swett, M.C.; Patel, A.; Berardino, K.; Amgalan, A.; Berger, A.A.; Kassem, H.; Kaye, A.D.; Viswanath, O. A Review of Patisiran (ONPATTRO<sup>®</sup>) for the Treatment of Polyneuropathy in People with Hereditary Transthyretin Amyloidosis. <span class='html-italic'>Neurol. Ther.</span> <b>2020</b>, <span class='html-italic'>9</span>, 301–315. [<a href="https://scholar.google.com/scholar_lookup?title=A+Review+of+Patisiran+(ONPATTRO%C2%AE)+for+the+Treatment+of+Polyneuropathy+in+People+with+Hereditary+Transthyretin+Amyloidosis&author=Urits,+I.&author=Swanson,+D.&author=Swett,+M.C.&author=Patel,+A.&author=Berardino,+K.&author=Amgalan,+A.&author=Berger,+A.A.&author=Kassem,+H.&author=Kaye,+A.D.&author=Viswanath,+O.&publication_year=2020&journal=Neurol.+Ther.&volume=9&pages=301%E2%80%93315&doi=10.1007/s40120-020-00208-1&pmid=32785879" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s40120-020-00208-1" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/32785879" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B132-ijms-25-01469' class='html-xxx' data-content='132.'>Conceição, I.; González-Duarte, A.; Obici, L.; Schmidt, H.H.; Simoneau, D.; Ong, M.L.; Amass, L. “Red-flag” symptom clusters in transthyretin familial amyloid polyneuropathy. <span class='html-italic'>J. Peripher. Nerv. Syst.</span> <b>2016</b>, <span class='html-italic'>21</span>, 5–9. [<a href="https://scholar.google.com/scholar_lookup?title=%E2%80%9CRed-flag%E2%80%9D+symptom+clusters+in+transthyretin+familial+amyloid+polyneuropathy&author=Concei%C3%A7%C3%A3o,+I.&author=Gonz%C3%A1lez-Duarte,+A.&author=Obici,+L.&author=Schmidt,+H.H.&author=Simoneau,+D.&author=Ong,+M.L.&author=Amass,+L.&publication_year=2016&journal=J.+Peripher.+Nerv.+Syst.&volume=21&pages=5%E2%80%939&doi=10.1111/jns.12153&pmid=26663427" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1111/jns.12153" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/26663427" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B133-ijms-25-01469' class='html-xxx' data-content='133.'>Vormehr, M.; Türeci, Ö.; Sahin, U. Harnessing Tumor Mutations for Truly Individualized Cancer Vaccines. <span class='html-italic'>Annu. Rev. Med.</span> <b>2019</b>, <span class='html-italic'>70</span>, 395–407. [<a href="https://scholar.google.com/scholar_lookup?title=Harnessing+Tumor+Mutations+for+Truly+Individualized+Cancer+Vaccines&author=Vormehr,+M.&author=T%C3%BCreci,+%C3%96.&author=Sahin,+U.&publication_year=2019&journal=Annu.+Rev.+Med.&volume=70&pages=395%E2%80%93407&doi=10.1146/annurev-med-042617-101816&pmid=30691374" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1146/annurev-med-042617-101816" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/30691374" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B134-ijms-25-01469' class='html-xxx' data-content='134.'>Rojas, L.A.; Sethna, Z.; Soares, K.C.; Olcese, C.; Pang, N.; Patterson, E.; Lihm, J.; Ceglia, N.; Guasp, P.; Chu, A.; et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. <span class='html-italic'>Nature</span> <b>2023</b>, <span class='html-italic'>618</span>, 144–150. [<a href="https://scholar.google.com/scholar_lookup?title=Personalized+RNA+neoantigen+vaccines+stimulate+T+cells+in+pancreatic+cancer&author=Rojas,+L.A.&author=Sethna,+Z.&author=Soares,+K.C.&author=Olcese,+C.&author=Pang,+N.&author=Patterson,+E.&author=Lihm,+J.&author=Ceglia,+N.&author=Guasp,+P.&author=Chu,+A.&publication_year=2023&journal=Nature&volume=618&pages=144%E2%80%93150&doi=10.1038/s41586-023-06063-y&pmid=37165196" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41586-023-06063-y" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/37165196" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B135-ijms-25-01469' class='html-xxx' data-content='135.'>Sahin, U.; Derhovanessian, E.; Miller, M.; Kloke, B.P.; Simon, P.; Löwer, M.; Bukur, V.; Tadmor, A.D.; Luxemburger, U.; Schrörs, B.; et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. <span class='html-italic'>Nature</span> <b>2017</b>, <span class='html-italic'>547</span>, 222–226. [<a href="https://scholar.google.com/scholar_lookup?title=Personalized+RNA+mutanome+vaccines+mobilize+poly-specific+therapeutic+immunity+against+cancer&author=Sahin,+U.&author=Derhovanessian,+E.&author=Miller,+M.&author=Kloke,+B.P.&author=Simon,+P.&author=L%C3%B6wer,+M.&author=Bukur,+V.&author=Tadmor,+A.D.&author=Luxemburger,+U.&author=Schr%C3%B6rs,+B.&publication_year=2017&journal=Nature&volume=547&pages=222%E2%80%93226&doi=10.1038/nature23003" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/nature23003" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B136-ijms-25-01469' class='html-xxx' data-content='136.'>Heil, F.; Hemmi, H.; Hochrein, H.; Ampenberger, F.; Kirschning, C.; Akira, S.; Lipford, G.; Wagner, H.; Bauer, S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. <span class='html-italic'>Science</span> <b>2004</b>, <span class='html-italic'>303</span>, 1526–1529. [<a href="https://scholar.google.com/scholar_lookup?title=Species-specific+recognition+of+single-stranded+RNA+via+toll-like+receptor+7+and+8&author=Heil,+F.&author=Hemmi,+H.&author=Hochrein,+H.&author=Ampenberger,+F.&author=Kirschning,+C.&author=Akira,+S.&author=Lipford,+G.&author=Wagner,+H.&author=Bauer,+S.&publication_year=2004&journal=Science&volume=303&pages=1526%E2%80%931529&doi=10.1126/science.1093620" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1126/science.1093620" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B137-ijms-25-01469' class='html-xxx' data-content='137.'>Diebold, S.S.; Kaisho, T.; Hemmi, H.; Akira, S.; Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. <span class='html-italic'>Science</span> <b>2004</b>, <span class='html-italic'>303</span>, 1529–1531. [<a href="https://scholar.google.com/scholar_lookup?title=Innate+antiviral+responses+by+means+of+TLR7-mediated+recognition+of+single-stranded+RNA&author=Diebold,+S.S.&author=Kaisho,+T.&author=Hemmi,+H.&author=Akira,+S.&author=Reis+e+Sousa,+C.&publication_year=2004&journal=Science&volume=303&pages=1529%E2%80%931531&doi=10.1126/science.1093616" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1126/science.1093616" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B138-ijms-25-01469' class='html-xxx' data-content='138.'>Lund, O.; Nielsen, M.; Kesmir, C.; Petersen, A.G.; Lundegaard, C.; Worning, P.; Sylvester-Hvid, C.; Lamberth, K.; Røder, G.; Justesen, S.; et al. Definition of supertypes for HLA molecules using clustering of specificity matrices. <span class='html-italic'>Immunogenetics</span> <b>2004</b>, <span class='html-italic'>55</span>, 797–810. [<a href="https://scholar.google.com/scholar_lookup?title=Definition+of+supertypes+for+HLA+molecules+using+clustering+of+specificity+matrices&author=Lund,+O.&author=Nielsen,+M.&author=Kesmir,+C.&author=Petersen,+A.G.&author=Lundegaard,+C.&author=Worning,+P.&author=Sylvester-Hvid,+C.&author=Lamberth,+K.&author=R%C3%B8der,+G.&author=Justesen,+S.&publication_year=2004&journal=Immunogenetics&volume=55&pages=797%E2%80%93810&doi=10.1007/s00251-004-0647-4" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s00251-004-0647-4" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B139-ijms-25-01469' class='html-xxx' data-content='139.'>Kranz, L.M.; Diken, M.; Haas, H.; Kreiter, S.; Loquai, C.; Reuter, K.C.; Meng, M.; Fritz, D.; Vascotto, F.; Hefesha, H.; et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. <span class='html-italic'>Nature</span> <b>2016</b>, <span class='html-italic'>534</span>, 396–401. [<a href="https://scholar.google.com/scholar_lookup?title=Systemic+RNA+delivery+to+dendritic+cells+exploits+antiviral+defence+for+cancer+immunotherapy&author=Kranz,+L.M.&author=Diken,+M.&author=Haas,+H.&author=Kreiter,+S.&author=Loquai,+C.&author=Reuter,+K.C.&author=Meng,+M.&author=Fritz,+D.&author=Vascotto,+F.&author=Hefesha,+H.&publication_year=2016&journal=Nature&volume=534&pages=396%E2%80%93401&doi=10.1038/nature18300" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/nature18300" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B140-ijms-25-01469' class='html-xxx' data-content='140.'>Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. <span class='html-italic'>N. Engl. J. Med.</span> <b>2020</b>, <span class='html-italic'>383</span>, 2603–2615. [<a href="https://scholar.google.com/scholar_lookup?title=Safety+and+Efficacy+of+the+BNT162b2+mRNA+COVID-19+Vaccine&author=Polack,+F.P.&author=Thomas,+S.J.&author=Kitchin,+N.&author=Absalon,+J.&author=Gurtman,+A.&author=Lockhart,+S.&author=Perez,+J.L.&author=P%C3%A9rez+Marc,+G.&author=Moreira,+E.D.&author=Zerbini,+C.&publication_year=2020&journal=N.+Engl.+J.+Med.&volume=383&pages=2603%E2%80%932615&doi=10.1056/NEJMoa2034577" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1056/NEJMoa2034577" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B141-ijms-25-01469' class='html-xxx' data-content='141.'>Cullis, P.R.; Hope, M.J. Lipid Nanoparticle Systems for Enabling Gene Therapies. <span class='html-italic'>Mol. Ther.</span> <b>2017</b>, <span class='html-italic'>25</span>, 1467–1475. [<a href="https://scholar.google.com/scholar_lookup?title=Lipid+Nanoparticle+Systems+for+Enabling+Gene+Therapies&author=Cullis,+P.R.&author=Hope,+M.J.&publication_year=2017&journal=Mol.+Ther.&volume=25&pages=1467%E2%80%931475&doi=10.1016/j.ymthe.2017.03.013&pmid=28412170" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.ymthe.2017.03.013" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/28412170" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B142-ijms-25-01469' class='html-xxx' data-content='142.'>Chakraborty, C.; Sharma, A.R.; Sharma, G.; Lee, S.-S. Therapeutic advances of miRNAs: A preclinical and clinical update. <span class='html-italic'>J. Adv. Res.</span> <b>2021</b>, <span class='html-italic'>28</span>, 127–138. [<a href="https://scholar.google.com/scholar_lookup?title=Therapeutic+advances+of+miRNAs:+A+preclinical+and+clinical+update&author=Chakraborty,+C.&author=Sharma,+A.R.&author=Sharma,+G.&author=Lee,+S.-S.&publication_year=2021&journal=J.+Adv.+Res.&volume=28&pages=127%E2%80%93138&doi=10.1016/j.jare.2020.08.012&pmid=33364050" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jare.2020.08.012" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/33364050" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B143-ijms-25-01469' class='html-xxx' data-content='143.'>Dhuri, K.; Bechtold, C.; Quijano, E.; Pham, H.; Gupta, A.; Vikram, A.; Bahal, R. Antisense Oligonucleotides: An Emerging Area in Drug Discovery and Development. <span class='html-italic'>J. Clin. Med.</span> <b>2020</b>, <span class='html-italic'>9</span>, 2004. [<a href="https://scholar.google.com/scholar_lookup?title=Antisense+Oligonucleotides:+An+Emerging+Area+in+Drug+Discovery+and+Development&author=Dhuri,+K.&author=Bechtold,+C.&author=Quijano,+E.&author=Pham,+H.&author=Gupta,+A.&author=Vikram,+A.&author=Bahal,+R.&publication_year=2020&journal=J.+Clin.+Med.&volume=9&pages=2004&doi=10.3390/jcm9062004" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/jcm9062004" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B144-ijms-25-01469' class='html-xxx' data-content='144.'>Jiao, L.R.; Frampton, A.E.; Jacob, J.; Pellegrino, L.; Krell, J.; Giamas, G.; Tsim, N.; Vlavianos, P.; Cohen, P.; Ahmad, R.; et al. MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors. <span class='html-italic'>PLoS ONE</span> <b>2012</b>, <span class='html-italic'>7</span>, e32068. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNAs+targeting+oncogenes+are+down-regulated+in+pancreatic+malignant+transformation+from+benign+tumors&author=Jiao,+L.R.&author=Frampton,+A.E.&author=Jacob,+J.&author=Pellegrino,+L.&author=Krell,+J.&author=Giamas,+G.&author=Tsim,+N.&author=Vlavianos,+P.&author=Cohen,+P.&author=Ahmad,+R.&publication_year=2012&journal=PLoS+ONE&volume=7&pages=e32068&doi=10.1371/journal.pone.0032068" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1371/journal.pone.0032068" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B145-ijms-25-01469' class='html-xxx' data-content='145.'>Iacomino, G. miRNAs: The Road from Bench to Bedside. <span class='html-italic'>Genes</span> <b>2023</b>, <span class='html-italic'>14</span>, 314. [<a href="https://scholar.google.com/scholar_lookup?title=miRNAs:+The+Road+from+Bench+to+Bedside&author=Iacomino,+G.&publication_year=2023&journal=Genes&volume=14&pages=314&doi=10.3390/genes14020314" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/genes14020314" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B146-ijms-25-01469' class='html-xxx' data-content='146.'>Keskin, S.; Brouwers, C.C.; Sogorb-Gonzalez, M.; Martier, R.; Depla, J.A.; Vallès, A.; van Deventer, S.J.; Konstantinova, P.; Evers, M.M. AAV5-miHTT Lowers Huntingtin mRNA and Protein without Off-Target Effects in Patient-Derived Neuronal Cultures and Astrocytes. <span class='html-italic'>Mol. Ther. Methods Clin. Dev.</span> <b>2019</b>, <span class='html-italic'>15</span>, 275–284. [<a href="https://scholar.google.com/scholar_lookup?title=AAV5-miHTT+Lowers+Huntingtin+mRNA+and+Protein+without+Off-Target+Effects+in+Patient-Derived+Neuronal+Cultures+and+Astrocytes&author=Keskin,+S.&author=Brouwers,+C.C.&author=Sogorb-Gonzalez,+M.&author=Martier,+R.&author=Depla,+J.A.&author=Vall%C3%A8s,+A.&author=van+Deventer,+S.J.&author=Konstantinova,+P.&author=Evers,+M.M.&publication_year=2019&journal=Mol.+Ther.+Methods+Clin.+Dev.&volume=15&pages=275%E2%80%93284&doi=10.1016/j.omtm.2019.09.010" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.omtm.2019.09.010" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B147-ijms-25-01469' class='html-xxx' data-content='147.'>Miniarikova, J.; Zanella, I.; Huseinovic, A.; van der Zon, T.; Hanemaaijer, E.; Martier, R.; Koornneef, A.; Southwell, A.L.; Hayden, M.R.; van Deventer, S.J.; et al. Design, Characterization, and Lead Selection of Therapeutic miRNAs Targeting Huntingtin for Development of Gene Therapy for Huntington’s Disease. <span class='html-italic'>Mol. Ther. Nucleic Acids</span> <b>2016</b>, <span class='html-italic'>5</span>, e297. [<a href="https://scholar.google.com/scholar_lookup?title=Design,+Characterization,+and+Lead+Selection+of+Therapeutic+miRNAs+Targeting+Huntingtin+for+Development+of+Gene+Therapy+for+Huntington%E2%80%99s+Disease&author=Miniarikova,+J.&author=Zanella,+I.&author=Huseinovic,+A.&author=van+der+Zon,+T.&author=Hanemaaijer,+E.&author=Martier,+R.&author=Koornneef,+A.&author=Southwell,+A.L.&author=Hayden,+M.R.&author=van+Deventer,+S.J.&publication_year=2016&journal=Mol.+Ther.+Nucleic+Acids&volume=5&pages=e297&doi=10.1038/mtna.2016.7" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/mtna.2016.7" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B148-ijms-25-01469' class='html-xxx' data-content='148.'>Samaranch, L.; Blits, B.; San Sebastian, W.; Hadaczek, P.; Bringas, J.; Sudhakar, V.; Macayan, M.; Pivirotto, P.J.; Petry, H.; Bankiewicz, K.S. MR-guided parenchymal delivery of adeno-associated viral vector serotype 5 in non-human primate brain. <span class='html-italic'>Gene Ther.</span> <b>2017</b>, <span class='html-italic'>24</span>, 253–261. [<a href="https://scholar.google.com/scholar_lookup?title=MR-guided+parenchymal+delivery+of+adeno-associated+viral+vector+serotype+5+in+non-human+primate+brain&author=Samaranch,+L.&author=Blits,+B.&author=San+Sebastian,+W.&author=Hadaczek,+P.&author=Bringas,+J.&author=Sudhakar,+V.&author=Macayan,+M.&author=Pivirotto,+P.J.&author=Petry,+H.&author=Bankiewicz,+K.S.&publication_year=2017&journal=Gene+Ther.&volume=24&pages=253%E2%80%93261&doi=10.1038/gt.2017.14&pmid=28300083" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/gt.2017.14" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/28300083" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B149-ijms-25-01469' class='html-xxx' data-content='149.'>Gomez, I.G.; MacKenna, D.A.; Johnson, B.G.; Kaimal, V.; Roach, A.M.; Ren, S.; Nakagawa, N.; Xin, C.; Newitt, R.; Pandya, S.; et al. Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. <span class='html-italic'>J. Clin. Investig.</span> <b>2015</b>, <span class='html-italic'>125</span>, 141–156. [<a href="https://scholar.google.com/scholar_lookup?title=Anti-microRNA-21+oligonucleotides+prevent+Alport+nephropathy+progression+by+stimulating+metabolic+pathways&author=Gomez,+I.G.&author=MacKenna,+D.A.&author=Johnson,+B.G.&author=Kaimal,+V.&author=Roach,+A.M.&author=Ren,+S.&author=Nakagawa,+N.&author=Xin,+C.&author=Newitt,+R.&author=Pandya,+S.&publication_year=2015&journal=J.+Clin.+Investig.&volume=125&pages=141%E2%80%93156&doi=10.1172/JCI75852" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1172/JCI75852" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B150-ijms-25-01469' class='html-xxx' data-content='150.'>Kelnar, K.; Peltier, H.J.; Leatherbury, N.; Stoudemire, J.; Bader, A.G. Quantification of therapeutic miRNA mimics in whole blood from nonhuman primates. <span class='html-italic'>Anal. Chem.</span> <b>2014</b>, <span class='html-italic'>86</span>, 1534–1542. [<a href="https://scholar.google.com/scholar_lookup?title=Quantification+of+therapeutic+miRNA+mimics+in+whole+blood+from+nonhuman+primates&author=Kelnar,+K.&author=Peltier,+H.J.&author=Leatherbury,+N.&author=Stoudemire,+J.&author=Bader,+A.G.&publication_year=2014&journal=Anal.+Chem.&volume=86&pages=1534%E2%80%931542&doi=10.1021/ac403044t&pmid=24397447" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/ac403044t" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/24397447" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B151-ijms-25-01469' class='html-xxx' data-content='151.'>Kashtan, C.E.; Gross, O. Clinical practice recommendations for the diagnosis and management of Alport syndrome in children, adolescents, and young adults-an update for 2020. <span class='html-italic'>Pediatr. Nephrol.</span> <b>2021</b>, <span class='html-italic'>36</span>, 711–719, Erratum in <span class='html-italic'>Pediatr. Nephrol.</span> <b>2021</b>, <span class='html-italic'>36</span>, 731. [<a href="https://scholar.google.com/scholar_lookup?title=Clinical+practice+recommendations+for+the+diagnosis+and+management+of+Alport+syndrome+in+children,+adolescents,+and+young+adults-an+update+for+2020&author=Kashtan,+C.E.&author=Gross,+O.&publication_year=2021&journal=Pediatr.+Nephrol.&volume=36&pages=711%E2%80%93719&doi=10.1007/s00467-020-04819-6" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s00467-020-04819-6" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B152-ijms-25-01469' class='html-xxx' data-content='152.'>Drenth, J.P.H.; Schattenberg, J.M. The nonalcoholic steatohepatitis (NASH) drug development graveyard: Established hurdles and planning for future success. <span class='html-italic'>Expert. Opin. Investig. Drugs</span> <b>2020</b>, <span class='html-italic'>29</span>, 1365–1375. [<a href="https://scholar.google.com/scholar_lookup?title=The+nonalcoholic+steatohepatitis+(NASH)+drug+development+graveyard:+Established+hurdles+and+planning+for+future+success&author=Drenth,+J.P.H.&author=Schattenberg,+J.M.&publication_year=2020&journal=Expert.+Opin.+Investig.+Drugs&volume=29&pages=1365%E2%80%931375&doi=10.1080/13543784.2020.1839888" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1080/13543784.2020.1839888" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B153-ijms-25-01469' class='html-xxx' data-content='153.'>Huang, Y. Preclinical and Clinical Advances of GalNAc-Decorated Nucleic Acid Therapeutics. <span class='html-italic'>Mol. Ther. Nucleic Acids</span> <b>2017</b>, <span class='html-italic'>6</span>, 116–132. [<a href="https://scholar.google.com/scholar_lookup?title=Preclinical+and+Clinical+Advances+of+GalNAc-Decorated+Nucleic+Acid+Therapeutics&author=Huang,+Y.&publication_year=2017&journal=Mol.+Ther.+Nucleic+Acids&volume=6&pages=116%E2%80%93132&doi=10.1016/j.omtn.2016.12.003" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.omtn.2016.12.003" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B154-ijms-25-01469' class='html-xxx' data-content='154.'>Gallant-Behm, C.L.; Piper, J.; Dickinson, B.A.; Dalby, C.M.; Pestano, L.A.; Jackson, A.L. A synthetic microRNA-92a inhibitor (MRG-110) accelerates angiogenesis and wound healing in diabetic and nondiabetic wounds. <span class='html-italic'>Wound Repair. Regen.</span> <b>2018</b>, <span class='html-italic'>26</span>, 311–323. [<a href="https://scholar.google.com/scholar_lookup?title=A+synthetic+microRNA-92a+inhibitor+(MRG-110)+accelerates+angiogenesis+and+wound+healing+in+diabetic+and+nondiabetic+wounds&author=Gallant-Behm,+C.L.&author=Piper,+J.&author=Dickinson,+B.A.&author=Dalby,+C.M.&author=Pestano,+L.A.&author=Jackson,+A.L.&publication_year=2018&journal=Wound+Repair.+Regen.&volume=26&pages=311%E2%80%93323&doi=10.1111/wrr.12660" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1111/wrr.12660" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B155-ijms-25-01469' class='html-xxx' data-content='155.'>Abplanalp, W.T.; Fischer, A.; John, D.; Zeiher, A.M.; Gosgnach, W.; Darville, H.; Montgomery, R.; Pestano, L.; Allée, G.; Paty, I.; et al. Efficiency and Target Derepression of Anti-miR-92a: Results of a First in Human Study. <span class='html-italic'>Nucleic Acid Ther.</span> <b>2020</b>, <span class='html-italic'>30</span>, 335–345. [<a href="https://scholar.google.com/scholar_lookup?title=Efficiency+and+Target+Derepression+of+Anti-miR-92a:+Results+of+a+First+in+Human+Study&author=Abplanalp,+W.T.&author=Fischer,+A.&author=John,+D.&author=Zeiher,+A.M.&author=Gosgnach,+W.&author=Darville,+H.&author=Montgomery,+R.&author=Pestano,+L.&author=All%C3%A9e,+G.&author=Paty,+I.&publication_year=2020&journal=Nucleic+Acid+Ther.&volume=30&pages=335%E2%80%93345&doi=10.1089/nat.2020.0871&pmid=32707001" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1089/nat.2020.0871" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/32707001" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B156-ijms-25-01469' class='html-xxx' data-content='156.'>Reid, G.; Kao, S.C.; Pavlakis, N.; Brahmbhatt, H.; MacDiarmid, J.; Clarke, S.; Boyer, M.; van Zandwijk, N. Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. <span class='html-italic'>Epigenomics</span> <b>2016</b>, <span class='html-italic'>8</span>, 1079–1085. [<a href="https://scholar.google.com/scholar_lookup?title=Clinical+development+of+TargomiRs,+a+miRNA+mimic-based+treatment+for+patients+with+recurrent+thoracic+cancer&author=Reid,+G.&author=Kao,+S.C.&author=Pavlakis,+N.&author=Brahmbhatt,+H.&author=MacDiarmid,+J.&author=Clarke,+S.&author=Boyer,+M.&author=van+Zandwijk,+N.&publication_year=2016&journal=Epigenomics&volume=8&pages=1079%E2%80%931085&doi=10.2217/epi-2016-0035&pmid=27185582" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.2217/epi-2016-0035" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/27185582" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B157-ijms-25-01469' class='html-xxx' data-content='157.'>van Zandwijk, N.; Pavlakis, N.; Kao, S.C.; Linton, A.; Boyer, M.J.; Clarke, S.; Huynh, Y.; Chrzanowska, A.; Fulham, M.J.; Bailey, D.L.; et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study. <span class='html-italic'>Lancet Oncol.</span> <b>2017</b>, <span class='html-italic'>18</span>, 1386–1396. [<a href="https://scholar.google.com/scholar_lookup?title=Safety+and+activity+of+microRNA-loaded+minicells+in+patients+with+recurrent+malignant+pleural+mesothelioma:+A+first-in-man,+phase+1,+open-label,+dose-escalation+study&author=van+Zandwijk,+N.&author=Pavlakis,+N.&author=Kao,+S.C.&author=Linton,+A.&author=Boyer,+M.J.&author=Clarke,+S.&author=Huynh,+Y.&author=Chrzanowska,+A.&author=Fulham,+M.J.&author=Bailey,+D.L.&publication_year=2017&journal=Lancet+Oncol.&volume=18&pages=1386%E2%80%931396&doi=10.1016/S1470-2045(17)30621-6&pmid=28870611" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/S1470-2045(17)30621-6" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/28870611" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B158-ijms-25-01469' class='html-xxx' data-content='158.'>Reid, G.; Pel, M.E.; Kirschner, M.B.; Cheng, Y.Y.; Mugridge, N.; Weiss, J.; Williams, M.; Wright, C.; Edelman, J.J.; Vallely, M.P.; et al. Restoring expression of miR-16: A novel approach to therapy for malignant pleural mesothelioma. <span class='html-italic'>Ann. Oncol.</span> <b>2013</b>, <span class='html-italic'>24</span>, 3128–3135. [<a href="https://scholar.google.com/scholar_lookup?title=Restoring+expression+of+miR-16:+A+novel+approach+to+therapy+for+malignant+pleural+mesothelioma&author=Reid,+G.&author=Pel,+M.E.&author=Kirschner,+M.B.&author=Cheng,+Y.Y.&author=Mugridge,+N.&author=Weiss,+J.&author=Williams,+M.&author=Wright,+C.&author=Edelman,+J.J.&author=Vallely,+M.P.&publication_year=2013&journal=Ann.+Oncol.&volume=24&pages=3128%E2%80%933135&doi=10.1093/annonc/mdt412&pmid=24148817" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1093/annonc/mdt412" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/24148817" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B159-ijms-25-01469' class='html-xxx' data-content='159.'>Täubel, J.; Hauke, W.; Rump, S.; Viereck, J.; Batkai, S.; Poetzsch, J.; Rode, L.; Weigt, H.; Genschel, C.; Lorch, U.; et al. Novel antisense therapy targeting microRNA-132 in patients with heart failure: Results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study. <span class='html-italic'>Eur. Heart J.</span> <b>2021</b>, <span class='html-italic'>42</span>, 178–188. [<a href="https://scholar.google.com/scholar_lookup?title=Novel+antisense+therapy+targeting+microRNA-132+in+patients+with+heart+failure:+Results+of+a+first-in-human+Phase+1b+randomized,+double-blind,+placebo-controlled+study&author=T%C3%A4ubel,+J.&author=Hauke,+W.&author=Rump,+S.&author=Viereck,+J.&author=Batkai,+S.&author=Poetzsch,+J.&author=Rode,+L.&author=Weigt,+H.&author=Genschel,+C.&author=Lorch,+U.&publication_year=2021&journal=Eur.+Heart+J.&volume=42&pages=178%E2%80%93188&doi=10.1093/eurheartj/ehaa898&pmid=33245749" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1093/eurheartj/ehaa898" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/33245749" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B160-ijms-25-01469' class='html-xxx' data-content='160.'>Batkai, S.; Genschel, C.; Viereck, J.; Rump, S.; Bär, C.; Borchert, T.; Traxler, D.; Riesenhuber, M.; Spannbauer, A.; Lukovic, D.; et al. CDR132L improves systolic and diastolic function in a large animal model of chronic heart failure. <span class='html-italic'>Eur. Heart J.</span> <b>2021</b>, <span class='html-italic'>42</span>, 192–201. [<a href="https://scholar.google.com/scholar_lookup?title=CDR132L+improves+systolic+and+diastolic+function+in+a+large+animal+model+of+chronic+heart+failure&author=Batkai,+S.&author=Genschel,+C.&author=Viereck,+J.&author=Rump,+S.&author=B%C3%A4r,+C.&author=Borchert,+T.&author=Traxler,+D.&author=Riesenhuber,+M.&author=Spannbauer,+A.&author=Lukovic,+D.&publication_year=2021&journal=Eur.+Heart+J.&volume=42&pages=192%E2%80%93201&doi=10.1093/eurheartj/ehaa791" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1093/eurheartj/ehaa791" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B161-ijms-25-01469' class='html-xxx' data-content='161.'>Gallant-Behm, C.L.; Piper, J.; Lynch, J.M.; Seto, A.G.; Hong, S.J.; Mustoe, T.A.; Maari, C.; Pestano, L.A.; Dalby, C.M.; Jackson, A.L.; et al. A MicroRNA-29 Mimic (Remlarsen) Represses Extracellular Matrix Expression and Fibroplasia in the Skin. <span class='html-italic'>J. Invest. Dermatol.</span> <b>2019</b>, <span class='html-italic'>139</span>, 1073–1081. [<a href="https://scholar.google.com/scholar_lookup?title=A+MicroRNA-29+Mimic+(Remlarsen)+Represses+Extracellular+Matrix+Expression+and+Fibroplasia+in+the+Skin&author=Gallant-Behm,+C.L.&author=Piper,+J.&author=Lynch,+J.M.&author=Seto,+A.G.&author=Hong,+S.J.&author=Mustoe,+T.A.&author=Maari,+C.&author=Pestano,+L.A.&author=Dalby,+C.M.&author=Jackson,+A.L.&publication_year=2019&journal=J.+Invest.+Dermatol.&volume=139&pages=1073%E2%80%931081&doi=10.1016/j.jid.2018.11.007" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jid.2018.11.007" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B162-ijms-25-01469' class='html-xxx' data-content='162.'>Olena, A.F.; Patton, J.G. Genomic organization of microRNAs. <span class='html-italic'>J. Cell. Physiol.</span> <b>2010</b>, <span class='html-italic'>222</span>, 540–545. [<a href="https://scholar.google.com/scholar_lookup?title=Genomic+organization+of+microRNAs&author=Olena,+A.F.&author=Patton,+J.G.&publication_year=2010&journal=J.+Cell.+Physiol.&volume=222&pages=540%E2%80%93545&doi=10.1002/jcp.21993" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/jcp.21993" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B163-ijms-25-01469' class='html-xxx' data-content='163.'>Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. <span class='html-italic'>Nat. Rev. Mol. Cell Biol.</span> <b>2014</b>, <span class='html-italic'>15</span>, 509–524. [<a href="https://scholar.google.com/scholar_lookup?title=Regulation+of+microRNA+biogenesis&author=Ha,+M.&author=Kim,+V.N.&publication_year=2014&journal=Nat.+Rev.+Mol.+Cell+Biol.&volume=15&pages=509%E2%80%93524&doi=10.1038/nrm3838" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/nrm3838" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B164-ijms-25-01469' class='html-xxx' data-content='164.'>Ottosen, S.; Parsley, T.B.; Yang, L.; Zeh, K.; van Doorn, L.J.; van der Veer, E.; Raney, A.K.; Hodges, M.R.; Patick, A.K. In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122. <span class='html-italic'>Antimicrob. Agents Chemother.</span> <b>2015</b>, <span class='html-italic'>59</span>, 599–608. [<a href="https://scholar.google.com/scholar_lookup?title=In+vitro+antiviral+activity+and+preclinical+and+clinical+resistance+profile+of+miravirsen,+a+novel+anti-hepatitis+C+virus+therapeutic+targeting+the+human+factor+miR-122&author=Ottosen,+S.&author=Parsley,+T.B.&author=Yang,+L.&author=Zeh,+K.&author=van+Doorn,+L.J.&author=van+der+Veer,+E.&author=Raney,+A.K.&author=Hodges,+M.R.&author=Patick,+A.K.&publication_year=2015&journal=Antimicrob.+Agents+Chemother.&volume=59&pages=599%E2%80%93608&doi=10.1128/AAC.04220-14&pmid=25385103" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1128/AAC.04220-14" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/25385103" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B165-ijms-25-01469' class='html-xxx' data-content='165.'>Gebert, L.F.; Rebhan, M.A.; Crivelli, S.E.; Denzler, R.; Stoffel, M.; Hall, J. Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. <span class='html-italic'>Nucleic Acids Res.</span> <b>2014</b>, <span class='html-italic'>42</span>, 609–621. [<a href="https://scholar.google.com/scholar_lookup?title=Miravirsen+(SPC3649)+can+inhibit+the+biogenesis+of+miR-122&author=Gebert,+L.F.&author=Rebhan,+M.A.&author=Crivelli,+S.E.&author=Denzler,+R.&author=Stoffel,+M.&author=Hall,+J.&publication_year=2014&journal=Nucleic+Acids+Res.&volume=42&pages=609%E2%80%93621&doi=10.1093/nar/gkt852&pmid=24068553" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1093/nar/gkt852" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/24068553" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B166-ijms-25-01469' class='html-xxx' data-content='166.'>Elmén, J.; Lindow, M.; Schütz, S.; Lawrence, M.; Petri, A.; Obad, S.; Lindholm, M.; Hedtjärn, M.; Hansen, H.F.; Berger, U.; et al. LNA-mediated microRNA silencing in non-human primates. <span class='html-italic'>Nature</span> <b>2008</b>, <span class='html-italic'>452</span>, 896–899. [<a href="https://scholar.google.com/scholar_lookup?title=LNA-mediated+microRNA+silencing+in+non-human+primates&author=Elm%C3%A9n,+J.&author=Lindow,+M.&author=Sch%C3%BCtz,+S.&author=Lawrence,+M.&author=Petri,+A.&author=Obad,+S.&author=Lindholm,+M.&author=Hedtj%C3%A4rn,+M.&author=Hansen,+H.F.&author=Berger,+U.&publication_year=2008&journal=Nature&volume=452&pages=896%E2%80%93899&doi=10.1038/nature06783" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/nature06783" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B167-ijms-25-01469' class='html-xxx' data-content='167.'>Lanford, R.E.; Hildebrandt-Eriksen, E.S.; Petri, A.; Persson, R.; Lindow, M.; Munk, M.E.; Kauppinen, S.; Ørum, H. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. <span class='html-italic'>Science</span> <b>2010</b>, <span class='html-italic'>327</span>, 198–201. [<a href="https://scholar.google.com/scholar_lookup?title=Therapeutic+silencing+of+microRNA-122+in+primates+with+chronic+hepatitis+C+virus+infection&author=Lanford,+R.E.&author=Hildebrandt-Eriksen,+E.S.&author=Petri,+A.&author=Persson,+R.&author=Lindow,+M.&author=Munk,+M.E.&author=Kauppinen,+S.&author=%C3%98rum,+H.&publication_year=2010&journal=Science&volume=327&pages=198%E2%80%93201&doi=10.1126/science.1178178" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1126/science.1178178" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B168-ijms-25-01469' class='html-xxx' data-content='168.'>Janssen, H.L.; Reesink, H.W.; Lawitz, E.J.; Zeuzem, S.; Rodriguez-Torres, M.; Patel, K.; van der Meer, A.J.; Patick, A.K.; Chen, A.; Zhou, Y.; et al. Treatment of HCV infection by targeting microRNA. <span class='html-italic'>N. Engl. J. Med.</span> <b>2013</b>, <span class='html-italic'>368</span>, 1685–1694. [<a href="https://scholar.google.com/scholar_lookup?title=Treatment+of+HCV+infection+by+targeting+microRNA&author=Janssen,+H.L.&author=Reesink,+H.W.&author=Lawitz,+E.J.&author=Zeuzem,+S.&author=Rodriguez-Torres,+M.&author=Patel,+K.&author=van+der+Meer,+A.J.&author=Patick,+A.K.&author=Chen,+A.&author=Zhou,+Y.&publication_year=2013&journal=N.+Engl.+J.+Med.&volume=368&pages=1685%E2%80%931694&doi=10.1056/NEJMoa1209026" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1056/NEJMoa1209026" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B169-ijms-25-01469' class='html-xxx' data-content='169.'>van der Ree, M.H.; de Vree, J.M.; Stelma, F.; Willemse, S.; van der Valk, M.; Rietdijk, S.; Molenkamp, R.; Schinkel, J.; van Nuenen, A.C.; Beuers, U.; et al. Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: A phase 1B, double-blind, randomised controlled trial. <span class='html-italic'>Lancet</span> <b>2017</b>, <span class='html-italic'>389</span>, 709–717. [<a href="https://scholar.google.com/scholar_lookup?title=Safety,+tolerability,+and+antiviral+effect+of+RG-101+in+patients+with+chronic+hepatitis+C:+A+phase+1B,+double-blind,+randomised+controlled+trial&author=van+der+Ree,+M.H.&author=de+Vree,+J.M.&author=Stelma,+F.&author=Willemse,+S.&author=van+der+Valk,+M.&author=Rietdijk,+S.&author=Molenkamp,+R.&author=Schinkel,+J.&author=van+Nuenen,+A.C.&author=Beuers,+U.&publication_year=2017&journal=Lancet&volume=389&pages=709%E2%80%93717&doi=10.1016/S0140-6736(16)31715-9&pmid=28087069" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/S0140-6736(16)31715-9" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/28087069" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B170-ijms-25-01469' class='html-xxx' data-content='170.'>Stelma, F.; van der Ree, M.H.; Sinnige, M.J.; Brown, A.; Swadling, L.; de Vree, J.M.L.; Willemse, S.B.; van der Valk, M.; Grint, P.; Neben, S.; et al. Immune phenotype and function of natural killer and T cells in chronic hepatitis C patients who received a single dose of anti-MicroRNA-122, RG-101. <span class='html-italic'>Hepatology</span> <b>2017</b>, <span class='html-italic'>66</span>, 57–68. [<a href="https://scholar.google.com/scholar_lookup?title=Immune+phenotype+and+function+of+natural+killer+and+T+cells+in+chronic+hepatitis+C+patients+who+received+a+single+dose+of+anti-MicroRNA-122,+RG-101&author=Stelma,+F.&author=van+der+Ree,+M.H.&author=Sinnige,+M.J.&author=Brown,+A.&author=Swadling,+L.&author=de+Vree,+J.M.L.&author=Willemse,+S.B.&author=van+der+Valk,+M.&author=Grint,+P.&author=Neben,+S.&publication_year=2017&journal=Hepatology&volume=66&pages=57%E2%80%9368&doi=10.1002/hep.29148" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/hep.29148" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B171-ijms-25-01469' class='html-xxx' data-content='171.'>Seto, A.G.; Beatty, X.; Lynch, J.M.; Hermreck, M.; Tetzlaff, M.; Duvic, M.; Jackson, A.L. Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. <span class='html-italic'>Br. J. Haematol.</span> <b>2018</b>, <span class='html-italic'>183</span>, 428–444. [<a href="https://scholar.google.com/scholar_lookup?title=Cobomarsen,+an+oligonucleotide+inhibitor+of+miR-155,+co-ordinately+regulates+multiple+survival+pathways+to+reduce+cellular+proliferation+and+survival+in+cutaneous+T-cell+lymphoma&author=Seto,+A.G.&author=Beatty,+X.&author=Lynch,+J.M.&author=Hermreck,+M.&author=Tetzlaff,+M.&author=Duvic,+M.&author=Jackson,+A.L.&publication_year=2018&journal=Br.+J.+Haematol.&volume=183&pages=428%E2%80%93444&doi=10.1111/bjh.15547" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1111/bjh.15547" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B172-ijms-25-01469' class='html-xxx' data-content='172.'>James, A.M.; Ruckman, J.; Pestano, L.A.; Hopkins, R.D.; Rodgers, R.C.; Marshall, W.S.; Rubin, P.; Escolar, D. SOLAR: A Phase 2, Global, Randomized, Active Comparator Study To Investigate the Efficacy and Safety of Cobomarsen in Subjects with Mycosis Fungoides (MF). <span class='html-italic'>Hematol. Oncol.</span> <b>2019</b>, <span class='html-italic'>37</span>, 562–563. [<a href="https://scholar.google.com/scholar_lookup?title=SOLAR:+A+Phase+2,+Global,+Randomized,+Active+Comparator+Study+To+Investigate+the+Efficacy+and+Safety+of+Cobomarsen+in+Subjects+with+Mycosis+Fungoides+(MF)&author=James,+A.M.&author=Ruckman,+J.&author=Pestano,+L.A.&author=Hopkins,+R.D.&author=Rodgers,+R.C.&author=Marshall,+W.S.&author=Rubin,+P.&author=Escolar,+D.&publication_year=2019&journal=Hematol.+Oncol.&volume=37&pages=562%E2%80%93563&doi=10.1002/hon.10_2632" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/hon.10_2632" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B173-ijms-25-01469' class='html-xxx' data-content='173.'>Querfeld, C.; Pacheco, T.; Foss, F.M.; Halwani, A.S.; Porcu, P.; Seto, A.G.; Ruckman, J.; Landry, M.L.; Jackson, A.L.; Pestano, L.A.; et al. Preliminary Results of a Phase 1 Trial Evaluating MRG-106, a Synthetic microRNA Antagonist (LNA antimiR) of microRNA-155, in Patients with CTCL. <span class='html-italic'>Blood</span> <b>2016</b>, <span class='html-italic'>128</span>, 1829. [<a href="https://scholar.google.com/scholar_lookup?title=Preliminary+Results+of+a+Phase+1+Trial+Evaluating+MRG-106,+a+Synthetic+microRNA+Antagonist+(LNA+antimiR)+of+microRNA-155,+in+Patients+with+CTCL&author=Querfeld,+C.&author=Pacheco,+T.&author=Foss,+F.M.&author=Halwani,+A.S.&author=Porcu,+P.&author=Seto,+A.G.&author=Ruckman,+J.&author=Landry,+M.L.&author=Jackson,+A.L.&author=Pestano,+L.A.&publication_year=2016&journal=Blood&volume=128&pages=1829&doi=10.1182/blood.V128.22.1829.1829" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1182/blood.V128.22.1829.1829" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B174-ijms-25-01469' class='html-xxx' data-content='174.'>Adams, D.; Suhr, O.B.; Dyck, P.J.; Litchy, W.J.; Leahy, R.G.; Chen, J.; Gollob, J.; Coelho, T. Trial design and rationale for APOLLO, a Phase 3, placebo-controlled study of patisiran in patients with hereditary ATTR amyloidosis with polyneuropathy. <span class='html-italic'>BMC Neurol.</span> <b>2017</b>, <span class='html-italic'>17</span>, 181. [<a href="https://scholar.google.com/scholar_lookup?title=Trial+design+and+rationale+for+APOLLO,+a+Phase+3,+placebo-controlled+study+of+patisiran+in+patients+with+hereditary+ATTR+amyloidosis+with+polyneuropathy&author=Adams,+D.&author=Suhr,+O.B.&author=Dyck,+P.J.&author=Litchy,+W.J.&author=Leahy,+R.G.&author=Chen,+J.&author=Gollob,+J.&author=Coelho,+T.&publication_year=2017&journal=BMC+Neurol.&volume=17&pages=181&doi=10.1186/s12883-017-0948-5&pmid=28893208" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1186/s12883-017-0948-5" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/28893208" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B175-ijms-25-01469' class='html-xxx' data-content='175.'>Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. <span class='html-italic'>Nat. Rev. Drug Discov.</span> <b>2017</b>, <span class='html-italic'>16</span>, 203–222. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNA+therapeutics:+Towards+a+new+era+for+the+management+of+cancer+and+other+diseases&author=Rupaimoole,+R.&author=Slack,+F.J.&publication_year=2017&journal=Nat.+Rev.+Drug+Discov.&volume=16&pages=203%E2%80%93222&doi=10.1038/nrd.2016.246" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/nrd.2016.246" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B176-ijms-25-01469' class='html-xxx' data-content='176.'>Raue, R.; Frank, A.C.; Syed, S.N.; Brune, B. Therapeutic Targeting of MicroRNAs in the Tumor Microenvironment. <span class='html-italic'>Int. J. Mol. Sci.</span> <b>2021</b>, <span class='html-italic'>22</span>, 2210. [<a href="https://scholar.google.com/scholar_lookup?title=Therapeutic+Targeting+of+MicroRNAs+in+the+Tumor+Microenvironment&author=Raue,+R.&author=Frank,+A.C.&author=Syed,+S.N.&author=Brune,+B.&publication_year=2021&journal=Int.+J.+Mol.+Sci.&volume=22&pages=2210&doi=10.3390/ijms22042210" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/ijms22042210" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B177-ijms-25-01469' class='html-xxx' data-content='177.'>Ge, X.; Pan, M.H.; Wang, L.; Li, W.; Jiang, C.; He, J.; Abouzid, K.; Liu, L.Z.; Shi, Z.; Jiang, B.H. Hypoxia-mediated mitochondria apoptosis inhibition induces temozolomide treatment resistance through miR-26a/Bad/Bax axis. <span class='html-italic'>Cell Death Dis.</span> <b>2018</b>, <span class='html-italic'>9</span>, 1128. [<a href="https://scholar.google.com/scholar_lookup?title=Hypoxia-mediated+mitochondria+apoptosis+inhibition+induces+temozolomide+treatment+resistance+through+miR-26a/Bad/Bax+axis&author=Ge,+X.&author=Pan,+M.H.&author=Wang,+L.&author=Li,+W.&author=Jiang,+C.&author=He,+J.&author=Abouzid,+K.&author=Liu,+L.Z.&author=Shi,+Z.&author=Jiang,+B.H.&publication_year=2018&journal=Cell+Death+Dis.&volume=9&pages=1128&doi=10.1038/s41419-018-1176-7" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41419-018-1176-7" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B178-ijms-25-01469' class='html-xxx' data-content='178.'>Gee, H.E.; Ivan, C.; Calin, G.A.; Ivan, M. HypoxamiRs and cancer: From biology to targeted therapy. <span class='html-italic'>Antioxid. Redox Signal.</span> <b>2014</b>, <span class='html-italic'>21</span>, 1220–1238. [<a href="https://scholar.google.com/scholar_lookup?title=HypoxamiRs+and+cancer:+From+biology+to+targeted+therapy&author=Gee,+H.E.&author=Ivan,+C.&author=Calin,+G.A.&author=Ivan,+M.&publication_year=2014&journal=Antioxid.+Redox+Signal.&volume=21&pages=1220%E2%80%931238&doi=10.1089/ars.2013.5639" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1089/ars.2013.5639" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B179-ijms-25-01469' class='html-xxx' data-content='179.'>Luo, G.; Xia, X.; Wang, X.; Zhang, K.; Cao, J.; Jiang, T.; Zhao, Q.; Qiu, Z. miR-301a plays a pivotal role in hypoxia-induced gemcitabine resistance in pancreatic cancer. <span class='html-italic'>Exp. Cell Res.</span> <b>2018</b>, <span class='html-italic'>369</span>, 120–128. [<a href="https://scholar.google.com/scholar_lookup?title=miR-301a+plays+a+pivotal+role+in+hypoxia-induced+gemcitabine+resistance+in+pancreatic+cancer&author=Luo,+G.&author=Xia,+X.&author=Wang,+X.&author=Zhang,+K.&author=Cao,+J.&author=Jiang,+T.&author=Zhao,+Q.&author=Qiu,+Z.&publication_year=2018&journal=Exp.+Cell+Res.&volume=369&pages=120%E2%80%93128&doi=10.1016/j.yexcr.2018.05.013" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.yexcr.2018.05.013" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B180-ijms-25-01469' class='html-xxx' data-content='180.'>Zhang, J.; Jin, H.; Liu, H.; Lv, S.; Wang, B.; Wang, R.; Liu, H.; Ding, M.; Yang, Y.; Li, L.; et al. MiRNA-99a directly regulates AGO2 through translational repression in hepatocellular carcinoma. <span class='html-italic'>Oncogenesis</span> <b>2014</b>, <span class='html-italic'>3</span>, e97. [<a href="https://scholar.google.com/scholar_lookup?title=MiRNA-99a+directly+regulates+AGO2+through+translational+repression+in+hepatocellular+carcinoma&author=Zhang,+J.&author=Jin,+H.&author=Liu,+H.&author=Lv,+S.&author=Wang,+B.&author=Wang,+R.&author=Liu,+H.&author=Ding,+M.&author=Yang,+Y.&author=Li,+L.&publication_year=2014&journal=Oncogenesis&volume=3&pages=e97&doi=10.1038/oncsis.2014.11" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/oncsis.2014.11" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B181-ijms-25-01469' class='html-xxx' data-content='181.'>Xin, X.; Kumar, V.; Lin, F.; Kumar, V.; Bhattarai, R.; Bhatt, V.R.; Tan, C.; Mahato, R.I. Redox-responsive nanoplatform for codelivery of miR-519c and gemcitabine for pancreatic cancer therapy. <span class='html-italic'>Sci. Adv.</span> <b>2020</b>, <span class='html-italic'>6</span>, eabd6764. [<a href="https://scholar.google.com/scholar_lookup?title=Redox-responsive+nanoplatform+for+codelivery+of+miR-519c+and+gemcitabine+for+pancreatic+cancer+therapy&author=Xin,+X.&author=Kumar,+V.&author=Lin,+F.&author=Kumar,+V.&author=Bhattarai,+R.&author=Bhatt,+V.R.&author=Tan,+C.&author=Mahato,+R.I.&publication_year=2020&journal=Sci.+Adv.&volume=6&pages=eabd6764&doi=10.1126/sciadv.abd6764" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1126/sciadv.abd6764" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B182-ijms-25-01469' class='html-xxx' data-content='182.'>Hanna, J.; Hossain, G.S.; Kocerha, J. The Potential for microRNA Therapeutics and Clinical Research. <span class='html-italic'>Front. Genet.</span> <b>2019</b>, <span class='html-italic'>10</span>, 478. [<a href="https://scholar.google.com/scholar_lookup?title=The+Potential+for+microRNA+Therapeutics+and+Clinical+Research&author=Hanna,+J.&author=Hossain,+G.S.&author=Kocerha,+J.&publication_year=2019&journal=Front.+Genet.&volume=10&pages=478&doi=10.3389/fgene.2019.00478" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3389/fgene.2019.00478" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B183-ijms-25-01469' class='html-xxx' data-content='183.'>Lindow, M.; Kauppinen, S. Discovering the first microRNA-targeted drug. <span class='html-italic'>J. Cell Biol.</span> <b>2012</b>, <span class='html-italic'>199</span>, 407–412. [<a href="https://scholar.google.com/scholar_lookup?title=Discovering+the+first+microRNA-targeted+drug&author=Lindow,+M.&author=Kauppinen,+S.&publication_year=2012&journal=J.+Cell+Biol.&volume=199&pages=407%E2%80%93412&doi=10.1083/jcb.201208082" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1083/jcb.201208082" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B184-ijms-25-01469' class='html-xxx' data-content='184.'>Huang, P.S.; Liao, C.J.; Huang, Y.H.; Yeh, C.T.; Chen, C.Y.; Tang, H.C.; Chang, C.C.; Lin, K.H. Functional and Clinical Significance of Dysregulated microRNAs in Liver Cancer. <span class='html-italic'>Cancers</span> <b>2021</b>, <span class='html-italic'>13</span>, 5361. [<a href="https://scholar.google.com/scholar_lookup?title=Functional+and+Clinical+Significance+of+Dysregulated+microRNAs+in+Liver+Cancer&author=Huang,+P.S.&author=Liao,+C.J.&author=Huang,+Y.H.&author=Yeh,+C.T.&author=Chen,+C.Y.&author=Tang,+H.C.&author=Chang,+C.C.&author=Lin,+K.H.&publication_year=2021&journal=Cancers&volume=13&pages=5361&doi=10.3390/cancers13215361" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/cancers13215361" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B185-ijms-25-01469' class='html-xxx' data-content='185.'>Winkler, J.; Stessl, M.; Amartey, J.; Noe, C.R. Off-target effects related to the phosphorothioate modification of nucleic acids. <span class='html-italic'>ChemMedChem</span> <b>2010</b>, <span class='html-italic'>5</span>, 1344–1352. [<a href="https://scholar.google.com/scholar_lookup?title=Off-target+effects+related+to+the+phosphorothioate+modification+of+nucleic+acids&author=Winkler,+J.&author=Stessl,+M.&author=Amartey,+J.&author=Noe,+C.R.&publication_year=2010&journal=ChemMedChem&volume=5&pages=1344%E2%80%931352&doi=10.1002/cmdc.201000156&pmid=20544786" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/cmdc.201000156" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/20544786" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B186-ijms-25-01469' class='html-xxx' data-content='186.'>Iacomino, G.; Siani, A. Role of microRNAs in obesity and obesity-related diseases. <span class='html-italic'>Genes Nutr.</span> <b>2017</b>, <span class='html-italic'>12</span>, 23. [<a href="https://scholar.google.com/scholar_lookup?title=Role+of+microRNAs+in+obesity+and+obesity-related+diseases&author=Iacomino,+G.&author=Siani,+A.&publication_year=2017&journal=Genes+Nutr.&volume=12&pages=23&doi=10.1186/s12263-017-0577-z" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1186/s12263-017-0577-z" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B187-ijms-25-01469' class='html-xxx' data-content='187.'>Anastasiadou, E.; Seto, A.G.; Beatty, X.; Hermreck, M.; Gilles, M.E.; Stroopinsky, D.; Pinter-Brown, L.C.; Pestano, L.; Marchese, C.; Avigan, D.; et al. Cobomarsen, an Oligonucleotide Inhibitor of miR-155, Slows DLBCL Tumor Cell Growth In Vitro and In Vivo. <span class='html-italic'>Clin. Cancer Res.</span> <b>2021</b>, <span class='html-italic'>27</span>, 1139–1149. [<a href="https://scholar.google.com/scholar_lookup?title=Cobomarsen,+an+Oligonucleotide+Inhibitor+of+miR-155,+Slows+DLBCL+Tumor+Cell+Growth+In+Vitro+and+In+Vivo&author=Anastasiadou,+E.&author=Seto,+A.G.&author=Beatty,+X.&author=Hermreck,+M.&author=Gilles,+M.E.&author=Stroopinsky,+D.&author=Pinter-Brown,+L.C.&author=Pestano,+L.&author=Marchese,+C.&author=Avigan,+D.&publication_year=2021&journal=Clin.+Cancer+Res.&volume=27&pages=1139%E2%80%931149&doi=10.1158/1078-0432.CCR-20-3139" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1158/1078-0432.CCR-20-3139" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B188-ijms-25-01469' class='html-xxx' data-content='188.'>Kriegel, A.J.; Liu, Y.; Cohen, B.; Usa, K.; Liu, Y.; Liang, M. MiR-382 targeting of kallikrein 5 contributes to renal inner medullary interstitial fibrosis. <span class='html-italic'>Physiol. Genom.</span> <b>2012</b>, <span class='html-italic'>44</span>, 259–267. [<a href="https://scholar.google.com/scholar_lookup?title=MiR-382+targeting+of+kallikrein+5+contributes+to+renal+inner+medullary+interstitial+fibrosis&author=Kriegel,+A.J.&author=Liu,+Y.&author=Cohen,+B.&author=Usa,+K.&author=Liu,+Y.&author=Liang,+M.&publication_year=2012&journal=Physiol.+Genom.&volume=44&pages=259%E2%80%93267&doi=10.1152/physiolgenomics.00173.2011" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1152/physiolgenomics.00173.2011" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B189-ijms-25-01469' class='html-xxx' data-content='189.'>Bais, T.; Gansevoort, R.T.; Meijer, E. Drugs in Clinical Development to Treat Autosomal Dominant Polycystic Kidney Disease. <span class='html-italic'>Drugs</span> <b>2022</b>, <span class='html-italic'>82</span>, 1095–1115. [<a href="https://scholar.google.com/scholar_lookup?title=Drugs+in+Clinical+Development+to+Treat+Autosomal+Dominant+Polycystic+Kidney+Disease&author=Bais,+T.&author=Gansevoort,+R.T.&author=Meijer,+E.&publication_year=2022&journal=Drugs&volume=82&pages=1095%E2%80%931115&doi=10.1007/s40265-022-01745-9&pmid=35852784" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s40265-022-01745-9" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/35852784" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B190-ijms-25-01469' class='html-xxx' data-content='190.'>Chakraborty, C.; Sharma, A.R.; Sharma, G.; Sarkar, B.K.; Lee, S.S. The novel strategies for next-generation cancer treatment: miRNA combined with chemotherapeutic agents for the treatment of cancer. <span class='html-italic'>Oncotarget</span> <b>2018</b>, <span class='html-italic'>9</span>, 10164–10174. [<a href="https://scholar.google.com/scholar_lookup?title=The+novel+strategies+for+next-generation+cancer+treatment:+miRNA+combined+with+chemotherapeutic+agents+for+the+treatment+of+cancer&author=Chakraborty,+C.&author=Sharma,+A.R.&author=Sharma,+G.&author=Sarkar,+B.K.&author=Lee,+S.S.&publication_year=2018&journal=Oncotarget&volume=9&pages=10164%E2%80%9310174&doi=10.18632/oncotarget.24309&pmid=29515800" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.18632/oncotarget.24309" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/29515800" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B191-ijms-25-01469' class='html-xxx' data-content='191.'>Yu, H.W.; Cho, W.C. The emerging role of miRNAs in combined cancer therapy. <span class='html-italic'>Expert. Opin. Biol. Ther.</span> <b>2015</b>, <span class='html-italic'>15</span>, 923–925. [<a href="https://scholar.google.com/scholar_lookup?title=The+emerging+role+of+miRNAs+in+combined+cancer+therapy&author=Yu,+H.W.&author=Cho,+W.C.&publication_year=2015&journal=Expert.+Opin.+Biol.+Ther.&volume=15&pages=923%E2%80%93925&doi=10.1517/14712598.2015.1030390&pmid=25813091" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1517/14712598.2015.1030390" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/25813091" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B192-ijms-25-01469' class='html-xxx' data-content='192.'>Vernon, M.; Lambert, B.; Meryet-Figuière, M.; Brotin, E.; Weiswald, L.B.; Paysant, H.; Vigneron, N.; Wambecke, A.; Abeilard, E.; Giffard, F.; et al. Functional miRNA Screening Identifies Wide-ranging Antitumor Properties of miR-3622b-5p and Reveals a New Therapeutic Combination Strategy in Ovarian Tumor Organoids. <span class='html-italic'>Mol. Cancer Ther.</span> <b>2020</b>, <span class='html-italic'>19</span>, 1506–1519. [<a href="https://scholar.google.com/scholar_lookup?title=Functional+miRNA+Screening+Identifies+Wide-ranging+Antitumor+Properties+of+miR-3622b-5p+and+Reveals+a+New+Therapeutic+Combination+Strategy+in+Ovarian+Tumor+Organoids&author=Vernon,+M.&author=Lambert,+B.&author=Meryet-Figui%C3%A8re,+M.&author=Brotin,+E.&author=Weiswald,+L.B.&author=Paysant,+H.&author=Vigneron,+N.&author=Wambecke,+A.&author=Abeilard,+E.&author=Giffard,+F.&publication_year=2020&journal=Mol.+Cancer+Ther.&volume=19&pages=1506%E2%80%931519&doi=10.1158/1535-7163.MCT-19-0510&pmid=32371581" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1158/1535-7163.MCT-19-0510" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/32371581" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B193-ijms-25-01469' class='html-xxx' data-content='193.'>He, B.; Zhao, Z.; Cai, Q.; Zhang, Y.; Zhang, P.; Shi, S.; Xie, H.; Peng, X.; Yin, W.; Tao, Y.; et al. miRNA-based biomarkers, therapies, and resistance in Cancer. <span class='html-italic'>Int. J. Biol. Sci.</span> <b>2020</b>, <span class='html-italic'>16</span>, 2628–2647. [<a href="https://scholar.google.com/scholar_lookup?title=miRNA-based+biomarkers,+therapies,+and+resistance+in+Cancer&author=He,+B.&author=Zhao,+Z.&author=Cai,+Q.&author=Zhang,+Y.&author=Zhang,+P.&author=Shi,+S.&author=Xie,+H.&author=Peng,+X.&author=Yin,+W.&author=Tao,+Y.&publication_year=2020&journal=Int.+J.+Biol.+Sci.&volume=16&pages=2628%E2%80%932647&doi=10.7150/ijbs.47203&pmid=32792861" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.7150/ijbs.47203" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/32792861" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B194-ijms-25-01469' class='html-xxx' data-content='194.'>Wu, P. Inhibition of RNA-binding proteins with small molecules. <span class='html-italic'>Nat. Rev. Chem.</span> <b>2020</b>, <span class='html-italic'>4</span>, 441–458. [<a href="https://scholar.google.com/scholar_lookup?title=Inhibition+of+RNA-binding+proteins+with+small+molecules&author=Wu,+P.&publication_year=2020&journal=Nat.+Rev.+Chem.&volume=4&pages=441%E2%80%93458&doi=10.1038/s41570-020-0201-4" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41570-020-0201-4" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B195-ijms-25-01469' class='html-xxx' data-content='195.'>Galm, O.; Herman, J.G.; Baylin, S.B. The fundamental role of epigenetics in hematopoietic malignancies. <span class='html-italic'>Blood Rev.</span> <b>2006</b>, <span class='html-italic'>20</span>, 1–13. [<a href="https://scholar.google.com/scholar_lookup?title=The+fundamental+role+of+epigenetics+in+hematopoietic+malignancies&author=Galm,+O.&author=Herman,+J.G.&author=Baylin,+S.B.&publication_year=2006&journal=Blood+Rev.&volume=20&pages=1%E2%80%9313&doi=10.1016/j.blre.2005.01.006" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.blre.2005.01.006" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B196-ijms-25-01469' class='html-xxx' data-content='196.'>Melo, S.; Villanueva, A.; Moutinho, C.; Davalos, V.; Spizzo, R.; Ivan, C.; Rossi, S.; Setien, F.; Casanovas, O.; Simo-Riudalbas, L.; et al. Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. <span class='html-italic'>Proc. Natl. Acad. Sci. USA</span> <b>2011</b>, <span class='html-italic'>108</span>, 4394–4399. [<a href="https://scholar.google.com/scholar_lookup?title=Small+molecule+enoxacin+is+a+cancer-specific+growth+inhibitor+that+acts+by+enhancing+TAR+RNA-binding+protein+2-mediated+microRNA+processing&author=Melo,+S.&author=Villanueva,+A.&author=Moutinho,+C.&author=Davalos,+V.&author=Spizzo,+R.&author=Ivan,+C.&author=Rossi,+S.&author=Setien,+F.&author=Casanovas,+O.&author=Simo-Riudalbas,+L.&publication_year=2011&journal=Proc.+Natl.+Acad.+Sci.+USA&volume=108&pages=4394%E2%80%934399&doi=10.1073/pnas.1014720108" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1073/pnas.1014720108" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B197-ijms-25-01469' class='html-xxx' data-content='197.'>Roldo, C.; Missiaglia, E.; Hagan, J.P.; Falconi, M.; Capelli, P.; Bersani, S.; Calin, G.A.; Volinia, S.; Liu, C.G.; Scarpa, A.; et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. <span class='html-italic'>J. Clin. Oncol.</span> <b>2006</b>, <span class='html-italic'>24</span>, 4677–4684. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNA+expression+abnormalities+in+pancreatic+endocrine+and+acinar+tumors+are+associated+with+distinctive+pathologic+features+and+clinical+behavior&author=Roldo,+C.&author=Missiaglia,+E.&author=Hagan,+J.P.&author=Falconi,+M.&author=Capelli,+P.&author=Bersani,+S.&author=Calin,+G.A.&author=Volinia,+S.&author=Liu,+C.G.&author=Scarpa,+A.&publication_year=2006&journal=J.+Clin.+Oncol.&volume=24&pages=4677%E2%80%934684&doi=10.1200/JCO.2005.05.5194" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1200/JCO.2005.05.5194" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B198-ijms-25-01469' class='html-xxx' data-content='198.'>Tetzlaff, M.T.; Liu, A.; Xu, X.; Master, S.R.; Baldwin, D.A.; Tobias, J.W.; Livolsi, V.A.; Baloch, Z.W. Differential expression of miRNAs in papillary thyroid carcinoma compared to multinodular goiter using formalin fixed paraffin embedded tissues. <span class='html-italic'>Endocr. Pathol.</span> <b>2007</b>, <span class='html-italic'>18</span>, 163–173. [<a href="https://scholar.google.com/scholar_lookup?title=Differential+expression+of+miRNAs+in+papillary+thyroid+carcinoma+compared+to+multinodular+goiter+using+formalin+fixed+paraffin+embedded+tissues&author=Tetzlaff,+M.T.&author=Liu,+A.&author=Xu,+X.&author=Master,+S.R.&author=Baldwin,+D.A.&author=Tobias,+J.W.&author=Livolsi,+V.A.&author=Baloch,+Z.W.&publication_year=2007&journal=Endocr.+Pathol.&volume=18&pages=163%E2%80%93173&doi=10.1007/s12022-007-0023-7&pmid=18058265" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s12022-007-0023-7" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/18058265" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B199-ijms-25-01469' class='html-xxx' data-content='199.'>Asangani, I.A.; Rasheed, S.A.; Nikolova, D.A.; Leupold, J.H.; Colburn, N.H.; Post, S.; Allgayer, H. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. <span class='html-italic'>Oncogene</span> <b>2008</b>, <span class='html-italic'>27</span>, 2128–2136. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNA-21+(miR-21)+post-transcriptionally+downregulates+tumor+suppressor+Pdcd4+and+stimulates+invasion,+intravasation+and+metastasis+in+colorectal+cancer&author=Asangani,+I.A.&author=Rasheed,+S.A.&author=Nikolova,+D.A.&author=Leupold,+J.H.&author=Colburn,+N.H.&author=Post,+S.&author=Allgayer,+H.&publication_year=2008&journal=Oncogene&volume=27&pages=2128%E2%80%932136&doi=10.1038/sj.onc.1210856" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/sj.onc.1210856" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B200-ijms-25-01469' class='html-xxx' data-content='200.'>Pan, X.; Wang, Z.X.; Wang, R. MicroRNA-21: A novel therapeutic target in human cancer. <span class='html-italic'>Cancer Biol. Ther.</span> <b>2010</b>, <span class='html-italic'>10</span>, 1224–1232. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNA-21:+A+novel+therapeutic+target+in+human+cancer&author=Pan,+X.&author=Wang,+Z.X.&author=Wang,+R.&publication_year=2010&journal=Cancer+Biol.+Ther.&volume=10&pages=1224%E2%80%931232&doi=10.4161/cbt.10.12.14252" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.4161/cbt.10.12.14252" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B201-ijms-25-01469' class='html-xxx' data-content='201.'>Watashi, K.; Yeung, M.L.; Starost, M.F.; Hosmane, R.S.; Jeang, K.T. Identification of small molecules that suppress microRNA function and reverse tumorigenesis. <span class='html-italic'>J. Biol. Chem.</span> <b>2010</b>, <span class='html-italic'>285</span>, 24707–24716. [<a href="https://scholar.google.com/scholar_lookup?title=Identification+of+small+molecules+that+suppress+microRNA+function+and+reverse+tumorigenesis&author=Watashi,+K.&author=Yeung,+M.L.&author=Starost,+M.F.&author=Hosmane,+R.S.&author=Jeang,+K.T.&publication_year=2010&journal=J.+Biol.+Chem.&volume=285&pages=24707%E2%80%9324716&doi=10.1074/jbc.M109.062976" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1074/jbc.M109.062976" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B202-ijms-25-01469' class='html-xxx' data-content='202.'>Bose, D.; Jayaraj, G.; Suryawanshi, H.; Agarwala, P.; Pore, S.K.; Banerjee, R.; Maiti, S. The tuberculosis drug streptomycin as a potential cancer therapeutic: Inhibition of miR-21 function by directly targeting its precursor. <span class='html-italic'>Angew. Chem. Int. Ed. Engl.</span> <b>2012</b>, <span class='html-italic'>51</span>, 1019–1023. [<a href="https://scholar.google.com/scholar_lookup?title=The+tuberculosis+drug+streptomycin+as+a+potential+cancer+therapeutic:+Inhibition+of+miR-21+function+by+directly+targeting+its+precursor&author=Bose,+D.&author=Jayaraj,+G.&author=Suryawanshi,+H.&author=Agarwala,+P.&author=Pore,+S.K.&author=Banerjee,+R.&author=Maiti,+S.&publication_year=2012&journal=Angew.+Chem.+Int.+Ed.+Engl.&volume=51&pages=1019%E2%80%931023&doi=10.1002/anie.201106455" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/anie.201106455" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B203-ijms-25-01469' class='html-xxx' data-content='203.'>Shi, Z.; Zhang, J.; Qian, X.; Han, L.; Zhang, K.; Chen, L.; Liu, J.; Ren, Y.; Yang, M.; Zhang, A.; et al. AC1MMYR2, an inhibitor of dicer-mediated biogenesis of Oncomir miR-21, reverses epithelial-mesenchymal transition and suppresses tumor growth and progression. <span class='html-italic'>Cancer Res.</span> <b>2013</b>, <span class='html-italic'>73</span>, 5519–5531. [<a href="https://scholar.google.com/scholar_lookup?title=AC1MMYR2,+an+inhibitor+of+dicer-mediated+biogenesis+of+Oncomir+miR-21,+reverses+epithelial-mesenchymal+transition+and+suppresses+tumor+growth+and+progression&author=Shi,+Z.&author=Zhang,+J.&author=Qian,+X.&author=Han,+L.&author=Zhang,+K.&author=Chen,+L.&author=Liu,+J.&author=Ren,+Y.&author=Yang,+M.&author=Zhang,+A.&publication_year=2013&journal=Cancer+Res.&volume=73&pages=5519%E2%80%935531&doi=10.1158/0008-5472.CAN-13-0280" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1158/0008-5472.CAN-13-0280" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B204-ijms-25-01469' class='html-xxx' data-content='204.'>Gumireddy, K.; Young, D.D.; Xiong, X.; Hogenesch, J.B.; Huang, Q.; Deiters, A. Small-molecule inhibitors of microrna miR-21 function. <span class='html-italic'>Angew. Chem. Int. Ed. Engl.</span> <b>2008</b>, <span class='html-italic'>47</span>, 7482–7484. [<a href="https://scholar.google.com/scholar_lookup?title=Small-molecule+inhibitors+of+microrna+miR-21+function&author=Gumireddy,+K.&author=Young,+D.D.&author=Xiong,+X.&author=Hogenesch,+J.B.&author=Huang,+Q.&author=Deiters,+A.&publication_year=2008&journal=Angew.+Chem.+Int.+Ed.+Engl.&volume=47&pages=7482%E2%80%937484&doi=10.1002/anie.200801555" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/anie.200801555" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B205-ijms-25-01469' class='html-xxx' data-content='205.'>Wickramasinghe, N.S.; Manavalan, T.T.; Dougherty, S.M.; Riggs, K.A.; Li, Y.; Klinge, C.M. Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells. <span class='html-italic'>Nucleic Acids Res.</span> <b>2009</b>, <span class='html-italic'>37</span>, 2584–2595. [<a href="https://scholar.google.com/scholar_lookup?title=Estradiol+downregulates+miR-21+expression+and+increases+miR-21+target+gene+expression+in+MCF-7+breast+cancer+cells&author=Wickramasinghe,+N.S.&author=Manavalan,+T.T.&author=Dougherty,+S.M.&author=Riggs,+K.A.&author=Li,+Y.&author=Klinge,+C.M.&publication_year=2009&journal=Nucleic+Acids+Res.&volume=37&pages=2584%E2%80%932595&doi=10.1093/nar/gkp117&pmid=19264808" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1093/nar/gkp117" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/19264808" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B206-ijms-25-01469' class='html-xxx' data-content='206.'>Naro, Y.; Thomas, M.; Stephens, M.D.; Connelly, C.M.; Deiters, A. Aryl amide small-molecule inhibitors of microRNA miR-21 function. <span class='html-italic'>Bioorg. Med. Chem. Lett.</span> <b>2015</b>, <span class='html-italic'>25</span>, 4793–4796. [<a href="https://scholar.google.com/scholar_lookup?title=Aryl+amide+small-molecule+inhibitors+of+microRNA+miR-21+function&author=Naro,+Y.&author=Thomas,+M.&author=Stephens,+M.D.&author=Connelly,+C.M.&author=Deiters,+A.&publication_year=2015&journal=Bioorg.+Med.+Chem.+Lett.&volume=25&pages=4793%E2%80%934796&doi=10.1016/j.bmcl.2015.07.016" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.bmcl.2015.07.016" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B207-ijms-25-01469' class='html-xxx' data-content='207.'>Jiang, C.S.; Wang, X.M.; Zhang, S.Q.; Meng, L.S.; Zhu, W.H.; Xu, J.; Lu, S.M. Discovery of 4-benzoylamino-N-(prop-2-yn-1-yl)benzamides as novel microRNA-21 inhibitors. <span class='html-italic'>Bioorg. Med. Chem.</span> <b>2015</b>, <span class='html-italic'>23</span>, 6510–6519. [<a href="https://scholar.google.com/scholar_lookup?title=Discovery+of+4-benzoylamino-N-(prop-2-yn-1-yl)benzamides+as+novel+microRNA-21+inhibitors&author=Jiang,+C.S.&author=Wang,+X.M.&author=Zhang,+S.Q.&author=Meng,+L.S.&author=Zhu,+W.H.&author=Xu,+J.&author=Lu,+S.M.&publication_year=2015&journal=Bioorg.+Med.+Chem.&volume=23&pages=6510%E2%80%936519&doi=10.1016/j.bmc.2015.08.007" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.bmc.2015.08.007" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B208-ijms-25-01469' class='html-xxx' data-content='208.'>Davies, B.P.; Arenz, C. A homogenous assay for micro RNA maturation. <span class='html-italic'>Angew. Chem. Int. Ed. Engl.</span> <b>2006</b>, <span class='html-italic'>45</span>, 5550–5552. [<a href="https://scholar.google.com/scholar_lookup?title=A+homogenous+assay+for+micro+RNA+maturation&author=Davies,+B.P.&author=Arenz,+C.&publication_year=2006&journal=Angew.+Chem.+Int.+Ed.+Engl.&volume=45&pages=5550%E2%80%935552&doi=10.1002/anie.200601332" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/anie.200601332" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B209-ijms-25-01469' class='html-xxx' data-content='209.'>Young, D.D.; Connelly, C.M.; Grohmann, C.; Deiters, A. Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma. <span class='html-italic'>J. Am. Chem. Soc.</span> <b>2010</b>, <span class='html-italic'>132</span>, 7976–7981. [<a href="https://scholar.google.com/scholar_lookup?title=Small+molecule+modifiers+of+microRNA+miR-122+function+for+the+treatment+of+hepatitis+C+virus+infection+and+hepatocellular+carcinoma&author=Young,+D.D.&author=Connelly,+C.M.&author=Grohmann,+C.&author=Deiters,+A.&publication_year=2010&journal=J.+Am.+Chem.+Soc.&volume=132&pages=7976%E2%80%937981&doi=10.1021/ja910275u" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/ja910275u" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B210-ijms-25-01469' class='html-xxx' data-content='210.'>Girard, M.; Jacquemin, E.; Munnich, A.; Lyonnet, S.; Henrion-Caude, A. miR-122, a paradigm for the role of microRNAs in the liver. <span class='html-italic'>J. Hepatol.</span> <b>2008</b>, <span class='html-italic'>48</span>, 648–656. [<a href="https://scholar.google.com/scholar_lookup?title=miR-122,+a+paradigm+for+the+role+of+microRNAs+in+the+liver&author=Girard,+M.&author=Jacquemin,+E.&author=Munnich,+A.&author=Lyonnet,+S.&author=Henrion-Caude,+A.&publication_year=2008&journal=J.+Hepatol.&volume=48&pages=648%E2%80%93656&doi=10.1016/j.jhep.2008.01.019&pmid=18291553" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.jhep.2008.01.019" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/18291553" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B211-ijms-25-01469' class='html-xxx' data-content='211.'>Esau, C.; Davis, S.; Murray, S.F.; Yu, X.X.; Pandey, S.K.; Pear, M.; Watts, L.; Booten, S.L.; Graham, M.; McKay, R.; et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. <span class='html-italic'>Cell Metab.</span> <b>2006</b>, <span class='html-italic'>3</span>, 87–98. [<a href="https://scholar.google.com/scholar_lookup?title=miR-122+regulation+of+lipid+metabolism+revealed+by+in+vivo+antisense+targeting&author=Esau,+C.&author=Davis,+S.&author=Murray,+S.F.&author=Yu,+X.X.&author=Pandey,+S.K.&author=Pear,+M.&author=Watts,+L.&author=Booten,+S.L.&author=Graham,+M.&author=McKay,+R.&publication_year=2006&journal=Cell+Metab.&volume=3&pages=87%E2%80%9398&doi=10.1016/j.cmet.2006.01.005&pmid=16459310" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.cmet.2006.01.005" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/16459310" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B212-ijms-25-01469' class='html-xxx' data-content='212.'>Jopling, C.L.; Yi, M.; Lancaster, A.M.; Lemon, S.M.; Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. <span class='html-italic'>Science</span> <b>2005</b>, <span class='html-italic'>309</span>, 1577–1581. [<a href="https://scholar.google.com/scholar_lookup?title=Modulation+of+hepatitis+C+virus+RNA+abundance+by+a+liver-specific+MicroRNA&author=Jopling,+C.L.&author=Yi,+M.&author=Lancaster,+A.M.&author=Lemon,+S.M.&author=Sarnow,+P.&publication_year=2005&journal=Science&volume=309&pages=1577%E2%80%931581&doi=10.1126/science.1113329&pmid=16141076" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1126/science.1113329" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/16141076" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B213-ijms-25-01469' class='html-xxx' data-content='213.'>Velagapudi, S.P.; Gallo, S.M.; Disney, M.D. Sequence-based design of bioactive small molecules that target precursor microRNAs. <span class='html-italic'>Nat. Chem. Biol.</span> <b>2014</b>, <span class='html-italic'>10</span>, 291–297. [<a href="https://scholar.google.com/scholar_lookup?title=Sequence-based+design+of+bioactive+small+molecules+that+target+precursor+microRNAs&author=Velagapudi,+S.P.&author=Gallo,+S.M.&author=Disney,+M.D.&publication_year=2014&journal=Nat.+Chem.+Biol.&volume=10&pages=291%E2%80%93297&doi=10.1038/nchembio.1452&pmid=24509821" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/nchembio.1452" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/24509821" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B214-ijms-25-01469' class='html-xxx' data-content='214.'>Thum, T.; Catalucci, D.; Bauersachs, J. MicroRNAs: Novel regulators in cardiac development and disease. <span class='html-italic'>Cardiovasc. Res.</span> <b>2008</b>, <span class='html-italic'>79</span>, 562–570. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNAs:+Novel+regulators+in+cardiac+development+and+disease&author=Thum,+T.&author=Catalucci,+D.&author=Bauersachs,+J.&publication_year=2008&journal=Cardiovasc.+Res.&volume=79&pages=562%E2%80%93570&doi=10.1093/cvr/cvn137&pmid=18511432" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1093/cvr/cvn137" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/18511432" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B215-ijms-25-01469' class='html-xxx' data-content='215.'>Wystub, K.; Besser, J.; Bachmann, A.; Boettger, T.; Braun, T. miR-1/133a clusters cooperatively specify the cardiomyogenic lineage by adjustment of myocardin levels during embryonic heart development. <span class='html-italic'>PLoS Genet.</span> <b>2013</b>, <span class='html-italic'>9</span>, e1003793. [<a href="https://scholar.google.com/scholar_lookup?title=miR-1/133a+clusters+cooperatively+specify+the+cardiomyogenic+lineage+by+adjustment+of+myocardin+levels+during+embryonic+heart+development&author=Wystub,+K.&author=Besser,+J.&author=Bachmann,+A.&author=Boettger,+T.&author=Braun,+T.&publication_year=2013&journal=PLoS+Genet.&volume=9&pages=e1003793&doi=10.1371/journal.pgen.1003793" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1371/journal.pgen.1003793" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B216-ijms-25-01469' class='html-xxx' data-content='216.'>Tan, S.B.; Huang, C.; Chen, X.; Wu, Y.; Zhou, M.; Zhang, C.; Zhang, Y. Small molecular inhibitors of miR-1 identified from photocycloadducts of acetylenes with 2-methoxy-1,4-naphthalenequinone. <span class='html-italic'>Bioorg. Med. Chem.</span> <b>2013</b>, <span class='html-italic'>21</span>, 6124–6131. [<a href="https://scholar.google.com/scholar_lookup?title=Small+molecular+inhibitors+of+miR-1+identified+from+photocycloadducts+of+acetylenes+with+2-methoxy-1,4-naphthalenequinone&author=Tan,+S.B.&author=Huang,+C.&author=Chen,+X.&author=Wu,+Y.&author=Zhou,+M.&author=Zhang,+C.&author=Zhang,+Y.&publication_year=2013&journal=Bioorg.+Med.+Chem.&volume=21&pages=6124%E2%80%936131&doi=10.1016/j.bmc.2013.04.058" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.bmc.2013.04.058" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B217-ijms-25-01469' class='html-xxx' data-content='217.'>Zhang, S.; Ma, C.; Pang, H.; Zeng, F.; Cheng, L.; Fang, B.; Ma, J.; Shi, Y.; Hong, H.; Chen, J.; et al. Arsenic trioxide suppresses cell growth and migration via inhibition of miR-27a in breast cancer cells. <span class='html-italic'>Biochem. Biophys. Res. Commun.</span> <b>2016</b>, <span class='html-italic'>469</span>, 55–61. [<a href="https://scholar.google.com/scholar_lookup?title=Arsenic+trioxide+suppresses+cell+growth+and+migration+via+inhibition+of+miR-27a+in+breast+cancer+cells&author=Zhang,+S.&author=Ma,+C.&author=Pang,+H.&author=Zeng,+F.&author=Cheng,+L.&author=Fang,+B.&author=Ma,+J.&author=Shi,+Y.&author=Hong,+H.&author=Chen,+J.&publication_year=2016&journal=Biochem.+Biophys.+Res.+Commun.&volume=469&pages=55%E2%80%9361&doi=10.1016/j.bbrc.2015.11.071" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.bbrc.2015.11.071" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B218-ijms-25-01469' class='html-xxx' data-content='218.'>Bose, D.; Jayaraj, G.G.; Kumar, S.; Maiti, S. A molecular-beacon-based screen for small molecule inhibitors of miRNA maturation. <span class='html-italic'>ACS Chem. Biol.</span> <b>2013</b>, <span class='html-italic'>8</span>, 930–938. [<a href="https://scholar.google.com/scholar_lookup?title=A+molecular-beacon-based+screen+for+small+molecule+inhibitors+of+miRNA+maturation&author=Bose,+D.&author=Jayaraj,+G.G.&author=Kumar,+S.&author=Maiti,+S.&publication_year=2013&journal=ACS+Chem.+Biol.&volume=8&pages=930%E2%80%93938&doi=10.1021/cb300650y" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/cb300650y" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B219-ijms-25-01469' class='html-xxx' data-content='219.'>Childs-Disney, J.L.; Disney, M.D. Small Molecule Targeting of a MicroRNA Associated with Hepatocellular Carcinoma. <span class='html-italic'>ACS Chem. Biol.</span> <b>2016</b>, <span class='html-italic'>11</span>, 375–380. [<a href="https://scholar.google.com/scholar_lookup?title=Small+Molecule+Targeting+of+a+MicroRNA+Associated+with+Hepatocellular+Carcinoma&author=Childs-Disney,+J.L.&author=Disney,+M.D.&publication_year=2016&journal=ACS+Chem.+Biol.&volume=11&pages=375%E2%80%93380&doi=10.1021/acschembio.5b00615" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acschembio.5b00615" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B220-ijms-25-01469' class='html-xxx' data-content='220.'>Diaz, J.P.; Chirayil, R.; Chirayil, S.; Tom, M.; Head, K.J.; Luebke, K.J. Association of a peptoid ligand with the apical loop of pri-miR-21 inhibits cleavage by Drosha. <span class='html-italic'>RNA</span> <b>2014</b>, <span class='html-italic'>20</span>, 528–539. [<a href="https://scholar.google.com/scholar_lookup?title=Association+of+a+peptoid+ligand+with+the+apical+loop+of+pri-miR-21+inhibits+cleavage+by+Drosha&author=Diaz,+J.P.&author=Chirayil,+R.&author=Chirayil,+S.&author=Tom,+M.&author=Head,+K.J.&author=Luebke,+K.J.&publication_year=2014&journal=RNA&volume=20&pages=528%E2%80%93539&doi=10.1261/rna.042911.113" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1261/rna.042911.113" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B221-ijms-25-01469' class='html-xxx' data-content='221.'>Chen, Y.; Gao, D.Y.; Huang, L. In vivo delivery of miRNAs for cancer therapy: Challenges and strategies. <span class='html-italic'>Adv. Drug Deliv. Rev.</span> <b>2015</b>, <span class='html-italic'>81</span>, 128–141. [<a href="https://scholar.google.com/scholar_lookup?title=In+vivo+delivery+of+miRNAs+for+cancer+therapy:+Challenges+and+strategies&author=Chen,+Y.&author=Gao,+D.Y.&author=Huang,+L.&publication_year=2015&journal=Adv.+Drug+Deliv.+Rev.&volume=81&pages=128%E2%80%93141&doi=10.1016/j.addr.2014.05.009" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.addr.2014.05.009" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B222-ijms-25-01469' class='html-xxx' data-content='222.'>Antonarakis, E.S.; Lu, C.; Wang, H.; Luber, B.; Nakazawa, M.; Roeser, J.C.; Chen, Y.; Mohammad, T.A.; Chen, Y.; Fedor, H.L.; et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. <span class='html-italic'>N. Engl. J. Med.</span> <b>2014</b>, <span class='html-italic'>371</span>, 1028–1038. [<a href="https://scholar.google.com/scholar_lookup?title=AR-V7+and+resistance+to+enzalutamide+and+abiraterone+in+prostate+cancer&author=Antonarakis,+E.S.&author=Lu,+C.&author=Wang,+H.&author=Luber,+B.&author=Nakazawa,+M.&author=Roeser,+J.C.&author=Chen,+Y.&author=Mohammad,+T.A.&author=Chen,+Y.&author=Fedor,+H.L.&publication_year=2014&journal=N.+Engl.+J.+Med.&volume=371&pages=1028%E2%80%931038&doi=10.1056/NEJMoa1315815" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1056/NEJMoa1315815" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B223-ijms-25-01469' class='html-xxx' data-content='223.'>Fu, Y.; Chen, J.; Huang, Z. Recent progress in microRNA-based delivery systems for the treatment of human disease. <span class='html-italic'>ExRNA</span> <b>2019</b>, <span class='html-italic'>1</span>, 24. [<a href="https://scholar.google.com/scholar_lookup?title=Recent+progress+in+microRNA-based+delivery+systems+for+the+treatment+of+human+disease&author=Fu,+Y.&author=Chen,+J.&author=Huang,+Z.&publication_year=2019&journal=ExRNA&volume=1&pages=24&doi=10.1186/s41544-019-0024-y" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1186/s41544-019-0024-y" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B224-ijms-25-01469' class='html-xxx' data-content='224.'>Sousa, D.P.; Conde, J. Gold Nanoconjugates for miRNA Modulation in Cancer Therapy: From miRNA Silencing to miRNA Mimics. <span class='html-italic'>ACS Mater. Au</span> <b>2022</b>, <span class='html-italic'>2</span>, 626–640. [<a href="https://scholar.google.com/scholar_lookup?title=Gold+Nanoconjugates+for+miRNA+Modulation+in+Cancer+Therapy:+From+miRNA+Silencing+to+miRNA+Mimics&author=Sousa,+D.P.&author=Conde,+J.&publication_year=2022&journal=ACS+Mater.+Au&volume=2&pages=626%E2%80%93640&doi=10.1021/acsmaterialsau.2c00042" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1021/acsmaterialsau.2c00042" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B225-ijms-25-01469' class='html-xxx' data-content='225.'>Beck, J.D.; Reidenbach, D.; Salomon, N.; Sahin, U.; Türeci, Ö.; Vormehr, M.; Kranz, L.M. mRNA therapeutics in cancer immunotherapy. <span class='html-italic'>Mol. Cancer</span> <b>2021</b>, <span class='html-italic'>20</span>, 69. [<a href="https://scholar.google.com/scholar_lookup?title=mRNA+therapeutics+in+cancer+immunotherapy&author=Beck,+J.D.&author=Reidenbach,+D.&author=Salomon,+N.&author=Sahin,+U.&author=T%C3%BCreci,+%C3%96.&author=Vormehr,+M.&author=Kranz,+L.M.&publication_year=2021&journal=Mol.+Cancer&volume=20&pages=69&doi=10.1186/s12943-021-01348-0" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1186/s12943-021-01348-0" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B226-ijms-25-01469' class='html-xxx' data-content='226.'>Jivrajani, M.; Nivsarkar, M. Ligand-targeted bacterial minicells: Futuristic nano-sized drug delivery system for the efficient and cost effective delivery of shRNA to cancer cells. <span class='html-italic'>Nanomedicine</span> <b>2016</b>, <span class='html-italic'>12</span>, 2485–2498. [<a href="https://scholar.google.com/scholar_lookup?title=Ligand-targeted+bacterial+minicells:+Futuristic+nano-sized+drug+delivery+system+for+the+efficient+and+cost+effective+delivery+of+shRNA+to+cancer+cells&author=Jivrajani,+M.&author=Nivsarkar,+M.&publication_year=2016&journal=Nanomedicine&volume=12&pages=2485%E2%80%932498&doi=10.1016/j.nano.2016.06.004" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.nano.2016.06.004" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B227-ijms-25-01469' class='html-xxx' data-content='227.'>Dasgupta, I.; Chatterjee, A. Recent Advances in miRNA Delivery Systems. <span class='html-italic'>Methods Protoc.</span> <b>2021</b>, <span class='html-italic'>4</span>, 10. [<a href="https://scholar.google.com/scholar_lookup?title=Recent+Advances+in+miRNA+Delivery+Systems&author=Dasgupta,+I.&author=Chatterjee,+A.&publication_year=2021&journal=Methods+Protoc.&volume=4&pages=10&doi=10.3390/mps4010010" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/mps4010010" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B228-ijms-25-01469' class='html-xxx' data-content='228.'>Roberts, T.C.; Langer, R.; Wood, M.J.A. Advances in oligonucleotide drug delivery. <span class='html-italic'>Nat. Rev. Drug Discov.</span> <b>2020</b>, <span class='html-italic'>19</span>, 673–694. [<a href="https://scholar.google.com/scholar_lookup?title=Advances+in+oligonucleotide+drug+delivery&author=Roberts,+T.C.&author=Langer,+R.&author=Wood,+M.J.A.&publication_year=2020&journal=Nat.+Rev.+Drug+Discov.&volume=19&pages=673%E2%80%93694&doi=10.1038/s41573-020-0075-7" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41573-020-0075-7" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B229-ijms-25-01469' class='html-xxx' data-content='229.'>Dosta, P.; Cryer, A.M.; Dion, M.Z.; Shiraishi, T.; Langston, S.P.; Lok, D.; Wang, J.; Harrison, S.; Hatten, T.; Ganno, M.L.; et al. Investigation of the enhanced antitumour potency of STING agonist after conjugation to polymer nanoparticles. <span class='html-italic'>Nat. Nanotechnol.</span> <b>2023</b>, <span class='html-italic'>18</span>, 1351–1363. [<a href="https://scholar.google.com/scholar_lookup?title=Investigation+of+the+enhanced+antitumour+potency+of+STING+agonist+after+conjugation+to+polymer+nanoparticles&author=Dosta,+P.&author=Cryer,+A.M.&author=Dion,+M.Z.&author=Shiraishi,+T.&author=Langston,+S.P.&author=Lok,+D.&author=Wang,+J.&author=Harrison,+S.&author=Hatten,+T.&author=Ganno,+M.L.&publication_year=2023&journal=Nat.+Nanotechnol.&volume=18&pages=1351%E2%80%931363&doi=10.1038/s41565-023-01447-7" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41565-023-01447-7" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B230-ijms-25-01469' class='html-xxx' data-content='230.'>Schultz, B.R.; Chamberlain, J.S. Recombinant adeno-associated virus transduction and integration. <span class='html-italic'>Mol. Ther.</span> <b>2008</b>, <span class='html-italic'>16</span>, 1189–1199. [<a href="https://scholar.google.com/scholar_lookup?title=Recombinant+adeno-associated+virus+transduction+and+integration&author=Schultz,+B.R.&author=Chamberlain,+J.S.&publication_year=2008&journal=Mol.+Ther.&volume=16&pages=1189%E2%80%931199&doi=10.1038/mt.2008.103" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/mt.2008.103" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B231-ijms-25-01469' class='html-xxx' data-content='231.'>Herrera-Carrillo, E.; Liu, Y.P.; Berkhout, B. Improving miRNA Delivery by Optimizing miRNA Expression Cassettes in Diverse Virus Vectors. <span class='html-italic'>Hum. Gene Ther. Methods</span> <b>2017</b>, <span class='html-italic'>28</span>, 177–190. [<a href="https://scholar.google.com/scholar_lookup?title=Improving+miRNA+Delivery+by+Optimizing+miRNA+Expression+Cassettes+in+Diverse+Virus+Vectors&author=Herrera-Carrillo,+E.&author=Liu,+Y.P.&author=Berkhout,+B.&publication_year=2017&journal=Hum.+Gene+Ther.+Methods&volume=28&pages=177%E2%80%93190&doi=10.1089/hgtb.2017.036" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1089/hgtb.2017.036" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B232-ijms-25-01469' class='html-xxx' data-content='232.'>Mascellino, M.T.; Di Timoteo, F.; De Angelis, M.; Oliva, A. Overview of the Main Anti-SARS-CoV-2 Vaccines: Mechanism of Action, Efficacy and Safety. <span class='html-italic'>Infect. Drug Resist.</span> <b>2021</b>, <span class='html-italic'>14</span>, 3459–3476. [<a href="https://scholar.google.com/scholar_lookup?title=Overview+of+the+Main+Anti-SARS-CoV-2+Vaccines:+Mechanism+of+Action,+Efficacy+and+Safety&author=Mascellino,+M.T.&author=Di+Timoteo,+F.&author=De+Angelis,+M.&author=Oliva,+A.&publication_year=2021&journal=Infect.+Drug+Resist.&volume=14&pages=3459%E2%80%933476&doi=10.2147/IDR.S315727" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.2147/IDR.S315727" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B233-ijms-25-01469' class='html-xxx' data-content='233.'>Monahan, P.E.; Négrier, C.; Tarantino, M.; Valentino, L.A.; Mingozzi, F. Emerging Immunogenicity and Genotoxicity Considerations of Adeno-Associated Virus Vector Gene Therapy for Hemophilia. <span class='html-italic'>J. Clin. Med.</span> <b>2021</b>, <span class='html-italic'>10</span>, 2471. [<a href="https://scholar.google.com/scholar_lookup?title=Emerging+Immunogenicity+and+Genotoxicity+Considerations+of+Adeno-Associated+Virus+Vector+Gene+Therapy+for+Hemophilia&author=Monahan,+P.E.&author=N%C3%A9grier,+C.&author=Tarantino,+M.&author=Valentino,+L.A.&author=Mingozzi,+F.&publication_year=2021&journal=J.+Clin.+Med.&volume=10&pages=2471&doi=10.3390/jcm10112471" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/jcm10112471" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B234-ijms-25-01469' class='html-xxx' data-content='234.'>Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. <span class='html-italic'>Nat. Biotechnol.</span> <b>2015</b>, <span class='html-italic'>33</span>, 941–951. [<a href="https://scholar.google.com/scholar_lookup?title=Principles+of+nanoparticle+design+for+overcoming+biological+barriers+to+drug+delivery&author=Blanco,+E.&author=Shen,+H.&author=Ferrari,+M.&publication_year=2015&journal=Nat.+Biotechnol.&volume=33&pages=941%E2%80%93951&doi=10.1038/nbt.3330" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/nbt.3330" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B235-ijms-25-01469' class='html-xxx' data-content='235.'>Elsharkasy, O.M.; Nordin, J.Z.; Hagey, D.W.; de Jong, O.G.; Schiffelers, R.M.; Andaloussi, S.E.; Vader, P. Extracellular vesicles as drug delivery systems: Why and how? <span class='html-italic'>Adv. Drug Deliv. Rev.</span> <b>2020</b>, <span class='html-italic'>159</span>, 332–343. [<a href="https://scholar.google.com/scholar_lookup?title=Extracellular+vesicles+as+drug+delivery+systems:+Why+and+how?&author=Elsharkasy,+O.M.&author=Nordin,+J.Z.&author=Hagey,+D.W.&author=de+Jong,+O.G.&author=Schiffelers,+R.M.&author=Andaloussi,+S.E.&author=Vader,+P.&publication_year=2020&journal=Adv.+Drug+Deliv.+Rev.&volume=159&pages=332%E2%80%93343&doi=10.1016/j.addr.2020.04.004&pmid=32305351" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.addr.2020.04.004" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/32305351" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B236-ijms-25-01469' class='html-xxx' data-content='236.'>Baldari, S.; Di Rocco, G.; Magenta, A.; Picozza, M.; Toietta, G. Extracellular Vesicles-Encapsulated MicroRNA-125b Produced in Genetically Modified Mesenchymal Stromal Cells Inhibits Hepatocellular Carcinoma Cell Proliferation. <span class='html-italic'>Cells</span> <b>2019</b>, <span class='html-italic'>8</span>, 1560. [<a href="https://scholar.google.com/scholar_lookup?title=Extracellular+Vesicles-Encapsulated+MicroRNA-125b+Produced+in+Genetically+Modified+Mesenchymal+Stromal+Cells+Inhibits+Hepatocellular+Carcinoma+Cell+Proliferation&author=Baldari,+S.&author=Di+Rocco,+G.&author=Magenta,+A.&author=Picozza,+M.&author=Toietta,+G.&publication_year=2019&journal=Cells&volume=8&pages=1560&doi=10.3390/cells8121560" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/cells8121560" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B237-ijms-25-01469' class='html-xxx' data-content='237.'>Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: Current potential and challenges. <span class='html-italic'>Nat. Rev. Drug Discov.</span> <b>2017</b>, <span class='html-italic'>16</span>, 181–202. [<a href="https://scholar.google.com/scholar_lookup?title=Aptamers+as+targeted+therapeutics:+Current+potential+and+challenges&author=Zhou,+J.&author=Rossi,+J.&publication_year=2017&journal=Nat.+Rev.+Drug+Discov.&volume=16&pages=181%E2%80%93202&doi=10.1038/nrd.2016.199&pmid=27807347" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/nrd.2016.199" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/27807347" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B238-ijms-25-01469' class='html-xxx' data-content='238.'>Russo, V.; Paciocco, A.; Affinito, A.; Roscigno, G.; Fiore, D.; Palma, F.; Galasso, M.; Volinia, S.; Fiorelli, A.; Esposito, C.L.; et al. Aptamer-miR-34c Conjugate Affects Cell Proliferation of Non-Small-Cell Lung Cancer Cells. <span class='html-italic'>Mol. Ther. Nucleic Acids</span> <b>2018</b>, <span class='html-italic'>13</span>, 334–346. [<a href="https://scholar.google.com/scholar_lookup?title=Aptamer-miR-34c+Conjugate+Affects+Cell+Proliferation+of+Non-Small-Cell+Lung+Cancer+Cells&author=Russo,+V.&author=Paciocco,+A.&author=Affinito,+A.&author=Roscigno,+G.&author=Fiore,+D.&author=Palma,+F.&author=Galasso,+M.&author=Volinia,+S.&author=Fiorelli,+A.&author=Esposito,+C.L.&publication_year=2018&journal=Mol.+Ther.+Nucleic+Acids&volume=13&pages=334%E2%80%93346&doi=10.1016/j.omtn.2018.09.016&pmid=30340138" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.omtn.2018.09.016" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/30340138" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B239-ijms-25-01469' class='html-xxx' data-content='239.'>Durso, M.; Gaglione, M.; Piras, L.; Mercurio, M.E.; Terreri, S.; Olivieri, M.; Marinelli, L.; Novellino, E.; Incoronato, M.; Grieco, P.; et al. Chemical modifications in the seed region of miRNAs 221/222 increase the silencing performances in gastrointestinal stromal tumor cells. <span class='html-italic'>Eur. J. Med. Chem.</span> <b>2016</b>, <span class='html-italic'>111</span>, 15–25. [<a href="https://scholar.google.com/scholar_lookup?title=Chemical+modifications+in+the+seed+region+of+miRNAs+221/222+increase+the+silencing+performances+in+gastrointestinal+stromal+tumor+cells&author=Durso,+M.&author=Gaglione,+M.&author=Piras,+L.&author=Mercurio,+M.E.&author=Terreri,+S.&author=Olivieri,+M.&author=Marinelli,+L.&author=Novellino,+E.&author=Incoronato,+M.&author=Grieco,+P.&publication_year=2016&journal=Eur.+J.+Med.+Chem.&volume=111&pages=15%E2%80%9325&doi=10.1016/j.ejmech.2016.01.047&pmid=26854374" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.ejmech.2016.01.047" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/26854374" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B240-ijms-25-01469' class='html-xxx' data-content='240.'>Prakash, T.P.; Graham, M.J.; Yu, J.; Carty, R.; Low, A.; Chappell, A.; Schmidt, K.; Zhao, C.; Aghajan, M.; Murray, H.F.; et al. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. <span class='html-italic'>Nucleic Acids Res.</span> <b>2014</b>, <span class='html-italic'>42</span>, 8796–8807. [<a href="https://scholar.google.com/scholar_lookup?title=Targeted+delivery+of+antisense+oligonucleotides+to+hepatocytes+using+triantennary+N-acetyl+galactosamine+improves+potency+10-fold+in+mice&author=Prakash,+T.P.&author=Graham,+M.J.&author=Yu,+J.&author=Carty,+R.&author=Low,+A.&author=Chappell,+A.&author=Schmidt,+K.&author=Zhao,+C.&author=Aghajan,+M.&author=Murray,+H.F.&publication_year=2014&journal=Nucleic+Acids+Res.&volume=42&pages=8796%E2%80%938807&doi=10.1093/nar/gku531&pmid=24992960" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1093/nar/gku531" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/24992960" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B241-ijms-25-01469' class='html-xxx' data-content='241.'>Biessen, E.A.; Vietsch, H.; Rump, E.T.; Fluiter, K.; Kuiper, J.; Bijsterbosch, M.K.; van Berkel, T.J. Targeted delivery of oligodeoxynucleotides to parenchymal liver cells in vivo. <span class='html-italic'>Biochem. J.</span> <b>1999</b>, <span class='html-italic'>340 Pt. 3</span>, 783–792. [<a href="https://scholar.google.com/scholar_lookup?title=Targeted+delivery+of+oligodeoxynucleotides+to+parenchymal+liver+cells+in+vivo&author=Biessen,+E.A.&author=Vietsch,+H.&author=Rump,+E.T.&author=Fluiter,+K.&author=Kuiper,+J.&author=Bijsterbosch,+M.K.&author=van+Berkel,+T.J.&publication_year=1999&journal=Biochem.+J.&volume=340+Pt.+3&pages=783%E2%80%93792&doi=10.1042/bj3400783" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1042/bj3400783" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B242-ijms-25-01469' class='html-xxx' data-content='242.'>Yamamoto, T.; Mukai, Y.; Wada, F.; Terada, C.; Kayaba, Y.; Oh, K.; Yamayoshi, A.; Obika, S.; Harada-Shiba, M. Highly Potent GalNAc-Conjugated Tiny LNA Anti-miRNA-122 Antisense Oligonucleotides. <span class='html-italic'>Pharmaceutics</span> <b>2021</b>, <span class='html-italic'>13</span>, 817. [<a href="https://scholar.google.com/scholar_lookup?title=Highly+Potent+GalNAc-Conjugated+Tiny+LNA+Anti-miRNA-122+Antisense+Oligonucleotides&author=Yamamoto,+T.&author=Mukai,+Y.&author=Wada,+F.&author=Terada,+C.&author=Kayaba,+Y.&author=Oh,+K.&author=Yamayoshi,+A.&author=Obika,+S.&author=Harada-Shiba,+M.&publication_year=2021&journal=Pharmaceutics&volume=13&pages=817&doi=10.3390/pharmaceutics13060817&pmid=34072682" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/pharmaceutics13060817" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/34072682" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B243-ijms-25-01469' class='html-xxx' data-content='243.'>Kardani, A.; Yaghoobi, H.; Alibakhshi, A.; Khatami, M. Inhibition of miR-155 in MCF-7 breast cancer cell line by gold nanoparticles functionalized with antagomir and AS1411 aptamer. <span class='html-italic'>J. Cell. Physiol.</span> <b>2020</b>, <span class='html-italic'>235</span>, 6887–6895. [<a href="https://scholar.google.com/scholar_lookup?title=Inhibition+of+miR-155+in+MCF-7+breast+cancer+cell+line+by+gold+nanoparticles+functionalized+with+antagomir+and+AS1411+aptamer&author=Kardani,+A.&author=Yaghoobi,+H.&author=Alibakhshi,+A.&author=Khatami,+M.&publication_year=2020&journal=J.+Cell.+Physiol.&volume=235&pages=6887%E2%80%936895&doi=10.1002/jcp.29584&pmid=32003016" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/jcp.29584" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/32003016" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B244-ijms-25-01469' class='html-xxx' data-content='244.'>Nikolova, M.P.; Chavali, M.S. Recent advances in biomaterials for 3D scaffolds: A review. <span class='html-italic'>Bioact. Mater.</span> <b>2019</b>, <span class='html-italic'>4</span>, 271–292. [<a href="https://scholar.google.com/scholar_lookup?title=Recent+advances+in+biomaterials+for+3D+scaffolds:+A+review&author=Nikolova,+M.P.&author=Chavali,+M.S.&publication_year=2019&journal=Bioact.+Mater.&volume=4&pages=271%E2%80%93292&doi=10.1016/j.bioactmat.2019.10.005" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.bioactmat.2019.10.005" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B245-ijms-25-01469' class='html-xxx' data-content='245.'>Aguilar-de-Leyva, Á.; Linares, V.; Casas, M.; Caraballo, I. 3D Printed Drug Delivery Systems Based on Natural Products. <span class='html-italic'>Pharmaceutics</span> <b>2020</b>, <span class='html-italic'>12</span>, 620. [<a href="https://scholar.google.com/scholar_lookup?title=3D+Printed+Drug+Delivery+Systems+Based+on+Natural+Products&author=Aguilar-de-Leyva,+%C3%81.&author=Linares,+V.&author=Casas,+M.&author=Caraballo,+I.&publication_year=2020&journal=Pharmaceutics&volume=12&pages=620&doi=10.3390/pharmaceutics12070620&pmid=32635214" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/pharmaceutics12070620" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/32635214" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B246-ijms-25-01469' class='html-xxx' data-content='246.'>Shende, P.; Trivedi, R. 3D Printed Bioconstructs: Regenerative Modulation for Genetic Expression. <span class='html-italic'>Stem Cell Rev. Rep.</span> <b>2021</b>, <span class='html-italic'>17</span>, 1239–1250. [<a href="https://scholar.google.com/scholar_lookup?title=3D+Printed+Bioconstructs:+Regenerative+Modulation+for+Genetic+Expression&author=Shende,+P.&author=Trivedi,+R.&publication_year=2021&journal=Stem+Cell+Rev.+Rep.&volume=17&pages=1239%E2%80%931250&doi=10.1007/s12015-021-10120-2&pmid=33454852" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s12015-021-10120-2" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/33454852" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B247-ijms-25-01469' class='html-xxx' data-content='247.'>Lennox, K.A.; Behlke, M.A. Chemical modification and design of anti-miRNA oligonucleotides. <span class='html-italic'>Gene Ther.</span> <b>2011</b>, <span class='html-italic'>18</span>, 1111–1120. [<a href="https://scholar.google.com/scholar_lookup?title=Chemical+modification+and+design+of+anti-miRNA+oligonucleotides&author=Lennox,+K.A.&author=Behlke,+M.A.&publication_year=2011&journal=Gene+Ther.&volume=18&pages=1111%E2%80%931120&doi=10.1038/gt.2011.100" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/gt.2011.100" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B248-ijms-25-01469' class='html-xxx' data-content='248.'>Grünweller, A.; Hartmann, R.K. Locked nucleic acid oligonucleotides: The next generation of antisense agents? <span class='html-italic'>BioDrugs</span> <b>2007</b>, <span class='html-italic'>21</span>, 235–243. [<a href="https://scholar.google.com/scholar_lookup?title=Locked+nucleic+acid+oligonucleotides:+The+next+generation+of+antisense+agents?&author=Gr%C3%BCnweller,+A.&author=Hartmann,+R.K.&publication_year=2007&journal=BioDrugs&volume=21&pages=235%E2%80%93243&doi=10.2165/00063030-200721040-00004" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.2165/00063030-200721040-00004" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B249-ijms-25-01469' class='html-xxx' data-content='249.'>Koshkin, A.A.; Singh, S.K.; Nielsen, P.; Rajwanshi, V.K.; Kumar, R.; Meldgaard, M.; Olsen, C.E.; Wengel, J. LNA (Locked Nucleic Acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. <span class='html-italic'>Tetrahedron</span> <b>1998</b>, <span class='html-italic'>54</span>, 3607–3630. [<a href="https://scholar.google.com/scholar_lookup?title=LNA+(Locked+Nucleic+Acids):+Synthesis+of+the+adenine,+cytosine,+guanine,+5-methylcytosine,+thymine+and+uracil+bicyclonucleoside+monomers,+oligomerisation,+and+unprecedented+nucleic+acid+recognition&author=Koshkin,+A.A.&author=Singh,+S.K.&author=Nielsen,+P.&author=Rajwanshi,+V.K.&author=Kumar,+R.&author=Meldgaard,+M.&author=Olsen,+C.E.&author=Wengel,+J.&publication_year=1998&journal=Tetrahedron&volume=54&pages=3607%E2%80%933630&doi=10.1016/S0040-4020(98)00094-5" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/S0040-4020(98)00094-5" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B250-ijms-25-01469' class='html-xxx' data-content='250.'>Deprey, K.; Batistatou, N.; Kritzer, J.A. A critical analysis of methods used to investigate the cellular uptake and subcellular localization of RNA therapeutics. <span class='html-italic'>Nucleic Acids Res.</span> <b>2020</b>, <span class='html-italic'>48</span>, 7623–7639. [<a href="https://scholar.google.com/scholar_lookup?title=A+critical+analysis+of+methods+used+to+investigate+the+cellular+uptake+and+subcellular+localization+of+RNA+therapeutics&author=Deprey,+K.&author=Batistatou,+N.&author=Kritzer,+J.A.&publication_year=2020&journal=Nucleic+Acids+Res.&volume=48&pages=7623%E2%80%937639&doi=10.1093/nar/gkaa576" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1093/nar/gkaa576" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B251-ijms-25-01469' class='html-xxx' data-content='251.'>Hagedorn, P.H.; Persson, R.; Funder, E.D.; Albæk, N.; Diemer, S.L.; Hansen, D.J.; Møller, M.R.; Papargyri, N.; Christiansen, H.; Hansen, B.R.; et al. Locked nucleic acid: Modality, diversity, and drug discovery. <span class='html-italic'>Drug Discovery Today</span> <b>2018</b>, <span class='html-italic'>23</span>, 101–114. [<a href="https://scholar.google.com/scholar_lookup?title=Locked+nucleic+acid:+Modality,+diversity,+and+drug+discovery&author=Hagedorn,+P.H.&author=Persson,+R.&author=Funder,+E.D.&author=Alb%C3%A6k,+N.&author=Diemer,+S.L.&author=Hansen,+D.J.&author=M%C3%B8ller,+M.R.&author=Papargyri,+N.&author=Christiansen,+H.&author=Hansen,+B.R.&publication_year=2018&journal=Drug+Discovery+Today&volume=23&pages=101%E2%80%93114&doi=10.1016/j.drudis.2017.09.018&pmid=28988994" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.drudis.2017.09.018" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/28988994" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B252-ijms-25-01469' class='html-xxx' data-content='252.'>Miller, C.M.; Tanowitz, M.; Donner, A.J.; Prakash, T.P.; Swayze, E.E.; Harris, E.N.; Seth, P.P. Receptor-Mediated Uptake of Phosphorothioate Antisense Oligonucleotides in Different Cell Types of the Liver. <span class='html-italic'>Nucleic Acid. Ther.</span> <b>2018</b>, <span class='html-italic'>28</span>, 119–127. [<a href="https://scholar.google.com/scholar_lookup?title=Receptor-Mediated+Uptake+of+Phosphorothioate+Antisense+Oligonucleotides+in+Different+Cell+Types+of+the+Liver&author=Miller,+C.M.&author=Tanowitz,+M.&author=Donner,+A.J.&author=Prakash,+T.P.&author=Swayze,+E.E.&author=Harris,+E.N.&author=Seth,+P.P.&publication_year=2018&journal=Nucleic+Acid.+Ther.&volume=28&pages=119%E2%80%93127&doi=10.1089/nat.2017.0709&pmid=29425080" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1089/nat.2017.0709" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/29425080" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B253-ijms-25-01469' class='html-xxx' data-content='253.'>Rappaport, J.; Hanss, B.; Kopp, J.B.; Copeland, T.D.; Bruggeman, L.A.; Coffman, T.M.; Klotman, P.E. Transport of phosphorothioate oligonucleotides in kidney: Implications for molecular therapy. <span class='html-italic'>Kidney Int.</span> <b>1995</b>, <span class='html-italic'>47</span>, 1462–1469. [<a href="https://scholar.google.com/scholar_lookup?title=Transport+of+phosphorothioate+oligonucleotides+in+kidney:+Implications+for+molecular+therapy&author=Rappaport,+J.&author=Hanss,+B.&author=Kopp,+J.B.&author=Copeland,+T.D.&author=Bruggeman,+L.A.&author=Coffman,+T.M.&author=Klotman,+P.E.&publication_year=1995&journal=Kidney+Int.&volume=47&pages=1462%E2%80%931469&doi=10.1038/ki.1995.205" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/ki.1995.205" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B254-ijms-25-01469' class='html-xxx' data-content='254.'>Cheng, C.J.; Bahal, R.; Babar, I.A.; Pincus, Z.; Barrera, F.; Liu, C.; Svoronos, A.; Braddock, D.T.; Glazer, P.M.; Engelman, D.M.; et al. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. <span class='html-italic'>Nature</span> <b>2015</b>, <span class='html-italic'>518</span>, 107–110. [<a href="https://scholar.google.com/scholar_lookup?title=MicroRNA+silencing+for+cancer+therapy+targeted+to+the+tumour+microenvironment&author=Cheng,+C.J.&author=Bahal,+R.&author=Babar,+I.A.&author=Pincus,+Z.&author=Barrera,+F.&author=Liu,+C.&author=Svoronos,+A.&author=Braddock,+D.T.&author=Glazer,+P.M.&author=Engelman,+D.M.&publication_year=2015&journal=Nature&volume=518&pages=107%E2%80%93110&doi=10.1038/nature13905&pmid=25409146" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/nature13905" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/25409146" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B255-ijms-25-01469' class='html-xxx' data-content='255.'>Reshetnyak, Y.K.; Andreev, O.A.; Lehnert, U.; Engelman, D.M. Translocation of molecules into cells by pH-dependent insertion of a transmembrane helix. <span class='html-italic'>Proc. Natl. Acad. Sci. USA</span> <b>2006</b>, <span class='html-italic'>103</span>, 6460–6465. [<a href="https://scholar.google.com/scholar_lookup?title=Translocation+of+molecules+into+cells+by+pH-dependent+insertion+of+a+transmembrane+helix&author=Reshetnyak,+Y.K.&author=Andreev,+O.A.&author=Lehnert,+U.&author=Engelman,+D.M.&publication_year=2006&journal=Proc.+Natl.+Acad.+Sci.+USA&volume=103&pages=6460%E2%80%936465&doi=10.1073/pnas.0601463103&pmid=16608910" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1073/pnas.0601463103" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/16608910" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B256-ijms-25-01469' class='html-xxx' data-content='256.'>Zhang, S.; Zhu, F. Comment on: “MicroRNA Mimics or Inhibitors as Antiviral Therapeutic Approaches Against COVID-19”. <span class='html-italic'>Drugs</span> <b>2021</b>, <span class='html-italic'>81</span>, 1691–1692. [<a href="https://scholar.google.com/scholar_lookup?title=Comment+on:+%E2%80%9CMicroRNA+Mimics+or+Inhibitors+as+Antiviral+Therapeutic+Approaches+Against+COVID-19%E2%80%9D&author=Zhang,+S.&author=Zhu,+F.&publication_year=2021&journal=Drugs&volume=81&pages=1691%E2%80%931692&doi=10.1007/s40265-021-01582-2&pmid=34453690" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1007/s40265-021-01582-2" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/34453690" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B257-ijms-25-01469' class='html-xxx' data-content='257.'>Washietl, S.; Will, S.; Hendrix, D.A.; Goff, L.A.; Rinn, J.L.; Berger, B.; Kellis, M. Computational analysis of noncoding RNAs. <span class='html-italic'>Wiley Interdiscip. Rev. RNA</span> <b>2012</b>, <span class='html-italic'>3</span>, 759–778. [<a href="https://scholar.google.com/scholar_lookup?title=Computational+analysis+of+noncoding+RNAs&author=Washietl,+S.&author=Will,+S.&author=Hendrix,+D.A.&author=Goff,+L.A.&author=Rinn,+J.L.&author=Berger,+B.&author=Kellis,+M.&publication_year=2012&journal=Wiley+Interdiscip.+Rev.+RNA&volume=3&pages=759%E2%80%93778&doi=10.1002/wrna.1134" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/wrna.1134" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B258-ijms-25-01469' class='html-xxx' data-content='258.'>Kern, F.; Backes, C.; Hirsch, P.; Fehlmann, T.; Hart, M.; Meese, E.; Keller, A. What’s the target: Understanding two decades of in silico microRNA-target prediction. <span class='html-italic'>Brief. Bioinform.</span> <b>2020</b>, <span class='html-italic'>21</span>, 1999–2010. [<a href="https://scholar.google.com/scholar_lookup?title=What%E2%80%99s+the+target:+Understanding+two+decades+of+in+silico+microRNA-target+prediction&author=Kern,+F.&author=Backes,+C.&author=Hirsch,+P.&author=Fehlmann,+T.&author=Hart,+M.&author=Meese,+E.&author=Keller,+A.&publication_year=2020&journal=Brief.+Bioinform.&volume=21&pages=1999%E2%80%932010&doi=10.1093/bib/bbz111" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1093/bib/bbz111" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B259-ijms-25-01469' class='html-xxx' data-content='259.'>McGeary, S.E.; Lin, K.S.; Shi, C.Y.; Pham, T.M.; Bisaria, N.; Kelley, G.M.; Bartel, D.P. The biochemical basis of microRNA targeting efficacy. <span class='html-italic'>Science</span> <b>2019</b>, <span class='html-italic'>366</span>, 1470. [<a href="https://scholar.google.com/scholar_lookup?title=The+biochemical+basis+of+microRNA+targeting+efficacy&author=McGeary,+S.E.&author=Lin,+K.S.&author=Shi,+C.Y.&author=Pham,+T.M.&author=Bisaria,+N.&author=Kelley,+G.M.&author=Bartel,+D.P.&publication_year=2019&journal=Science&volume=366&pages=1470&doi=10.1126/science.aav1741" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1126/science.aav1741" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B260-ijms-25-01469' class='html-xxx' data-content='260.'>John, B.; Enright, A.J.; Aravin, A.; Tuschl, T.; Sander, C.; Marks, D.S. Human MicroRNA targets. <span class='html-italic'>PLoS Biol.</span> <b>2004</b>, <span class='html-italic'>2</span>, e363. [<a href="https://scholar.google.com/scholar_lookup?title=Human+MicroRNA+targets&author=John,+B.&author=Enright,+A.J.&author=Aravin,+A.&author=Tuschl,+T.&author=Sander,+C.&author=Marks,+D.S.&publication_year=2004&journal=PLoS+Biol.&volume=2&pages=e363&doi=10.1371/journal.pbio.0020363" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1371/journal.pbio.0020363" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B261-ijms-25-01469' class='html-xxx' data-content='261.'>Backes, C.; Ludwig, N.; Leidinger, P.; Huwer, H.; Tenzer, S.; Fehlmann, T.; Franke, A.; Meese, E.; Lenhof, H.P.; Keller, A. Paired proteomics, transcriptomics and miRNomics in non-small cell lung cancers: Known and novel signaling cascades. <span class='html-italic'>Oncotarget</span> <b>2016</b>, <span class='html-italic'>7</span>, 71514–71525. [<a href="https://scholar.google.com/scholar_lookup?title=Paired+proteomics,+transcriptomics+and+miRNomics+in+non-small+cell+lung+cancers:+Known+and+novel+signaling+cascades&author=Backes,+C.&author=Ludwig,+N.&author=Leidinger,+P.&author=Huwer,+H.&author=Tenzer,+S.&author=Fehlmann,+T.&author=Franke,+A.&author=Meese,+E.&author=Lenhof,+H.P.&author=Keller,+A.&publication_year=2016&journal=Oncotarget&volume=7&pages=71514%E2%80%9371525&doi=10.18632/oncotarget.11723" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.18632/oncotarget.11723" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B262-ijms-25-01469' class='html-xxx' data-content='262.'>Jung, D.; Kim, B.; Freishtat, R.J.; Giri, M.; Hoffman, E.; Seo, J. miRTarVis: An interactive visual analysis tool for microRNA-mRNA expression profile data. <span class='html-italic'>BMC Proc.</span> <b>2015</b>, <span class='html-italic'>9</span>, S2. [<a href="https://scholar.google.com/scholar_lookup?title=miRTarVis:+An+interactive+visual+analysis+tool+for+microRNA-mRNA+expression+profile+data&author=Jung,+D.&author=Kim,+B.&author=Freishtat,+R.J.&author=Giri,+M.&author=Hoffman,+E.&author=Seo,+J.&publication_year=2015&journal=BMC+Proc.&volume=9&pages=S2&doi=10.1186/1753-6561-9-S6-S2" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1186/1753-6561-9-S6-S2" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B263-ijms-25-01469' class='html-xxx' data-content='263.'>Licursi, V.; Conte, F.; Fiscon, G.; Paci, P. MIENTURNET: An interactive web tool for microRNA-target enrichment and network-based analysis. <span class='html-italic'>BMC Bioinform.</span> <b>2019</b>, <span class='html-italic'>20</span>, 545. [<a href="https://scholar.google.com/scholar_lookup?title=MIENTURNET:+An+interactive+web+tool+for+microRNA-target+enrichment+and+network-based+analysis&author=Licursi,+V.&author=Conte,+F.&author=Fiscon,+G.&author=Paci,+P.&publication_year=2019&journal=BMC+Bioinform.&volume=20&pages=545&doi=10.1186/s12859-019-3105-x" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1186/s12859-019-3105-x" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B264-ijms-25-01469' class='html-xxx' data-content='264.'>Giroux, P.; Bhajun, R.; Segard, S.; Picquenot, C.; Charavay, C.; Desquilles, L.; Pinna, G.; Ginestier, C.; Denis, J.; Cherradi, N.; et al. miRViz: A novel webserver application to visualize and interpret microRNA datasets. <span class='html-italic'>Nucleic Acids Res.</span> <b>2020</b>, <span class='html-italic'>48</span>, W252–W261. [<a href="https://scholar.google.com/scholar_lookup?title=miRViz:+A+novel+webserver+application+to+visualize+and+interpret+microRNA+datasets&author=Giroux,+P.&author=Bhajun,+R.&author=Segard,+S.&author=Picquenot,+C.&author=Charavay,+C.&author=Desquilles,+L.&author=Pinna,+G.&author=Ginestier,+C.&author=Denis,+J.&author=Cherradi,+N.&publication_year=2020&journal=Nucleic+Acids+Res.&volume=48&pages=W252%E2%80%93W261&doi=10.1093/nar/gkaa259" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1093/nar/gkaa259" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B265-ijms-25-01469' class='html-xxx' data-content='265.'>Chang, L.; Zhou, G.; Soufan, O.; Xia, J. miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology. <span class='html-italic'>Nucleic Acids Res.</span> <b>2020</b>, <span class='html-italic'>48</span>, W244–W251. [<a href="https://scholar.google.com/scholar_lookup?title=miRNet+2.0:+Network-based+visual+analytics+for+miRNA+functional+analysis+and+systems+biology&author=Chang,+L.&author=Zhou,+G.&author=Soufan,+O.&author=Xia,+J.&publication_year=2020&journal=Nucleic+Acids+Res.&volume=48&pages=W244%E2%80%93W251&doi=10.1093/nar/gkaa467" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1093/nar/gkaa467" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B266-ijms-25-01469' class='html-xxx' data-content='266.'>Preusse, M.; Theis, F.J.; Mueller, N.S. miTALOS v2: Analyzing Tissue Specific microRNA Function. <span class='html-italic'>PLoS ONE</span> <b>2016</b>, <span class='html-italic'>11</span>, e0151771. [<a href="https://scholar.google.com/scholar_lookup?title=miTALOS+v2:+Analyzing+Tissue+Specific+microRNA+Function&author=Preusse,+M.&author=Theis,+F.J.&author=Mueller,+N.S.&publication_year=2016&journal=PLoS+ONE&volume=11&pages=e0151771&doi=10.1371/journal.pone.0151771" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1371/journal.pone.0151771" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B267-ijms-25-01469' class='html-xxx' data-content='267.'>Laczny, C.; Leidinger, P.; Haas, J.; Ludwig, N.; Backes, C.; Gerasch, A.; Kaufmann, M.; Vogel, B.; Katus, H.A.; Meder, B.; et al. miRTrail—A comprehensive webserver for analyzing gene and miRNA patterns to enhance the understanding of regulatory mechanisms in diseases. <span class='html-italic'>BMC Bioinform.</span> <b>2012</b>, <span class='html-italic'>13</span>, 36. [<a href="https://scholar.google.com/scholar_lookup?title=miRTrail%E2%80%94A+comprehensive+webserver+for+analyzing+gene+and+miRNA+patterns+to+enhance+the+understanding+of+regulatory+mechanisms+in+diseases&author=Laczny,+C.&author=Leidinger,+P.&author=Haas,+J.&author=Ludwig,+N.&author=Backes,+C.&author=Gerasch,+A.&author=Kaufmann,+M.&author=Vogel,+B.&author=Katus,+H.A.&author=Meder,+B.&publication_year=2012&journal=BMC+Bioinform.&volume=13&pages=36&doi=10.1186/1471-2105-13-36" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1186/1471-2105-13-36" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B268-ijms-25-01469' class='html-xxx' data-content='268.'>Kern, F.; Krammes, L.; Danz, K.; Diener, C.; Kehl, T.; Küchler, O.; Fehlmann, T.; Kahraman, M.; Rheinheimer, S.; Aparicio-Puerta, E.; et al. Validation of human microRNA target pathways enables evaluation of target prediction tools. <span class='html-italic'>Nucleic Acids Res.</span> <b>2021</b>, <span class='html-italic'>49</span>, 127–144. [<a href="https://scholar.google.com/scholar_lookup?title=Validation+of+human+microRNA+target+pathways+enables+evaluation+of+target+prediction+tools&author=Kern,+F.&author=Krammes,+L.&author=Danz,+K.&author=Diener,+C.&author=Kehl,+T.&author=K%C3%BCchler,+O.&author=Fehlmann,+T.&author=Kahraman,+M.&author=Rheinheimer,+S.&author=Aparicio-Puerta,+E.&publication_year=2021&journal=Nucleic+Acids+Res.&volume=49&pages=127%E2%80%93144&doi=10.1093/nar/gkaa1161&pmid=33305319" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1093/nar/gkaa1161" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/33305319" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B269-ijms-25-01469' class='html-xxx' data-content='269.'>Kern, F.; Aparicio-Puerta, E.; Li, Y.; Fehlmann, T.; Kehl, T.; Wagner, V.; Ray, K.; Ludwig, N.; Lenhof, H.P.; Meese, E.; et al. miRTargetLink 2.0-interactive miRNA target gene and target pathway networks. <span class='html-italic'>Nucleic Acids Res.</span> <b>2021</b>, <span class='html-italic'>49</span>, W409–W416. [<a href="https://scholar.google.com/scholar_lookup?title=miRTargetLink+2.0-interactive+miRNA+target+gene+and+target+pathway+networks&author=Kern,+F.&author=Aparicio-Puerta,+E.&author=Li,+Y.&author=Fehlmann,+T.&author=Kehl,+T.&author=Wagner,+V.&author=Ray,+K.&author=Ludwig,+N.&author=Lenhof,+H.P.&author=Meese,+E.&publication_year=2021&journal=Nucleic+Acids+Res.&volume=49&pages=W409%E2%80%93W416&doi=10.1093/nar/gkab297&pmid=34009375" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1093/nar/gkab297" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/34009375" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B270-ijms-25-01469' class='html-xxx' data-content='270.'>Kehl, T.; Kern, F.; Backes, C.; Fehlmann, T.; Stöckel, D.; Meese, E.; Lenhof, H.P.; Keller, A. miRPathDB 2.0: A novel release of the miRNA Pathway Dictionary Database. <span class='html-italic'>Nucleic Acids Res.</span> <b>2020</b>, <span class='html-italic'>48</span>, D142–D147. [<a href="https://scholar.google.com/scholar_lookup?title=miRPathDB+2.0:+A+novel+release+of+the+miRNA+Pathway+Dictionary+Database&author=Kehl,+T.&author=Kern,+F.&author=Backes,+C.&author=Fehlmann,+T.&author=St%C3%B6ckel,+D.&author=Meese,+E.&author=Lenhof,+H.P.&author=Keller,+A.&publication_year=2020&journal=Nucleic+Acids+Res.&volume=48&pages=D142%E2%80%93D147&doi=10.1093/nar/gkz1022&pmid=31691816" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1093/nar/gkz1022" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/31691816" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B271-ijms-25-01469' class='html-xxx' data-content='271.'>Tokar, T.; Pastrello, C.; Rossos, A.E.M.; Abovsky, M.; Hauschild, A.C.; Tsay, M.; Lu, R.; Jurisica, I. mirDIP 4.1-integrative database of human microRNA target predictions. <span class='html-italic'>Nucleic Acids Res.</span> <b>2018</b>, <span class='html-italic'>46</span>, D360–D370. [<a href="https://scholar.google.com/scholar_lookup?title=mirDIP+4.1-integrative+database+of+human+microRNA+target+predictions&author=Tokar,+T.&author=Pastrello,+C.&author=Rossos,+A.E.M.&author=Abovsky,+M.&author=Hauschild,+A.C.&author=Tsay,+M.&author=Lu,+R.&author=Jurisica,+I.&publication_year=2018&journal=Nucleic+Acids+Res.&volume=46&pages=D360%E2%80%93D370&doi=10.1093/nar/gkx1144" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1093/nar/gkx1144" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B272-ijms-25-01469' class='html-xxx' data-content='272.'>Gerstner, N.; Kehl, T.; Lenhof, K.; Müller, A.; Mayer, C.; Eckhart, L.; Grammes, N.L.; Diener, C.; Hart, M.; Hahn, O.; et al. GeneTrail 3: Advanced high-throughput enrichment analysis. <span class='html-italic'>Nucleic Acids Res.</span> <b>2020</b>, <span class='html-italic'>48</span>, W515–W520. [<a href="https://scholar.google.com/scholar_lookup?title=GeneTrail+3:+Advanced+high-throughput+enrichment+analysis&author=Gerstner,+N.&author=Kehl,+T.&author=Lenhof,+K.&author=M%C3%BCller,+A.&author=Mayer,+C.&author=Eckhart,+L.&author=Grammes,+N.L.&author=Diener,+C.&author=Hart,+M.&author=Hahn,+O.&publication_year=2020&journal=Nucleic+Acids+Res.&volume=48&pages=W515%E2%80%93W520&doi=10.1093/nar/gkaa306" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1093/nar/gkaa306" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B273-ijms-25-01469' class='html-xxx' data-content='273.'>Lai, X.; Wolkenhauer, O.; Vera, J. Understanding microRNA-mediated gene regulatory networks through mathematical modelling. <span class='html-italic'>Nucleic Acids Res.</span> <b>2016</b>, <span class='html-italic'>44</span>, 6019–6035. [<a href="https://scholar.google.com/scholar_lookup?title=Understanding+microRNA-mediated+gene+regulatory+networks+through+mathematical+modelling&author=Lai,+X.&author=Wolkenhauer,+O.&author=Vera,+J.&publication_year=2016&journal=Nucleic+Acids+Res.&volume=44&pages=6019%E2%80%936035&doi=10.1093/nar/gkw550&pmid=27317695" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1093/nar/gkw550" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/27317695" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B274-ijms-25-01469' class='html-xxx' data-content='274.'>Zhao, C.; Zhang, Y.; Popel, A.S. Mechanistic Computational Models of MicroRNA-Mediated Signaling Networks in Human Diseases. <span class='html-italic'>Int. J. Mol. Sci.</span> <b>2019</b>, <span class='html-italic'>20</span>, 421. [<a href="https://scholar.google.com/scholar_lookup?title=Mechanistic+Computational+Models+of+MicroRNA-Mediated+Signaling+Networks+in+Human+Diseases&author=Zhao,+C.&author=Zhang,+Y.&author=Popel,+A.S.&publication_year=2019&journal=Int.+J.+Mol.+Sci.&volume=20&pages=421&doi=10.3390/ijms20020421&pmid=30669429" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3390/ijms20020421" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/30669429" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B275-ijms-25-01469' class='html-xxx' data-content='275.'>Lekprasert, P.; Mayhew, M.; Ohler, U. Assessing the utility of thermodynamic features for microRNA target prediction under relaxed seed and no conservation requirements. <span class='html-italic'>PLoS ONE</span> <b>2011</b>, <span class='html-italic'>6</span>, e20622. [<a href="https://scholar.google.com/scholar_lookup?title=Assessing+the+utility+of+thermodynamic+features+for+microRNA+target+prediction+under+relaxed+seed+and+no+conservation+requirements&author=Lekprasert,+P.&author=Mayhew,+M.&author=Ohler,+U.&publication_year=2011&journal=PLoS+ONE&volume=6&pages=e20622&doi=10.1371/journal.pone.0020622" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1371/journal.pone.0020622" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B276-ijms-25-01469' class='html-xxx' data-content='276.'>Karagiannis, P.; Takahashi, K.; Saito, M.; Yoshida, Y.; Okita, K.; Watanabe, A.; Inoue, H.; Yamashita, J.K.; Todani, M.; Nakagawa, M.; et al. Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. <span class='html-italic'>Physiol. Rev.</span> <b>2019</b>, <span class='html-italic'>99</span>, 79–114. [<a href="https://scholar.google.com/scholar_lookup?title=Induced+Pluripotent+Stem+Cells+and+Their+Use+in+Human+Models+of+Disease+and+Development&author=Karagiannis,+P.&author=Takahashi,+K.&author=Saito,+M.&author=Yoshida,+Y.&author=Okita,+K.&author=Watanabe,+A.&author=Inoue,+H.&author=Yamashita,+J.K.&author=Todani,+M.&author=Nakagawa,+M.&publication_year=2019&journal=Physiol.+Rev.&volume=99&pages=79%E2%80%93114&doi=10.1152/physrev.00039.2017&pmid=30328784" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1152/physrev.00039.2017" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/30328784" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B277-ijms-25-01469' class='html-xxx' data-content='277.'>Tsuji, O.; Sugai, K.; Yamaguchi, R.; Tashiro, S.; Nagoshi, N.; Kohyama, J.; Iida, T.; Ohkubo, T.; Itakura, G.; Isoda, M.; et al. Concise Review: Laying the Groundwork for a First-In-Human Study of an Induced Pluripotent Stem Cell-Based Intervention for Spinal Cord Injury. <span class='html-italic'>Stem Cells</span> <b>2019</b>, <span class='html-italic'>37</span>, 6–13. [<a href="https://scholar.google.com/scholar_lookup?title=Concise+Review:+Laying+the+Groundwork+for+a+First-In-Human+Study+of+an+Induced+Pluripotent+Stem+Cell-Based+Intervention+for+Spinal+Cord+Injury&author=Tsuji,+O.&author=Sugai,+K.&author=Yamaguchi,+R.&author=Tashiro,+S.&author=Nagoshi,+N.&author=Kohyama,+J.&author=Iida,+T.&author=Ohkubo,+T.&author=Itakura,+G.&author=Isoda,+M.&publication_year=2019&journal=Stem+Cells&volume=37&pages=6%E2%80%9313&doi=10.1002/stem.2926&pmid=30371964" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/stem.2926" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/30371964" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B278-ijms-25-01469' class='html-xxx' data-content='278.'>Gebert, L.F.R.; MacRae, I.J. Regulation of microRNA function in animals. <span class='html-italic'>Nat. Rev. Mol. Cell Biol.</span> <b>2019</b>, <span class='html-italic'>20</span>, 21–37. [<a href="https://scholar.google.com/scholar_lookup?title=Regulation+of+microRNA+function+in+animals&author=Gebert,+L.F.R.&author=MacRae,+I.J.&publication_year=2019&journal=Nat.+Rev.+Mol.+Cell+Biol.&volume=20&pages=21%E2%80%9337&doi=10.1038/s41580-018-0045-7&pmid=30108335" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41580-018-0045-7" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/30108335" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B279-ijms-25-01469' class='html-xxx' data-content='279.'>Mestdagh, P.; Boström, A.K.; Impens, F.; Fredlund, E.; Van Peer, G.; De Antonellis, P.; von Stedingk, K.; Ghesquière, B.; Schulte, S.; Dews, M.; et al. The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma. <span class='html-italic'>Mol. Cell</span> <b>2010</b>, <span class='html-italic'>40</span>, 762–773. [<a href="https://scholar.google.com/scholar_lookup?title=The+miR-17-92+microRNA+cluster+regulates+multiple+components+of+the+TGF-%CE%B2+pathway+in+neuroblastoma&author=Mestdagh,+P.&author=Bostr%C3%B6m,+A.K.&author=Impens,+F.&author=Fredlund,+E.&author=Van+Peer,+G.&author=De+Antonellis,+P.&author=von+Stedingk,+K.&author=Ghesqui%C3%A8re,+B.&author=Schulte,+S.&author=Dews,+M.&publication_year=2010&journal=Mol.+Cell&volume=40&pages=762%E2%80%93773&doi=10.1016/j.molcel.2010.11.038&pmid=21145484" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.molcel.2010.11.038" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/21145484" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B280-ijms-25-01469' class='html-xxx' data-content='280.'>Borsuk, R.; Zhou, L.; Chang, W.I.; Zhang, Y.; Sharma, A.; Prabhu, V.V.; Tapinos, N.; Lulla, R.R.; El-Deiry, W.S. Potent preclinical sensitivity to imipridone-based combination therapies in oncohistone H3K27M-mutant diffuse intrinsic pontine glioma is associated with induction of the integrated stress response, TRAIL death receptor DR5, reduced ClpX and apoptosis. <span class='html-italic'>Am. J. Cancer Res.</span> <b>2021</b>, <span class='html-italic'>11</span>, 4607–4623. [<a href="https://scholar.google.com/scholar_lookup?title=Potent+preclinical+sensitivity+to+imipridone-based+combination+therapies+in+oncohistone+H3K27M-mutant+diffuse+intrinsic+pontine+glioma+is+associated+with+induction+of+the+integrated+stress+response,+TRAIL+death+receptor+DR5,+reduced+ClpX+and+apoptosis&author=Borsuk,+R.&author=Zhou,+L.&author=Chang,+W.I.&author=Zhang,+Y.&author=Sharma,+A.&author=Prabhu,+V.V.&author=Tapinos,+N.&author=Lulla,+R.R.&author=El-Deiry,+W.S.&publication_year=2021&journal=Am.+J.+Cancer+Res.&volume=11&pages=4607%E2%80%934623" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B281-ijms-25-01469' class='html-xxx' data-content='281.'>Daige, C.L.; Wiggins, J.F.; Priddy, L.; Nelligan-Davis, T.; Zhao, J.; Brown, D. Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer. <span class='html-italic'>Mol. Cancer Ther.</span> <b>2014</b>, <span class='html-italic'>13</span>, 2352–2360. [<a href="https://scholar.google.com/scholar_lookup?title=Systemic+delivery+of+a+miR34a+mimic+as+a+potential+therapeutic+for+liver+cancer&author=Daige,+C.L.&author=Wiggins,+J.F.&author=Priddy,+L.&author=Nelligan-Davis,+T.&author=Zhao,+J.&author=Brown,+D.&publication_year=2014&journal=Mol.+Cancer+Ther.&volume=13&pages=2352%E2%80%932360&doi=10.1158/1535-7163.MCT-14-0209" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1158/1535-7163.MCT-14-0209" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B282-ijms-25-01469' class='html-xxx' data-content='282.'>Kelnar, K.; Bader, A.G. A qRT-PCR Method for Determining the Biodistribution Profile of a miR-34a Mimic. <span class='html-italic'>Methods Mol. Biol.</span> <b>2015</b>, <span class='html-italic'>1317</span>, 125–133. [<a href="https://scholar.google.com/scholar_lookup?title=A+qRT-PCR+Method+for+Determining+the+Biodistribution+Profile+of+a+miR-34a+Mimic&author=Kelnar,+K.&author=Bader,+A.G.&publication_year=2015&journal=Methods+Mol.+Biol.&volume=1317&pages=125%E2%80%93133" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>]</li><li id='B283-ijms-25-01469' class='html-xxx' data-content='283.'>Diener, C.; Hart, M.; Alansary, D.; Poth, V.; Walch-Rückheim, B.; Menegatti, J.; Grässer, F.; Fehlmann, T.; Rheinheimer, S.; Niemeyer, B.A.; et al. Modulation of intracellular calcium signaling by microRNA-34a-5p. <span class='html-italic'>Cell Death Dis.</span> <b>2018</b>, <span class='html-italic'>9</span>, 1008. [<a href="https://scholar.google.com/scholar_lookup?title=Modulation+of+intracellular+calcium+signaling+by+microRNA-34a-5p&author=Diener,+C.&author=Hart,+M.&author=Alansary,+D.&author=Poth,+V.&author=Walch-R%C3%BCckheim,+B.&author=Menegatti,+J.&author=Gr%C3%A4sser,+F.&author=Fehlmann,+T.&author=Rheinheimer,+S.&author=Niemeyer,+B.A.&publication_year=2018&journal=Cell+Death+Dis.&volume=9&pages=1008&doi=10.1038/s41419-018-1050-7" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41419-018-1050-7" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B284-ijms-25-01469' class='html-xxx' data-content='284.'>Hart, M.; Nickl, L.; Walch-Rueckheim, B.; Krammes, L.; Rheinheimer, S.; Diener, C.; Taenzer, T.; Kehl, T.; Sester, M.; Lenhof, H.P.; et al. Wrinkle in the plan: miR-34a-5p impacts chemokine signaling by modulating CXCL10/CXCL11/CXCR3-axis in CD4(+), CD8(+) T cells, and M1 macrophages. <span class='html-italic'>J. Immunother. Cancer</span> <b>2020</b>, <span class='html-italic'>8</span>, e001617. [<a href="https://scholar.google.com/scholar_lookup?title=Wrinkle+in+the+plan:+miR-34a-5p+impacts+chemokine+signaling+by+modulating+CXCL10/CXCL11/CXCR3-axis+in+CD4(+),+CD8(+)+T+cells,+and+M1+macrophages&author=Hart,+M.&author=Nickl,+L.&author=Walch-Rueckheim,+B.&author=Krammes,+L.&author=Rheinheimer,+S.&author=Diener,+C.&author=Taenzer,+T.&author=Kehl,+T.&author=Sester,+M.&author=Lenhof,+H.P.&publication_year=2020&journal=J.+Immunother.+Cancer&volume=8&pages=e001617&doi=10.1136/jitc-2020-001617&pmid=33229509" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1136/jitc-2020-001617" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/33229509" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B285-ijms-25-01469' class='html-xxx' data-content='285.'>Raimondo, T.M.; Reed, K.; Shi, D.; Langer, R.; Anderson, D.G. Delivering the next generation of cancer immunotherapies with RNA. <span class='html-italic'>Cell</span> <b>2023</b>, <span class='html-italic'>186</span>, 1535–1540. [<a href="https://scholar.google.com/scholar_lookup?title=Delivering+the+next+generation+of+cancer+immunotherapies+with+RNA&author=Raimondo,+T.M.&author=Reed,+K.&author=Shi,+D.&author=Langer,+R.&author=Anderson,+D.G.&publication_year=2023&journal=Cell&volume=186&pages=1535%E2%80%931540&doi=10.1016/j.cell.2023.02.031" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1016/j.cell.2023.02.031" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B286-ijms-25-01469' class='html-xxx' data-content='286.'>Walsh, E.E.; Frenck, R.W.; Falsey, A.R.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Mulligan, M.J.; Bailey, R.; et al. Safety and Immunogenicity of Two RNA-Based COVID-19 Vaccine Candidates. <span class='html-italic'>N. Engl. J. Med.</span> <b>2020</b>, <span class='html-italic'>383</span>, 2439–2450. [<a href="https://scholar.google.com/scholar_lookup?title=Safety+and+Immunogenicity+of+Two+RNA-Based+COVID-19+Vaccine+Candidates&author=Walsh,+E.E.&author=Frenck,+R.W.&author=Falsey,+A.R.&author=Kitchin,+N.&author=Absalon,+J.&author=Gurtman,+A.&author=Lockhart,+S.&author=Neuzil,+K.&author=Mulligan,+M.J.&author=Bailey,+R.&publication_year=2020&journal=N.+Engl.+J.+Med.&volume=383&pages=2439%E2%80%932450&doi=10.1056/NEJMoa2027906" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1056/NEJMoa2027906" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B287-ijms-25-01469' class='html-xxx' data-content='287.'>Anderson, E.J.; Rouphael, N.G.; Widge, A.T.; Jackson, L.A.; Roberts, P.C.; Makhene, M.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; Pruijssers, A.J.; et al. Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. <span class='html-italic'>N. Engl. J. Med.</span> <b>2020</b>, <span class='html-italic'>383</span>, 2427–2438. [<a href="https://scholar.google.com/scholar_lookup?title=Safety+and+Immunogenicity+of+SARS-CoV-2+mRNA-1273+Vaccine+in+Older+Adults&author=Anderson,+E.J.&author=Rouphael,+N.G.&author=Widge,+A.T.&author=Jackson,+L.A.&author=Roberts,+P.C.&author=Makhene,+M.&author=Chappell,+J.D.&author=Denison,+M.R.&author=Stevens,+L.J.&author=Pruijssers,+A.J.&publication_year=2020&journal=N.+Engl.+J.+Med.&volume=383&pages=2427%E2%80%932438&doi=10.1056/NEJMoa2028436" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1056/NEJMoa2028436" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B288-ijms-25-01469' class='html-xxx' data-content='288.'>Kotowska-Zimmer, A.; Pewinska, M.; Olejniczak, M. Artificial miRNAs as therapeutic tools: Challenges and opportunities. <span class='html-italic'>Wiley Interdiscip. Rev. RNA</span> <b>2021</b>, <span class='html-italic'>12</span>, e1640. [<a href="https://scholar.google.com/scholar_lookup?title=Artificial+miRNAs+as+therapeutic+tools:+Challenges+and+opportunities&author=Kotowska-Zimmer,+A.&author=Pewinska,+M.&author=Olejniczak,+M.&publication_year=2021&journal=Wiley+Interdiscip.+Rev.+RNA&volume=12&pages=e1640&doi=10.1002/wrna.1640&pmid=33386705" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1002/wrna.1640" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/33386705" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B289-ijms-25-01469' class='html-xxx' data-content='289.'>Gonzales-Aloy, E.; Connerty, P.; Salik, B.; Liu, B.; Woo, A.J.; Haber, M.; Norris, M.D.; Wang, J.; Wang, J.Y. miR-101 suppresses the development of MLL-rearranged acute myeloid leukemia. <span class='html-italic'>Haematologica</span> <b>2019</b>, <span class='html-italic'>104</span>, e296–e299. [<a href="https://scholar.google.com/scholar_lookup?title=miR-101+suppresses+the+development+of+MLL-rearranged+acute+myeloid+leukemia&author=Gonzales-Aloy,+E.&author=Connerty,+P.&author=Salik,+B.&author=Liu,+B.&author=Woo,+A.J.&author=Haber,+M.&author=Norris,+M.D.&author=Wang,+J.&author=Wang,+J.Y.&publication_year=2019&journal=Haematologica&volume=104&pages=e296%E2%80%93e299&doi=10.3324/haematol.2018.209437" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.3324/haematol.2018.209437" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>]</li><li id='B290-ijms-25-01469' class='html-xxx' data-content='290.'>Liu, Y.; Chen, X.; Cheng, R.; Yang, F.; Yu, M.; Wang, C.; Cui, S.; Hong, Y.; Liang, H.; Liu, M.; et al. The Jun/miR-22/HuR regulatory axis contributes to tumourigenesis in colorectal cancer. <span class='html-italic'>Mol. Cancer</span> <b>2018</b>, <span class='html-italic'>17</span>, 11. [<a href="https://scholar.google.com/scholar_lookup?title=The+Jun/miR-22/HuR+regulatory+axis+contributes+to+tumourigenesis+in+colorectal+cancer&author=Liu,+Y.&author=Chen,+X.&author=Cheng,+R.&author=Yang,+F.&author=Yu,+M.&author=Wang,+C.&author=Cui,+S.&author=Hong,+Y.&author=Liang,+H.&author=Liu,+M.&publication_year=2018&journal=Mol.+Cancer&volume=17&pages=11&doi=10.1186/s12943-017-0751-3&pmid=29351796" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1186/s12943-017-0751-3" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/29351796" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li><li id='B291-ijms-25-01469' class='html-xxx' data-content='291.'>Zhu, S.; Cheng, X.; Wang, R.; Tan, Y.; Ge, M.; Li, D.; Xu, Q.; Sun, Y.; Zhao, C.; Chen, S.; et al. Restoration of microRNA function impairs MYC-dependent maintenance of MLL leukemia. <span class='html-italic'>Leukemia</span> <b>2020</b>, <span class='html-italic'>34</span>, 2484–2488. [<a href="https://scholar.google.com/scholar_lookup?title=Restoration+of+microRNA+function+impairs+MYC-dependent+maintenance+of+MLL+leukemia&author=Zhu,+S.&author=Cheng,+X.&author=Wang,+R.&author=Tan,+Y.&author=Ge,+M.&author=Li,+D.&author=Xu,+Q.&author=Sun,+Y.&author=Zhao,+C.&author=Chen,+S.&publication_year=2020&journal=Leukemia&volume=34&pages=2484%E2%80%932488&doi=10.1038/s41375-020-0768-2&pmid=32094460" class='google-scholar' target='_blank' rel='noopener noreferrer'>Google Scholar</a>] [<a href="https://doi.org/10.1038/s41375-020-0768-2" class='cross-ref' target='_blank' rel='noopener noreferrer'>CrossRef</a>] [<a href="https://www.ncbi.nlm.nih.gov/pubmed/32094460" class='cross-ref' data-typ='pmid' target='_blank' rel='noopener noreferrer'>PubMed</a>]</li></ol></section><section id='FiguresandTables' type='display-objects'><div class="html-fig-wrap" id="ijms-25-01469-f001"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/1422-0067/25/3/1469/display" href="#fig_body_display_ijms-25-01469-f001"> <img data-large="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g001.png" data-original="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g001.png" alt="Ijms 25 01469 g001" data-lsrc="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g001-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/1422-0067/25/3/1469/display" href="#fig_body_display_ijms-25-01469-f001"></a> </div> </div> <div class="html-fig_description"> <b>Figure 1.</b> Illustration of miRNA biogenesis, processing, and mechanisms of translational suppression or degradation of target RNA. miRNAs are a class of small, single-stranded non-coding RNAs that function as a guide molecule in RNA silencing and hence modulate the expression of most mRNAs. The miRNA: target–mRNA interaction usually occurs at the 5′ end of the miRNA (i.e., ‘seed’ region). However, recent evidence suggests that there is a special class of target mRNAs which bind the miRNA not only through the ‘seed’ region, but also through a second region of complementarity at the 3′ end of the miRNA. The extended complementarity forces the miRNA out of Ago2, where it becomes accessible to enzymatic degradation. This phenomenon is referred to as the target-directed miRNA degradation mechanism (TDMD). Created with <a href='http://BioRender.com' target='_blank' rel="noopener noreferrer">BioRender.com</a> (accessed on 16 January 2024). <!-- <p><a class="html-figpopup" href="#fig_body_display_ijms-25-01469-f001"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_ijms-25-01469-f001"> <div class="html-caption"> <b>Figure 1.</b> Illustration of miRNA biogenesis, processing, and mechanisms of translational suppression or degradation of target RNA. miRNAs are a class of small, single-stranded non-coding RNAs that function as a guide molecule in RNA silencing and hence modulate the expression of most mRNAs. The miRNA: target–mRNA interaction usually occurs at the 5′ end of the miRNA (i.e., ‘seed’ region). However, recent evidence suggests that there is a special class of target mRNAs which bind the miRNA not only through the ‘seed’ region, but also through a second region of complementarity at the 3′ end of the miRNA. The extended complementarity forces the miRNA out of Ago2, where it becomes accessible to enzymatic degradation. This phenomenon is referred to as the target-directed miRNA degradation mechanism (TDMD). Created with <a href='http://BioRender.com' target='_blank' rel="noopener noreferrer">BioRender.com</a> (accessed on 16 January 2024).</div> <div class="html-img"><img data-large="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g001.png" data-original="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g001.png" alt="Ijms 25 01469 g001" data-lsrc="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g001.png" /></div> </div> <div class="html-fig-wrap" id="ijms-25-01469-f002"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/1422-0067/25/3/1469/display" href="#fig_body_display_ijms-25-01469-f002"> <img data-large="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g002.png" data-original="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g002.png" alt="Ijms 25 01469 g002" data-lsrc="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g002-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/1422-0067/25/3/1469/display" href="#fig_body_display_ijms-25-01469-f002"></a> </div> </div> <div class="html-fig_description"> <b>Figure 2.</b> Schematic overview of miRNA therapeutic strategies to regulate the function of oncogenic and tumor suppressor miRNAs involved in cancer. (<b>Top Panel</b>): The strategy of miRNA therapeutics is based on restoring the balance of oncogenic miRNAs and tumor suppressor miRNAs. This involves downregulating the expression of oncomir RNAs (oncomirs) or upregulating the expression of tumor suppressor miRNAs. (<b>Bottom panel</b>): Therapeutic manipulations involving miRNAs can target the expression or function of pathologically significant miRNAs through various approaches. These methods include miRNA inhibitors (antagomirs or antimirs) that degrade or block the function of endogenous miRNAs, synthetic miRNA mimics that replicate endogenous miRNA functions, miRNAs expressed via viral vectors, small-molecule inhibitors that disrupt miRNA biogenesis, or miRNA sponges that functionally inhibit endogenous miRNAs by diverting them from their mRNA targets. Moreover, combining miRNAs with chemotherapies, immunotherapies, other traditional drugs or therapies, or siRNAs represents an additional strategy to counter drug resistance. Created with <a href='http://BioRender.com' target='_blank' rel="noopener noreferrer">BioRender.com</a> (accessed on 16 January 2024). <!-- <p><a class="html-figpopup" href="#fig_body_display_ijms-25-01469-f002"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_ijms-25-01469-f002"> <div class="html-caption"> <b>Figure 2.</b> Schematic overview of miRNA therapeutic strategies to regulate the function of oncogenic and tumor suppressor miRNAs involved in cancer. (<b>Top Panel</b>): The strategy of miRNA therapeutics is based on restoring the balance of oncogenic miRNAs and tumor suppressor miRNAs. This involves downregulating the expression of oncomir RNAs (oncomirs) or upregulating the expression of tumor suppressor miRNAs. (<b>Bottom panel</b>): Therapeutic manipulations involving miRNAs can target the expression or function of pathologically significant miRNAs through various approaches. These methods include miRNA inhibitors (antagomirs or antimirs) that degrade or block the function of endogenous miRNAs, synthetic miRNA mimics that replicate endogenous miRNA functions, miRNAs expressed via viral vectors, small-molecule inhibitors that disrupt miRNA biogenesis, or miRNA sponges that functionally inhibit endogenous miRNAs by diverting them from their mRNA targets. Moreover, combining miRNAs with chemotherapies, immunotherapies, other traditional drugs or therapies, or siRNAs represents an additional strategy to counter drug resistance. Created with <a href='http://BioRender.com' target='_blank' rel="noopener noreferrer">BioRender.com</a> (accessed on 16 January 2024).</div> <div class="html-img"><img data-large="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g002.png" data-original="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g002.png" alt="Ijms 25 01469 g002" data-lsrc="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g002.png" /></div> </div> <div class="html-fig-wrap" id="ijms-25-01469-f003"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/1422-0067/25/3/1469/display" href="#fig_body_display_ijms-25-01469-f003"> <img data-large="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g003.png" data-original="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g003.png" alt="Ijms 25 01469 g003" data-lsrc="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g003-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/1422-0067/25/3/1469/display" href="#fig_body_display_ijms-25-01469-f003"></a> </div> </div> <div class="html-fig_description"> <b>Figure 3.</b> Diagram depicting various mechanisms employed by small-molecule inhibitors to target and inhibit specific miRNAs. “--|"represent the inhibition or blockage of a process. Created with <a href='http://BioRender.com' target='_blank' rel="noopener noreferrer">BioRender.com</a> (accessed on 16 January 2024). <!-- <p><a class="html-figpopup" href="#fig_body_display_ijms-25-01469-f003"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_ijms-25-01469-f003"> <div class="html-caption"> <b>Figure 3.</b> Diagram depicting various mechanisms employed by small-molecule inhibitors to target and inhibit specific miRNAs. “--|"represent the inhibition or blockage of a process. Created with <a href='http://BioRender.com' target='_blank' rel="noopener noreferrer">BioRender.com</a> (accessed on 16 January 2024).</div> <div class="html-img"><img data-large="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g003.png" data-original="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g003.png" alt="Ijms 25 01469 g003" data-lsrc="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g003.png" /></div> </div> <div class="html-fig-wrap" id="ijms-25-01469-f004"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/1422-0067/25/3/1469/display" href="#fig_body_display_ijms-25-01469-f004"> <img data-large="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g004.png" data-original="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g004.png" alt="Ijms 25 01469 g004" data-lsrc="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g004-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/1422-0067/25/3/1469/display" href="#fig_body_display_ijms-25-01469-f004"></a> </div> </div> <div class="html-fig_description"> <b>Figure 4.</b> Examples of miRNA delivery systems. miRNA therapeutics can be administered orally or intranasally or through venous (intravenously) or muscle (intramuscularly) or skin (subcutaneously) injections, or via cell-/tissue-directed approaches, or adoptive cell transfer, or the implantation of 3D matrices that release miRNA therapeutics, or other extracorporeal miRNA delivery strategies. Other modes of delivery of miRNA therapeutics include vector based and non-vector-based delivery systems including (<b>A</b>) adeno-associated virus (<b>B</b>) Lentivirus; (<b>C</b>) bacterial nanocells; (<b>D</b>) bacteriophages; liposomes, including monovalent and multivalent lipids such as (<b>E</b>) cationic lipid-based ligand-targeted nanoparticles; (<b>F</b>) natural polymer-based nanoparticles; (<b>G</b>) polymer-based nanoparticles (natural, green and synthetic, blue) conjugated with polyethylene glycol (PEG); (<b>H</b>) extracellular vesicles or exosomes; (<b>I</b>) gold nanoparticles [<a href="#B224-ijms-25-01469" class="html-bibr">224</a>]; (<b>J</b>) carbon nanotubes; (<b>K</b>) quantum dot nanoparticles; (<b>L</b>) core–shell magnetic nanoparticles; (<b>M</b>) mesoporous silica nananoparticles and others such as polymeric micelles, and mesoporous silica nanoparticles are the examples of nanocarriers as drug-delivery systems. Moreover, there have been efforts to improve the serum stability, pharmacokinetics, and tissue specificity by targeted delivery of miRNA mimics, miRNA inhibitors, and other nucleic acid therapeutics through the incorporation of various chemical modifications and/or conjugation of these RNA and nucleic acid therapeutics to biomolecules to facilitate receptor-mediated uptake such as N-acetylgalactosamine (GalNAc), 2′-O-methyl nucleotide, phosphorothioate, cholesterol, locked nucleic acid (LNA), and aptamer moieties. Created with <a href='http://BioRender.com' target='_blank' rel="noopener noreferrer">BioRender.com</a> (accessed on 16 January 2024). <!-- <p><a class="html-figpopup" href="#fig_body_display_ijms-25-01469-f004"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_ijms-25-01469-f004"> <div class="html-caption"> <b>Figure 4.</b> Examples of miRNA delivery systems. miRNA therapeutics can be administered orally or intranasally or through venous (intravenously) or muscle (intramuscularly) or skin (subcutaneously) injections, or via cell-/tissue-directed approaches, or adoptive cell transfer, or the implantation of 3D matrices that release miRNA therapeutics, or other extracorporeal miRNA delivery strategies. Other modes of delivery of miRNA therapeutics include vector based and non-vector-based delivery systems including (<b>A</b>) adeno-associated virus (<b>B</b>) Lentivirus; (<b>C</b>) bacterial nanocells; (<b>D</b>) bacteriophages; liposomes, including monovalent and multivalent lipids such as (<b>E</b>) cationic lipid-based ligand-targeted nanoparticles; (<b>F</b>) natural polymer-based nanoparticles; (<b>G</b>) polymer-based nanoparticles (natural, green and synthetic, blue) conjugated with polyethylene glycol (PEG); (<b>H</b>) extracellular vesicles or exosomes; (<b>I</b>) gold nanoparticles [<a href="#B224-ijms-25-01469" class="html-bibr">224</a>]; (<b>J</b>) carbon nanotubes; (<b>K</b>) quantum dot nanoparticles; (<b>L</b>) core–shell magnetic nanoparticles; (<b>M</b>) mesoporous silica nananoparticles and others such as polymeric micelles, and mesoporous silica nanoparticles are the examples of nanocarriers as drug-delivery systems. Moreover, there have been efforts to improve the serum stability, pharmacokinetics, and tissue specificity by targeted delivery of miRNA mimics, miRNA inhibitors, and other nucleic acid therapeutics through the incorporation of various chemical modifications and/or conjugation of these RNA and nucleic acid therapeutics to biomolecules to facilitate receptor-mediated uptake such as N-acetylgalactosamine (GalNAc), 2′-O-methyl nucleotide, phosphorothioate, cholesterol, locked nucleic acid (LNA), and aptamer moieties. Created with <a href='http://BioRender.com' target='_blank' rel="noopener noreferrer">BioRender.com</a> (accessed on 16 January 2024).</div> <div class="html-img"><img data-large="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g004.png" data-original="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g004.png" alt="Ijms 25 01469 g004" data-lsrc="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g004.png" /></div> </div> <div class="html-fig-wrap" id="ijms-25-01469-f005"> <div class='html-fig_img'> <div class="html-figpopup html-figpopup-link" data-counterslinkmanual = "https://www.mdpi.com/1422-0067/25/3/1469/display" href="#fig_body_display_ijms-25-01469-f005"> <img data-large="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g005.png" data-original="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g005.png" alt="Ijms 25 01469 g005" data-lsrc="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g005-550.jpg" /> <a class="html-expand html-figpopup" data-counterslinkmanual = "https://www.mdpi.com/1422-0067/25/3/1469/display" href="#fig_body_display_ijms-25-01469-f005"></a> </div> </div> <div class="html-fig_description"> <b>Figure 5.</b> Illustration of the miRNA-based drug discovery and development process beginning from target identification and miRNA discovery to FDA-approved miRNA therapeutics on the market. In the traditional drug development process, the timeline from target identification and drug discovery to phase 1–3 human clinical trials and, ultimately, FDA approval, followed by phase 4 studies, can go on for several years. Conversely, RNA-based and, more specifically, miRNA-based drug discovery and development can potentially mitigate attrition rates, time constraints, and costs. The initial phase in developing miRNA therapeutics involves systematically selecting potential miRNA candidates by analyzing patient samples and validating their relevance to a particular disease of interest through tissue culture and in vivo models. Various publicly available genomic and proteomic databases from diverse healthy and diseased tissues can aid in identifying promising miRNA candidates when combined with biological validation. The next step often involves modifying miRNA therapeutics and optimizing delivery systems suitable for in vivo applications. A major concern with miRNA therapeutics is their susceptibility to degradation by nucleases and endosomal escape. To improve the stability of miRNA therapeutics, chemical modifications such as adding a 2′-O-methyl group, 2-F group, locked nucleic acids (LNAs), or peptide nucleic acids (PNAs) as well as a phosphorothioate group considerably enhance stability. Various encapsulation methods such as lipid nanoparticles, neutral lipid emulsions, or dendrimer complexes equipped with a targeting moiety have been employed for improved delivery to target tissue and disease sites. Yet, challenges remain in transitioning these delivery systems into clinical applications due to potential immune activation effects and the lack of precise targeting for disease sites. Successful translation of lead miRNAs into clinical studies requires rigorous disease-specific in vivo testing using rodent and non-human primate models. Rigorous evaluation of toxicity data and target engagement is crucial to avert early setbacks in clinical trials. Created with <a href='http://BioRender.com' target='_blank' rel="noopener noreferrer">BioRender.com</a> (accessed on 16 January 2024). <!-- <p><a class="html-figpopup" href="#fig_body_display_ijms-25-01469-f005"> Click here to enlarge figure </a></p> --> </div> </div> <div class="html-fig_show mfp-hide" id="fig_body_display_ijms-25-01469-f005"> <div class="html-caption"> <b>Figure 5.</b> Illustration of the miRNA-based drug discovery and development process beginning from target identification and miRNA discovery to FDA-approved miRNA therapeutics on the market. In the traditional drug development process, the timeline from target identification and drug discovery to phase 1–3 human clinical trials and, ultimately, FDA approval, followed by phase 4 studies, can go on for several years. Conversely, RNA-based and, more specifically, miRNA-based drug discovery and development can potentially mitigate attrition rates, time constraints, and costs. The initial phase in developing miRNA therapeutics involves systematically selecting potential miRNA candidates by analyzing patient samples and validating their relevance to a particular disease of interest through tissue culture and in vivo models. Various publicly available genomic and proteomic databases from diverse healthy and diseased tissues can aid in identifying promising miRNA candidates when combined with biological validation. The next step often involves modifying miRNA therapeutics and optimizing delivery systems suitable for in vivo applications. A major concern with miRNA therapeutics is their susceptibility to degradation by nucleases and endosomal escape. To improve the stability of miRNA therapeutics, chemical modifications such as adding a 2′-O-methyl group, 2-F group, locked nucleic acids (LNAs), or peptide nucleic acids (PNAs) as well as a phosphorothioate group considerably enhance stability. Various encapsulation methods such as lipid nanoparticles, neutral lipid emulsions, or dendrimer complexes equipped with a targeting moiety have been employed for improved delivery to target tissue and disease sites. Yet, challenges remain in transitioning these delivery systems into clinical applications due to potential immune activation effects and the lack of precise targeting for disease sites. Successful translation of lead miRNAs into clinical studies requires rigorous disease-specific in vivo testing using rodent and non-human primate models. Rigorous evaluation of toxicity data and target engagement is crucial to avert early setbacks in clinical trials. Created with <a href='http://BioRender.com' target='_blank' rel="noopener noreferrer">BioRender.com</a> (accessed on 16 January 2024).</div> <div class="html-img"><img data-large="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g005.png" data-original="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g005.png" alt="Ijms 25 01469 g005" data-lsrc="/ijms/ijms-25-01469/article_deploy/html/images/ijms-25-01469-g005.png" /></div> </div> <div class="html-table-wrap" id="ijms-25-01469-t001"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/1422-0067/25/3/1469/display" href='#table_body_display_ijms-25-01469-t001'> <img data-lsrc="https://pub.mdpi-res.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/1422-0067/25/3/1469/display" href="#table_body_display_ijms-25-01469-t001"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 1.</b> Examples of miRNA-based therapeutics in the preclinical development phase for human malignancies. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_ijms-25-01469-t001"> <div class="html-caption"><b>Table 1.</b> Examples of miRNA-based therapeutics in the preclinical development phase for human malignancies.</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Therapeutic Molecule</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Target miRNA</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Disease</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Biopharmaceutical Company</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Stage of Development</th></tr></thead><tbody ><tr ><td align='center' valign='middle' class='html-align-center' >RG-012</td><td align='center' valign='middle' class='html-align-center' >miRNA-21</td><td align='center' valign='middle' class='html-align-center' >Alport nephropathy</td><td align='center' valign='middle' class='html-align-center' >Regulus therapeutics (with the strategic alliance with Genzyme)</td><td align='center' valign='middle' class='html-align-center' >Preclinical stage</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >MGN-1374</td><td align='center' valign='middle' class='html-align-center' >miRNA-15 and miR-195</td><td align='center' valign='middle' class='html-align-center' >Post-myocardial infarction</td><td align='center' valign='middle' class='html-align-center' >miRagen therapeutics</td><td align='center' valign='middle' class='html-align-center' >Preclinical stage</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >MGN-2677</td><td align='center' valign='middle' class='html-align-center' >miR-143/145</td><td align='center' valign='middle' class='html-align-center' >Vascular disease</td><td align='center' valign='middle' class='html-align-center' >miRagen therapeutics</td><td align='center' valign='middle' class='html-align-center' >Preclinical stage</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >MGN-4220</td><td align='center' valign='middle' class='html-align-center' >miR-29</td><td align='center' valign='middle' class='html-align-center' >Cardiac fibrosis</td><td align='center' valign='middle' class='html-align-center' >miRagen therapeutics</td><td align='center' valign='middle' class='html-align-center' >Preclinical stage</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >MGN-4893</td><td align='center' valign='middle' class='html-align-center' >miR-451</td><td align='center' valign='middle' class='html-align-center' >For the treatment of disorders like abnormal red blood cell production</td><td align='center' valign='middle' class='html-align-center' >miRagen therapeutics.</td><td align='center' valign='middle' class='html-align-center' >Preclinical stage</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >MGN-5804</td><td align='center' valign='middle' class='html-align-center' >miR-378</td><td align='center' valign='middle' class='html-align-center' >Cardiometabolic disease</td><td align='center' valign='middle' class='html-align-center' >miRagen therapeutics</td><td align='center' valign='middle' class='html-align-center' >Preclinical stage</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >MGN-6114</td><td align='center' valign='middle' class='html-align-center' >miR-92</td><td align='center' valign='middle' class='html-align-center' >Peripheral arterial disease</td><td align='center' valign='middle' class='html-align-center' >miRagen therapeutics</td><td align='center' valign='middle' class='html-align-center' >Preclinical stage</td></tr><tr ><td align='center' valign='middle' class='html-align-center' >MGN-9103</td><td align='center' valign='middle' class='html-align-center' >miR-208</td><td align='center' valign='middle' class='html-align-center' >Chronic heart failure</td><td align='center' valign='middle' class='html-align-center' >miRagen therapeutics</td><td align='center' valign='middle' class='html-align-center' >Preclinical stage</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >MRG-107</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-155</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Amyotrophic lateral sclerosis (ALS)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miRagen therapeutics</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Completed preclinical stage</td></tr></tbody> </table> </div> <div class="html-table-wrap" id="ijms-25-01469-t002"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/1422-0067/25/3/1469/display" href='#table_body_display_ijms-25-01469-t002'> <img data-lsrc="https://pub.mdpi-res.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/1422-0067/25/3/1469/display" href="#table_body_display_ijms-25-01469-t002"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 2.</b> Clinical trials with miRNA therapeutics for various diseases. NCT numbered trials are registered at ClinicalTrials.gov; EudraCT numbered trials are registered at EU Clinical Trials Register (<a href='http://clinicaltrialsregister.eu' target='_blank' rel="noopener noreferrer">clinicaltrialsregister.eu</a>). </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_ijms-25-01469-t002"> <div class="html-caption"><b>Table 2.</b> Clinical trials with miRNA therapeutics for various diseases. NCT numbered trials are registered at ClinicalTrials.gov; EudraCT numbered trials are registered at EU Clinical Trials Register (<a href='http://clinicaltrialsregister.eu' target='_blank' rel="noopener noreferrer">clinicaltrialsregister.eu</a>).</div> <table > <thead ><tr ><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >miRNA Drug Name</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Targeted miRNA</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Study Title</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Mode of Action</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Disease/Condition</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Mode of Delivery</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Phase</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Status</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >Clinical Trial Number(s)</th><th align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >References</th></tr></thead><tbody ><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-10b </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-10b </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Evaluating the Expression Levels of MicroRNA-10b in Patients with Gliomas</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-10b as diagnostic and in vitro testing of anti-mir-10b as therapeutic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Astrocytoma<br>Oligodendroglioma<br>Oligoastrocytoma<br>Anaplastic Astrocytoma<br>Anaplastic Oligodendroglioma<br>Anaplastic Oligoastrocytoma<br>Glioblastoma<br>Brain Tumors<br>Brain Cancer</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Observational</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Recruiting</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NCT01849952</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >INT-1B3</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-193a-3p mimic </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >First-in-Human Study of INT-1B3 in Patients with Advanced Solid Tumors</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miRNA mimic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Advanced solid tumors</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Phase I</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Recruiting</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NCT04675996</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NA</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >AMT-130</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Artificial miRNA</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Safety and Proof-of-Concept (POC) Study with AMT-130 in Adults with Early Manifest Huntington’s Disease</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >A miRNA expression</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Huntington disease</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Stereotaxic infusion/viral transfer (adeno-associated vector)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Phase I </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Ongoing</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NCT04120493</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B146-ijms-25-01469" class="html-bibr">146</a>,<a href="#B147-ijms-25-01469" class="html-bibr">147</a>,<a href="#B148-ijms-25-01469" class="html-bibr">148</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >RG-012/lademirsen/SAR339375</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-21</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >A Study of RG-012 in Subjects with Alport Syndrome</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Anti-miR-21 Lademirsen—also known as RG-012, RG456070 or (SAR339375)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Alport syndrome</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Subcutaneous injection/chemical modification (phosphorothioate)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Phase II</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Completed</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NCT03373786</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B149-ijms-25-01469" class="html-bibr">149</a>,<a href="#B150-ijms-25-01469" class="html-bibr">150</a>,<a href="#B151-ijms-25-01469" class="html-bibr">151</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >RG-012/lademirsen/SAR339375</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-21</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Study of Lademirsen (SAR339375) in Patients with Alport Syndrome</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Anti-miR-21 Lademirsen—also known as RG-012, RG456070 or (SAR339375)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Alport syndrome</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Subcutaneous injection/chemical modification (phosphorothioate)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Phase II</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Terminated</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NCT02855268</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B149-ijms-25-01469" class="html-bibr">149</a>,<a href="#B150-ijms-25-01469" class="html-bibr">150</a>,<a href="#B151-ijms-25-01469" class="html-bibr">151</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >RGLS4326</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-17</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >A Study of RGLS4326 in Patients with Autosomal Dominant Polycystic Kidney Disease</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Anti-miR-17</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Autosomal dominant polycystic kidney disease</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Administered via subcutaneous injection</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Phase I</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Completed</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NCT04536688</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >RG-125/AZD4076</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-103/107</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >A Study to Assess the Safety and Tolerability of Single Doses of AZD4076 in Healthy Male Subjects</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Anti-miR</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Non-alcoholic Steatohepatitis (NASH)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Subcutaneous injection/biomolecule conjugation (GalNAc)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Phase I </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Active, not recruiting</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NCT02612662, NCT02826525</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B150-ijms-25-01469" class="html-bibr">150</a>,<a href="#B152-ijms-25-01469" class="html-bibr">152</a>,<a href="#B153-ijms-25-01469" class="html-bibr">153</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >RG-125/AZD4076</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-103/107</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >AZD4076 in Type 2 Diabetic Subjects with Non-Alcoholic Fatty Liver Disease</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Anti-miR</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >T2DM With NAFLD</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Subcutaneous injection/biomolecule conjugation (GalNAc)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Phase I </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Completed</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NCT02826525</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B150-ijms-25-01469" class="html-bibr">150</a>,<a href="#B152-ijms-25-01469" class="html-bibr">152</a>,<a href="#B153-ijms-25-01469" class="html-bibr">153</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >MRG-110</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-92a</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of MRG-110 following Intradermal Injection in Healthy Volunteers</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Anti-miR</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Healthy volunteer</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Skin injection/chemical modification (LNA)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Phase I </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Completed</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NCT03603431</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B154-ijms-25-01469" class="html-bibr">154</a>,<a href="#B155-ijms-25-01469" class="html-bibr">155</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >MesomiR 1</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-16</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >MesomiR 1: A Phase I Study of TargomiRs as 2nd or 3rd Line Treatment for Patients with Recurrent MPM and NSCLC</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miRNA mimic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Malignant pleural mesothelioma, non–small cell lung cancer</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Intravenously/vehicle transfer of nonliving bacterial nanocells (EDVs or TargomiRs) </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Phase I </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Completed</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NCT02369198</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B156-ijms-25-01469" class="html-bibr">156</a>,<a href="#B157-ijms-25-01469" class="html-bibr">157</a>,<a href="#B158-ijms-25-01469" class="html-bibr">158</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >CDR132L</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-132</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Clinical Study to Assess Safety, PK and PD Parameters of CDR132L</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Anti-miR</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Heart failure</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Intravenously/chemical modification (LNA)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Phase I </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Completed</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NCT04045405</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B159-ijms-25-01469" class="html-bibr">159</a>,<a href="#B160-ijms-25-01469" class="html-bibr">160</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Remlarsen/MRG-201</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-29</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Efficacy, Safety, and Tolerability of Remlarsen (MRG-201) following Intradermal Injection in Subjects With a History of Keloids</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miRNA mimic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Keloid disorder</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Skin injection/biomolecule conjugation (cholesterol)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Phase II</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Completed</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NCT03601052</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B161-ijms-25-01469" class="html-bibr">161</a>,<a href="#B162-ijms-25-01469" class="html-bibr">162</a>,<a href="#B163-ijms-25-01469" class="html-bibr">163</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Miravirsen/SPC3649</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-122</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Long-Term Extension Study of Miravirsen among Participants with Genotype 1 Chronic Hepatitis C (CHC) Who Have Not Responded to Pegylated-Interferon Alpha Plus Ribavirin</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Anti-miR</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Chronic hepatitis C virus</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Subcutaneous injection/chemical modification (LNA)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Phase II<br>Phase II<br>Phase II<br>Phase II<br>Phase II<br>Phase I</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Completed<br>Completed<br>Completed<br>Unknown<br>Unknown <br>Completed</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NCT02508090<br>NCT02508090, NCT02452814, NCT01200420, NCT01872936, NCT01727934, NCT01646489</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B164-ijms-25-01469" class="html-bibr">164</a>,<a href="#B165-ijms-25-01469" class="html-bibr">165</a>,<a href="#B166-ijms-25-01469" class="html-bibr">166</a>,<a href="#B167-ijms-25-01469" class="html-bibr">167</a>,<a href="#B168-ijms-25-01469" class="html-bibr">168</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Miravirsen/SPC3649</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-122</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Long Term Extension Study is Designed to Monitor Long-Term Efficacy and Safety of Miravirsen Sodium in Combination with Telaprevir and Ribavirin in Subjects with Chronic Hepatitis C Virus Genotype 1 Infection</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Anti-miR</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Chronic hepatitis C virus</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Subcutaneous injection/chemical modification (LNA)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Phase II</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Completed</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NCT02452814</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B164-ijms-25-01469" class="html-bibr">164</a>,<a href="#B165-ijms-25-01469" class="html-bibr">165</a>,<a href="#B166-ijms-25-01469" class="html-bibr">166</a>,<a href="#B167-ijms-25-01469" class="html-bibr">167</a>,<a href="#B168-ijms-25-01469" class="html-bibr">168</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Miravirsen/SPC3649</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-122</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Multiple Ascending Dose Study of Miravirsen in Treatment-Naïve Chronic Hepatitis C Subjects</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Anti-miR</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Chronic hepatitis C virus</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Subcutaneous injection/chemical modification (LNA)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Phase II<br>Phase II<br>Phase II<br>Phase I</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Completed<br>Unknown<br>Unknown <br>Completed</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NCT01200420</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B164-ijms-25-01469" class="html-bibr">164</a>,<a href="#B165-ijms-25-01469" class="html-bibr">165</a>,<a href="#B166-ijms-25-01469" class="html-bibr">166</a>,<a href="#B167-ijms-25-01469" class="html-bibr">167</a>,<a href="#B168-ijms-25-01469" class="html-bibr">168</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Miravirsen/SPC3649</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-122</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Miravirsen in Combination with Telaprevir and Ribavirin in Null Responder to Pegylated-Interferon Alpha Plus Ribavirin Subjects with Chronic Hepatitis C Virus Infection</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Anti-miR</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Chronic hepatitis C virus</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Subcutaneous injection/chemical modification (LNA)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Phase II<br>Phase II<br>Phase I</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Unknown</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NCT01872936</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B164-ijms-25-01469" class="html-bibr">164</a>,<a href="#B165-ijms-25-01469" class="html-bibr">165</a>,<a href="#B166-ijms-25-01469" class="html-bibr">166</a>,<a href="#B167-ijms-25-01469" class="html-bibr">167</a>,<a href="#B168-ijms-25-01469" class="html-bibr">168</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Miravirsen/SPC3649</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-122</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Miravirsen Study in Null Responder to Pegylated Interferon Alpha Plus Ribavirin Subjects with Chronic Hepatitis C</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Anti-miR</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Chronic hepatitis C virus</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Subcutaneous injection/chemical modification (LNA)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Phase II<br>Phase II<br>Phase I</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Unknown</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NCT01727934</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B164-ijms-25-01469" class="html-bibr">164</a>,<a href="#B165-ijms-25-01469" class="html-bibr">165</a>,<a href="#B166-ijms-25-01469" class="html-bibr">166</a>,<a href="#B167-ijms-25-01469" class="html-bibr">167</a>,<a href="#B168-ijms-25-01469" class="html-bibr">168</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Miravirsen/SPC3649</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-122</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Drug Interaction Study to Assess the Effect of Co-Administered Miravirsen and Telaprevir in Healthy Subjects</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Anti-miR</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Chronic hepatitis C virus</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Subcutaneous injection/chemical modification (LNA)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Phase II<br>Phase II<br>Phase I</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Completed</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NCT01646489</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B164-ijms-25-01469" class="html-bibr">164</a>,<a href="#B165-ijms-25-01469" class="html-bibr">165</a>,<a href="#B166-ijms-25-01469" class="html-bibr">166</a>,<a href="#B167-ijms-25-01469" class="html-bibr">167</a>,<a href="#B168-ijms-25-01469" class="html-bibr">168</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >RG-101</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-122</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >A Randomized, Multi-Center, Phase 2 Study to Evaluate Safety and Efficacy of Subcutaneous Injections of RG-101 in Combination with Oral Agents in Treatment Naïve, Genotype 1 and 4, Chronic Hepatitis.</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Anti-miR</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Chronic hepatitis C virus</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Subcutaneous injection/biomolecule conjugation (GalNAc)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Phase II</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >EudraCT numbers 2015-001535-21, <br>2015-004702-42, <br>2016-002069-77</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B150-ijms-25-01469" class="html-bibr">150</a>,<a href="#B169-ijms-25-01469" class="html-bibr">169</a>,<a href="#B170-ijms-25-01469" class="html-bibr">170</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >RG-101</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-122</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >A Multi-Center, Parallel Group, Open-Label, Phase 2 Study to Evaluate the Efficacy and Safety of a Single Subcutaneous Injection of RG-101 Combined with Oral GSK2878175</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Anti-miR</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Chronic hepatitis C virus</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Subcutaneous injection/biomolecule conjugation (GalNAc)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Phase II</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >EudraCT numbers <br>2015-004702-42</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B150-ijms-25-01469" class="html-bibr">150</a>,<a href="#B169-ijms-25-01469" class="html-bibr">169</a>,<a href="#B170-ijms-25-01469" class="html-bibr">170</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >RG-101</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-122</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >An Observational Long-Term Safety and Efficacy Follow-Up Study of Subjects Who Have Previously Received RG-101</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Anti-miR</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Chronic hepatitis C virus</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Subcutaneous injection/biomolecule conjugation (GalNAc)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Observational</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Unknown</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >EudraCT numbers <br>2016-002069-77</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B150-ijms-25-01469" class="html-bibr">150</a>,<a href="#B169-ijms-25-01469" class="html-bibr">169</a>,<a href="#B170-ijms-25-01469" class="html-bibr">170</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >MRX34</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-34a</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >A Multicenter Phase I Study of MRX34, MicroRNA miR-RX34 Liposomal Injection</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miRNA mimic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Primary liver cancer<br>SCLC<br>Lymphoma<br>Melanoma<br>Multiple myeloma<br>Renal cell carcinoma<br>NSCLC</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Intravenously/vehicle transfer (liposomal)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Phase I</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Terminated (5 immune related serious adverse events)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NCT01829971</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B65-ijms-25-01469" class="html-bibr">65</a>,<a href="#B82-ijms-25-01469" class="html-bibr">82</a>,<a href="#B83-ijms-25-01469" class="html-bibr">83</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >MRX34</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-34a</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Pharmacodynamics Study of MRX34, MicroRNA Liposomal Injection in Melanoma Patients with Biopsy Accessible Lesions</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miRNA mimic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Solid tumors (e.g., hepatocellular carcinoma, melanoma,<br>SCLC, NSCLC, lymphoma, multiple myeloma, renal cell carcinoma)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Intravenously/vehicle transfer (liposomal)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Phase I<br>Phase II</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Withdrawn (5 immune related serious adverse events in Phase I) </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NCT02862145</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B65-ijms-25-01469" class="html-bibr">65</a>,<a href="#B82-ijms-25-01469" class="html-bibr">82</a>,<a href="#B83-ijms-25-01469" class="html-bibr">83</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Cobomarsen/MRG-106</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-155</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Anti-miR</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Mycosis fungoides (MF)<br>Cutaneous T-cell Lymphoma (CTCL)<br>Chronic Lymphocytic Leukemia (CLL)<br>Diffuse large B-cell Lymphoma (DLBCL), ABC subtype<br>Adult T-cell leukemia/lymphoma (ATLL)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Intravenously/chemical modification (LNA)</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Phase I<br>Phase II<br>Phase II</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Completed<br>Terminated<br>Terminated</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NCT02580552, NCT03713320, NCT03837457</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B171-ijms-25-01469" class="html-bibr">171</a>,<a href="#B172-ijms-25-01469" class="html-bibr">172</a>,<a href="#B173-ijms-25-01469" class="html-bibr">173</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Serum MicroRNA-25</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-25</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Serum miR-25 as diagnostic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Pancreatic cancer</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Serum miR-25</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Observational</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Not yet recruiting</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NCT03432624</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Patisiran (ALN-TTR02),</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >RNAi therapeutic</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Transthyretin (TTR)- mediated amyloidosis</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >ALN-TTR02 administered by intravenous infusion</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Phase III</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Completed</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NCT01960348</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >[<a href="#B174-ijms-25-01469" class="html-bibr">174</a>]</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-10</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >miR-10</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Evaluating the Expression Levels of MicroRNA-10b in Patients with Gliomas</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >anti-miR-10</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Glioma</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Evaluating the expression levels of microRNA-10b in patients with gliomas</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Observational</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Recruiting</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >NCT01849952</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' > </td></tr></tbody> </table> </div> <div class="html-table-wrap" id="ijms-25-01469-t003"> <div class="html-table_wrap_td"> <div class="html-tablepopup html-tablepopup-link" data-counterslinkmanual = "https://www.mdpi.com/1422-0067/25/3/1469/display" href='#table_body_display_ijms-25-01469-t003'> <img data-lsrc="https://pub.mdpi-res.com/img/table.png" /> <a class="html-expand html-tablepopup" data-counterslinkmanual = "https://www.mdpi.com/1422-0067/25/3/1469/display" href="#table_body_display_ijms-25-01469-t003"></a> </div> </div> <div class="html-table_wrap_discription"> <b>Table 3.</b> Critical inquiries that must be addressed before clinical application of miRNA therapeutics. </div> </div> <div class="html-table_show mfp-hide " id="table_body_display_ijms-25-01469-t003"> <div class="html-caption"><b>Table 3.</b> Critical inquiries that must be addressed before clinical application of miRNA therapeutics.</div> <table > <tbody ><tr ><td align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >1</td><td align='center' valign='middle' style='border-top:solid thin;border-bottom:solid thin' class='html-align-center' >What methods can be used to effectively guide therapeutic miRNAs/miRNA inhibitors to their intended target tissue and cells in vivo?</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >2</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >How can the design of miRNA/miRNA-based drugs and delivery vehicles be optimized to reduce or, ideally, eliminate unintended impacts on non-targeted cells?</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >3</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >What other strategies can be used to improve more accurate targeting for miRNA/miRNA inhibitor therapeutics?</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >4</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Is there a risk of incompatibilities when using diverse carrier materials for advanced miRNA/miRNA inhibitor-based drug delivery, which may lead to undesired interactions between the materials and miRNA therapeutics? </td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >5</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Is there a risk of incompatibilities when using miRNA/miRNA inhibitor therapeutics in combination with traditional drugs pose the risk of incompatibilities?</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >6</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Do modifications of miRNA or miRNA inhibitors such as LNA miRNA mimic or miRNA inhibitors and other amiRNAs, cell-permeable molecules, delivery methods including biodegradable 3D matrices, nanocarriers like functionalized metals, viral vector-based transfer systems, or biomolecule conjugate combinations such as aptamers invoke immunogenic responses? If so, can the activation of immunogenic responses be ameliorated through the masking of reactive components or moieties?</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >7</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >What is the level of risk associated with genomic integrations of viral transduction constructs that carry miRNA or miRNA inhibitors?</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >8</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >What is the impact of the expression of endogenous miRNAs and mRNAs on exogenously delivered therapeutic miRNAs and miRNA inhibitors which may be also affected by factors like cell type, cell cycle, and the cellular environment?</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >9</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >What is the necessary dosage for particular administration techniques for miRNA mimics or miRNA inhibitors, such as skin injection, infusion, or inhalation, and for nanocarriers such as biodegradable 3D matrices?</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >10</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >How can the administration of miRNA/miRNA inhibitor therapeutic doses be regulated along intricate in vivo delivery pathways?</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >11</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >Is it possible to achieve consistent and sustainable rates of cellular uptake of miRNA/miRNA inhibitor therapeutics under varying in vivo conditions?</td></tr><tr ><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >12</td><td align='center' valign='middle' style='border-bottom:solid thin' class='html-align-center' >In what ways can dosing of miRNA mimics and inhibitors support the desired gene targeting outcome?</td></tr></tbody> </table> </div> </section><section class='html-fn_group'><table><tr id=''><td></td><td><div class='html-p'><b>Disclaimer/Publisher’s Note:</b> The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.</div></td></tr></table></section> <section id="html-copyright"><br>© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<a href='https://creativecommons.org/licenses/by/4.0/' target='_blank' rel="noopener noreferrer" >https://creativecommons.org/licenses/by/4.0/</a>).</section> </div> </div> <div class="additional-content"> <h2><a name="cite"></a>Share and Cite</h2> <div class="social-media-links" style="text-align: left;"> <a href="/cdn-cgi/l/email-protection#615e47000c115a1214030b0402155c27130e0c4453512c253128445220445351445353351308000d12445351000f0544535135130803140d0015080e0f124453510e074453512c0802130e332f204453513509041300110414150802124710140e155a47000c115a030e05185c09151511125b4e4e1616164f0c0511084f020e0c4e53575453555153445220445120445120351308000d12445351000f0544535135130803140d0015080e0f124453510e074453512c0802130e332f204453513509041300110414150802124451204451202003121513000215445220445351350904445351050812020e170413184453510e074453511509044453510d080f0a4453510304151604040f4453510c0802130e332f20124453514453590c08332f2012445358445351000f05445351004453510c18130800054453510e0744535109140c000f4453510508120400120412445322445351110013150802140d00130d18445351170013080e141244535102000f020413445351151811041244532244535109001244535106040f0413001504054453511208060f08070802000f15445351080f150413041215445351080f4453510419110d0e13080f064453511509040813445351110e15040f1508000d4453510012445351004453510f0e17040d445351020d0012124453510e0744535105131406124f445351350908124453510900124453510d0405445351150e4453511214031215000f1508000d445351080f170412150c040f1512445351080f445351080f1504130508120208110d080f00131844535113041204001302094453510708040d051244535112140209445351001244535103080e0d0e06184453224453510209040c0812151318445322445351000f054453510c04050802000d445351120208040f0204445351070e13445351150904445351050417040d0e110c040f154453510e074453510c08332f204c03001204054453511509041300110804124f445351271413150904130c0e1304445322445351150904445351130402040f15445351060d0e03000d445351121402020412124453510e07445351322033324c220e374c534453510c332f2044535117000202080f0412445351000600080f1215445351150904445351222e3728254c505844535111000f05040c0802445351090012445351071413150904134453511304170815000d081b0405445351080f150413041215445351080f445351332f204c0300120405445351080c0c140f0e150904130011080412445322445351080f020d1405080f064453510c08332f204c0300120405445351001111130e0002090412445351150e44535102000f02041344535115130400150c040f154f445351220e0f12041014040f150d18445322445351332f2044535115090413001104141508021244535109001704445351040c04130604054453510012445351090806090d18445351000500111500030d04445351000f054453510c0e05140d00134453510e1115080e0f12445351070e1344535102000f020413445351150904130011184f4453512c0e13040e170413445322445351000517000f02040c040f1512445351080f445351332f204453510209040c0812151318445351000f0544535105040d08170413184453510c0415090e0512445351090017044453510304040f4453511108170e15000d445351080f44535112090011080f064453511509044453510d000f0512020011044453510e07445351332f204c0300120405445351080c0c140f0e15090413001118445322445351080f020d1405080f064453510c08332f204c0300120405445351001111130e00020904124f445351220e0f12041014040f150d1844532244535115090444535103080e150402090f0e0d0e0618445351000f05445351110900130c00020414150802000d445351080f0514121513184453510900124453511608150f041212040544535100445351130412141306040f02044453510e07445351080f150413041215445351080f445351080f020e13110e130015080f06445351332f204c0300120405445351080c0c140f0e150904130011080412445351000f054453510c08332f20445351150904130011041415080212445351080f150e4453511509040813445351050417040d0e110c040f1544535111130e0613000c124f445351250412110815044453511214031215000f1508000d44535111130e0613041212445351080f445351111304020d080f0802000d44535113041204001302094453224453511509044453510708040d054453510e074453510c08332f204c030012040544535115090413001104141508021244535113040c00080f12445351080f4453510815124453510400130d18445351121500060412445322445351160815094453510e0f0d184453510044535107041644535111130e0613041212080f06445351150e445351020d080f0802000d445351050417040d0e110c040f154453224453510f0e0f044453511304000209080f064453511109001204445351282828445351020d080f0802000d445351151308000d124453510e134453510304080f06445351001111130e17040544535103184453511509044453513432445351270e0e05445351000f054453512513140644535120050c080f081215130015080e0f3a4f4f4f3c" title="Email"> <i class="fa fa-envelope-square" style="font-size: 30px;"></i> </a> <a href="https://twitter.com/intent/tweet?text=Trials+and+Tribulations+of+MicroRNA+Therapeutics&amp;hashtags=mdpiijms&amp;url=https%3A%2F%2Fwww.mdpi.com%2F2652402&amp;via=IJMS_MDPI" onclick="windowOpen(this.href,600,800); return false" target="_blank" rel="noopener noreferrer"> <i class="fa fa-twitter-x-square" style="font-size: 30px;"></i> </a> <a href=" http://www.linkedin.com/shareArticle?mini=true&amp;url=https%3A%2F%2Fwww.mdpi.com%2F2652402&amp;title=Trials%20and%20Tribulations%20of%20MicroRNA%20Therapeutics%26source%3Dhttps%3A%2F%2Fwww.mdpi.com%26summary%3DThe%20discovery%20of%20the%20link%20between%20microRNAs%20%28miRNAs%29%20and%20a%20myriad%20of%20human%20diseases%2C%20particularly%20various%20cancer%20types%2C%20has%20generated%20significant%20interest%20in%20exploring%20their%20potential%20as%20a%20novel%20class%20of%20drugs.%20This%20has%20led%20to%20substantial%20%5B...%5D" onclick="windowOpen(this.href,600,800); return false" title="LinkedIn" target="_blank" rel="noopener noreferrer"> <i class="fa fa-linkedin-square" style="font-size: 30px;"></i> </a> <a href="https://www.facebook.com/sharer.php?u=https://www.mdpi.com/2652402" title="facebook" target="_blank" rel="noopener noreferrer"> <i class="fa fa-facebook-square" style="font-size: 30px;"></i> </a> <a href="javascript:void(0);" title="Wechat" data-reveal-id="weixin-share-modal"> <i class="fa fa-weixin-square" style="font-size: 26px;"></i> </a> <a href="http://www.reddit.com/submit?url=https://www.mdpi.com/2652402" title="Reddit" target="_blank" rel="noopener noreferrer"> <i class="fa fa-reddit-square" style="font-size: 30px;"></i> </a> <a href="http://www.mendeley.com/import/?url=https://www.mdpi.com/2652402" title="Mendeley" target="_blank" rel="noopener noreferrer"> <i class="fa fa-mendeley-square" style="font-size: 30px;"></i> </a> </div> <div class="in-tab" style="padding-top: 0px!important; margin-top: 15px;"> <div><b>MDPI and ACS Style</b></div> <p> Seyhan, A.A. Trials and Tribulations of MicroRNA Therapeutics. <em>Int. J. Mol. Sci.</em> <b>2024</b>, <em>25</em>, 1469. https://doi.org/10.3390/ijms25031469 </p> <div style="display: block"> <b>AMA Style</b><br> <p> Seyhan AA. Trials and Tribulations of MicroRNA Therapeutics. <em>International Journal of Molecular Sciences</em>. 2024; 25(3):1469. https://doi.org/10.3390/ijms25031469 </p> <b>Chicago/Turabian Style</b><br> <p> Seyhan, Attila A. 2024. "Trials and Tribulations of MicroRNA Therapeutics" <em>International Journal of Molecular Sciences</em> 25, no. 3: 1469. https://doi.org/10.3390/ijms25031469 </p> <b>APA Style</b><br> <p> Seyhan, A. A. (2024). Trials and Tribulations of MicroRNA Therapeutics. <em>International Journal of Molecular Sciences</em>, <em>25</em>(3), 1469. https://doi.org/10.3390/ijms25031469 </p> </div> </div> <div class="info-box no-margin"> Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details <a target="_blank" href="https://www.mdpi.com/about/announcements/784">here</a>. </div> <h2><a name="metrics"></a>Article Metrics</h2> <div class="row"> <div class="small-12 columns"> <div id="loaded_cite_count" style="display:none">No</div> <div id="framed_div_cited_count" class="in-tab" style="display: none; overflow: auto;"></div> <div id="loaded" style="display:none">No</div> <div id="framed_div" class="in-tab" style="display: none; margin-top: 10px;"></div> </div> <div class="small-12 columns"> <div id="article_stats_div" style="display: none; margin-bottom: 1em;"> <h3>Article Access Statistics</h3> <div id="article_stats_swf" ></div> For more information on the journal statistics, click <a href="/journal/ijms/stats">here</a>. <div class="info-box"> Multiple requests from the same IP address are counted as one view. </div> </div> </div> </div> </div> </div> </article> </div> </div></div> <div class="webpymol-controls webpymol-controls-template" style="margin-top: 10px; display: none;"> <a class="bzoom">Zoom</a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="borient"> Orient </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="blines"> As Lines </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bsticks"> As Sticks </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bcartoon"> As Cartoon </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bsurface"> As Surface </a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bprevscene">Previous Scene</a> <span style="display: inline-block; margin-left: 5px; margin-right: 5px;">|</span> <a class="bnextscene">Next Scene</a> </div> <div id="scifeed-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="recommended-articles-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="author-biographies-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> </div> <div id="cite-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="Captcha" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Cite</h2> </div> <div class="small-12 columns"> <!-- BibTeX --> <form style="margin:0; padding:0; display:inline;" name="export-bibtex" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="1326201"> <input type="hidden" name="export_format_top" value="bibtex"> <input type="hidden" name="export_submit_top" value=""> </form> <!-- EndNote --> <form style="margin:0; padding:0; display:inline;" name="export-endnote" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="1326201"> <input type="hidden" name="export_format_top" value="endnote_no_abstract"> <input type="hidden" name="export_submit_top" value=""> </form> <!-- RIS --> <form style="margin:0; padding:0; display:inline;" name="export-ris" method="POST" action="/export"> <input type="hidden" name="articles_ids[]" value="1326201"> <input type="hidden" name="export_format_top" value="ris"> <input type="hidden" name="export_submit_top" value=""> </form> <div> Export citation file: <a href="javascript:window.document.forms['export-bibtex'].submit()">BibTeX</a> | <a href="javascript:window.document.forms['export-endnote'].submit()">EndNote</a> | <a href="javascript:window.document.forms['export-ris'].submit()">RIS</a> </div> </div> <div class="small-12 columns"> <div class="in-tab"> <div><b>MDPI and ACS Style</b></div> <p> Seyhan, A.A. Trials and Tribulations of MicroRNA Therapeutics. <em>Int. J. Mol. Sci.</em> <b>2024</b>, <em>25</em>, 1469. https://doi.org/10.3390/ijms25031469 </p> <div style="display: block"> <b>AMA Style</b><br> <p> Seyhan AA. Trials and Tribulations of MicroRNA Therapeutics. <em>International Journal of Molecular Sciences</em>. 2024; 25(3):1469. https://doi.org/10.3390/ijms25031469 </p> <b>Chicago/Turabian Style</b><br> <p> Seyhan, Attila A. 2024. "Trials and Tribulations of MicroRNA Therapeutics" <em>International Journal of Molecular Sciences</em> 25, no. 3: 1469. https://doi.org/10.3390/ijms25031469 </p> <b>APA Style</b><br> <p> Seyhan, A. A. (2024). Trials and Tribulations of MicroRNA Therapeutics. <em>International Journal of Molecular Sciences</em>, <em>25</em>(3), 1469. https://doi.org/10.3390/ijms25031469 </p> </div> </div> <div class="info-box no-margin"> Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details <a target="_blank" href="https://www.mdpi.com/about/announcements/784">here</a>. </div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> </div> </div> </div> </section> <div id="footer"> <div class="journal-info"> <span> <em><a class="Var_JournalInfo" href="/journal/ijms">Int. J. Mol. Sci.</a></em>, EISSN 1422-0067, Published by MDPI </span> <div class="large-right"> <span> <a href="/rss/journal/ijms" class="rss-link">RSS</a> </span> <span> <a href="/journal/ijms/toc-alert">Content Alert</a> </span> </div> </div> <div class="row full-width footer-links" data-equalizer="footer" data-equalizer-mq="small"> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Further Information </h3> <a href="/apc"> Article Processing Charges </a> <a href="/about/payment"> Pay an Invoice </a> <a href="/openaccess"> Open Access Policy </a> <a href="/about/contact"> Contact MDPI </a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Jobs at MDPI </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Guidelines </h3> <a href="/authors"> For Authors </a> <a href="/reviewers"> For Reviewers </a> <a href="/editors"> For Editors </a> <a href="/librarians"> For Librarians </a> <a href="/publishing_services"> For Publishers </a> <a href="/societies"> For Societies </a> <a href="/conference_organizers"> For Conference Organizers </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns"> <h3> MDPI Initiatives </h3> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> <a href="https://www.scilit.com" target="_blank" rel="noopener noreferrer"> Scilit </a> <a href="https://sciprofiles.com?utm_source=mpdi.com&utm_medium=bottom_menu&utm_campaign=initiative" target="_blank" rel="noopener noreferrer"> SciProfiles </a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> <a href="/about/proceedings"> Proceedings Series </a> </div> <div class="large-2 large-push-4 medium-3 small-6 right-border-large-without columns UA_FooterFollowMDPI"> <h3> Follow MDPI </h3> <a href="https://www.linkedin.com/company/mdpi" target="_blank" rel="noopener noreferrer"> LinkedIn </a> <a href="https://www.facebook.com/MDPIOpenAccessPublishing" target="_blank" rel="noopener noreferrer"> Facebook </a> <a href="https://twitter.com/MDPIOpenAccess" target="_blank" rel="noopener noreferrer"> Twitter </a> </div> <div id="footer-subscribe" class="large-4 large-pull-8 medium-12 small-12 left-border-large columns"> <div class="footer-subscribe__container"> <img class="show-for-large-up" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-white-small.png?71d18e5f805839ab?1739526160" alt="MDPI" title="MDPI Open Access Journals" style="height: 50px; margin-bottom: 10px;"> <form id="newsletter" method="POST" action="/subscribe"> <p> Subscribe to receive issue release notifications and newsletters from MDPI journals </p> <select multiple id="newsletter-journal" class="foundation-select" name="journals[]"> <option value="acoustics">Acoustics</option> <option value="amh">Acta Microbiologica Hellenica</option> <option value="actuators">Actuators</option> <option value="adhesives">Adhesives</option> <option value="admsci">Administrative Sciences</option> <option value="adolescents">Adolescents</option> <option value="arm">Advances in Respiratory Medicine</option> <option value="aerobiology">Aerobiology</option> <option value="aerospace">Aerospace</option> <option value="agriculture">Agriculture</option> <option value="agriengineering">AgriEngineering</option> <option value="agrochemicals">Agrochemicals</option> <option value="agronomy">Agronomy</option> <option value="ai">AI</option> <option value="aisens">AI Sensors</option> <option value="air">Air</option> <option value="algorithms">Algorithms</option> <option value="allergies">Allergies</option> <option value="alloys">Alloys</option> <option value="analytica">Analytica</option> <option value="analytics">Analytics</option> <option value="anatomia">Anatomia</option> <option value="anesthres">Anesthesia Research</option> <option value="animals">Animals</option> <option value="antibiotics">Antibiotics</option> <option value="antibodies">Antibodies</option> <option value="antioxidants">Antioxidants</option> <option value="applbiosci">Applied Biosciences</option> <option value="applmech">Applied Mechanics</option> <option value="applmicrobiol">Applied Microbiology</option> <option value="applnano">Applied Nano</option> <option value="applsci">Applied Sciences</option> <option value="asi">Applied System Innovation</option> <option value="appliedchem">AppliedChem</option> <option value="appliedmath">AppliedMath</option> <option value="aquacj">Aquaculture Journal</option> <option value="architecture">Architecture</option> <option value="arthropoda">Arthropoda</option> <option value="arts">Arts</option> <option value="astronomy">Astronomy</option> <option value="atmosphere">Atmosphere</option> <option value="atoms">Atoms</option> <option value="audiolres">Audiology Research</option> <option value="automation">Automation</option> <option value="axioms">Axioms</option> <option value="bacteria">Bacteria</option> <option value="batteries">Batteries</option> <option value="behavsci">Behavioral Sciences</option> <option value="beverages">Beverages</option> <option value="BDCC">Big Data and Cognitive Computing</option> <option value="biochem">BioChem</option> <option value="bioengineering">Bioengineering</option> <option value="biologics">Biologics</option> <option value="biology">Biology</option> <option value="blsf">Biology and Life Sciences Forum</option> <option value="biomass">Biomass</option> <option value="biomechanics">Biomechanics</option> <option value="biomed">BioMed</option> <option value="biomedicines">Biomedicines</option> <option value="biomedinformatics">BioMedInformatics</option> <option value="biomimetics">Biomimetics</option> <option value="biomolecules">Biomolecules</option> <option value="biophysica">Biophysica</option> <option value="biosensors">Biosensors</option> <option value="biosphere">Biosphere</option> <option value="biotech">BioTech</option> <option value="birds">Birds</option> <option value="blockchains">Blockchains</option> <option value="brainsci">Brain Sciences</option> <option value="buildings">Buildings</option> <option value="businesses">Businesses</option> <option value="carbon">C</option> <option value="cancers">Cancers</option> <option value="cardiogenetics">Cardiogenetics</option> <option value="catalysts">Catalysts</option> <option value="cells">Cells</option> <option value="ceramics">Ceramics</option> <option value="challenges">Challenges</option> <option value="ChemEngineering">ChemEngineering</option> <option value="chemistry">Chemistry</option> <option value="chemproc">Chemistry Proceedings</option> <option value="chemosensors">Chemosensors</option> <option value="children">Children</option> <option value="chips">Chips</option> <option value="civileng">CivilEng</option> <option value="cleantechnol">Clean Technologies</option> <option value="climate">Climate</option> <option value="ctn">Clinical and Translational Neuroscience</option> <option value="clinbioenerg">Clinical Bioenergetics</option> <option value="clinpract">Clinics and Practice</option> <option value="clockssleep">Clocks &amp; Sleep</option> <option value="coasts">Coasts</option> <option value="coatings">Coatings</option> <option value="colloids">Colloids and Interfaces</option> <option value="colorants">Colorants</option> <option value="commodities">Commodities</option> <option value="complications">Complications</option> <option value="compounds">Compounds</option> <option value="computation">Computation</option> <option value="csmf">Computer Sciences &amp; Mathematics Forum</option> <option value="computers">Computers</option> <option value="condensedmatter">Condensed Matter</option> <option value="conservation">Conservation</option> <option value="constrmater">Construction Materials</option> <option value="cmd">Corrosion and Materials Degradation</option> <option value="cosmetics">Cosmetics</option> <option value="covid">COVID</option> <option value="cmtr">Craniomaxillofacial Trauma &amp; Reconstruction</option> <option value="crops">Crops</option> <option value="cryo">Cryo</option> <option value="cryptography">Cryptography</option> <option value="crystals">Crystals</option> <option value="cimb">Current Issues in Molecular Biology</option> <option value="curroncol">Current Oncology</option> <option value="dairy">Dairy</option> <option value="data">Data</option> <option value="dentistry">Dentistry Journal</option> <option value="dermato">Dermato</option> <option value="dermatopathology">Dermatopathology</option> <option value="designs">Designs</option> <option value="diabetology">Diabetology</option> <option value="diagnostics">Diagnostics</option> <option value="dietetics">Dietetics</option> <option value="digital">Digital</option> <option value="disabilities">Disabilities</option> <option value="diseases">Diseases</option> <option value="diversity">Diversity</option> <option value="dna">DNA</option> <option value="drones">Drones</option> <option value="ddc">Drugs and Drug Candidates</option> <option value="dynamics">Dynamics</option> <option value="earth">Earth</option> <option value="ecologies">Ecologies</option> <option value="econometrics">Econometrics</option> <option value="economies">Economies</option> <option value="education">Education Sciences</option> <option value="electricity">Electricity</option> <option value="electrochem">Electrochem</option> <option value="electronicmat">Electronic Materials</option> <option value="electronics">Electronics</option> <option value="ecm">Emergency Care and Medicine</option> <option value="encyclopedia">Encyclopedia</option> <option value="endocrines">Endocrines</option> <option value="energies">Energies</option> <option value="esa">Energy Storage and Applications</option> <option value="eng">Eng</option> <option value="engproc">Engineering Proceedings</option> <option value="entropy">Entropy</option> <option value="eesp">Environmental and Earth Sciences Proceedings</option> <option value="environments">Environments</option> <option value="epidemiologia">Epidemiologia</option> <option value="epigenomes">Epigenomes</option> <option value="ebj">European Burn Journal</option> <option value="ejihpe">European Journal of Investigation in Health, Psychology and Education</option> <option value="fermentation">Fermentation</option> <option value="fibers">Fibers</option> <option value="fintech">FinTech</option> <option value="fire">Fire</option> <option value="fishes">Fishes</option> <option value="fluids">Fluids</option> <option value="foods">Foods</option> <option value="forecasting">Forecasting</option> <option value="forensicsci">Forensic Sciences</option> <option value="forests">Forests</option> <option value="fossstud">Fossil Studies</option> <option value="foundations">Foundations</option> <option value="fractalfract">Fractal and Fractional</option> <option value="fuels">Fuels</option> <option value="future">Future</option> <option value="futureinternet">Future Internet</option> <option value="futurepharmacol">Future Pharmacology</option> <option value="futuretransp">Future Transportation</option> <option value="galaxies">Galaxies</option> <option value="games">Games</option> <option value="gases">Gases</option> <option value="gastroent">Gastroenterology Insights</option> <option value="gastrointestdisord">Gastrointestinal Disorders</option> <option value="gastronomy">Gastronomy</option> <option value="gels">Gels</option> <option value="genealogy">Genealogy</option> <option value="genes">Genes</option> <option value="geographies">Geographies</option> <option value="geohazards">GeoHazards</option> <option value="geomatics">Geomatics</option> <option value="geometry">Geometry</option> <option value="geosciences">Geosciences</option> <option value="geotechnics">Geotechnics</option> <option value="geriatrics">Geriatrics</option> <option value="glacies">Glacies</option> <option value="gucdd">Gout, Urate, and Crystal Deposition Disease</option> <option value="grasses">Grasses</option> <option value="greenhealth">Green Health</option> <option value="hardware">Hardware</option> <option value="healthcare">Healthcare</option> <option value="hearts">Hearts</option> <option value="hemato">Hemato</option> <option value="hematolrep">Hematology Reports</option> <option value="heritage">Heritage</option> <option value="histories">Histories</option> <option value="horticulturae">Horticulturae</option> <option value="hospitals">Hospitals</option> <option value="humanities">Humanities</option> <option value="humans">Humans</option> <option value="hydrobiology">Hydrobiology</option> <option value="hydrogen">Hydrogen</option> <option value="hydrology">Hydrology</option> <option value="hygiene">Hygiene</option> <option value="immuno">Immuno</option> <option value="idr">Infectious Disease Reports</option> <option value="informatics">Informatics</option> <option value="information">Information</option> <option value="infrastructures">Infrastructures</option> <option value="inorganics">Inorganics</option> <option value="insects">Insects</option> <option value="instruments">Instruments</option> <option value="iic">Intelligent Infrastructure and Construction</option> <option value="ijerph">International Journal of Environmental Research and Public Health</option> <option value="ijfs">International Journal of Financial Studies</option> <option value="ijms">International Journal of Molecular Sciences</option> <option value="IJNS">International Journal of Neonatal Screening</option> <option value="ijom">International Journal of Orofacial Myology and Myofunctional Therapy</option> <option value="ijpb">International Journal of Plant Biology</option> <option value="ijt">International Journal of Topology</option> <option value="ijtm">International Journal of Translational Medicine</option> <option value="ijtpp">International Journal of Turbomachinery, Propulsion and Power</option> <option value="ime">International Medical Education</option> <option value="inventions">Inventions</option> <option value="IoT">IoT</option> <option value="ijgi">ISPRS International Journal of Geo-Information</option> <option value="J">J</option> <option value="jal">Journal of Ageing and Longevity</option> <option value="jcdd">Journal of Cardiovascular Development and Disease</option> <option value="jcto">Journal of Clinical &amp; Translational Ophthalmology</option> <option value="jcm">Journal of Clinical Medicine</option> <option value="jcs">Journal of Composites Science</option> <option value="jcp">Journal of Cybersecurity and Privacy</option> <option value="jdad">Journal of Dementia and Alzheimer&#039;s Disease</option> <option value="jdb">Journal of Developmental Biology</option> <option value="jeta">Journal of Experimental and Theoretical Analyses</option> <option value="jemr">Journal of Eye Movement Research</option> <option value="jfb">Journal of Functional Biomaterials</option> <option value="jfmk">Journal of Functional Morphology and Kinesiology</option> <option value="jof">Journal of Fungi</option> <option value="jimaging">Journal of Imaging</option> <option value="jintelligence">Journal of Intelligence</option> <option value="jlpea">Journal of Low Power Electronics and Applications</option> <option value="jmmp">Journal of Manufacturing and Materials Processing</option> <option value="jmse">Journal of Marine Science and Engineering</option> <option value="jmahp">Journal of Market Access &amp; Health Policy</option> <option value="jmms">Journal of Mind and Medical Sciences</option> <option value="jmp">Journal of Molecular Pathology</option> <option value="jnt">Journal of Nanotheranostics</option> <option value="jne">Journal of Nuclear Engineering</option> <option value="ohbm">Journal of Otorhinolaryngology, Hearing and Balance Medicine</option> <option value="jop">Journal of Parks</option> <option value="jpm">Journal of Personalized Medicine</option> <option value="jpbi">Journal of Pharmaceutical and BioTech Industry</option> <option value="jor">Journal of Respiration</option> <option value="jrfm">Journal of Risk and Financial Management</option> <option value="jsan">Journal of Sensor and Actuator Networks</option> <option value="joma">Journal of the Oman Medical Association</option> <option value="jtaer">Journal of Theoretical and Applied Electronic Commerce Research</option> <option value="jvd">Journal of Vascular Diseases</option> <option value="jox">Journal of Xenobiotics</option> <option value="jzbg">Journal of Zoological and Botanical Gardens</option> <option value="journalmedia">Journalism and Media</option> <option value="kidneydial">Kidney and Dialysis</option> <option value="kinasesphosphatases">Kinases and Phosphatases</option> <option value="knowledge">Knowledge</option> <option value="labmed">LabMed</option> <option value="laboratories">Laboratories</option> <option value="land">Land</option> <option value="languages">Languages</option> <option value="laws">Laws</option> <option value="life">Life</option> <option value="limnolrev">Limnological Review</option> <option value="lipidology">Lipidology</option> <option value="liquids">Liquids</option> <option value="literature">Literature</option> <option value="livers">Livers</option> <option value="logics">Logics</option> <option value="logistics">Logistics</option> <option value="lubricants">Lubricants</option> <option value="lymphatics">Lymphatics</option> <option value="make">Machine Learning and Knowledge Extraction</option> <option value="machines">Machines</option> <option value="macromol">Macromol</option> <option value="magnetism">Magnetism</option> <option value="magnetochemistry">Magnetochemistry</option> <option value="marinedrugs">Marine Drugs</option> <option value="materials">Materials</option> <option value="materproc">Materials Proceedings</option> <option value="mca">Mathematical and Computational Applications</option> <option value="mathematics">Mathematics</option> <option value="medsci">Medical Sciences</option> <option value="msf">Medical Sciences Forum</option> <option value="medicina">Medicina</option> <option value="medicines">Medicines</option> <option value="membranes">Membranes</option> <option value="merits">Merits</option> <option value="metabolites">Metabolites</option> <option value="metals">Metals</option> <option value="meteorology">Meteorology</option> <option value="methane">Methane</option> <option value="mps">Methods and Protocols</option> <option value="metrics">Metrics</option> <option value="metrology">Metrology</option> <option value="micro">Micro</option> <option value="microbiolres">Microbiology Research</option> <option value="micromachines">Micromachines</option> <option value="microorganisms">Microorganisms</option> <option value="microplastics">Microplastics</option> <option value="microwave">Microwave</option> <option value="minerals">Minerals</option> <option value="mining">Mining</option> <option value="modelling">Modelling</option> <option value="mmphys">Modern Mathematical Physics</option> <option value="molbank">Molbank</option> <option value="molecules">Molecules</option> <option value="mti">Multimodal Technologies and Interaction</option> <option value="muscles">Muscles</option> <option value="nanoenergyadv">Nanoenergy Advances</option> <option value="nanomanufacturing">Nanomanufacturing</option> <option value="nanomaterials">Nanomaterials</option> <option value="ndt">NDT</option> <option value="network">Network</option> <option value="neuroglia">Neuroglia</option> <option value="neurolint">Neurology International</option> <option value="neurosci">NeuroSci</option> <option value="nitrogen">Nitrogen</option> <option value="ncrna">Non-Coding RNA</option> <option value="nursrep">Nursing Reports</option> <option value="nutraceuticals">Nutraceuticals</option> <option value="nutrients">Nutrients</option> <option value="obesities">Obesities</option> <option value="oceans">Oceans</option> <option value="onco">Onco</option> <option value="optics">Optics</option> <option value="oral">Oral</option> <option value="organics">Organics</option> <option value="organoids">Organoids</option> <option value="osteology">Osteology</option> <option value="oxygen">Oxygen</option> <option value="parasitologia">Parasitologia</option> <option value="particles">Particles</option> <option value="pathogens">Pathogens</option> <option value="pathophysiology">Pathophysiology</option> <option value="pediatrrep">Pediatric Reports</option> <option value="pets">Pets</option> <option value="pharmaceuticals">Pharmaceuticals</option> <option value="pharmaceutics">Pharmaceutics</option> <option value="pharmacoepidemiology">Pharmacoepidemiology</option> <option value="pharmacy">Pharmacy</option> <option value="philosophies">Philosophies</option> <option value="photochem">Photochem</option> <option value="photonics">Photonics</option> <option value="phycology">Phycology</option> <option value="physchem">Physchem</option> <option value="psf">Physical Sciences Forum</option> <option value="physics">Physics</option> <option value="physiologia">Physiologia</option> <option value="plants">Plants</option> <option value="plasma">Plasma</option> <option value="platforms">Platforms</option> <option value="pollutants">Pollutants</option> <option value="polymers">Polymers</option> <option value="polysaccharides">Polysaccharides</option> <option value="populations">Populations</option> <option value="poultry">Poultry</option> <option value="powders">Powders</option> <option value="proceedings">Proceedings</option> <option value="processes">Processes</option> <option value="prosthesis">Prosthesis</option> <option value="proteomes">Proteomes</option> <option value="psychiatryint">Psychiatry International</option> <option value="psychoactives">Psychoactives</option> <option value="psycholint">Psychology International</option> <option value="publications">Publications</option> <option value="qubs">Quantum Beam Science</option> <option value="quantumrep">Quantum Reports</option> <option value="quaternary">Quaternary</option> <option value="radiation">Radiation</option> <option value="reactions">Reactions</option> <option value="realestate">Real Estate</option> <option value="receptors">Receptors</option> <option value="recycling">Recycling</option> <option value="rsee">Regional Science and Environmental Economics</option> <option value="religions">Religions</option> <option value="remotesensing">Remote Sensing</option> <option value="reports">Reports</option> <option value="reprodmed">Reproductive Medicine</option> <option value="resources">Resources</option> <option value="rheumato">Rheumato</option> <option value="risks">Risks</option> <option value="robotics">Robotics</option> <option value="ruminants">Ruminants</option> <option value="safety">Safety</option> <option value="sci">Sci</option> <option value="scipharm">Scientia Pharmaceutica</option> <option value="sclerosis">Sclerosis</option> <option value="seeds">Seeds</option> <option value="sensors">Sensors</option> <option value="separations">Separations</option> <option value="sexes">Sexes</option> <option value="signals">Signals</option> <option value="sinusitis">Sinusitis</option> <option value="smartcities">Smart Cities</option> <option value="socsci">Social Sciences</option> <option value="siuj">Société Internationale d’Urologie Journal</option> <option value="societies">Societies</option> <option value="software">Software</option> <option value="soilsystems">Soil Systems</option> <option value="solar">Solar</option> <option value="solids">Solids</option> <option value="spectroscj">Spectroscopy Journal</option> <option value="sports">Sports</option> <option value="standards">Standards</option> <option value="stats">Stats</option> <option value="stresses">Stresses</option> <option value="surfaces">Surfaces</option> <option value="surgeries">Surgeries</option> <option value="std">Surgical Techniques Development</option> <option value="sustainability">Sustainability</option> <option value="suschem">Sustainable Chemistry</option> <option value="symmetry">Symmetry</option> <option value="synbio">SynBio</option> <option value="systems">Systems</option> <option value="targets">Targets</option> <option value="taxonomy">Taxonomy</option> <option value="technologies">Technologies</option> <option value="telecom">Telecom</option> <option value="textiles">Textiles</option> <option value="thalassrep">Thalassemia Reports</option> <option value="therapeutics">Therapeutics</option> <option value="thermo">Thermo</option> <option value="timespace">Time and Space</option> <option value="tomography">Tomography</option> <option value="tourismhosp">Tourism and Hospitality</option> <option value="toxics">Toxics</option> <option value="toxins">Toxins</option> <option value="transplantology">Transplantology</option> <option value="traumacare">Trauma Care</option> <option value="higheredu">Trends in Higher Education</option> <option value="tropicalmed">Tropical Medicine and Infectious Disease</option> <option value="universe">Universe</option> <option value="urbansci">Urban Science</option> <option value="uro">Uro</option> <option value="vaccines">Vaccines</option> <option value="vehicles">Vehicles</option> <option value="venereology">Venereology</option> <option value="vetsci">Veterinary Sciences</option> <option value="vibration">Vibration</option> <option value="virtualworlds">Virtual Worlds</option> <option value="viruses">Viruses</option> <option value="vision">Vision</option> <option value="waste">Waste</option> <option value="water">Water</option> <option value="wild">Wild</option> <option value="wind">Wind</option> <option value="women">Women</option> <option value="world">World</option> <option value="wevj">World Electric Vehicle Journal</option> <option value="youth">Youth</option> <option value="zoonoticdis">Zoonotic Diseases</option> </select> <input name="email" type="email" placeholder="Enter your email address..." required="required" /> <button class="genericCaptcha button button--dark UA_FooterNewsletterSubscribeButton" type="submit">Subscribe</button> </form> </div> </div> </div> <div id="footer-copyright"> <div class="row"> <div class="columns large-6 medium-6 small-12 text-left"> © 1996-2025 MDPI (Basel, Switzerland) unless otherwise stated </div> <div class="columns large-6 medium-6 small-12 small-text-left medium-text-right large-text-right"> <a data-dropdown="drop-view-disclaimer" aria-controls="drop-view-disclaimer" aria-expanded="false" data-options="align:top; is_hover:true; hover_timeout:2000;"> Disclaimer </a> <div id="drop-view-disclaimer" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide text-left" data-dropdown-content aria-hidden="true" tabindex="-1"> Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. </div> <a href="/about/terms-and-conditions"> Terms and Conditions </a> <a href="/about/privacy"> Privacy Policy </a> </div> </div> </div> </div> <div id="cookie-notification" class="js-allow-cookies" style="display: none;"> <div class="columns large-10 medium-10 small-12"> We use cookies on our website to ensure you get the best experience.<br class="show-for-medium-up"/> Read more about our cookies <a href="/about/privacy">here</a>. </div> <div class="columns large-2 medium-2 small-12 small-only-text-left text-right"> <a class="button button--default" href="/accept_cookies">Accept</a> </div> </div> </div> <div id="main-share-modal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Share Link</h2> </div> <div class="small-12 columns"> <div class="social-media-links UA_ShareModalLinks" style="text-align: left;"> <a href="/cdn-cgi/l/email-protection#95aab3f4f8e5aee6e0f7fff0f6e1a8d3e7faf8b0a7a5d8d1c5dcb0a6d4b0a7a5b0a7a7c1e7fcf4f9e6b0a7a5f4fbf1b0a7a5c1e7fcf7e0f9f4e1fcfafbe6b0a7a5faf3b0a7a5d8fcf6e7fac7dbd4b0a7a5c1fdf0e7f4e5f0e0e1fcf6e6b3e4e0fae1aeb3f4f8e5aef7faf1eca8fde1e1e5e6afbabae2e2e2bbf8f1e5fcbbf6faf8baa7a3a0a7a1a5a7b0a6d4b0a5d4b0a5d4c1e7fcf4f9e6b0a7a5f4fbf1b0a7a5c1e7fcf7e0f9f4e1fcfafbe6b0a7a5faf3b0a7a5d8fcf6e7fac7dbd4b0a7a5c1fdf0e7f4e5f0e0e1fcf6e69f9fc1fdf0b0a7a5f1fce6f6fae3f0e7ecb0a7a5faf3b0a7a5e1fdf0b0a7a5f9fcfbfeb0a7a5f7f0e1e2f0f0fbb0a7a5f8fcf6e7fac7dbd4e6b0a7a5b0a7adf8fcc7dbd4e6b0a7acb0a7a5f4fbf1b0a7a5f4b0a7a5f8ece7fcf4f1b0a7a5faf3b0a7a5fde0f8f4fbb0a7a5f1fce6f0f4e6f0e6b0a7d6b0a7a5e5f4e7e1fcf6e0f9f4e7f9ecb0a7a5e3f4e7fcfae0e6b0a7a5f6f4fbf6f0e7b0a7a5e1ece5f0e6b0a7d6b0a7a5fdf4e6b0a7a5f2f0fbf0e7f4e1f0f1b0a7a5e6fcf2fbfcf3fcf6f4fbe1b0a7a5fcfbe1f0e7f0e6e1b0a7a5fcfbb0a7a5f0ede5f9fae7fcfbf2b0a7a5e1fdf0fce7b0a7a5e5fae1f0fbe1fcf4f9b0a7a5f4e6b0a7a5f4b0a7a5fbfae3f0f9b0a7a5f6f9f4e6e6b0a7a5faf3b0a7a5f1e7e0f2e6bbb0a7a5c1fdfce6b0a7a5fdf4e6b0a7a5f9f0f1b0a7a5e1fab0a7a5e6e0f7e6e1f4fbe1fcf4f9b0a7a5fcfbe3f0e6e1f8f0fbe1e6b0a7a5fcfbb0a7a5fcfbe1f0e7f1fce6f6fce5f9fcfbf4e7ecb0a7a5e7f0e6f0f4e7f6fdb0a7a5f3fcf0f9f1e6b0a7a5e6e0f6fdb0a7a5f4e6b0a7a5f7fcfaf9faf2ecb0a7d6b0a7a5f6fdf0f8fce6e1e7ecb0a7d6b0a7a5f4fbf1b0a7a5f8f0f1fcf6f4f9b0a7a5e6f6fcf0fbf6f0b0a7a5f3fae7b0a7a5e1fdf0b0a7a5f1f0e3f0f9fae5f8f0fbe1b0a7a5faf3b0a7a5f8fcc7dbd4b8f7f4e6f0f1b0a7a5e1fdf0e7f4e5fcf0e6bbb0a7a5d3e0e7e1fdf0e7f8fae7f0b0a7d6b0a7a5e1fdf0b0a7a5e7f0f6f0fbe1b0a7a5f2f9faf7f4f9b0a7a5e6e0f6f6f0e6e6b0a7a5faf3b0a7a5c6d4c7c6b8d6fac3b8a7b0a7a5f8c7dbd4b0a7a5e3f4f6f6fcfbf0e6b0a7a5f4f2f4fcfbe6e1b0a7a5e1fdf0b0a7a5d6dac3dcd1b8a4acb0a7a5e5f4fbf1f0f8fcf6b0a7a5fdf4e6b0a7a5f3e0e7e1fdf0e7b0a7a5e7f0e3fce1f4f9fceff0f1b0a7a5fcfbe1f0e7f0e6e1b0a7a5fcfbb0a7a5c7dbd4b8f7f4e6f0f1b0a7a5fcf8f8e0fbfae1fdf0e7f4e5fcf0e6b0a7d6b0a7a5fcfbf6f9e0f1fcfbf2b0a7a5f8fcc7dbd4b8f7f4e6f0f1b0a7a5f4e5e5e7faf4f6fdf0e6b0a7a5e1fab0a7a5f6f4fbf6f0e7b0a7a5e1e7f0f4e1f8f0fbe1bbb0a7a5d6fafbe6f0e4e0f0fbe1f9ecb0a7d6b0a7a5c7dbd4b0a7a5e1fdf0e7f4e5f0e0e1fcf6e6b0a7a5fdf4e3f0b0a7a5f0f8f0e7f2f0f1b0a7a5f4e6b0a7a5fdfcf2fdf9ecb0a7a5f4f1f4e5e1f4f7f9f0b0a7a5f4fbf1b0a7a5f8faf1e0f9f4e7b0a7a5fae5e1fcfafbe6b0a7a5f3fae7b0a7a5f6f4fbf6f0e7b0a7a5e1fdf0e7f4e5ecbbb0a7a5d8fae7f0fae3f0e7b0a7d6b0a7a5f4f1e3f4fbf6f0f8f0fbe1e6b0a7a5fcfbb0a7a5c7dbd4b0a7a5f6fdf0f8fce6e1e7ecb0a7a5f4fbf1b0a7a5f1f0f9fce3f0e7ecb0a7a5f8f0e1fdfaf1e6b0a7a5fdf4e3f0b0a7a5f7f0f0fbb0a7a5e5fce3fae1f4f9b0a7a5fcfbb0a7a5e6fdf4e5fcfbf2b0a7a5e1fdf0b0a7a5f9f4fbf1e6f6f4e5f0b0a7a5faf3b0a7a5c7dbd4b8f7f4e6f0f1b0a7a5fcf8f8e0fbfae1fdf0e7f4e5ecb0a7d6b0a7a5fcfbf6f9e0f1fcfbf2b0a7a5f8fcc7dbd4b8f7f4e6f0f1b0a7a5f4e5e5e7faf4f6fdf0e6bbb0a7a5d6fafbe6f0e4e0f0fbe1f9ecb0a7d6b0a7a5e1fdf0b0a7a5f7fcfae1f0f6fdfbfaf9faf2ecb0a7a5f4fbf1b0a7a5e5fdf4e7f8f4f6f0e0e1fcf6f4f9b0a7a5fcfbf1e0e6e1e7ecb0a7a5fdf4e6b0a7a5e2fce1fbf0e6e6f0f1b0a7a5f4b0a7a5e7f0e6e0e7f2f0fbf6f0b0a7a5faf3b0a7a5fcfbe1f0e7f0e6e1b0a7a5fcfbb0a7a5fcfbf6fae7e5fae7f4e1fcfbf2b0a7a5c7dbd4b8f7f4e6f0f1b0a7a5fcf8f8e0fbfae1fdf0e7f4e5fcf0e6b0a7a5f4fbf1b0a7a5f8fcc7dbd4b0a7a5e1fdf0e7f4e5f0e0e1fcf6e6b0a7a5fcfbe1fab0a7a5e1fdf0fce7b0a7a5f1f0e3f0f9fae5f8f0fbe1b0a7a5e5e7faf2e7f4f8e6bbb0a7a5d1f0e6e5fce1f0b0a7a5e6e0f7e6e1f4fbe1fcf4f9b0a7a5e5e7faf2e7f0e6e6b0a7a5fcfbb0a7a5e5e7f0f6f9fcfbfcf6f4f9b0a7a5e7f0e6f0f4e7f6fdb0a7d6b0a7a5e1fdf0b0a7a5f3fcf0f9f1b0a7a5faf3b0a7a5f8fcc7dbd4b8f7f4e6f0f1b0a7a5e1fdf0e7f4e5f0e0e1fcf6e6b0a7a5e7f0f8f4fcfbe6b0a7a5fcfbb0a7a5fce1e6b0a7a5f0f4e7f9ecb0a7a5e6e1f4f2f0e6b0a7d6b0a7a5e2fce1fdb0a7a5fafbf9ecb0a7a5f4b0a7a5f3f0e2b0a7a5e5e7faf2e7f0e6e6fcfbf2b0a7a5e1fab0a7a5f6f9fcfbfcf6f4f9b0a7a5f1f0e3f0f9fae5f8f0fbe1b0a7d6b0a7a5fbfafbf0b0a7a5e7f0f4f6fdfcfbf2b0a7a5e5fdf4e6f0b0a7a5dcdcdcb0a7a5f6f9fcfbfcf6f4f9b0a7a5e1e7fcf4f9e6b0a7a5fae7b0a7a5f7f0fcfbf2b0a7a5f4e5e5e7fae3f0f1b0a7a5f7ecb0a7a5e1fdf0b0a7a5c0c6b0a7a5d3fafaf1b0a7a5f4fbf1b0a7a5d1e7e0f2b0a7a5d4f1f8fcfbfce6e1e7f4e1fcfafbb0a7a5b0a7add3d1d4b0a7acb0a7d6b0a7a5f4fbf1cebbbbbbc8" title="Email"> <i class="fa fa-envelope-square" style="font-size: 30px;"></i> </a> <a href="https://twitter.com/intent/tweet?text=Trials+and+Tribulations+of+MicroRNA+Therapeutics&amp;hashtags=mdpiijms&amp;url=https%3A%2F%2Fwww.mdpi.com%2F2652402&amp;via=IJMS_MDPI" onclick="windowOpen(this.href,600,800); return false" title="Twitter" target="_blank" rel="noopener noreferrer"> <i class="fa fa-twitter-x-square" style="font-size: 30px;"></i> </a> <a href=" http://www.linkedin.com/shareArticle?mini=true&amp;url=https%3A%2F%2Fwww.mdpi.com%2F2652402&amp;title=Trials%20and%20Tribulations%20of%20MicroRNA%20Therapeutics%26source%3Dhttps%3A%2F%2Fwww.mdpi.com%26summary%3DThe%20discovery%20of%20the%20link%20between%20microRNAs%20%28miRNAs%29%20and%20a%20myriad%20of%20human%20diseases%2C%20particularly%20various%20cancer%20types%2C%20has%20generated%20significant%20interest%20in%20exploring%20their%20potential%20as%20a%20novel%20class%20of%20drugs.%20This%20has%20led%20to%20substantial%20%5B...%5D" onclick="windowOpen(this.href,600,800); return false" title="LinkedIn" target="_blank" rel="noopener noreferrer"> <i class="fa fa-linkedin-square" style="font-size: 30px;"></i> </a> <a href="https://www.facebook.com/sharer.php?u=https://www.mdpi.com/2652402" title="facebook" target="_blank" rel="noopener noreferrer"> <i class="fa fa-facebook-square" style="font-size: 30px;"></i> </a> <a href="javascript:void(0);" title="Wechat" data-reveal-id="weixin-share-modal"> <i class="fa fa-weixin-square" style="font-size: 26px;"></i> </a> <a href="http://www.reddit.com/submit?url=https://www.mdpi.com/2652402" title="Reddit" target="_blank" rel="noopener noreferrer"> <i class="fa fa-reddit-square" style="font-size: 30px;"></i> </a> <a href="http://www.mendeley.com/import/?url=https://www.mdpi.com/2652402" title="Mendeley" target="_blank" rel="noopener noreferrer"> <i class="fa fa-mendeley-square" style="font-size: 30px;"></i> </a> <a href="http://www.citeulike.org/posturl?url=https://www.mdpi.com/2652402" title="CiteULike" target="_blank" rel="noopener noreferrer"> <i class="fa fa-citeulike-square" style="font-size: 30px;"></i> </a> </div> </div> <div class="small-9 columns"> <input id="js-clipboard-text" type="text" readonly value="https://www.mdpi.com/2652402" /> </div> <div class="small-3 columns text-left"> <a class="button button--color js-clipboard-copy" data-clipboard-target="#js-clipboard-text">Copy</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="weixin-share-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="weixin-share-modal-title" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="weixin-share-modal-title" style="margin: 0;">Share</h2> </div> <div class="small-12 columns"> <div class="weixin-qr-code-section"> <?xml version="1.0" standalone="no"?> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <svg width="300" height="300" version="1.1" xmlns="http://www.w3.org/2000/svg"> <desc>https://www.mdpi.com/2652402</desc> <g id="elements" fill="black" stroke="none"> <rect x="0" y="0" width="12" height="12" /> <rect x="12" y="0" width="12" height="12" /> <rect x="24" y="0" width="12" height="12" /> <rect x="36" y="0" width="12" height="12" /> <rect x="48" y="0" width="12" height="12" /> <rect x="60" y="0" width="12" height="12" /> <rect x="72" y="0" width="12" height="12" /> <rect x="108" y="0" width="12" height="12" /> <rect x="192" y="0" width="12" height="12" /> <rect x="216" y="0" width="12" height="12" /> <rect x="228" y="0" width="12" height="12" /> <rect x="240" y="0" width="12" height="12" /> <rect x="252" y="0" width="12" height="12" /> <rect x="264" y="0" width="12" height="12" /> <rect x="276" y="0" width="12" height="12" /> <rect x="288" y="0" width="12" height="12" /> <rect x="0" y="12" width="12" height="12" /> <rect x="72" y="12" width="12" height="12" /> <rect x="96" y="12" width="12" height="12" /> <rect x="108" y="12" width="12" height="12" /> <rect x="132" y="12" width="12" height="12" /> <rect x="144" y="12" width="12" height="12" /> <rect x="156" y="12" width="12" height="12" /> <rect x="180" y="12" width="12" height="12" /> <rect x="216" y="12" width="12" height="12" /> <rect x="288" y="12" width="12" height="12" /> <rect x="0" y="24" width="12" height="12" /> <rect x="24" y="24" width="12" height="12" /> <rect x="36" y="24" width="12" height="12" /> <rect x="48" y="24" width="12" height="12" /> <rect x="72" y="24" width="12" height="12" /> <rect x="108" y="24" width="12" height="12" /> <rect x="120" y="24" width="12" height="12" /> <rect x="132" y="24" width="12" height="12" /> <rect x="168" y="24" width="12" height="12" /> <rect x="192" y="24" width="12" height="12" /> <rect x="216" y="24" width="12" height="12" /> <rect x="240" y="24" width="12" height="12" /> <rect x="252" y="24" width="12" height="12" /> <rect x="264" y="24" width="12" height="12" /> <rect x="288" y="24" width="12" height="12" /> <rect x="0" y="36" width="12" height="12" /> <rect x="24" y="36" width="12" height="12" /> <rect x="36" y="36" width="12" height="12" /> <rect x="48" y="36" width="12" height="12" /> <rect x="72" y="36" width="12" height="12" /> <rect x="96" y="36" width="12" height="12" /> <rect x="108" y="36" width="12" height="12" /> <rect x="132" y="36" width="12" height="12" /> <rect x="144" y="36" width="12" height="12" /> <rect x="156" y="36" width="12" height="12" /> <rect x="168" y="36" width="12" height="12" /> <rect x="216" y="36" width="12" height="12" /> <rect x="240" y="36" width="12" height="12" /> <rect x="252" y="36" width="12" height="12" /> <rect x="264" y="36" width="12" height="12" /> <rect x="288" y="36" width="12" height="12" /> <rect x="0" y="48" width="12" height="12" /> <rect x="24" y="48" width="12" height="12" /> <rect x="36" y="48" width="12" height="12" /> <rect x="48" y="48" width="12" height="12" /> <rect x="72" y="48" width="12" height="12" /> <rect x="120" y="48" width="12" height="12" /> <rect x="144" y="48" width="12" height="12" /> <rect x="156" y="48" width="12" height="12" /> <rect x="216" y="48" width="12" height="12" /> <rect x="240" y="48" width="12" height="12" /> <rect x="252" y="48" width="12" height="12" /> <rect x="264" y="48" width="12" height="12" /> <rect x="288" y="48" width="12" height="12" /> <rect x="0" y="60" width="12" height="12" /> <rect x="72" y="60" width="12" height="12" /> <rect x="96" y="60" width="12" height="12" /> <rect x="120" y="60" width="12" height="12" /> <rect x="144" y="60" width="12" height="12" /> <rect x="156" y="60" width="12" height="12" /> <rect x="168" y="60" width="12" height="12" /> <rect x="180" y="60" width="12" height="12" /> <rect x="192" y="60" width="12" height="12" /> <rect x="216" y="60" width="12" height="12" /> <rect x="288" y="60" width="12" height="12" /> <rect x="0" y="72" width="12" height="12" /> <rect x="12" y="72" width="12" height="12" /> <rect x="24" y="72" width="12" height="12" /> <rect x="36" y="72" width="12" height="12" /> <rect x="48" y="72" width="12" height="12" /> <rect x="60" y="72" width="12" height="12" /> <rect x="72" y="72" width="12" height="12" /> <rect x="96" y="72" width="12" height="12" /> <rect x="120" y="72" width="12" height="12" /> <rect x="144" y="72" width="12" height="12" /> <rect x="168" y="72" width="12" height="12" /> <rect x="192" y="72" width="12" height="12" /> <rect x="216" y="72" width="12" height="12" /> <rect x="228" y="72" width="12" height="12" /> <rect x="240" y="72" width="12" height="12" /> <rect x="252" y="72" width="12" height="12" /> <rect x="264" y="72" width="12" height="12" /> <rect x="276" y="72" width="12" height="12" /> <rect x="288" y="72" width="12" height="12" /> <rect x="144" y="84" width="12" height="12" /> <rect x="168" y="84" width="12" height="12" /> <rect x="180" y="84" width="12" height="12" /> <rect x="0" y="96" width="12" height="12" /> <rect x="12" y="96" width="12" height="12" /> <rect x="24" y="96" width="12" height="12" /> <rect x="36" y="96" width="12" height="12" /> <rect x="48" y="96" width="12" height="12" /> <rect x="72" y="96" width="12" height="12" /> <rect x="84" y="96" width="12" height="12" /> <rect x="96" y="96" width="12" height="12" /> <rect x="108" y="96" width="12" height="12" /> <rect x="120" y="96" width="12" height="12" /> <rect x="144" y="96" width="12" height="12" /> <rect x="156" y="96" width="12" height="12" /> <rect x="168" y="96" width="12" height="12" /> <rect x="204" y="96" width="12" height="12" /> <rect x="228" y="96" width="12" height="12" /> <rect x="252" y="96" width="12" height="12" /> <rect x="276" y="96" width="12" height="12" /> <rect x="0" y="108" width="12" height="12" /> <rect x="24" y="108" width="12" height="12" /> <rect x="60" y="108" width="12" height="12" /> <rect x="108" y="108" width="12" height="12" /> <rect x="144" y="108" width="12" height="12" /> <rect x="156" y="108" width="12" height="12" /> <rect x="192" y="108" width="12" height="12" /> <rect x="204" y="108" width="12" height="12" /> <rect x="228" y="108" width="12" height="12" /> <rect x="276" y="108" width="12" height="12" /> <rect x="12" y="120" width="12" height="12" /> <rect x="36" y="120" width="12" height="12" /> <rect x="60" y="120" width="12" height="12" /> <rect x="72" y="120" width="12" height="12" /> <rect x="84" y="120" width="12" height="12" /> <rect x="108" y="120" width="12" height="12" /> <rect x="168" y="120" width="12" height="12" /> <rect x="180" y="120" width="12" height="12" /> <rect x="204" y="120" width="12" height="12" /> <rect x="216" y="120" width="12" height="12" /> <rect x="228" y="120" width="12" height="12" /> <rect x="240" y="120" width="12" height="12" /> <rect x="252" y="120" width="12" height="12" /> <rect x="276" y="120" width="12" height="12" /> <rect x="288" y="120" width="12" height="12" /> <rect x="36" y="132" width="12" height="12" /> <rect x="48" y="132" width="12" height="12" /> <rect x="60" y="132" width="12" height="12" /> <rect x="96" y="132" width="12" height="12" /> <rect x="108" y="132" width="12" height="12" /> <rect x="120" y="132" width="12" height="12" /> <rect x="144" y="132" width="12" height="12" /> <rect x="168" y="132" width="12" height="12" /> <rect x="180" y="132" width="12" height="12" /> <rect x="204" y="132" width="12" height="12" /> <rect x="228" y="132" width="12" height="12" /> <rect x="288" y="132" width="12" height="12" /> <rect x="12" y="144" width="12" height="12" /> <rect x="24" y="144" width="12" height="12" /> <rect x="72" y="144" width="12" height="12" /> <rect x="84" y="144" width="12" height="12" /> <rect x="108" y="144" width="12" height="12" /> <rect x="144" y="144" width="12" height="12" /> <rect x="156" y="144" width="12" height="12" /> <rect x="180" y="144" width="12" height="12" /> <rect x="192" y="144" width="12" height="12" /> <rect x="204" y="144" width="12" height="12" /> <rect x="216" y="144" width="12" height="12" /> <rect x="228" y="144" width="12" height="12" /> <rect x="240" y="144" width="12" height="12" /> <rect x="264" y="144" width="12" height="12" /> <rect x="276" y="144" width="12" height="12" /> <rect x="288" y="144" width="12" height="12" /> <rect x="0" y="156" width="12" height="12" /> <rect x="12" y="156" width="12" height="12" /> <rect x="96" y="156" width="12" height="12" /> <rect x="108" y="156" width="12" height="12" /> <rect x="120" y="156" width="12" height="12" /> <rect x="144" y="156" width="12" height="12" /> <rect x="192" y="156" width="12" height="12" /> <rect x="204" y="156" width="12" height="12" /> <rect x="228" y="156" width="12" height="12" /> <rect x="252" y="156" width="12" height="12" /> <rect x="276" y="156" width="12" height="12" /> <rect x="0" y="168" width="12" height="12" /> <rect x="60" y="168" width="12" height="12" /> <rect x="72" y="168" width="12" height="12" /> <rect x="84" y="168" width="12" height="12" /> <rect x="96" y="168" width="12" height="12" /> <rect x="144" y="168" width="12" height="12" /> <rect x="180" y="168" width="12" height="12" /> <rect x="204" y="168" width="12" height="12" /> <rect x="216" y="168" width="12" height="12" /> <rect x="228" y="168" width="12" height="12" /> <rect x="240" y="168" width="12" height="12" /> <rect x="252" y="168" width="12" height="12" /> <rect x="276" y="168" width="12" height="12" /> <rect x="288" y="168" width="12" height="12" /> <rect x="0" y="180" width="12" height="12" /> <rect x="36" y="180" width="12" height="12" /> <rect x="84" y="180" width="12" height="12" /> <rect x="96" y="180" width="12" height="12" /> <rect x="120" y="180" width="12" height="12" /> <rect x="144" y="180" width="12" height="12" /> <rect x="180" y="180" width="12" height="12" /> <rect x="192" y="180" width="12" height="12" /> <rect x="204" y="180" width="12" height="12" /> <rect x="228" y="180" width="12" height="12" /> <rect x="240" y="180" width="12" height="12" /> <rect x="288" y="180" width="12" height="12" /> <rect x="0" y="192" width="12" height="12" /> <rect x="36" y="192" width="12" height="12" /> <rect x="72" y="192" width="12" height="12" /> <rect x="96" y="192" width="12" height="12" /> <rect x="108" y="192" width="12" height="12" /> <rect x="120" y="192" width="12" height="12" /> <rect x="132" y="192" width="12" height="12" /> <rect x="168" y="192" width="12" height="12" /> <rect x="180" y="192" width="12" height="12" /> <rect x="192" y="192" width="12" height="12" /> <rect x="204" y="192" width="12" height="12" /> <rect x="216" y="192" width="12" height="12" /> <rect x="228" y="192" width="12" height="12" /> <rect x="240" y="192" width="12" height="12" /> <rect x="264" y="192" width="12" height="12" /> <rect x="96" y="204" width="12" height="12" /> <rect x="108" y="204" width="12" height="12" /> <rect x="120" y="204" width="12" height="12" /> <rect x="132" y="204" width="12" height="12" /> <rect x="180" y="204" width="12" height="12" /> <rect x="192" y="204" width="12" height="12" /> <rect x="240" y="204" width="12" height="12" /> <rect x="252" y="204" width="12" height="12" /> <rect x="0" y="216" width="12" height="12" /> <rect x="12" y="216" width="12" height="12" /> <rect x="24" y="216" width="12" height="12" /> <rect x="36" y="216" width="12" height="12" /> <rect x="48" y="216" width="12" height="12" /> <rect x="60" y="216" width="12" height="12" /> <rect x="72" y="216" width="12" height="12" /> <rect x="96" y="216" width="12" height="12" /> <rect x="156" y="216" width="12" height="12" /> <rect x="168" y="216" width="12" height="12" /> <rect x="192" y="216" width="12" height="12" /> <rect x="216" y="216" width="12" height="12" /> <rect x="240" y="216" width="12" height="12" /> <rect x="264" y="216" width="12" height="12" /> <rect x="276" y="216" width="12" height="12" /> <rect x="288" y="216" width="12" height="12" /> <rect x="0" y="228" width="12" height="12" /> <rect x="72" y="228" width="12" height="12" /> <rect x="120" y="228" width="12" height="12" /> <rect x="144" y="228" width="12" height="12" /> <rect x="156" y="228" width="12" height="12" /> <rect x="168" y="228" width="12" height="12" /> <rect x="192" y="228" width="12" height="12" /> <rect x="240" y="228" width="12" height="12" /> <rect x="252" y="228" width="12" height="12" /> <rect x="288" y="228" width="12" height="12" /> <rect x="0" y="240" width="12" height="12" /> <rect x="24" y="240" width="12" height="12" /> <rect x="36" y="240" width="12" height="12" /> <rect x="48" y="240" width="12" height="12" /> <rect x="72" y="240" width="12" height="12" /> <rect x="96" y="240" width="12" height="12" /> <rect x="108" y="240" width="12" height="12" /> <rect x="144" y="240" width="12" height="12" /> <rect x="180" y="240" width="12" height="12" /> <rect x="192" y="240" width="12" height="12" /> <rect x="204" y="240" width="12" height="12" /> <rect x="216" y="240" width="12" height="12" /> <rect x="228" y="240" width="12" height="12" /> <rect x="240" y="240" width="12" height="12" /> <rect x="264" y="240" width="12" height="12" /> <rect x="276" y="240" width="12" height="12" /> <rect x="288" y="240" width="12" height="12" /> <rect x="0" y="252" width="12" height="12" /> <rect x="24" y="252" width="12" height="12" /> <rect x="36" y="252" width="12" height="12" /> <rect x="48" y="252" width="12" height="12" /> <rect x="72" y="252" width="12" height="12" /> <rect x="96" y="252" width="12" height="12" /> <rect x="120" y="252" width="12" height="12" /> <rect x="132" y="252" width="12" height="12" /> <rect x="168" y="252" width="12" height="12" /> <rect x="216" y="252" width="12" height="12" /> <rect x="240" y="252" width="12" height="12" /> <rect x="252" y="252" width="12" height="12" /> <rect x="264" y="252" width="12" height="12" /> <rect x="276" y="252" width="12" height="12" /> <rect x="288" y="252" width="12" height="12" /> <rect x="0" y="264" width="12" height="12" /> <rect x="24" y="264" width="12" height="12" /> <rect x="36" y="264" width="12" height="12" /> <rect x="48" y="264" width="12" height="12" /> <rect x="72" y="264" width="12" height="12" /> <rect x="96" y="264" width="12" height="12" /> <rect x="120" y="264" width="12" height="12" /> <rect x="144" y="264" width="12" height="12" /> <rect x="192" y="264" width="12" height="12" /> <rect x="252" y="264" width="12" height="12" /> <rect x="264" y="264" width="12" height="12" /> <rect x="288" y="264" width="12" height="12" /> <rect x="0" y="276" width="12" height="12" /> <rect x="72" y="276" width="12" height="12" /> <rect x="96" y="276" width="12" height="12" /> <rect x="132" y="276" width="12" height="12" /> <rect x="144" y="276" width="12" height="12" /> <rect x="168" y="276" width="12" height="12" /> <rect x="180" y="276" width="12" height="12" /> <rect x="192" y="276" width="12" height="12" /> <rect x="204" y="276" width="12" height="12" /> <rect x="228" y="276" width="12" height="12" /> <rect x="240" y="276" width="12" height="12" /> <rect x="252" y="276" width="12" height="12" /> <rect x="288" y="276" width="12" height="12" /> <rect x="0" y="288" width="12" height="12" /> <rect x="12" y="288" width="12" height="12" /> <rect x="24" y="288" width="12" height="12" /> <rect x="36" y="288" width="12" height="12" /> <rect x="48" y="288" width="12" height="12" /> <rect x="60" y="288" width="12" height="12" /> <rect x="72" y="288" width="12" height="12" /> <rect x="96" y="288" width="12" height="12" /> <rect x="108" y="288" width="12" height="12" /> <rect x="120" y="288" width="12" height="12" /> <rect x="144" y="288" width="12" height="12" /> <rect x="156" y="288" width="12" height="12" /> <rect x="228" y="288" width="12" height="12" /> <rect x="240" y="288" width="12" height="12" /> <rect x="252" y="288" width="12" height="12" /> <rect x="264" y="288" width="12" height="12" /> <rect x="276" y="288" width="12" height="12" /> <rect x="288" y="288" width="12" height="12" /> </g> </svg> </div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <a href="#" class="back-to-top"><span class="show-for-medium-up">Back to Top</span><span class="show-for-small">Top</span></a> <script data-cfasync="false" src="/cdn-cgi/scripts/5c5dd728/cloudflare-static/email-decode.min.js"></script><script src="https://pub.mdpi-res.com/assets/js/modernizr-2.8.3.min.js?5227e0738f7f421d?1739526160"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery-1.12.4.min.js?4f252523d4af0b47?1739526160"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.min.js?6b2ec41c18b29054?1739526160"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.equalizer.min.js?0f6c549b75ec554c?1739526160"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.multiselect.js?0edd3998731d1091?1739526160"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.cycle2.min.js?63413052928f97ee?1739526160"></script> <script> // old browser fix - this way the console log rows won't throw (silent) errors in browsers not supporting console log if (!window.console) window.console = {}; if (!window.console.log) window.console.log = function () { }; var currentJournalNameSystem = "ijms"; $(document).ready(function() { $('select.foundation-select').multiselect({ search: true, minHeight: 130, maxHeight: 130, }); $(document).foundation({ orbit: { timer_speed: 4000, }, reveal: { animation: 'fadeAndPop', animation_speed: 100, } }); $(".chosen-select").each(function(element) { var maxSelected = (undefined !== $(this).data('maxselectedoptions') ? $(this).data('maxselectedoptions') : 100); $(this).on('chosen:ready', function(event, data) { var select = $(data.chosen.form_field); if (select.attr('id') === 'journal-browser-volume') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Volume_Options'); } if (select.attr('id') === 'journal-browser-issue') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Issue_Options'); } }).chosen({ display_disabled_options: false, disable_search_threshold: 7, max_selected_options: maxSelected, width: "100%" }); }); $(".toEncode").each(function(e) { var oldHref = $(this).attr("href"); var newHref = oldHref.replace('.botdefense.please.enable.javascript.','@'); $(this).attr("href", newHref); if (!$(this).hasClass("emailCaptcha")) { $(this).html(newHref.replace('mailto:', '')); } $(this).removeClass("visibility-hidden"); }); $(document).on('opened.fndtn.reveal', '[data-reveal]', function() { $(document).foundation('equalizer', 'reflow'); }); // fix the images that have tag height / width defined // otherwise the default foundation styles overwrite the tag definitions $("img").each(function() { if ($(this).attr('width') != undefined || $(this).attr('height') != undefined) { $(this).addClass("img-fixed"); } }); $("#basic_search, #advanced_search").submit(function(e) { var searchArguments = false; $(this).find("input,select").not("#search,.search-button").each(function() { if (undefined === $(this).val() || "" === $(this).val()) { $(this).attr('name', null); } else { $(this).attr('name'); searchArguments = true; } }); if (!searchArguments) { window.location = $(this).attr('action'); return false; } }); $(".hide-show-desktop-option").click(function(e) { e.preventDefault(); var parentDiv = $(this).closest("div"); $.ajax({ url: $(this).attr('href'), success: function(msg) { parentDiv.removeClass().hide(); } }); }); $(".generic-toggleable-header").click(function(e) { $(this).toggleClass("active"); $(this).next(".generic-toggleable-content").toggleClass("active"); }); /* * handle whole row as a link if the row contains only one visible link */ $("table.new tr").hover(function() { if ($(this).find("td:visible a").length == 1) { $(this).addClass("single-link"); } }, function() { $(this).removeClass("single-link"); }); $("table.new:not(.table-of-tables)").on("click", "tr.single-link", function(e) { var target = $(e.target); if (!e.ctrlKey && !target.is("a")) { $(this).find("td:visible a")[0].click(); } }); $(document).on("click", ".custom-accordion-for-small-screen-link", function(e) { if ($(this).closest("#basic_search").length > 0) { if ($(".search-container__advanced").first().is(":visible")) { openAdvanced() } } if (Foundation.utils.is_small_only()) { if ($(this).hasClass("active")) { $(this).removeClass("active"); $(this).next(".custom-accordion-for-small-screen-content").addClass("show-for-medium-up"); } else { $(this).addClass("active"); $(this).next(".custom-accordion-for-small-screen-content").removeClass("show-for-medium-up"); $(document).foundation('orbit', 'reflow'); } } if (undefined !== $(this).data("callback")) { var customCallback = $(this).data("callback"); func = window[customCallback]; func(); } }); $(document).on("click", ".js-open-small-search", function(e) { e.preventDefault(); $(this).toggleClass("active").closest(".tab-bar").toggleClass("active"); $(".search-container").toggleClass("hide-for-small-down"); }); $(document).on("click", ".js-open-menu", function(e) { $(".search-container").addClass("hide-for-small-down"); }); $(window).on('resize', function() { recalculate_main_browser_position(); recalculate_responsive_moving_containers(); }); updateSearchLabelVisibilities(); recalculate_main_browser_position(); recalculate_responsive_moving_containers(); if (window.document.documentMode == 11) { $("<link/>", { rel: "stylesheet", type: "text/css", href: "https://fonts.googleapis.com/icon?family=Material+Icons"}).appendTo("head"); } }); function recalculate_main_browser_position() { if (Foundation.utils.is_small_only()) { if ($("#js-main-top-container").parent("#js-large-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-small-main-top-container")); } } else { if ($("#js-main-top-container").parent("#js-small-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-large-main-top-container")); } } } function recalculate_responsive_moving_containers() { $(".responsive-moving-container.large").each(function() { var previousParent = $(".responsive-moving-container.active[data-id='"+$(this).data("id")+"']"); var movingContent = previousParent.html(); if (Foundation.utils.is_small_only()) { var currentParent = $(".responsive-moving-container.small[data-id='"+$(this).data("id")+"']"); } else if (Foundation.utils.is_medium_only()) { var currentParent = $(".responsive-moving-container.medium[data-id='"+$(this).data("id")+"']"); } else { var currentParent = $(".responsive-moving-container.large[data-id='"+$(this).data("id")+"']"); } if (previousParent.attr("class") !== currentParent.attr("class")) { currentParent.html(movingContent); previousParent.html(); currentParent.addClass("active"); previousParent.removeClass("active"); } }); } // cookies allowed is checked from a) local storage and b) from server separately so that the footer bar doesn't // get included in the custom page caches function checkCookiesAllowed() { var cookiesEnabled = localStorage.getItem("mdpi_cookies_enabled"); if (null === cookiesEnabled) { $.ajax({ url: "/ajax_cookie_value/mdpi_cookies_accepted", success: function(data) { if (data.value) { localStorage.setItem("mdpi_cookies_enabled", true); checkDisplaySurvey(); } else { $(".js-allow-cookies").show(); } } }); } else { checkDisplaySurvey(); } } function checkDisplaySurvey() { } window.addEventListener('CookiebotOnAccept', function (e) { var CookieDate = new Date; if (Cookiebot.consent.preferences) { CookieDate.setFullYear(CookieDate.getFullYear() + 1); document.cookie = "mdpi_layout_type_v2=mobile; path=/; expires=" + CookieDate.toUTCString() + ";"; $(".js-toggle-desktop-layout-link").css("display", "inline-block"); } }, false); window.addEventListener('CookiebotOnDecline', function (e) { if (!Cookiebot.consent.preferences) { $(".js-toggle-desktop-layout-link").hide(); if ("" === "desktop") { window.location = "/toggle_desktop_layout_cookie"; } } }, false); var hash = $(location).attr('hash'); if ("#share" === hash) { if (1 === $("#main-share-modal").length) { $('#main-share-modal').foundation('reveal', 'open'); } } </script> <script src="https://pub.mdpi-res.com/assets/js/lib.js?b86ef680a60436c6?1739526160"></script> <script src="https://pub.mdpi-res.com/assets/js/mdpi.js?c267ce58392b15da?1739526160"></script> <script>var banners_url = 'https://serve.mdpi.com';</script> <script type='text/javascript' src='https://pub.mdpi-res.com/assets/js/ifvisible.min.js?c621d19ecb761212?1739526160'></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/affix.js?ac4ea55275297c15?1739526160"></script> <script src="https://pub.mdpi-res.com/assets/js/clipboard.min.js?3f3688138a1b9fc4?1739526160"></script> <script type="text/javascript"> $(document).ready(function() { var helpFunctions = $(".middle-column__help__fixed"); var leftColumnAffix = $(".left-column__fixed"); var middleColumn = $("#middle-column"); var clone = null; helpFunctions.affix({ offset: { top: function() { return middleColumn.offset().top - 8 - (Foundation.utils.is_medium_only() ? 30 : 0); }, bottom: function() { return $("#footer").innerHeight() + 74 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); if (leftColumnAffix.length > 0) { clone = leftColumnAffix.clone(); clone.addClass("left-column__fixed__affix"); clone.insertBefore(leftColumnAffix); clone.css('width', leftColumnAffix.outerWidth() + 50); clone.affix({ offset: { top: function() { return leftColumnAffix.offset().top - 30 - (Foundation.utils.is_medium_only() ? 50 : 0); }, bottom: function() { return $("#footer").innerHeight() + 92 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); } $(window).on("resize", function() { if (clone !== null) { clone.css('width', leftColumnAffix.outerWidth() + 50); } }); new ClipboardJS('.js-clipboard-copy'); }); </script> <script src="https://pub.mdpi-res.com/assets/js/jquery-ui-1.13.2.min.js?1e2047978946a1d2?1739526160"></script> <script src="https://pub.mdpi-res.com/assets/js/slick.min.js?d5a61c749e44e471?1739526160"></script> <script> $(document).ready(function() { $(".link-article-menu").click(function(e) { e.preventDefault(); $(this).find('span').toggle(); $(this).next("div").toggleClass("active"); }); $(".js-similarity-related-articles").click(function(e) { e.preventDefault(); if ('' !== $('#recommended-articles-modal').attr('data-url')) { $('#recommended-articles-modal').foundation('reveal', 'open', $('#recommended-articles-modal').attr('data-url')); } }); $.ajax({ url: "/article/1326201/similarity-related/show-link", success: function(result) { if (result.show) { $('#recommended-articles-modal').attr('data-url', result.link); $('.js-article-similarity-container').show(); } } }); $("#recommended-articles-modal").on("click", ".ga-title-link-recommended-article", function(e) { var clickEventUrl = $(this).data("click-event-url"); if (typeof clickEventUrl !== "undefined") { fetch(clickEventUrl, { method: "GET", mode: "no-cors" }); } }); $(document).on('opened.fndtn.reveal', '[data-reveal]', function() { var modal = $(this); if (modal.attr('id') === "author-biographies-modal") { modal.find('.multiple-items').slick({ slidesToShow: 1, nextArrow: '<a class="slick-next" href="#"><i class="material-icons">chevron_right</i></a>', prevArrow: '<a class="slick-prev" href="#"><i class="material-icons">chevron_left</i></a>', slidesToScroll: 1, draggable: false, }); modal.find('.multiple-items').slick('refresh'); } }); }); </script> <script type="text/javascript"> if (-1 !== window.location.href.indexOf("?src=")) { window.history.replaceState({}, '', `${location.pathname}`); } $(document).ready(function() { var scifeedCounter = 0; var search = window.location.search; var mathjaxReady = false; // late image file loading $("img[data-lsrc]").each(function() { $(this).attr("src", $(this).data("lsrc")); }); // late mathjax initialization var head = document.getElementsByTagName("head")[0]; var script = document.createElement("script"); script.type = "text/x-mathjax-config"; script[(window.opera ? "innerHTML" : "text")] = "MathJax.Hub.processSectionDelay = 0;\n" + "MathJax.Hub.Config({\n" + " \"menuSettings\": {\n" + " CHTMLpreview: false\n" + " },\n" + " \"CHTML-preview\":{\n" + " disabled: true\n" + " },\n" + " \"HTML-CSS\": {\n" + " scale: 90,\n" + " availableFonts: [],\n" + " preferredFont: null,\n" + " preferredFonts: null,\n" + " webFont:\"Gyre-Pagella\",\n" + " imageFont:'TeX',\n" + " undefinedFamily:\"'Arial Unicode MS',serif\",\n" + " linebreaks: { automatic: false }\n" + " },\n" + " \"TeX\": {\n" + " extensions: ['noErrors.js'],\n" + " noErrors: {\n" + " inlineDelimiters: [\"\",\"\"],\n" + " multiLine: true,\n" + " style: {\n" + " 'font-size': '90%',\n" + " 'text-align': 'left',\n" + " 'color': 'black',\n" + " 'padding': '1px 3px',\n" + " 'border': '1px solid'\n" + " }\n" + " }\n" + " }\n" + "});\n" + "MathJax.Hub.Register.StartupHook('End', function() {\n" + " refreshMathjaxWidths();\n" + " mathjaxReady = true;\n" + "});\n" + "MathJax.Hub.Startup.signal.Interest(function (message) {\n" + " if (message == 'End') {\n" + " var hypoLink = document.getElementById('hypothesis_frame');\n" + " if (null !== hypoLink) {\n" + " hypoLink.setAttribute('src', 'https://commenting.mdpi.com/embed.js');\n" + " }\n" + " }\n" + "});"; head.appendChild(script); script = document.createElement("script"); script.type = "text/javascript"; script.src = "https://pub.mdpi-res.com/bundles/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"; head.appendChild(script); // article version checker if (0 === search.indexOf('?type=check_update&version=')) { $.ajax({ url: "/1422-0067/25/3/1469" + "/versioncheck" + search, success: function(result) { $(".js-check-update-container").html(result); } }); } $('#feed_option').click(function() { // tracker if ($('#scifeed_clicked').length<1) { $(this).append('<span style="display:none" id="scifeed_clicked">done</span>'); } $('#feed_data').toggle('slide', { direction: 'up'}, '1000'); // slideToggle(700); OR toggle(700) $("#scifeed_error_msg").html('').hide(); $("#scifeed_notice_msg").html('').hide(); }); $('#feed_option').click(function(event) { setTimeout(function(){ var captchaSection = $("#captchaSection"); captchaSection.removeClass('ui-helper-hidden').find('input').prop('disabled', false); // var img = captchaSection.find('img'); // img.attr('src', img.data('url') + "?" + (new Date()).getTime()); // $(".captcha_reload").trigger("click"); var img = document.getElementById('gregwar_captcha_scifeed'); img.src = '/generate-captcha/gcb_captcha?n=' + (new Date()).getTime(); },800); }); $(document).on('click', '.split_feeds', function() { var name = $( this ).attr('name'); var flag = 1 - ($(this).is(":checked")*1); $('.split_feeds').each(function (index) { if ($( this ).attr('name') !== name) { $(this)[0].checked = flag; } }); }); $(document).on('click', '#scifeed_submit, #scifeed_submit1', function(event) { event.preventDefault(); $(".captcha_reload").trigger("click"); $("#scifeed_error_msg").html(""); $("#scifeed_error_msg").hide(); }); $(document).on('click', '.subscription_toggle', function(event) { if ($(this).val() === 'Create SciFeed' && $('#scifeed_hidden_flag').length>0) { event.preventDefault(); // alert('Here there would be a captcha because user is not logged in'); var captchaSection = $("#captchaSection"); if (captchaSection.hasClass('ui-helper-hidden')) { captchaSection.removeClass('ui-helper-hidden').find('input').prop('disabled', false); var img = captchaSection.find('img'); img.attr('src', img.data('url') + "?" + (new Date()).getTime()); $("#reloadCaptcha").trigger("click"); } } }); $(document).on('click', '.scifeed_msg', function(){ $(this).hide(); }); $(document).on('click', '.article-scilit-search', function(e) { e.preventDefault(); var data = $(".article-scilit-search-data").val(); var dataArray = data.split(';').map(function(keyword) { return "(\"" + keyword.trim() + "\")"; }); var searchQuery = dataArray.join(" OR "); var searchUrl = encodeURI("https://www.scilit.com/articles/search?q="+ searchQuery + "&advanced=1&highlight=1"); var win = window.open(searchUrl, '_blank'); if (win) { win.focus(); } else { window.location(searchUrl); } }); display_stats(); citedCount(); follow_goto(); // Select the node that will be observed for mutations const targetNodes = document.getElementsByClassName('hypothesis-count-container'); // Options for the observer (which mutations to observe) const config = { attributes: false, childList: true, subtree: false }; // Callback function to execute when mutations are observed const callback = function(mutationList, observer) { for(const mutation of mutationList) { if (mutation.type === 'childList') { let node = $(mutation.target); if (parseInt(node.html()) > 0) { node.show(); } } } }; // Create an observer instance linked to the callback function const observer = new MutationObserver(callback); // Start observing the target node for configured mutations for(const targetNode of targetNodes) { observer.observe(targetNode, config); } // Select the node that will be observed for mutations const mathjaxTargetNode = document.getElementById('middle-column'); // Callback function to execute when mutations are observed const mathjaxCallback = function(mutationList, observer) { if (mathjaxReady && typeof(MathJax) !== 'undefined') { refreshMathjaxWidths(); } }; // Create an observer instance linked to the callback function const mathjaxObserver = new ResizeObserver(mathjaxCallback); // Start observing the target node for configured mutations mathjaxObserver.observe(mathjaxTargetNode); }); /* END $(document).ready */ function refreshMathjaxWidths() { let width = ($('.html-body').width()*0.9) + "px"; $('.MathJax_Display').css('max-width', width); $('.MJXc-display').css('max-width', width); } function sendScifeedFrom(form) { if (!$('#scifeed_email').val().trim()) { // empty email alert('Please, provide an email for subscribe to this scifeed'); return false; } else if (!$('#captchaSection').hasClass('ui-helper-hidden') && !$('#captchaSection').find('input').val().trim()) { // empty captcha alert('Please, fill the captcha field.'); return false; } else if( ((($('#scifeed_form').find('input:checkbox:checked').length)-($('#split_feeds:checked').length))<1) || ($('#scifeed_kwd_txt').length < 0 && !$('#scifeed_kwd_txt').val().trim()) || ($('#scifeed_author_txt').length<0 &&!$('#scifeed_author_txt').val().trim()) ) { alert('You did not select anything to subscribe'); return false; } else if(($('#scifeed_form').find('input:checkbox:checked').length)-($('#split_feeds2:checked').length)<1){ alert("You did not select anything to subscribe"); return false; } else { var url = $('#scifeed_subscribe_url').html(); var formData = $(form).serializeArray(); $.post(url, formData).done(function (data) { if (JSON.parse(data)) { $('.scifeed_msg').hide(); var res = JSON.parse(data); var successFeeds = 0; var errorFeeds = 0; if (res) { $('.scifeed_msg').html(''); $.each(res, function (index, val) { if (val) { if (val.error) { errorFeeds++; $("#scifeed_error_msg").append(index+' - '+val.error+'<br>'); } if (val.notice) // for successful feed creation { successFeeds++; // $("#scifeed_notice_msg").append(index+' - '+val.notice+'<br>'); $("#scifeed_notice_msg").append('<li>'+index+'</li>'); } } }); if (successFeeds>0) { text = $('#scifeed_notice_msg').html(); text = 'The following feed'+(successFeeds>1?'s have':' has')+ ' been sucessfully created:<br><ul>'+ text + '</ul>' +($('#scifeed_hidden_flag').length>0 ? 'You are not logged in, so you probably need to validate '+ (successFeeds>1?'them':' it')+'.<br>' :'' ) +'Please check your email'+(successFeeds>1?'s':'')+' for more details.'; //(successFeeds>1?' for each of them':'')+'.<br>'; $("#scifeed_notice_msg").html(text); $("#scifeed_notice_msg").show(); } if (errorFeeds>0) { $("#scifeed_error_msg").show();; } } $("#feed_data").hide(); } }); } } function follow_goto() { var hashStr = location.hash.replace("#",""); if(typeof hashStr !== 'undefined') { if( hashStr == 'supplementary') { document.getElementById('suppl_id').scrollIntoView(); } if( hashStr == 'citedby') { document.getElementById('cited_id').scrollIntoView(); } } } function cited() { $("#framed_div").toggle('fast', function(){ if ($(this).css('display') != 'none') { var loaded = document.getElementById("loaded"); if(loaded.innerHTML == "No") { // Load Xref result var container = document.getElementById("framed_div"); // This replace the content container.innerHTML = "<img src=\"https://pub.mdpi-res.com/img/loading_circle.gif?9a82694213036313?1739526160\" height=\"20\" width=\"20\" alt=\"Processing...\" style=\"vertical-align:middle; margin-right:0.6em;\">"; var url = "/citedby/10.3390%252Fijms25031469/2"; $.post(url, function(result) { if (result.success) { container.innerHTML = result.view; } loaded.innerHTML = "Yes"; }); } } return true; // for not going at the beginning of the page... }) return true; // for not going at the beginning of the page... } function detect_device() { // Added by Bastien (18/08/2014): based on the http://detectmobilebrowsers.com/ detector var check = false; (function(a){if(/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows (ce|phone)|xda|xiino/i.test(a)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(a.substr(0,4)))check = true})(navigator.userAgent||navigator.vendor||window.opera); return check; } function display_stats(){ $("#article_stats_div").toggle(); return false; } /* * Cited By Scopus */ function citedCount(){ $("#framed_div_cited_count").toggle('fast', function(){ if ($(this).css('display') != 'none') { var loaded = document.getElementById("loaded_cite_count"); // to load only once the result! if(loaded.innerHTML == "No") { // Load Xref result var d = document.getElementById("framed_div_cited_count"); // This replace the content d.innerHTML = "<img src=\"https://pub.mdpi-res.com/img/loading_circle.gif?9a82694213036313?1739526160\" height=\"20\" width=\"20\" alt=\"Processing...\" style=\"vertical-align:middle; margin-right:0.6em;\">"; $.ajax({ method : "POST", url : "/cite-count/10.3390%252Fijms25031469", success : function(data) { if (data.succ) { d.innerHTML = data.view; loaded.innerHTML = "Yes"; follow_goto(); } } }); } } // end else return true; // for not going at the beginning of the page... }) return true; // for not going at the beginning of the page... } </script><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/third-party/highcharts/highcharts.js?bdd06f45e34c33df?1739526160"></script><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/third-party/highcharts/modules/exporting.js?944dc938d06de3a8?1739526160"></script><script type="text/javascript" defer="defer"> var advancedStatsData; var selectedStatsType = "abstract"; $(function(){ var countWrapper = $('#counts-wrapper'); $('#author_stats_id #type_links a').on('click', function(e) { e.preventDefault(); selectedStatsType = $(this).data('type'); $('#article_advanced_stats').vectorMap('set', 'values', advancedStatsData[selectedStatsType]); $('#advanced_stats_max').html(advancedStatsData[selectedStatsType].max); $('#type_links a').removeClass('active'); $(this).addClass('active'); }); $.get('/1422-0067/25/3/1469/stats', function (result) { if (!result.success) { return; } // process article metrics part in left column var viewNumber = countWrapper.find(".view-number"); viewNumber.html(result.metrics.views); viewNumber.parent().toggleClass("count-div--grey", result.metrics.views == 0); var downloadNumber = countWrapper.find(".download-number"); downloadNumber.html(result.metrics.downloads); downloadNumber.parent().toggleClass("count-div--grey", result.metrics.downloads == 0); var citationsNumber = countWrapper.find(".citations-number"); citationsNumber.html(result.metrics.citations); citationsNumber.parent().toggleClass("count-div--grey", result.metrics.citations == 0); if (result.metrics.views > 0 || result.metrics.downloads > 0 || result.metrics.citations > 0) { countWrapper.find("#js-counts-wrapper__views, #js-counts-wrapper__downloads").addClass("visible").show(); if (result.metrics.citations > 0) { countWrapper.find('.citations-number').html(result.metrics.citations).show(); countWrapper.find("#js-counts-wrapper__citations").addClass("visible").show(); } else { countWrapper.find("#js-counts-wrapper__citations").remove(); } $("[data-id='article-counters']").removeClass("hidden"); } if (result.metrics.altmetrics_score > 0) { $("#js-altmetrics-donut").show(); } // process view chart in main column var jsondata = result.chart; var series = new Array(); $.each(jsondata.elements, function(i, element) { var dataValues = new Array(); $.each(element.values, function(i, value) { dataValues.push(new Array(value.tip, value.value)); }); series[i] = {name: element.text, data:dataValues}; }); Highcharts.setOptions({ chart: { style: { fontFamily: 'Arial,sans-serif' } } }); $('#article_stats_swf').highcharts({ chart: { type: 'line', width: $("#tabs").width() //* 0.91 }, credits: { enabled: false }, exporting: { enabled: true }, title: { text: jsondata.title.text, x: -20 //center }, xAxis: { categories: jsondata.x_axis.labels.labels, offset: jsondata.x_axis.offset, labels:{ step: jsondata.x_axis.labels.steps, rotation: 30 } }, yAxis: { max: jsondata.y_axis.max, min: jsondata.y_axis.min, offset: jsondata.y_axis.offset, labels: { steps: jsondata.y_axis.steps }, title: { enabled: false } }, tooltip: { formatter: function (){ return this.key.replace("#val#", this.y); } }, legend: { align: 'top', itemDistance: 50 }, series: series }); }); $('#supplement_link').click(function() { document.getElementById('suppl_id').scrollIntoView(); }); $('#stats_link').click(function() { document.getElementById('stats_id').scrollIntoView(); }); // open mol viewer for molbank special supplementary files $('.showJmol').click(function(e) { e.preventDefault(); var jmolModal = $("#jmolModal"); var url = "/article/1326201/jsmol_viewer/__supplementary_id__"; url = url.replace(/__supplementary_id__/g, $(this).data('index')); $('#jsmol-content').attr('src', url); jmolModal.find(".content").html($(this).data('description')); jmolModal.foundation("reveal", "open"); }); }); !function() { "use strict"; function e(e) { try { if ("undefined" == typeof console) return; "error"in console ? console.error(e) : console.log(e) } catch (e) {} } function t(e) { return d.innerHTML = '<a href="' + e.replace(/"/g, "&quot;") + '"></a>', d.childNodes[0].getAttribute("href") || "" } function n(n, c) { var o = ""; var k = parseInt(n.substr(c + 4, 2), 16); for (var i = c; i < n.length; i += 2) { if (i != c + 4) { var s = parseInt(n.substr(i, 2), 16) ^ k; o += String.fromCharCode(s); } } try { o = decodeURIComponent(escape(o)); } catch (error) { console.error(error); } return t(o); } function c(t) { for (var r = t.querySelectorAll("a"), c = 0; c < r.length; c++) try { var o = r[c] , a = o.href.indexOf(l); a > -1 && (o.href = "mailto:" + n(o.href, a + l.length)) } catch (i) { e(i) } } function o(t) { for (var r = t.querySelectorAll(u), c = 0; c < r.length; c++) try { var o = r[c] , a = o.parentNode , i = o.getAttribute(f); if (i) { var l = n(i, 0) , d = document.createTextNode(l); a.replaceChild(d, o) } } catch (h) { e(h) } } function a(t) { for (var r = t.querySelectorAll("template"), n = 0; n < r.length; n++) try { i(r[n].content) } catch (c) { e(c) } } function i(t) { try { c(t), o(t), a(t) } catch (r) { e(r) } } var l = "/cnd-cgi/l/email-protection#" , u = ".__cf_email__" , f = "data-cfemail" , d = document.createElement("div"); i(document), function() { var e = document.currentScript || document.scripts[document.scripts.length - 1]; e.parentNode.removeChild(e) }() }(); </script><script type="text/javascript"> function setCookie(cname, cvalue, ctime) { ctime = (typeof ctime === 'undefined') ? 10*365*24*60*60*1000 : ctime; // default => 10 years var d = new Date(); d.setTime(d.getTime() + ctime); // ==> 1 hour = 60*60*1000 var expires = "expires="+d.toUTCString(); document.cookie = cname + "=" + cvalue + "; " + expires +"; path=/"; } function getCookie(cname) { var name = cname + "="; var ca = document.cookie.split(';'); for(var i=0; i<ca.length; i++) { var c = ca[i]; while (c.charAt(0)==' ') c = c.substring(1); if (c.indexOf(name) == 0) return c.substring(name.length, c.length); } return ""; } </script><script type="text/javascript" src="https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js"></script><script> $(document).ready(function() { if ($("#js-similarity-related-data").length > 0) { $.ajax({ url: '/article/1326201/similarity-related', success: function(response) { $("#js-similarity-related-data").html(response); $("#js-related-articles-menu").show(); $(document).foundation('tab', 'reflow'); MathJax.Hub.Queue(["Typeset", MathJax.Hub]); } }); } }); </script><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery-ui-1.10.4.custom.min.css?80647d88647bf347?1739526160"><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/magnific-popup.min.css?04d343e036f8eecd?1739526160"><script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/magnific-popup.min.js?2be3d9e7dc569146?1739526160"></script><script> $(function() { $(".js-show-more-academic-editors").on("click", function(e) { e.preventDefault(); $(this).hide(); $(".academic-editor-container").removeClass("hidden"); }); }); </script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/vmap/jqvmap.min.css?126a06688aa11c13?1739526160"> <script src="https://pub.mdpi-res.com/assets/js/vmap/jquery.vmap.min.js?935f68d33bdd88a1?1739526160"></script> <script src="https://pub.mdpi-res.com/assets/js/vmap/jquery.vmap.world.js?16677403c0e1bef1?1739526160"></script> <script> function updateSlick() { $('.multiple-items').slick('setPosition'); } $(document).ready(function() { $('.multiple-items').slick({ slidesToShow: 1, nextArrow: '<a class="slick-next" href="#"><i class="material-icons">chevron_right</i></a>', prevArrow: '<a class="slick-prev" href="#"><i class="material-icons">chevron_left</i></a>', slidesToScroll: 1, responsive: [ { breakpoint: 1024, settings: { slidesToShow: 1, slidesToScroll: 1, } }, { breakpoint: 600, settings: { slidesToShow: 1, slidesToScroll: 1, } }, { breakpoint: 480, settings: { slidesToShow: 1, slidesToScroll: 1, } } ] }); $('.multiple-items').show(); $(document).on('click', '.reviewReportSelector', function(e) { let path = $(this).attr('data-path'); handleReviews(path, $(this)); }); $(document).on('click', '.viewReviewReports', function(e) { let versionOne = $('#versionTab_1'); if (!versionOne.hasClass('activeTab')) { let path = $(this).attr('data-path'); handleReviews(path, versionOne); } location.href = "#reviewReports"; }); $(document).on('click', '.reviewersResponse, .authorResponse', function(e) { let version = $(this).attr('data-version'); let targetVersion = $('#versionTab_' + version); if (!targetVersion.hasClass('activeTab')) { let path = targetVersion.attr('data-path'); handleReviews(path, targetVersion); } location.href = $(this).attr('data-link'); }); $(document).on('click', '.tab', function (e) { e.preventDefault(); $('.tab').removeClass('activeTab'); $(this).addClass('activeTab') $('.tab').each(function() { $(this).closest('.tab-title').removeClass('active'); }); $(this).closest('.tab-title').addClass('active') }); }); function handleReviews(path, target) { $.ajax({ url: path, context: this, success: function (data) { $('.activeTab').removeClass('activeTab'); target.addClass('activeTab'); $('#reviewSection').html(data.view); }, error: function (xhr, ajaxOptions, thrownError) { console.log(xhr.status); console.log(thrownError); } }); } </script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/affix.js?v1?1739526160"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/storage.js?e9b262d3a3476d25?1739526160"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/jquery-scrollspy.js?09cbaec0dbb35a67?1739526160"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/magnific-popup.js?4a09c18460afb26c?1739526160"></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/underscore.js?f893e294cde60c24?1739526160"></script> <script type="text/javascript"> $('document').ready(function(){ $("#left-column").addClass("show-for-large-up"); $("#middle-column").removeClass("medium-9").removeClass("left-bordered").addClass("medium-12"); $(window).on('resize scroll', function() { /* if ($('.button--drop-down').isInViewport($(".top-bar").outerHeight())) { */ if ($('.button--drop-down').isInViewport()) { $("#js-button-download").hide(); } else { $("#js-button-download").show(); } }); }); $(document).on('DOMNodeInserted', function(e) { var element = $(e.target); if (element.hasClass('menu') && element.hasClass('html-nav') ) { element.addClass("side-menu-ul"); } }); </script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/articles.js?5118449d9ad8913a?1739526160"></script> <script> repositionOpenSideBar = function() { $('#left-column').addClass("show-for-large-up show-for-medium-up").show(); $('#middle-column').removeClass('large-12').removeClass('medium-12'); $('#middle-column').addClass('large-9'); } repositionCloseSideBar = function() { $('#left-column').removeClass("show-for-large-up show-for-medium-up").hide(); $('#middle-column').removeClass('large-9'); $('#middle-column').addClass('large-12').addClass('medium-12'); } </script> <!--[if lt IE 9]> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8.js?6eef8fcbc831f5bd?1739526160"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/jquery.xdomainrequest.min.js?a945caca315782b0?1739526160"></script> <![endif]--> <!-- Twitter universal website tag code --> <script type="text/plain" data-cookieconsent="marketing"> !function(e,t,n,s,u,a){e.twq||(s=e.twq=function(){s.exe?s.exe.apply(s,arguments):s.queue.push(arguments); },s.version='1.1',s.queue=[],u=t.createElement(n),u.async=!0,u.src='//static.ads-twitter.com/uwt.js', a=t.getElementsByTagName(n)[0],a.parentNode.insertBefore(u,a))}(window,document,'script'); // Insert Twitter Pixel ID and Standard Event data below twq('init','o2pip'); twq('track','PageView'); </script> <!-- End Twitter universal website tag code --> <script>(function(){function c(){var b=a.contentDocument||a.contentWindow.document;if(b){var d=b.createElement('script');d.innerHTML="window.__CF$cv$params={r:'913398bebffafe04',t:'MTczOTc3MjQ0MS4wMDAwMDA='};var a=document.createElement('script');a.nonce='';a.src='/cdn-cgi/challenge-platform/scripts/jsd/main.js';document.getElementsByTagName('head')[0].appendChild(a);";b.getElementsByTagName('head')[0].appendChild(d)}}if(document.body){var a=document.createElement('iframe');a.height=1;a.width=1;a.style.position='absolute';a.style.top=0;a.style.left=0;a.style.border='none';a.style.visibility='hidden';document.body.appendChild(a);if('loading'!==document.readyState)c();else if(window.addEventListener)document.addEventListener('DOMContentLoaded',c);else{var e=document.onreadystatechange||function(){};document.onreadystatechange=function(b){e(b);'loading'!==document.readyState&&(document.onreadystatechange=e,c())}}}})();</script></body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10